首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

计量经济学文献回顾论文

发布时间:

计量经济学文献回顾论文

计量经济学期末实验报告实验名称:大中城市城镇居民人均消费支出与其影响因素的分析姓 名: 学 号: 班 级: 指导教师: 时 间: 23个城市城镇居民人均消费支出与其影响因素的分析一、 经济理论背景近几年来,中国经济保持了快速发展势头,投资、出口、消费形成了拉动经济发展的“三架马车”,这已为各界所取得共识。通过建立计量模型,运用计量分析方法对影响城镇居民人均消费支出的各因素进行相关分析,找出其中关键影响因素,以为政策制定者提供一定参考,最终促使消费需求这架“马车”能成为引领中国经济健康、快速、持续发展的基石。二、 有关人均消费支出及其影响因素的理论我们主要从以下几个方面分析我国居民消费支出的影响因素:①、居民未来支出预期上升,影响了居民即期消费的增长 居民的被动储蓄直接导致购买力的巨大分流, 从而减弱对消费品的即期需求,严重地影响了居民即期消费的增长,进而导致有效需求的不足,最终导致经济增长的乏力。90年代末期以来,我国的医疗、养老、失业保险、教育等一系列改革措施集中出台,原有的体制被打破,而新的体制尚未建立健全,因此目前的医疗、养老、失业保险、教育体制对居民个人支出的压力较大,而且基本上都是硬性支出,支出的不确定性也很大,导致居民目前对未来支出预期的上升。 ②、商品供求结构性矛盾依然突出从消费结构上看,我国消费品市场已发生了新的根本性变化:居民低层次消费已近饱和,而更高水平的消费又未达到。改革开放20多年来,城乡居民经过了一个中档耐用消费品的普及阶段后,目前老百姓的收入消费还不足以形成一个新的、以高档产品为内容的主导性消费热点,如轿车、住房等还远不能纳入大多数人的消费主流,居民现有的购买力不能形成推动主导消费品升级的动力。 ③、物价总水平持续在低水平运行,通货紧缩的压力较大,不利于消费的增长 加入WTO之后,随着关税的降低和进口规模的扩大,国外产品对我国市场的冲击将进一步加大,国际价格紧缩对国内价格变化将产生负面影响。物价的持续下降,不利于居民的消费增长。因为从居民的消费心理上看,买涨不买降是居民购物的习惯心理。由于居民对物价有进一步下降的预期,因此往往推迟消费,不利于居民消费的增长。另外,从统计上分析,由于物价的下降,名义消费增长往往低于实际消费的增长,这在一定程度上也不利于消费增长幅度的提高。④、我国现阶段没有形成大的消费热点,难以带动消费的快速增长经过近几年的培育和发展,我国目前已经形成了住房消费、居民汽车消费、通信及电子产品的消费、节假日消费及旅游消费等一些消费亮点,可以促进消费的稳定增长,但始终未能形成大的消费热点,因此不能带动消费的高速增长。三、 相关数据收集相关数据均来源于2006年《中国统计年鉴》:23个大中城市城镇居民家庭基本情况地区 平均每户就业人口(人) 平均每一就业者负担人数(人) 平均每人实际月收入(元) 人均可支配收入(元) 人均消费支出(元)北京 1.6 1.8 1865.1 1633.2 1187.9 天津 1.4 2.0 2010.6 1889.8 939.8 石家庄 1.4 2.0 1061.3 1010.0 722.9 太原 1.3 2.2 1256.9 1159.9 789.5 呼和浩特 1.5 1.9 1354.2 1279.8 772.7 沈阳 1.3 2.1 1148.5 1048.7 812.1 大连 1.6 1.8 1269.8 1133.1 946.5 长春 1.8 1.7 1156.1 1016.1 690.2 哈尔滨 1.4 2.0 992.8 942.5 727.4 上海 1.6 1.9 1884.0 1686.1 1505.3 南京 1.4 2.0 1536.4 1394.0 920.6 杭州 1.5 1.9 1695.0 1464.9 1264.2 宁波 1.5 1.8 1759.4 1543.2 1271.4 合肥 1.6 1.8 1042.5 950.1 686.9 福州 1.7 1.9 1172.5 1059.4 942.8 厦门 1.5 1.9 1631.7 1394.3 998.7 南昌 1.4 1.8 1405.0 1321.1 665.4 济南 1.7 1.7 1491.3 1356.8 1071.4 青岛 1.6 1.8 1495.6 1378.5 1020.7 郑州 1.4 2.1 1012.2 954.2 750.3 武汉 1.5 2.0 1052.5 972.2 853.1 长沙 1.4 2.1 1256.9 1148.9 986.8 广州 1.7 1.8 1898.6 1591.1 1215.1 四、 模型的建立根据数据,我们建立多元线性回归方程的一般模型为: 其中: ——人均消费支出 ——常数项 ——回归方程的参数 ——平均每户就业人口数 ——平均每一就业者负担人口数 ——平均每人实际月收入 ——人均可支配收入 ——随即误差项五、实验过程(一)回归模型参数估计根据数据建立多元线性回归方程: 首先利用Eviews软件对模型进行OLS估计,得样本回归方程。利用Eviews输出结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:08Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob. C -1682.180 1311.506 -1.282633 0.2159X1 564.3490 395.2332 1.427889 0.1704X2 569.1209 379.7866 1.498528 0.1513X3 1.552510 0.629371 2.466766 0.0239X4 -1.180652 0.742107 -1.590947 0.1290R-squared 0.721234 Mean dependent var 945.2913Adjusted R-squared 0.659286 S.D. dependent var 224.1711S.E. of regression 130.8502 Akaike info criterion 12.77564Sum squared resid 308191.9 Schwarz criterion 13.02249Log likelihood -141.9199 F-statistic 11.64259Durbin-Watson stat 2.047936 Prob(F-statistic) 0.000076根据多元线性回归关于Eviews输出结果可以得到参数的估计值为: , , , , 从而初步得到的回归方程为: Se= (1311.506) (395.2332) (379.7866) (0.629371) (0.742107)T= (-1.282633) (1.427889) (1.498528) (2.466766) (-1.590947) F=11.64259 df=18模型检验:由于在 的水平下,解释变量 、 、 的检验的P值都大于0.05,所以变量不显著,说明模型中可能存在多重共线性等问题,进而对模型进行修正。(二)处理多重共线性我们采用逐步回归法对模型的多重共线性进行检验和处理:X1:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:28Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob. C 153.8238 518.6688 0.296574 0.7697X1 523.0964 341.4840 1.531833 0.1405R-squared 0.100508 Mean dependent var 945.2913Adjusted R-squared 0.057675 S.D. dependent var 224.1711S.E. of regression 217.6105 Akaike info criterion 13.68623Sum squared resid 994441.2 Schwarz criterion 13.78497Log likelihood -155.3917 F-statistic 2.346511Durbin-Watson stat 1.770750 Prob(F-statistic) 0.140491X2:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:29Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob. C 1756.641 667.2658 2.632596 0.0156X2 -424.1146 347.9597 -1.218861 0.2364R-squared 0.066070 Mean dependent var 945.2913Adjusted R-squared 0.021597 S.D. dependent var 224.1711S.E. of regression 221.7371 Akaike info criterion 13.72380Sum squared resid 1032515. Schwarz criterion 13.82254Log likelihood -155.8237 F-statistic 1.485623Durbin-Watson stat 1.887292 Prob(F-statistic) 0.236412X3:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:29Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob. C 182.8827 137.8342 1.326831 0.1988X3 0.540400 0.095343 5.667960 0.0000R-squared 0.604712 Mean dependent var 945.2913Adjusted R-squared 0.585888 S.D. dependent var 224.1711S.E. of regression 144.2575 Akaike info criterion 12.86402Sum squared resid 437014.5 Schwarz criterion 12.96276Log likelihood -145.9362 F-statistic 32.12577Durbin-Watson stat 2.064743 Prob(F-statistic) 0.000013X4:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:30Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob. C 184.7094 161.8178 1.141465 0.2665X4 0.596476 0.124231 4.801338 0.0001R-squared 0.523300 Mean dependent var 945.2913Adjusted R-squared 0.500600 S.D. dependent var 224.1711S.E. of regression 158.4178 Akaike info criterion 13.05129Sum squared resid 527020.1 Schwarz criterion 13.15003Log likelihood -148.0898 F-statistic 23.05284Durbin-Watson stat 2.037087 Prob(F-statistic) 0.000096由得出的数据可以看出, 的调整的判定系数最大,因此首先把 引入调整的方程中,然后在分别引入变量 、 、 进行OLS得:X1、X3Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:32Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob. C -222.8991 345.9081 -0.644388 0.5266X1 289.8101 227.2070 1.275533 0.2167X3 0.517213 0.095693 5.404899 0.0000R-squared 0.634449 Mean dependent var 945.2913Adjusted R-squared 0.597894 S.D. dependent var 224.1711S.E. of regression 142.1510 Akaike info criterion 12.87276Sum squared resid 404138.2 Schwarz criterion 13.02087Log likelihood -145.0368 F-statistic 17.35596Durbin-Watson stat 2.032110 Prob(F-statistic) 0.000043X2、X3Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:33Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob. C 239.5536 531.1435 0.451015 0.6568X2 -27.00981 244.0392 -0.110678 0.9130X3 0.536856 0.102783 5.223221 0.0000R-squared 0.604954 Mean dependent var 945.2913Adjusted R-squared 0.565449 S.D. dependent var 224.1711S.E. of regression 147.7747 Akaike info criterion 12.95036Sum squared resid 436747.0 Schwarz criterion 13.09847Log likelihood -145.9292 F-statistic 15.31348Durbin-Watson stat 2.063247 Prob(F-statistic) 0.000093X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:34Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob. C 331.7015 142.5882 2.326290 0.0306X3 1.766892 0.553402 3.192782 0.0046X4 -1.473721 0.656624 -2.244390 0.0363R-squared 0.684240 Mean dependent var 945.2913Adjusted R-squared 0.652664 S.D. dependent var 224.1711S.E. of regression 132.1157 Akaike info criterion 12.72634Sum squared resid 349091.0 Schwarz criterion 12.87445Log likelihood -143.3529 F-statistic 21.66965Durbin-Watson stat 2.111635 Prob(F-statistic) 0.000010由数据结果可以看出,引入X4时方程的调整判定系数最大,且解释变量均通过了显著性检验,再分别引入X1、X2进行分析。X1、X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:37Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob. C 193.6693 403.8464 0.479562 0.6370X1 89.29944 243.6512 0.366505 0.7180X3 1.652622 0.646003 2.558228 0.0192X4 -1.345001 0.757634 -1.775265 0.0919R-squared 0.686457 Mean dependent var 945.2913Adjusted R-squared 0.636950 S.D. dependent var 224.1711S.E. of regression 135.0712 Akaike info criterion 12.80625Sum squared resid 346640.3 Schwarz criterion 13.00373Log likelihood -143.2719 F-statistic 13.86591Durbin-Watson stat 2.082104 Prob(F-statistic) 0.000050X2、X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:38Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob. C 62.60939 489.2088 0.127981 0.8995X2 134.1557 232.9303 0.575948 0.5714X3 1.886588 0.600027 3.144175 0.0053X4 -1.596394 0.701018 -2.277251 0.0345R-squared 0.689658 Mean dependent var 945.2913Adjusted R-squared 0.640657 S.D. dependent var 224.1711S.E. of regression 134.3798 Akaike info criterion 12.79599Sum squared resid 343100.8 Schwarz criterion 12.99347Log likelihood -143.1539 F-statistic 14.07429Durbin-Watson stat 2.143110 Prob(F-statistic) 0.000046由输出结果可以看出,在 的水平下,解释变量 、 的检验的P值都大于0.05,解释变量不能通过显著性检验,因此可以得出结论模型中只能引入X3、X4两个变量。则调整后的多元线性回归方程为: Se= (142.5882) (0.553402) (0.656624) T= (2.326290) (3.192782) (-2.244390) F=21.66965 df=20(三).异方差性的检验对模型 进行怀特检验:White Heteroskedasticity Test:F-statistic 1.071659 Probability 0.399378Obs*R-squared 4.423847 Probability 0.351673 Test Equation:Dependent Variable: RESID^2Method: Least SquaresDate: 12/11/07 Time: 16:53Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Prob. C 34247.50 128527.9 0.266460 0.7929X3 247.9623 628.1924 0.394723 0.6977X3^2 -0.071268 0.187278 -0.380548 0.7080X4 -333.6779 714.3390 -0.467114 0.6460X4^2 0.121138 0.229933 0.526841 0.6047R-squared 0.192341 Mean dependent var 15177.87Adjusted R-squared 0.012861 S.D. dependent var 23242.54S.E. of regression 23092.59 Akaike info criterion 23.12207Sum squared resid 9.60E+09 Schwarz criterion 23.36892Log likelihood -260.9038 F-statistic 1.071659Durbin-Watson stat 1.968939 Prob(F-statistic) 0.399378由检验结果可知, ,由White检验知,在 时,查 分布表,得临界值 (20)=30.1435,因为 < (5)= 30.1435,所以模型中不存在异方差。 (四).自相关的检验由模型的输出结果可知,估计结果都比较满意,无论是回归方程检验,还是参数显著性检验的检验概率,都显著小于0.05,D-W值为2.111635,显著性水平 =0.05下查Durbin-Watson表,其中n=23,解释变量的个数为2,得到下限临界值 ,上限临界值 , =1.543

计量经济学通常通过经济哲学、数学和统计推理的工具来检验经济学的奇点。还在学习如何撰写论文的同学必须理解这篇论文不仅仅是研究和写作。由于计量经济学是高度技术性的学科,关于这个主题的论文将要求同学使用图表,也可以通过引用、图片等来完成。

计量经济学论文中必不可少的内容:

1、引言

这部分内容应该说服读者关于论文主题的重要性。引言的最后一段应该简要概括同学将在论文的其余部分做些什么。

2、理论模型

同学应该在这一部分简要概述理论模型,思考哪个变量是因变量,以及解释变量应该是什么。

3、数据

这部分应该描述同学所使用的数据(例如,数据是分类排列数据还是时间序列数据,数据在哪个时间段或样本中可用)。同学需要为所使用的因变量和解释变量提供一个描述性统计表,可能还需要提供一些图形。

4、经验模型

同学应该讨论自己将使用什么函数形式。同时还应该讨论理论模型中每个变量的经验测度,例如,人力资本模型表明,教育水平影响收入。

5、实证结果

同学应该提供一个表格,简明扼要地总结得到的实证结果。

6、结论

同学可以简单描述一下自己从中学到了什么,例如:实证工作是否为理论提供了支持?根据同学对计量经济学知识和计量经济学文献的了解,这些结果看起来是否合理?如果有更多的时间,同学会做哪些额外的工作?

最好有以下几块东西1、选定研究对象(确定被解释变量,说明选题的意义和原因等。)2、确定解释变量,尽量完备地考虑到可能的相关变量供选择,并初步判定个变量对被解释变量的影响方向。(作出相应的说明)3、确定理论模型或函数式(根据相应的理论和经济关系设立模型形式,并提出假设,系数是正的还是负的等。)(二)数据的收集和整理(三)数据处理和回归分析(先观察数据的特点,观看和输出散点图,最后选择相应的变量关系式进行OLS回归,并输出会归结果。)(四)回归结果分析和检验(写出模型估计的结果)1、回归结果的经济理论检验,方向正确否?理论一致否?2、统计检验,t检验F检验R2—拟合优度检验3、模型设定形式正确否?可试试其他形式。4、模型的稳定性检验。(五)模型的修正(对所发现的模型变量选择问题、设定偏误、模型不稳定等,进行修正。)(六)确定模型(七)预测

古典文学常见论文一词,谓交谈辞章或交流思想。当代,论文常用来指进行科学研究和描述科研成果的文章,简称之为论文。它既是探讨问题进行科学研究的一种手段,又是描述科研成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等,总称为论文。论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。论文题目要求准确、简练、醒目、新颖。目录目录是论文中主要段落的简表。(短篇论文不必列目录)内容提要是文章主要内容的摘录,要求短、精、完整。1、先确立一个论点。全文围绕这一论点论证。对“开卷有益”这种说法,既不能全盘否定,写驳论文;也不宜全盘肯定,写成立论文。因为这种说法既有它正确的一面。又有它不够全面的地方,所以对这个看法要采取“一分为二”的方法进行分析,肯定其有益的一面,否定其有害的一面,从中总结出正确的论点来。只有这样才能对这一说法作出合乎事实的评价,最终达到以理服人的目的。2、运用“一分为二”的方法进行分析,要防止出这样一个毛病:自相矛盾。一会儿说开卷有益,一会儿说开卷有害,令人不知所云。为了避免这种现象,文章中还要将二者的联系点明,才算把道理真正说透。3、从论证方法看,如果所读的书是坏书,则开卷未必有益,这里可以采取例证法,并辅之以引证法和喻证法,用前几年社会上黄书泛滥成灾毒害青少年作为事实论据,用名人名言作为理论论据,充分论证黄书的害处和读好书的益处。在此基础上,再把这两者辩正地统一起来。说明我们中学生既要多读书,又要慎重地加以选择、读好书。这样从正反两方面进行论证,就将问题说得比较全面而深刻,文章也就具有了不可辩驳的逻辑力量。导思:这是一篇给材料作文。该题虽然规定了作文题目,但仍给学生思维留下了很大的空间,从文体来看,写议论文是最好的选择。学生可以从是非观、处世态度、治学精神等方面谈自己的看法,阐述自己的见解和主张。要写好议论文,必须做好以下三点:1、确定论点。根据命题提供的材料,可从不同角度提炼出诸多观点,但短短600字的文章不可能面面俱到。因此,一定要选准一个论点充分论证。2、选好论据。论据能起到充分证明论点的作用,论据选择要遵循两个原则:①真实确凿,不能有虚假成分;②具有典型性,有说服力,才能发挥更大的作用。3、组织好论证结构。最常用的结构一般为“提出问题(引论)——分析问题(本论)——解决问题(结论)”。

计量经济学论文文献

计量经济学课程论文小组成员:组长:指导教师:日期:2010/年5月27日2006年我国各城市的GDP变动的多因素分析摘要:本文主要通过对各城市同一时期的GDP进行多因素分析,建立以各城市同一时期的GDP为被解释变量,以其它可量化横截面数据作为解释变量建立多元线性回归模型,从而对各城市同一时期的GDP进行数量化分析。关键词:GDPY(亿元)多因素分析模型计量经济学检验一、引言部分GDP(国内生产总值)指一个国家(或地区)所有常住单位在一定时期内生产活动的最终成果,从价值形态看,它是所有常住单位在一定时期内生产的全部货物和服务价值超过同期中间投入的全部非固定资产货物和服务价值的差额,即所有常住单位的增加值之和。GDP在创造的同时也被相应的生产要素分走了,主要体现为劳动报酬和利润。在现代社会政府还要以税收的形式拿走一部分GDP。本文主要研究就业人数L(万人)、各地区资本形成总额K(亿元)剔除价格影响因素即商品零售价格指数P(上年=100)之后对各城市同一时期的GDP的影响。二、文献综述注:2006年各城市同一时期的GDP总量的数据来源于《中国统计年鉴2007》;2006年就业人数L(万人)的数据来源于《中国统计年鉴2007》;2006年资本形成总额K(亿元)的数据来源于《中国统计年鉴2007》,本表按2006年价格计算;2006年商品零售价格指数P(上年=100)的数据来源于《中国统计年鉴2007》;三、研究目的通过研究各个城市在同一时期的GDP建立以各城市同一时期的GDP为被解释变量,以其它可量化横截面数据作为解释变量建立多元线性回归模型,从而对各城市同一时期的GDP进行数量化分析。掌握建立多元回归模型和比较、筛选模型的方法。四、实验内容根据生产函数理论,生产函数的基本形式为:。其中,L、K分别为产出GDP的过程中投入的劳动与资金,本文未考虑时间变量即技术进步的影响。上表列出了我国2006年我国各个城市的GDP的有关统计资料;其中产出Y为各城市同一时期的GDP(可比价),L、K分别为2006年年末职工人数和各地区资本形成总额(可比价)。五、建立模型并进行模型的参数估计、检验及修正(一)我们先建立Y1与L的关系模型:其中,Y1——各个城市在同一时期的实际GDP(亿元)L——2006年年末职工人数(万人)模型的参数估计及其经济意义、统计推断的检验利用EVIEWS软件,经回归分析,作出Y1与L的散点图如下:利用EVIEWS软件,用OLS方法估计得:DependentVariable:Y1Method:LeastSquaresDate:05/27/10Time:14:45Sample:136Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.C-1647.264517.2169-3.1848610.0034L14.994170.71254921.042990.0000R-squared0.938534Meandependentvar7387.979AdjustedR-squared0.936415S.D.dependentvar6367.139S.E.ofregression1605.545Akaikeinfocriterion17.66266Sumsquaredresid74755513Schwarzcriterion17.75517Loglikelihood-271.7712F-statistic442.8073Durbin-Watsonstat1.503388Prob(F-statistic)0.000000可见,L的t值显著,且系数符合经济意义。从经济意义上讲,劳动每增加一单位,都可以使实际GDP相应增加14.9941,这在一定条件下可以实现。另外,修正可决系数为0.936415,F值为442.8073,明显通过了F检验。且L的P检验值为0,小于0.05,所以通过了P值检验(二)建立Y1与K1的关系模型:其中,Y1——各个城市在同一时期的实际GDP(亿元)K1——各地区资本形成总额(实际投入额)(亿元)模型的参数估计及其经济意义、统计推断的检验利用EVIEWS软件,经回归分析,作出Y1与K1的散点图如下:利用EVIEWS软件,用OLS方法估计得:DependentVariable:Y1Method:LeastSquaresDate:05/27/10Time:17:16Sample:136Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.C-705.0563393.0357-1.7938730.0833K12.2411060.08675125.833850.0000R-squared0.958357Meandependentvar7387.979AdjustedR-squared0.956921S.D.dependentvar6367.139S.E.ofregression1321.537Akaikeinfocriterion17.27332Sumsquaredresid50647333Schwarzcriterion17.36583Loglikelihood-265.7364F-statistic667.3880Durbin-Watsonstat1.697910Prob(F-statistic)0.000000可见,K1的t值显著,且系数符合经济意义。从经济意义上讲,资本每增加一单位,都可以使实际GDP相应增加2.241106,这在一定条件下可以实现。另外,修正可决系数为0.956921,F值为667.3880,明显通过了F检验。且K1的P检验值为0,小于0.05,所以通过了P值检验通过两个模型的可绝系数、调整可决系数、T检验、F检验、P值检验的比较,明显的,Y1与K1的关系模型优于Y1与L的关系模型。因此,在以Y1与K1的关系模型为基础模型的条件下,建立二元关系模型。(三)建立Y1与K1和L的二元关系模型其中,Y1——各个城市在同一时期的实际GDP(亿元)K1——各地区资本形成总额(实际投入额)(亿元)L——2006年年末职工人数(万人)利用EVIEWS软件,用OLS方法估计得DependentVariable:Y1Method:LeastSquaresDate:05/27/10Time:17:23Sample:136Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.C-1369.643303.2218-4.5169680.0001K11.3367960.1761047.5909360.0000L6.5222681.1906065.4781070.0000R-squared0.979900Meandependentvar7387.979AdjustedR-squared0.978464S.D.dependentvar6367.139S.E.ofregression934.3899Akaikeinfocriterion16.60943Sumsquaredresid24446367Schwarzcriterion16.74820Loglikelihood-254.4462F-statistic682.5040Durbin-Watsonstat1.633165Prob(F-statistic)0.000000可见,K1和L的t值显著,且系数符合经济意义。从经济意义上讲,资本每增加一单位,都可以使实际GDP相应增加。另外,修正可决系数为0.978464,F值为682.5040,明显通过了F检验。且K1和L的P检验值为0,均小于0.05,所以通过了P值检验。通过两个模型的可绝系数、调整可决系数、T检验、F检验、P值检验的比较,明显的,Y1与K1和L的关系模型优于Y1与K1的关系模型。因此,建立二元关系模型更符合实际经济情况。(四)建立非线性回归模型——C-D生产函数。C-D生产函数为:,对于此类非线性函数,可以采用以下两种方式建立模型。方式1:转化成线性模型进行估计;在模型两端同时取对数,得:在EViews软件的命令窗口中依次键入以下命令:GENRLNY1=log(Y1)GENRLNL=log(L)GENRLNK1=log(K1)LSLNY1CLNLLNK1则估计结果如图所示。DependentVariable:LNY1Method:LeastSquaresDate:05/27/10Time:17:29Sample:136Includedobservations:31VariableCoefficientStd.Errort-StatisticProb.C0.2423450.1981801.2228530.2316LNK10.6665000.0827078.0585380.0000LNL0.4933220.0881285.5977750.0000R-squared0.988755Meandependentvar8.504486AdjustedR-squared0.987951S.D.dependentvar1.037058S.E.ofregression0.113834Akaikeinfocriterion-1.416379Sumsquaredresid0.362831Schwarzcriterion-1.277606Loglikelihood24.95388F-statistic1230.946Durbin-Watsonstat1.295173Prob(F-statistic)0.000000可见,K1和L的t值显著,且系数符合经济意义。从经济意义上讲,资本每增加一单位,都可以使实际GDP相应增加。另外,修正可决系数为0.987951,F值为1230.946,明显通过了F检验。且K1和L的P检验值为0,均小于0.05,所以通过了P值检验。通过对以上模型的可决系数、调整可决系数、F检验的比较,明显的,该模型最优。因此,选用该模型为以各城市同一时期的GDP为被解释变量,以其它可量化横截面数据作为解释变量建立的最优多元线性回归模型。六、总结综上所述,我们采用截面数据拟合的模型成功的反映各城市同一时期的GDPY1与就业人数L(万人)和各地区剔除价格影响因素即商品零售价格指数P(上年=100)的资本形成总额K1(亿元)间的数量关系,是一个成功的模型。从模型中看出,各城市同一时期的GDPY1与就业人数L(万人)和各地区剔除价格影响因素即商品零售价格指数P(上年=100)的资本形成总额K1(亿元)有非常密切的关系,与柯布-道格拉斯(C-D)生产函数密切吻合,验证了柯布-道格拉斯(C-D)生产函数的正确。参考文献:1、《国民经济核算——国家统计年鉴2007》2、《价格指数——国家统计年鉴2007》3、《中国国内生产总值核算》,作者:许宪春编著,

计量经济学是用定量 方法 研究经济活动规律的一门科学,在经济学科中居于最重要的地位。下面是我为大家推荐的计量经济学论文,供大家参考。计量经济学论文 范文 篇一:《形成性评价计量经济学》 1形成性评价的可行性及必要性 我国医学类院校最早成立统计学本科专业的是第四军医大学,随后中山大学、潍坊医学院、滨州医学院等院校也相继成立了统计学本科专业。该专业培养目标是培养适应未来经济社会与科技发展需要,德、智、体、美等全面和i皆发展,掌握统计学的基本理论和方法,可熟练运用计算机分析数据,能在卫生行政机关、卫生防疫及医药相关部门从事统计调査、统计分析工作,或在医药卫生、 教育 机构从事科研与教学等工作的应用型专门人才。 我院统计学专业本科(卫生统计方向)自2006年开始招生,其培养友案涉及的主干课程可分为医学类(含基础医学_、临床医学和预防医学)、统计类、数学类、经济管理类、计算机类、外语及人文社会科学7类课程。其中计量经济学课程作为经济管理类的核心课程之一,属于统计学专业的必修课程。 本课程的学习使学生在已经学习的统计学和经济学的基础上进一步理解、掌握计量经济分析的方法和基础理论,通过模型研究经济问题的数量规律,对经济问题的前景做出正确的预测,提高学生发现问题、分析问题、解决问题的能力以及运用统计学理论与方法分析、解决相关领域实际问题的能力。传统的计量经济学课程评价采用的是终结性评价,即学生成绩由期末考试卷面成绩和平时成绩(含考勤、作业)组成。 多年的教学实践表明,终结性评价存在重视结果而忽略过程、评价主体单一化、评价内容缺乏全面性等诸多缺陷,而“一考定乾坤“的不公平评价方式也给学生带来了负面的影响,造成一定的考前突击、考试作弊现象ra,不利于教学质量和学生素质的提高。迄今为止,尚没有形成性评价在计量经济学课程中应用的文献,但形成性评价在其他学科教学中的广泛应用表明,它对学生成绩的提高具有明显效果,使学生的学习动机和学习自信心得到增强M。因此,有必要对计量经济学课程应用形成性评价的具体方案进行探讨。 2调查结果分析 自制“计量经济学课程形成性评价调查问卷”调查学生对形成性评价的认识、态度等,以便改进。在2011级开设计量经济学课程的本科学生中,抽取两个班级进行整群调査。发放调査问卷80份,收回有效问卷80份,有效问卷回收率100%。调i。 问卷调査结果显示,首先是认识方面,91.25%的学生认为形成性评价的主体应该是教师与学生相结合;其次是态度方面,90.00%的学生对计量经济学这门课程感兴趣,98.75%的学生认为计量经济学考核实行形成性评价有必要和很有必要;再次是授课效果评价方面,87.50%的学生对教师授课的总体评价是优;最后从结果来看,95.00%的学生认为通过本学期的学习,对计量经济学的掌握有进步,87.50%的 学生 自我评价 分数达80分及以上。 由此可见,在计量经济学考核中实施形成性评价得到了绝大多数学生的支持,收到了良好的效果。在保证教师评价与学生自我评价相结合的基础上,充分贯彻了“以学生为中心”的教育理念,可提高学生的学习兴趣和信心,增强学习效果,促进教学质量和学生素质的提高。 3结语 综上所述,形成性评价在计量经济学考核中具有广阔的应用前景,是顺应教学改革潮流的现代化考核方式。在实际应用中,需要优化计量经济学教学内容,改革 教学方法 和教学手段,可先通过构建和完善形成性评价结合终结性评价的课程评价体系,然后逐步过渡到形成性评价。同时,形成性评价在计量经济学课程考核中应用的成功 经验 对医学类院校统计学专业其他课程考核方面的改革有很强的借鉴意义。 计量经济学论文范文篇二:《试谈独立学院计量经济学》 1独立学院计量经济学课程的阈限概念分析 计量经济学是一门运用回归模型分析数据的方法论学科,本科阶段的初级层次计量经济学课程的主要内容涵盖计量经济学数据、一元线性回归模型、多元线性回归模型、回归估计量的理论,异方差、序列相关等。根据计量经济学理论和方法的发展,将计量经济学的阈限概念具体可归结为以下3组概念:第一,回归假设。回归假设是为分析回归结果引入的合情合理的假设,在不同数量的假设下能够得到回归系数估计量的不同性质。回归假设是整个回归方法的基础,一切回归有关的参数估计和假设检验都和回归假设紧密相关,同时违反回归假设的情形也是计量经济学理论发展的重点,因此回归假设是计量经济学的阈限概念之一。第二,回归系数估计量的无偏性、有效性和一致性。无偏性、有效性和一致性是评价估计量的基本标准,回归系数估计量的无偏性、有效性和一致性是回归理论的核心,整个初级计量经济学的理论最终都归结为回归系数估计量的这3个性质,同时,这3个性质又与回归假设紧密相关,故回归系数估计量的无偏性、有效性和一致性是计量经济学的阈限概念之二。第三,异方差。异方差是违背回归同方差假设时的回归结果表现,无论对于横截面数据还是时间序列数据,异方差的出现是回归分析的常态,因此对于异方差的检验和修正是初级计量经济学的重要内容,也是经济金融实证研究中需要关注的基本问题,故异方差是计量经济学的阈限概念之三。以上三个阈限概念是学生掌握计量经济学理论的关键,同时在概念上具有紧密的联系,下文将基于此探讨计量经济学课程的教学方式。 2基于阈限概念的独立学院计量经济学教学注意事项 由于独立学院的教学方式主要强调理论与方法的应用和实践,因此基于阈限概念的独立学院计量经济学教学的总体原则仍立足于阈限概念的理解与实际运用,具体地,需要注意以下三个方面:第一,合理安排教学内容。为了突出3大阈限概念,在首节导论课即向大家提出3大阈限概念,在介绍回归分析的原理和方法时,详细的说明每个假设的用途,使学生理解每个假设的目的和本质,进而在回归估计量三个性质的教学中把握无偏性、有效性和一致性的具体条件,并明确理解异方差这一违反假设的情况。在具体教学过程中,以充分的时间介绍三大阈限概念及其联系,从而建构整个计量经济学的知识和方法体系。第二,运用软件展示阈限概念的具体应用。独立学院的计量经济学教学应完全从应用性角度出发,运用软件展示计量经济学概念、原理和方法。对于3大阈限概念,可用40%左右的时间解释概念产生的原因与本质,而60%左右的时间结合典型例题讲解如何运用计量经济学软件如Eviews解决具体的回归分析建模和假设检验问题。第三,通过尝试撰写学术论文强化阈限概念的综合运用。撰写实证性的学术论文是进行计量经济学方法综合训练的较好途径之一,可以通过让学生从选择题目开始,通过收集数据,建立回归模型,参数估计,假设检验以及进行可能的异方差和序列相关检验和修正等等来感受计量经济学解决综合问题的方法和程序,通过写作论文的方式加以体现,然后交流讨论,以深化对计量经济学阈限概念的理解。计量经济学教学经过以上三个方面的具体设计,帮助学生牢固掌握计量经济学的阈限概念,提升解决实际问题的能力。 3基于阈限概念的独立学院计量经济学教学实践 以浙江大学城市学院为例浙江大学城市学院是一所以培养应用型人才为导向的独立学院,也是我国建立最早、最有名的独立学院之一。计量经济学课程是浙江大学城市学院金融学专业的必修课程,在大三上学期开设。浙江大学城市学院的计量经济学课程以提高学生建立回归模型能力为教学目标,基于Eviews软件进行教学,每周教学学时为理论(教师讲授)与上级实验(学生练习)各2学时,特别注重学生对计量经济学阈限概念的理解与掌握。因此,研究浙江大学城市学院的计量经济学教学对研究独立学院计量经济学课程的教学具有借鉴意义。浙江大学城市学院的计量经济学教学内容为传统的初级计量经济学教学内容。教师在讲授回归假设时着重解释回归假设的设立目的与合理性,并通过软件讲解回归假设的验证,使学生理解并掌握回归假设。在回归系数估计量的无偏性、有效性和一致性教学中,通过详细分析三个性质所依据的不同假设,使学生理解三个性质所应具备的条件从而掌握线性回归估计量理论。特别地,专门安排约10学时左右的实验课进行计量经济学论文撰写与分析的交流,要求学生自选题目,收集数据,建立回归模型,进行估计并检验异方差、序列相关以及模型设定问题,写作小论文并在课堂上展示交流。为评价教学效果,选取2010级学生1个教学班共24人进行满分为5分的教学满意度打分,学生对计量经济学课程全部项目的满意度均达到97%以上,总体平均满意度超过99%。由此可见,浙江大学城市学院应用统计课程的教学效果非常成功。 4结论 回归假设、回归系数估计量的无偏性、有效性和一致性和异方差是计量经济学课程的三大阈限概念。基于阈限概念的计量经济学教学在于合理安排教学内容,运用软件展示阈限概念的具体应用以及通过尝试撰写学术论文强化阈限概念的综合运用。浙江大学城市学院计量经济学课程的教学实践分析表明本文提出的基于阈限概念的计量经济学教学方式对独立学院的计量经济学课程教学具有很好的适用性及学生满意度。 计量经济学论文范文篇三:《高校经济类专业计量经济学课程研究性教学路径》 一、引言 2世纪美国伟大的教育家、以倡导研究性教学闻名全球的博耶(Ernest L. Boyer)教授认为,“最好的大学教育意味着积极主动的学习和训练有素的探索,使学生具有推理及思考能力。所有的教师都应不断改进教学内容和教学方法,通过创造性的教学鼓励学生积极主动地学习”。 2005年,教育部在《关于进一步加强高等学校本科教学工作的若干意见》中首次明确提出要“积极推动研究性教学,提高大学生的创新能力”,“大力加强实践教学,切实提高大学生的实践能力”,“要让大学生通过参与教师科学研究项目或自主确定选题开展研究等多种形式,进行初步的探索性研究工作”。 二、文献综述 近年来,国内已经有一批高校从整体上推进实施“研究性教学”,已被证明是“创新人才培养的成功模式”之一。众多高校老师、学者已将“研究性教学”理念融入教学改革中,积极探索适合“研究性教学”相配套的课程结构体系、教师教学激励机制、创新学分制度等制度,为之有效开展提供了制度保证。 刘赞英等(2007)对国外大学研究性教学的经验进行了全面的 总结 对比,为我国大学开展研究性教学提供了启示与借鉴[1]。刘智运(2006)认为,研究性“教”与“学”反映的是一种互动式师生关系。教师不仅仅是传授现有知识,更重要的是要创设有利于学生参与研究和主动探索的情境,鼓励、引导和帮助学生学习、思考和研究。同时学生也不是被动接受式学习,而是积极主动的求知过程,同时需要与教师展开及时的互动交流[2]。王岚等(2007)认为,研究性教学既是一种教学理念,又是一种教学模式,还是一种教学方法。 它是一种将教师研究性教学与学生研究性学习、课内讲授与课外实践、依靠教材与广泛阅读、教师引导与学生自学有机结合并达到完整、和谐、统一的教学[3]。龙慧灵等(2010)通过研究发现,研究性“学”要求学生在“学”中“研究”,在“研究”中“学”,学生的研究与教师的研究有所不同,学生的研究更多的是强调研究和探索的过程,通过这一过程实现知识的学习,问题发现与解决能力的培养[4]。王锋等(2014)认为,研究性“学”与研究性“教”是相辅相成、不可分割的统一体,其内在联系通过“研究”这一纽带得以体现,并从平等合作的师生关系、研究性 学习方法 激励、教师团队建设、过程管理以及体系评价配套等方面提出有效实施研究性教学的策略[5]。 此外,关于研究性教学模式,肖萍等(2005)、刘茂军(2005)、蒋乃华(2010)和李胜清等(2009)分别提出了“以课题为中心的模式”、“溯源法模式”、“‘一体两翼’模式”和“‘四位一体’模式”[6][7][8][9]。 三、计量经济学的课程性质 计量经济学的重要性不言而喻。诺贝尔经济学奖获得者R?Clein说过:“计量经济学已经在经济学科中居于最重要的地位。”著名经济学家P?Samuelson也曾经指出,第二次世界大战后的经济学是计量经济学的时代。从1969年第一届诺贝尔经济学奖授予计量经济奠基人R?Frisch和计量经济建模之父J?Tinbergen以来,95%以上的获奖成果都与计量经济学有着密切的联系。 我国教育部高等学校经济学学科教学指导委员会也将“计量经济学”列为经济学类各专业的八门核心课程之一。计量经济学是一门理论性、应用性、实践性、体验性很强、难度较大的综合性课程,跟高等数学、概率论、数理统计和宏微观经济学联系密切,Kennedy认为“理论计量经济学家和应用计量经济学家缺乏充分交流会导致理论与实践的严重脱节,甚至不知所措[10] ”。Guy Orcutt曾说过,“做计量经济学就像试图通过播放收音机来研究电的规律”,足见其难度。因此,本科阶段的学习会更侧重于计量经济实证研究,其对统计数据的质量要求很高,否则计量模型再完美,也只能是“垃圾进去,垃圾出来”,而收集数据本身在一定程度上又是一门艺术。 四、研究性教学的路径选择 1.强化大学新生研究性训练,为高年级研究性学习做好铺垫。 《计量经济学》是经济类专业学生的必修课,如果前期没有一定的研究训练,突然实施研究性教学会让学生无法适应,手足无措。因此建议一入学就给学生灌输研究性学习的理念,让学生从传统教育模式的“被动接受者”向“主动参与者”转变。具体做法就是在大一阶段设立“新生讨论课”项目,由相关专业有经验的教师主持研讨课,课程围绕学科专业引导、开拓学生视野、激发科研兴趣的目的展开,重在让学生了解科研对于专业学习的意义。同时,也可以尝试在学科基础课如微观经济学、宏观经济学、应用统计学等课程中适当介入研究性学习训练,使基础学习阶段的学生对研究性学习有所启蒙。用麻省理工学院校长查尔斯?韦斯特的话说,就是“尽可能尽早把年轻人引导到科研领域”。 2.合理的时间安排和针对性的内容计划是实施研究性教学的关键。 欧美高校在计量经济学的课程设置上普遍具有多样性、层次性特征,如耶鲁大学、哈佛大学、剑桥大学、芝加哥大学、麻省理工学院等基本上都会将计量经济学分解成几门更细的课程或者分成基础、进阶、高级等不同的层次。而国内大学普遍只单一开设计量经济学这门课程,和国外相比我国各高校计量经济学课时安排相对较少。笔者调查了北京大学、清华大学、浙江大学、南京大学、复旦大学、武汉大学、吉林大学、人民大学、厦门大学、南开大学等10所具有代表性的综合性大学和西南财大、东北财大、上海财大、中南 财经 政法大学等5所财经类大学以及中国矿业大学、石油大学、中国地质大学、中国农业大学、武汉理工大学、华中农业大学等6所地矿类、农林类专业特色突出的院校,发现该门课程的学时设置大体分为48学时和64学时,学分在3~4个之间。即便是一学期64学时的安排,要让学生充分掌握计量经济学理论、方法及应用依然是非常困难的。从学期安排来看,除了个别学校安排在第四或者第六学期外,绝大多数高校安排在第五学期较为合理,一方面大二刚刚学完微观、宏观经济学和统计学原理,可以趁热打铁,有效降低遗忘效应,另一方面也可以为大学中后段的 社会实践 乃至 毕业 论文(设计)打下模型和方法的基础。 教学内容的甄选也会很大程度上影响该课程研究性教学的开展。根据教育部高教司制定的经济类本科专业课程教学基本要求,计量经济学应包括概述、经典单方程的简单线性回归及多元线性回归模型、放宽经典假定的单方程模型(包括多重共线性、异方差性、自相关性和模型设定偏误)、联立方程组模型以及应用计量经济模型等板块。 在概述部分,通过1~2篇尽可能涵盖全书主要内容的经典计量经济学学术论文介绍开始,让学生对计量经济学有一个轮廓性的认识,并初步引导学生进入研究性学习的体系中来。经典单方程线性回归模块,鉴于在统计学原理课程中已基本掌握OLS的基本方法,应侧重于剖析偏相关以及几大经典假定的阐述,这一部分以课内讲授、原理学习为主。研究性学习的重点放在后面三大模块,尤其是放宽经典假定的单方程模型篇章中的多重共线性、异方差性、自相关性部分以及应用时间序列计量经济模型篇章。 3.选择适当的配套教材,为实施研究性教学奠定基础。计量经济学的国内外教材非常多,笔者认为选取合适的教材和配套的参考书对研究性教学的效果有着相当关键的影响。教材在提供给学生系统知识的同时,也应给学生一定的面向经济实践的问题思考。因此,对该课程而言,最好能采取主、辅教材同步配套的策略,主教材以提供给学生基本理论与知识为主,在注意系统性的同时,要吸收前沿成果。辅助教材则尽可能囊括可以实时更新数据的案例为主,对经典案例的分析解读是本科生“模仿研究”的起点。 经过多年的教学实践,我校的计量经济学教学模式从最初教师主导的“理论模型方法阐述”到后来的师生交互的“计量模型+案例实践”,再到目前尝试探索学生主导的“研究性教学”,使用的教材也经历了反复的尝试和总结。建议主教材选择清华大学李子奈教授的《计量经济学》或者西南财经大学庞皓教授的《计量经济学》,配套参考书选择古扎拉蒂的《计量经济学基础》或者伍德里奇的《计量经济学导论:现代观点》以及EVIEWS软件自带的《用户手册(User Guider I、II)》,这样的组合可以很好地满足研究性教学的教材需要。 4.多方配合和资源共享为实施研究性教学提供保障。突破传统教学模式,实施研究性教学对学校、学院以及课程教学团队都提出了很高的要求。学校要制定实施研究性教学的指导意见,专门组织开展全校范围内的研究性教学研讨与交流活动,因为实施研究性教学的过程不是一两个学院、一两个专业或者一两门课程能形成氛围的,它不仅仅是教学方法与教学模式转变的过程,更是教育思想观念与教育理念革新的过程。在全校范围内推行研究性教学模式下的教学管理制度,用研究性的视野重新认识教学管理活动的目标、途径和方法,积极开展管理创新,为研究性教学的开展创造自由、开放、宽容、友好的服务软环境。学院层面也尽可能结合精品课程的建设,为开展研究性教学提供优质的教学资源,积极争取实现课程教学资源的网络化,支持并构建以精品教材为主干的教材体系建设,教育学生树立“研究为新常态”的学习观,激励学生主动探究和亲身体验以及基于真实任务的研究问题的解决[11]。课程教学团队除了依托自身的科研项目,广泛吸纳本科生参与研究外,更要结合经济现实,鼓励学生自主立项,建立系统的课程项目库。 计量经济学的研究性教学对全校范围的资源共享的要求也很高。数据共享、软件共享、图书资料共享要求完善健全的校园网络建设和管理,除了教室和实验室以外,老师学生可以随时随地访问数据库,下载更新数据,调用专业统计软件。加强改善教室、实验室、研讨间等研究性学习场所的建设力度,争取实现“小班教学”和“小组实验”,为研究性教学提供软件和硬件的保障。 5.以点串线、由线及面共同构建研究性教学的一体化架构。开设计量经济学课程的经济学学科有各种不同的本科专业,以我校为例有经济学、统计学、金融学和国际经济贸易等专业,不同专业学生的性别比例、生源类别、学科基础和专业侧重均有所不同,相同专业的班风学风也不尽一致,因此可以选择有一定的科研基础和研究能力的任课老师选择相关专业学风优良的班级进行试点。在计量经济学教学大纲范围内选择相对容易理解的知识点和相对“规范(或者标准)”的经济问题作为该课程研究性教学的起点。通过模仿标准案例,然后引导学生以小组的形式各自选择一个研究项目,要求小组(项目组)成员统一拟定立项计划书,阐明研究背景、立项意义,梳理综述文献,设定研究方法和技术路线,合理进行人员分工,最后进行研究成果展示,互相交流心得,教师在学生立项研究的过程中随时答疑解惑。 这样,多个研究项目组合串联起来,就可以形成较为完美的“4线”:前因后果线、教研反馈互动线、理论实践融合线和课内课外互补线。这种教师引导、学生自主立项研究学习的方式能够充分激发学生全方位选择研究主题、多途径收集资料,既可以为教师的科学研究提供补充信息,又可以使学生在研究过程中涉猎更多的学科领域,丰富他们的知识面;在项目负责人组织带领下,各成员分工合作,集思广益,既避免了搭便车现象,又可以极大程度上扩大学生的参与面;项目的研究过程和最终效果也可以作为整个课程考核的重要环节,从而拓展考核的内容面。 五、结语 计量经济学是一门跟现实经济社会密切相关的课程,涉及的计量方法和模型在微观领域可以和家庭(或个人)的经济行为(收入、储蓄、消费、投资等)以及企业的管理活动( 人力资源管理 、生产成本控制、营销策略制定等)等经济现象紧密结合,在经济增长、就业与通货膨胀、区域经济社会差异、财政政策与货币政策制定等宏观经济领域更是大有用武之地。既可以分析单一的横截面数据(或者时序数据),又可以研究混合数据(面板数据)。除了数值型数据,它还能对分类数据构建相应的计量模型。它不只研究经济社会的表面现象,还可以通过数据分析挖掘出现象背后的本质规律。计量经济学应用领域的广泛性为方便学生选题、开展研究性教学提供了强有力的可行性。 经济类专业的本科生学习计量经济学应侧重实证研究,在很多情况下经济理论并不能给出相关经济现象的确切答案,而唯一可行的途径便是“仔细收集数据,深入实证分析”。对于初学计量的学生来说,通过立项研究,与真实数据交手是加深理解的重要途径。因此,实施研究性教学,“弄脏学生的手,弄乱他们的桌”才能真正学会实证研究,领悟计量经济学的真谛。 猜你喜欢: 1. 关于经济发展的论文 2. 有关工程计量与计价论文 3. 有关金融计量的参考论文 4. 统计学论文范文

计量经济学经济学论文题目

对我国城乡居民收入差距的剖析\x0d\x0a经济增长质量评价研究\x0d\x0a对**国际旅游收入的预测与分析\x0d\x0a旅游产业区域竞争力评价分析\x0d\x0a++省农业产业增长与结构调整研究\x0d\x0a++省居民消费行为研究\x0d\x0a++省经济增长模式与结构调整路径研究\x0d\x0a城市化对泛珠三角区域经济增长的影响研究\x0d\x0a市场化对泛珠三角区域经济增长的影响研究\x0d\x0a城市化对泛珠三角区域居民消费的影响研究\x0d\x0a市场化对泛珠三角区域居民消费的影响研究\x0d\x0a科技体制改革对泛珠三角区域经济增长的影响研究\x0d\x0a产出增加效益对泛珠三角区域经济增长的影响研究\x0d\x0a投入节约效益对泛珠三角区域经济增长的影响研究\x0d\x0a外商直接投资对海南旅游业的影响分析\x0d\x0a++旅游产业对海南经济发展的贡献分析\x0d\x0a++旅游经济发展水平与旅游资源禀赋影响研究\x0d\x0a++旅游增长和房地产投资的相关性分析\x0d\x0a++城乡居民的经济收入与旅游消费关系的定量分析\x0d\x0a++旅游业的评价及旅客满意度调查\x0d\x0a++各市县旅游经济差别研究\x0d\x0a城镇居民消费状况研究\x0d\x0a大学生心理问题问卷分析\x0d\x0a大学生电脑需求分析\x0d\x0a++国际旅游产业结构分析\x0d\x0a++旅游收入分析\x0d\x0a++经济发展长期趋势分析\x0d\x0a++各市县经济效益分析\x0d\x0a农民人均收入和支出因素分析 \x0d\x0a农民家庭收入影响因素分析\x0d\x0a. 证券投资的影响因素分析\x0d\x0a中国人口年龄结构变化与养老问题研究\x0d\x0a对我国投资与经济增长相互关系的研究\x0d\x0a区域产业竞争力分析\x0d\x0a工业企业科技竞争力综合评价\x0d\x0a居民消费结构变动分析\x0d\x0a上市公司财务状况的综合评价研究\x0d\x0a关于企业投资项目的绩效评价研究\x0d\x0a试论层次分析法在新农村建设评价中的应用\x0d\x0a关于改善统计学专业就业问题的教育取向研究\x0d\x0a试论企业盈利预测及其可靠性分析\x0d\x0a上市公司盈利预测的可靠性和离散性的统计分析\x0d\x0a关于企业内部绩效统计评价的探讨\x0d\x0a试论投入产出技术在经济结构统计中的应用\x0d\x0a旅游经济动向预测方法的探析

出生活1978年,

我国旅游经济的因素分析我国旅游业发展状况分析我国居民消费增长模型我国经济增长与周期波动我国经济增长对能源消耗的依赖公共投资取向与经济增长分析三大产业的发展与城镇居民家庭消费支出餐饮业区域市场潜力的影响因素分析资本结构主要影响因素的再探析国债发行规模的计量经济分析工资收入差异分析城镇人均收入与人均通讯消费分析影响居民消费水平的因素分析影响就业人数的因素的计量分析影响大学生就业问题的因素分析影响股价指数的因素分析影响我国电力产量的因素分析影响中国汽车产量的多因素分析私家车拥有量的计量分析我国汽车需求的因素分析

对我国经济增长的因素分析

关于教育对中国经济增长作用的计量分析

关于司机年龄与发生车祸次数关系的分析

改革开放以来商品零售价格指数(RPI)变化因素分析

固定资产投资对GDP的影响

关于GDP与其他经济因素关系的计量分析

吉尼系数影响因素的计量分析

我国旅游经济的因素分析

试探交通运输发展与国民经济的关系

我国1978-1997年的财政收入和国民生产总值的计量分析

我国经济增长对能源消耗的依赖

投资额与生产总值和物价指1

外商直接投资(FDI)对我国经济影响的实证分析

影响居民消费水平的因素分析

我国人均GDP与消费的计量分析

有关我国居民储蓄影响因素的计量分析

新中国出口的影响因素分析

影响股价指数的因素分析

影响居民消费水平的主要因素分析

我国消费的影响因素分析

中国能源需求影响因素实证分析

中国经济增长与周期波动

中国旅游业发展状况分析

中国城市居民消费计量分析

对上市公司利用新四项计提进行盈余管理的实证研

对影响人身保险保费收入诸因素的计量分析

餐饮业区域市场潜力的影响因素分析

FDI对中国经济增长的影

城镇居民住房面积的多因素分析

关于影响我国南方几省市农业总产值因素的实证分析

关于国内旅游需求的计量经济学分析报告

如何提高农业产值和农民人均收入水平

宏观经济政策对中国经济周期波动的影响分析

三大产业的发展与城镇居民家庭消费支出

上市公司财务预警模型设计与分析

货币政策有效性分析

外资利用与我国进出口贸易关系的实证分析

我国采矿业龙头企业利润因素分析

我国农民收入影响因素的回归分析

2021计量经济学论文

城乡收入差距的因素分析 大学生手机预期消费的计量经济模型 第二产业国内生产总值对固定资产投资的影响分析 第二产业GDP形成的因素分析 各因素对高新技术区发展的影响 基于Hedonic模型的成都住宅价格影响因素分析 关于自筹资金对基本建设投资资金的影响 关于中国旅游发展的分析 关于GDP与固定资产投资的计量经济模型分析 国内工业固定资产和劳动就业人数对工业产值的影响 倒“U”曲线及顶点分析 金融发展与经济增长的关系 失业率对中国国内生产总值的影响 人力资本和实物资本对企业利润的影响分析 人力资本投入与GDP 实证库兹涅茨倒U曲线中国实现 农村剩余劳动力转化途径与农民收入增加的关系分析 农村居民收入影响因素分析 利率及收入对货币供应量的影响 我国房地产行业的生产函数模型 我国改革开放后通货膨胀的因素分析 我国房地产市场影响因素分析 我国居民储蓄影响因素的实证分析 我国居民收入对储蓄存款的影响 适度扩大M2能提高我国GDP 四川省农民收入结构分析 四川省居民消费水平影响因素的分析 影响农民收入的因素分析 信息时代的城镇对比 影响国内私人汽车拥有量的几个重要因素分析 影响成都市机动车总数因素的定量分析 影响我国国内过夜旅游者人数因素的计量分析 影响电信业务收入的主要因素的分析 影响货币需求的因素分析 用误差校正模型研究季度M1需求 政府对公共卫生事业的投资与国民经济增长关系的计量分析 由弹性价格货币模型论中国汇率和利率的联动性 中国资本外逃的成因解释与计量分析 中国的菲利普斯曲线 中国城乡人口流动趋势分析 中国外汇储备的影响因素分析 中国校正失业变化率条件下的奥肯定律检验 菲利普斯曲线的验证 对我国经济增长的因素分析 恩格尔系数模型检验 地区人均收入影响因素的计量分析 成都市投资额影响因素的实证分析 关于司机年龄与发生车祸次数关系的分析 固定资产投资对GDP的影响 改革开放以来商品零售价格指数(RPI)变化因素分析 关于GDP与其他经济因素关系的计量分析 关于教育对中国经济增长作用的计量分析 吉尼系数影响因素的计量分析 我国经济增长对能源消耗的依赖 我国旅游经济的因素分析 投资额与生产总值和物价指1 外商直接投资(FDI)对我国经济影响的实证分析 试探交通运输发展与国民经济的关系 我国1978-1997年的财政收入和国民生产总值的计量分析 影响居民消费水平的因素分析 影响居民消费水平的主要因素分析 新中国出口的影响因素分析 有关我国居民储蓄影响因素的计量分析 我国消费的影响因素分析(经济2班) 我国人均GDP与消费的计量分析 影响股价指数的因素分析 中国经济增长与周期波动 中国能源需求影响因素实证分析 中国旅游业发展状况分析 中国城市居民消费计量分析 FDI对中国经济增长的影1 城镇居民住房面积的多因素分析 对影响人身保险保费收入诸因素的计量分析 餐饮业区域市场潜力的影响因素分析 对上市公司利用新四项计提进行盈余管理的实证研 关于国内旅游需求的计量经济学分析报告 关于影响我国南方几省市农业总产值因素的实证分析 三大产业的发展与城镇居民家庭消费支出 上市公司财务预警模型设计与分析 宏观经济政策对中国经济周期波动的影响分析 如何提高农业产值和农民人均收入水平 货币政策有效性分析 私家车拥有量的计量分析 四川省居民消费水平的多因素分析 我国采矿业龙头企业利润因素分析 我国财产保险市场发展的因素分析 外资利用与我国进出口贸易关系的实证分析 我国国债挤出效应的实证分析 我国农民收入影响因素的回归分析 影响保费收入的因素分析 我国汽车需求的因素分析 影响GDP增长的经济因素分析 影响人身保险保费收入的重要因素分析 影响我国农业总产值因素的实证分析 影响寿险保费收入的因素分析2 影响四川省房地产业发展的因素分析 影响中国汽车产量的多因素分析 中国经济增长的影响因素实证分析 中国城镇居民2003年可支配收入分析 资本结构主要影响因素的再探析 在校学生总数变动的多因素分析 运用OLS法对参数估计 中国上市公司现金股利的影响因素分析 中国农业总产值问题的计量分析 GDP与进出口总额的计量分析 城市住房均衡价格供求模型 城镇集体单位固定资产投资对国内生产总值的影响分析 城镇人均收入与人均通讯消费分析 NBA球员薪金问题 北京城市居民消费函数模型分析 北京市城镇居民消费函数模型 成都市05年度住宅市场定价模型 北京市城镇居民消费模型 北京市居民消费函数模型(巫君荣杨三冠等) 店铺租金的确定 对成都市房地产市场的实证考察 对影响某高校研究生录取线的爽因素分析 对外贸易与四川经济增长关系实证分析 工业产值与能源耗量的实证分析 发展中国家货币需求模型 固定资产投资对贵州GDP影响分析 固定资产投资的计量经济学模型 工资收入差异分析 房地产价格因素分析 货币政策与GDP的回归分析. 关于封闭式基金价格问题 关于社会商品零售总额的案例分析 开放经济下储蓄、投资与贸易余额关系的研究 我国财政收入与部分支出结构 四川省居民消费结构计量分析请采纳答案,支持我一下。

一、 研究的目的要求 税收是我国财政收入的基本因素,也影响着我国经济的发展。取得财政收入的手段有多种多样,如税收、发行货币、发行国债、收费、罚没等等,而税收则由政府征收,取自于民、用之于民。经济是税收的源泉,经济决定税收,而税收又反作用于经济,这是税收与经济的一般原理。这几年来,中国税收收入的快速增长甚至“超速增长”引起了人们的广泛关注。科学地对税收增长进行因素分析和预测分析非常重要,对研究我国税收增长规律,制定经济政策有着重要意义。。 改革开放以来,中国经济高速增长,1978-2008年的31年间,国内生产总值从3645.2亿元增长到314045亿元,一跃成为世界第二大经济体。随着经济体制改革的深化和经济的快速增长,中国的财政收支状况也发生了很大的变化,中央和地方的税收收入1978年为519.28亿元,到2008年已增长到54223.79亿元,31年间平均每年增长16.76%。税收作为财政收入的重要组成部分,在国民经济发展中扮演着不可或缺的角色。为了研究影响中国税收增长的主要原因,分析中央和地方税收收入的增长规律,以及预测中国税收未来的增长趋势,我们需要建立计量经济模型进行实证分析。 影响税收收入的因素有很多,但据分析主要的因素可能有:①从宏观经济看,经济整体增长是税收增长的基本源泉,而国内生产总值是反映经济增长的一个重要指标。②公共财政的需求,税收收入是财政收入的主体,社会经济的发展和社会保障的完善等都对公共财政提出要求,因此对预算支出所表现的公共财政的需求对当年的税收收入可能会有一定影响。③物价水平。我国的税制结构以流转税为主,以现行价格计算的GDP等指标和经营者的收入水平都与物价水平有关。④税收政策因素。我国自1978年以来经历了两次大的税制改革,一次是1984~1985年的国有企业利改税,另一次是1994年的全国范围内的新税制改革。税制改革对税收增长速度的影响不是非常大。因此,可以从以上几个方面,分析各种因素对中国税收增长的具体影响。 为了全面反映中国税收增长的全貌,我们选用“国家财政收入”中的“各项税收”(即税收收入)作为被解释变量,反映税收的增长;选择“国内生产总值”(即GDP)作为经济整体增长水平的代表;选择“财政支出”作为公共财政需求的代表;选择“商品零售价格指数”作为物价水平的代表。另外,由于财税体制的改革难以量化,而且从数据上看,1985年以后财税体制改革对税收增长影响不是很大,在此暂不考虑税制改革对税收增长的影响摘之文库,你可以去看下。

本科计量经济学论文

计量经济学实验教学在发挥学生实际操作能力这一方面起到了关键的作用。那么,本科计量经济学如何教学呢?

一、目前计量经济学实验教学过程中存在的问题

计量经济学是集经济学、数学、统计学的综合性学科,强调理论基础、实践操作和统计软件运用三者的有机结合,是一门应用性较强的课程。大多数教师在计量经济学试验教学过程中,缺乏完整的实验教学计划和实验指导书,不利于培养的学生综合能力。而且,实施素质教育的重点是培养学生的创新精神和实践能力。随着经济理论的发展和完善进步,计量经济学研究的是现实经济问题,因此必须以对经济现象的深入认识为基础,必须在经济理论下进行。但是,目前在实验教学过程中,普遍存在以下一些共性的问题。

(一)教学层次不明确,满足不了不同层次的需求当前,计量经济学教学中普遍存在重理论体系学习、轻实际应用能力培养的通病。教师在授课中对数学推导和数学知识讲授较多,而实验课程相对简单,且理论方法教学与经济问题实例分析、软件教学相分离。因此,计量经济学的实验教学环节与理论方法教学内容的衔接、理论与实践的课时安排、实验项目设计、软件能力培养等方面的试验教学环节严重脱节。有些学校由于教学条件和设施较差,特别是缺少经验丰富的试验师资力量,在计量经济学教学中,只进行理论教学,在教学内容和时间衔接方面经常脱节。这种教学模式的教学效果不是很好,导致理论和实验成为独立而不易协调的两个教学过程,学生运用软件的实际操作训练相对薄弱,达不到实验教学与理论教学相结合的目的。由于计量经济学已形成了一个庞大的学科体系,通常被人们分为理论计量经济学与应用计量经济学,并根据内容深度分为初级、中级和高级计量经济学课程。现在各层次教学的分工与衔接往往存在问题。实验教学常常被当成理论教学的附属品,试验方法与实例的结合不够。在计量经济学的教材和课程讲授中,结合实例分析和应用较少,许多学生学习完这门课程之后,不知道如何用于解决实际问题,很快就将所学习的内容遗忘了。

(二)理论教学层次模糊,没有实验教学层次感无论是面对专业知识较为薄弱的本科生,还是已经具备一定基础的研究生,计量经济实验教学均采用相似的教学方式和教学思维。即任课教师先讲理论和方法,最后留点时间来讲案例解析和软件使用,或者根本就不讲软件,也不进行上机操作,或者直接放羊式地让学生上机操作。这样就很难让学生通过实验操作去发现新问题,得到新启示。这样的'实验教学也很难发挥出学生的自主性和兴趣。实验教学层次感没有得到体现,使得理论学习和实践学习相脱离,学生不能很好地消化所学知识。

(三)实验课程设计机制不完善自主性试验方案的设计,试验材料的准备,试验进程和实验时间的自主安排是实验课程设置不可缺少的环节。然而,目前我们要求学生上交的实验报告,是结合教材上已有案例为基础,没有把撰写试验课程论文作为课程考核的重要部分,也没有将课程考核方式改为课堂测试、上机操作、论文写作三者形式相结合,并分别赋予70%、10%、20%的权重进行综合评定期末成绩。再加之实验教学报告,导致学生只需简单的模仿,甚至是抄袭,完全背离了最初的实验教学目的。

二、计量经济学开放式实验教学目的、要求及内容安排

(一)开放式实验教学的目标和基本要求即原理验证性实验与研究设计性实验相结合。开放式实验不仅使学生通过自己具体实验、实际操作来帮助学习、巩固书本知识,加深对概念、规律的深刻理解,更重要的是试验中的困难磨炼学生的意志。开放式实验是调动学生学习积极性、主动性,培养学生实验技能、发展学生创造精神的有效途径。同时,也能丰富理论教学课堂内容,吸引学生参与积极性。计量经济学的试验教学为现实中经济问题的研究提供坚实的理论基础和完整的分析工具。开放式实验可以群策群力,结合教材和教学研制教具、学具与仪器,密切教材与教学实际,适合教材多变性,是解决仪器不足的有效途径。因此,计量经济学实验教学的目标,在于通过实验教学使得教师能够:

(1)编制好试验教学计划和软件使用说明书,为学生进行自主开放式试验操作创造条件。

(2)将学生进行分组,形成多个研究小组,一般由6-8人组成,每组制定一个负责人负责小组日常的学习管理,查找资料,上机时间安排以及撰写试验报告等,使得学生形成团队精神,相互帮组和启迪,更好地来解决实际问题。

(3)详细安排好每次试验内容。一般给每个小组指定一个与所讲内容相关的研究课题,往往是现实的社会热点经济问题,可以引起他们研究的兴趣,让学生参阅已有的实际建模报告和分析报告,使学生受到启发做到心中有数,并在教师的指导下完成实验课程。

通过教师试验教学,学生可以受益并能够:

(1)熟练使用各种软件,比如EViews、SPSS、SAS或者Statistics等。

(2)运用所学的计量经济学理论方法,构建各因素之间关系的计量经济模型,了解和掌握建立计量经济模型的过程和要求。

(3)掌握利用统计软件进行数据处理、参数估计和检验,培养学生研究和实际工作的能力,提高学生的综合素质。

(4)认真完成模型的参数估计和各类检验,建立完整的计量经济模型。开放式试验教学模式不同于普通的试验教学模式,它对任课教师提出了更高的教学要求,重点介绍计量经济方法、计算结果的统计与经济意义分析,详细介绍计算机软件操作步骤,帮助学生理解计算结果,学会计算操作。教师要认真编写好试验教学大纲、试验教学计划和软件指导说明书。计量经济学实验是将计量经济学理论应用于实践的重要环节,是理论教学的延续。教师在讲授相关理论与方法的同时,要注重培养学生动手处理实际问题的能力,提高学生运用计量经济学知识的素质。

(二)高效开放式实验教学内容的调整和选择从培养应用型人才的实际出发,对计量经济学试验教学内容加以调整和选择,必须以理论教学内容为基础,以统计软件为工具,其教学内容的选择,根据理论教学的内容,结合统计软件学习过程的阶段性特点,合理制定实验内容。一般来说,分为选做和必做两类。其中,实验内容必做对应经济学各专业本科《计量经济学》的基本内容,即必须进行的实验项目。在条件许可的情况下,教师最好根据学校的实际情况,编写适应本校学生的试验指导书。指导书内容不求内容的深度和全面,适用最好。对某些已经先期开设了统计软件基础课程的专业,实验项目的作用在于对所学过的知识进行简单回顾,因此确定为“选做”项目。在具体的实验教学过程中,教师可根据各专业的具体情况,对试验内容实现变革式的改编,进行适当的割舍和学时上的调整。

三、开放式实验教学的时间安排与考核方式

(一)开放式实验教学的时间安排在教学时间安排上,理论教学和实验教学应统筹规划,由任课教师自主根据理论教学的进度来合理安排实验教学时间,合理安排课程讲授的先后顺序,优化课程结构,并按照“少而精”的原则安排教学内容。根据我们的经验,试验课程安排在每一章节理论课程授完之后马上进行,结合理论课程给出设计性的试验,提高学生的综合应用能力和实际分析能力。即每章的理论教学完成之后,紧接一次实验教学,由教师结合例题讲授和演示理论方法的软件实现,安排学生完成布置的案例分析。而教师则对各个单项的操作练习进行即时的现场讲解和点评。这种实践型试验教学模式有利于学生加深对理论知识的理解和掌握。

(二)开放式实验教学的考核评价方式开放式实验教学实验成绩由实验报告、实验考勤、实验操作抽查三部分构成。评价成绩具体由实验报告来体现,学生在完成每一个实验后根据上机操作结果写出相应的实验报告。教师可根据每个小组日常的实验工作量和实验报告质量,评定实验报告成绩。每个小组要选择一个针对理论教学的研究课题。这些研究课题往往是现实的社会经济问题。计量经济学课程的最终成绩由三个部分组成,即理论知识考试成绩、上机实验考试成绩和实验报告成绩。上机操作是对教师指定的案例进行操作和分析,并解决相关实际问题,对研究过程进行阐述,并接受教师和同学的提问。这种考核方式有助于考查学生对计量经济理论、方法的理解程度和应用能力,也培养了学生的口头表达能力。而且,采用这种考核方式学生不易作弊,从而能够较准确地判断学生的实际操作能力。

四、结论

计量经济学实验教学在发挥学生实际操作能力这一方面起到了关键的作用。而开放式的实验教学模式的实施,能够进一步发挥学生的主观能动性和探索性。开放式试验教学这种不局限于“计量经济学”专业基础理论的教学模式,真正做到了以学为主,是培养跨学科、宽口径的实践型、创新型专业人才的必由之路。通过实验教学的实施,学生形成了一定的运用计量模型分析和解决实际经济问题的习惯或能力。通过开放式试验教学模式改革,可以建立培养学生定量分析能力的机制,能有效提高本科计量经济学的教学质量和学习效率。开放式试验教学模式既可以保证学生能够深入理解知识,并能够使学生进一步掌握计量经济学的基本理论和方法,进而可以培养学生发现问题、思考问题和运用计量经济学方法分析问题的能力。开放式试验教学能够建立专门机制支持教师在传授书本知识的过程中积极探索培养学生定量分析动手能力的方法,利于提高学生的综合素质。

eviews计量经济学论文

希望以上网站内容能帮到你

最好有以下几块东西1、选定研究对象(确定被解释变量,说明选题的意义和原因等。)2、确定解释变量,尽量完备地考虑到可能的相关变量供选择,并初步判定个变量对被解释变量的影响方向。( 作出相应的说明 )3、确定理论模型或函数式(根据相应的理论和经济关系设立模型形式,并提出假设,系数是正的还是负的等。)(二)数据的收集和整理(三)数据处理和回归分析(先观察数据的特点,观看和输出散点图,最后选择相应的变量关系式进行OLS回归,并输出会归结果。)(四)回归结果分析和检验(写出模型估计的结果)1、回归结果的经济理论检验,方向正确否?理论一致否?2、统计检验,t检验 F 检验 R2— 拟合优度检验3、模型设定形式正确否?可试试其他形式。4、模型的稳定性检验。(五)模型的修正(对所发现的模型变量选择问题、设定偏误、模型不稳定等,进行修正。)(六)确定模型(七)预测

给你一篇我刚写的 呵呵 仅供参考 (需要的话给你电子版 QQ:309735313)关于我国城镇居民储蓄存款模型的计量经济分析 (我的姓名等信息就省略了啊 呵呵) 内容摘要:本文利用我国1978年以来的统计数字建立了可以通过各种检验的城镇居民储蓄率的模型,对我国城镇居民储蓄存款情况进行实证分析。通过对该模型的经济含义分析得出各种主要因素对我国城镇居民储蓄存款数量的影响程度,并针对我国城镇居民存款储蓄现状提出自己的一些建议。 关键词:居民储蓄存款 实证分析 主要因素 一、问题的提出 1978年以来,随着我国国民经济的飞速发展,我国的居民储蓄也出现高速增长的态势。进入90年代以后.我国居民储蓄存款余额始终保持在两位数的增长速度。我国居民储蓄存款持续增长这一经济现象引起国内理论界的广泛关注。这对我国经济的进一步增长有着有利的一面,但也会带来一定程度的负面影响。所以国家相继出台了一系列积极的财政和货币政策,以刺激国内消费和投资需求,分流储蓄,但是居民储蓄依然持续增加。由于居民的储蓄存款直接影响着居民的消费行为,影响着货币的供给量,进而间接影响着国家经济的发展,宏观调控的力度和效果,因此,对我国居民存款储蓄问题的深入研究就显得尤为重要,这有助于帮助大家认清现状,做出合理的决策。虽然我们作为本科阶段的学生对这个问题的理解和研究还不够深入和透彻,但对此问题的探索有利于我们更好的掌握专业知识,了解国情,提高实际操作水平和理论联系实际、发现问题、分析问题、解决问题的能力。 二、文献综述 我国有很多学者建立了许多的储蓄模型来分析各因素对居民储蓄的影响程度,但分析结论的差异很大。整理以前的研究成果,一个社会的储蓄总量受很多因数的影响,根据经典西方宏观经济学理论,储蓄水平主要受收入因数、利息率、物价水平、收入分配等因数的影响: 1.收入因数 收入是决定储蓄的重要因数,收入的变化会直接决定着储蓄的变化。在其他条件不变的情况下,储蓄与可支配收入之间存在着正方向的变化关系,即居民的可支配收入增加,储蓄量增加;个人可支配收入减少,储蓄量减少。可支配收入是指居民户在支付个人所得税之后,余下的全部实际现金收入。 2.利息率 传统经济学认为,在收入即定的条件下,较高的利息率会使储蓄增加。在本文中,我们选用的利息率是根据当年变动月份加权平均后的一年期储蓄存款加权利率。 3.物价水平 物价水平会导致居民户的消费倾向的改变,从而也就会改变居民户的储蓄倾向。本文用通货膨胀率来考察物价水平对储蓄率的影响。 4.收入分配 凯恩斯认为,收入分配的均等化程度越高,社会的平均消费倾向就会越高,社会的储蓄倾向就会越低。在国际上,衡量收入分配平均状况最常用的指数是基尼系数。 三、变量的选取及分析 目前我国正处于改革时期,各种不确定性因素很多。因而,要分析各种因素对中国居民储蓄行为的影响,必须立足于中国的国情。1998年后,中国经济运行进入了一种新的体制约束状态,出现了明显的供给过剩,需求对经济增长的约束与拉动作用明显增强,投资、消费膨胀的内在动力明显不足;同时,由于我国市场机制尚不健全,市场经济发育不成熟,市场体制的控制力还有限,从而不能形成一种有效地传导机制。市场化的改革对人们的经济行为、心理行为带来了很大影响,银行开始考虑贷款风险,投资者开始考虑投资回报,而消费者也开始考虑最佳的消费时机和预期收入。这说明,我们的微观经济层面已生长出一种内在的约束机制,然而社会各个方面对这些积极的因素还很不适应,微观主体内在约束机制较强与宏观经济市场传导机制不畅之间的矛盾,导致了投资行为受阻、消费行为审慎和储蓄持续稳定增长。当前影响我国居民储蓄的因素有很多,概括起来有以下几点:居民对社会经济形势的预期、可选择的投资渠道、信贷消费的发展、利率因素的影响、"假性"存款的影响、消费领域的信用等级、高收入阶层消费状况、就业形势压力、体制改革、居民收入水平等。 由于我现在的时间和能力有限,只能综合考虑,选取一部分变量进行研究,而且为了方便查找数据,只建立我国城镇居民储蓄存款模型进行研究。本文选用当年的收入增长率来考察收入因数对储蓄率的影响。用城镇居民的储蓄率作为被解释变量。另外还选取了中国1979年到2002年的各年的城镇居民收入的基尼系数、一年期储蓄利率和通货膨胀率作为解释变量。 四、数据及处理 本文模型数据样本为从1979-2002年。 年份 城镇居民储蓄率 城镇居民收入增长率 一年期储蓄利率 通货膨胀率 城镇居民基尼系数 1979 0.06368087 0.264869934 3.78 0.02 0.16 1980 0.08740586 0.220385089 5.04 0.059804 0.15 1981 0.07093626 0.104176446 5.4 0.024052 0.15 1982 0.08105586 0.139165412 5.67 0.01897 0.15 1983 0.09963501 0.093723563 5.76 0.015071 0.16 1984 0.13025584 0.245357008 5.76 0.027948 0.19 1985 0.15161502 0.184241122 6.72 0.08836 0.19 1986 0.17454542 0.280700971 7.2 0.060109 0.2 1987 0.2175453 0.167515864 7.2 0.072901 0.23 1988 0.17862152 0.219728929 7.68 0.185312 0.23 1989 0.2721202 0.199827095 11.12 0.177765 0.23 1990 0.32760614 0.123579703 9.92 0.021141 0.24 1991 0.31032443 0.163667824 7.92 0.028888 0.25 1992 0.3016907 0.228819425 7.56 0.053814 0.27 1993 0.3199061 0.311233327 9.26 0.131883 0.3 1994 0.42486435 0.397210898 10.98 0.216948 0.28 1995 0.44898036 0.261076104 10.98 0.147969 0.28 1996 0.40903477 0.198208003 9.21 0.060938 0.29 1997 0.30935015 0.127739779 7.17 0.007941 0.3 1998 0.25777978 0.108852141 5.02 -0.026 0.295 1999 0.21234608 0.134557035 2.89 -0.02993 0.3 2000 0.1239205 0.125688358 2.25 -0.01501 0.32 2001 0.24155306 0.14364071 2.25 -0.0079 0.33 2002 0.29897822 0.173106495 2.03 -0.01308 0.319 数据来源:各年份的《中国统计年鉴》 注:Y代表城镇居民储蓄率 X1代表城镇居民收入增长率 X2代表一年期储蓄利率 X3代表通货膨胀率 X4代表城镇居民基尼系数 五、模型及处理 基于以上数据,建立的模型是: Y=β1+β2X1+β3X2+β4X3+β5X4+u β1度量了截距项,它表示在没有收入的时候人们也要花钱消费,储蓄率为负。 β2度量了当城镇个人可支配收入率变动1%时,储蓄增长率的变动。 β3度量了当利率变动一个单位,其实也就是1%时,储蓄的增量的变动。 β4度量了当通货膨胀率变动一个单位,储蓄增量的变动。 β5度量了基尼系数对储蓄率的影响。这也是本文的重点变量。 u是随机误差项。 对Y做回归 利用eviews最小二乘估计结果如下 Variable Coefficient Std. Error t-Statistic Prob. C -0.264646 0.045525 -5.813154 0.0000 X1 0.317426 0.175678 1.806864 0.0875 X2 0.024054 0.003688 6.523093 0.0000 X3 0.024476 0.205508 0.119099 0.9065 X4 1.127523 0.149318 7.551127 0.0000 R-squared 0.897971 Mean dependent var 0.234065 Adjusted R-squared 0.875298 S.D. dependent var 0.116109 S.E. of regression 0.041002 Akaike info criterion -3.360748 Sum squared resid 0.030260 Schwarz criterion -3.113901 Log likelihood 43.64860 F-statistic 39.60525 Durbin-Watson stat 1.541473 Prob(F-statistic) 0.000000 根据以上结果,初步得出的模型为 Y=-0.264646+0.317426X1+0.024054X2 +0.024476X3+1.127523X4. 1.经济意义的检验 该模型可以通过初步的经济意义的检验,系数的符号符合经济理论。 2.统计检验 从表中可以看出,显然通货膨胀率的系数通不过T检验,R2=0.897971, 2值为0.875298,模型的拟合情况较好。F检验的值为39.60525,整个模型对储蓄率的增长影响是显著的。 3.多重共线性的检验 从F值可知此模型整体显著,但是分析各个变量后发现X1和X3不显著,可能存在多重共线性,运用消除多重共线性的逐步回归方法我们可以得到要放弃X3 这个变量,重新做回归分析得到: Y=β1+β2X1+β3X2+β5X4+u Variable Coefficient Std. Error t-Statistic Prob. C -0.271487 0.041322 -6.570056 0.0000 X1 0.314787 0.113799 2.766177 0.0119 X2 0.024487 0.003178 7.704986 0.0000 X4 1.145280 0.137886 8.305987 0.0000 R-squared 0.897094 Mean dependent var 0.229740 Adjusted R-squared 0.881658 S.D. dependent var 0.115517 S.E. of regression 0.039739 Akaike info criterion -3.461967 Sum squared resid 0.031583 Schwarz criterion -3.265624 Log likelihood 45.54360 F-statistic 58.11739 Durbin-Watson stat 1.556309 Prob(F-statistic) 0.000000 从新模型的整体效果来看,R值和F值都很好,而且各个变量的t统计量也表明各个变量对储蓄率的增长都有显著影响。 因此模型可设为Y= -0.271487+0.314787X1+0.024487X2+1.145280X4 4.异方差性检验 对新模型进行异方差性的检验,运用white检验,得到如下结果: White Heteroskedasticity Test: F-statistic 2.669433 Probability 0.054505 Obs*R-squared 11.50596 Probability 0.073942 Obs*R-squared的计算结果是11.50596,,由于选用的没有交叉乘积项的方式,所以自由度为7,在0.05的显著水平下,查表得 (7)=12.59〉11.50596,所以接受原假设,即该模型不存在异方差性。 5.自相关性的检验 从上表可知DW值为1.556309,且样本容量n=24,有三个解释变量的条件下,给定显著性水平 =0.01,查D-W表得,d =0.882,d =1.407,这时有d

关于我国城镇居民储蓄存款模型的计量经济分析 (我的姓名等信息就省略了啊 呵呵) 内容摘要:本文利用我国1978年以来的统计数字建立了可以通过各种检验的城镇居民储蓄率的模型,对我国城镇居民储蓄存款情况进行实证分析。通过对该模型的经济含义分析得出各种主要因素对我国城镇居民储蓄存款数量的影响程度,并针对我国城镇居民存款储蓄现状提出自己的一些建议。 关键词:居民储蓄存款 实证分析 主要因素 一、问题的提出 1978年以来,随着我国国民经济的飞速发展,我国的居民储蓄也出现高速增长的态势。进入90年代以后.我国居民储蓄存款余额始终保持在两位数的增长速度。我国居民储蓄存款持续增长这一经济现象引起国内理论界的广泛关注。这对我国经济的进一步增长有着有利的一面,但也会带来一定程度的负面影响。所以国家相继出台了一系列积极的财政和货币政策,以刺激国内消费和投资需求,分流储蓄,但是居民储蓄依然持续增加。由于居民的储蓄存款直接影响着居民的消费行为,影响着货币的供给量,进而间接影响着国家经济的发展,宏观调控的力度和效果,因此,对我国居民存款储蓄问题的深入研究就显得尤为重要,这有助于帮助大家认清现状,做出合理的决策。虽然我们作为本科阶段的学生对这个问题的理解和研究还不够深入和透彻,但对此问题的探索有利于我们更好的掌握专业知识,了解国情,提高实际操作水平和理论联系实际、发现问题、分析问题、解决问题的能力。 二、文献综述 我国有很多学者建立了许多的储蓄模型来分析各因素对居民储蓄的影响程度,但分析结论的差异很大。整理以前的研究成果,一个社会的储蓄总量受很多因数的影响,根据经典西方宏观经济学理论,储蓄水平主要受收入因数、利息率、物价水平、收入分配等因数的影响: 1.收入因数 收入是决定储蓄的重要因数,收入的变化会直接决定着储蓄的变化。在其他条件不变的情况下,储蓄与可支配收入之间存在着正方向的变化关系,即居民的可支配收入增加,储蓄量增加;个人可支配收入减少,储蓄量减少。可支配收入是指居民户在支付个人所得税之后,余下的全部实际现金收入。 2.利息率 传统经济学认为,在收入即定的条件下,较高的利息率会使储蓄增加。在本文中,我们选用的利息率是根据当年变动月份加权平均后的一年期储蓄存款加权利率。 3.物价水平 物价水平会导致居民户的消费倾向的改变,从而也就会改变居民户的储蓄倾向。本文用通货膨胀率来考察物价水平对储蓄率的影响。 4.收入分配 凯恩斯认为,收入分配的均等化程度越高,社会的平均消费倾向就会越高,社会的储蓄倾向就会越低。在国际上,衡量收入分配平均状况最常用的指数是基尼系数。 三、变量的选取及分析 目前我国正处于改革时期,各种不确定性因素很多。因而,要分析各种因素对中国居民储蓄行为的影响,必须立足于中国的国情。1998年后,中国经济运行进入了一种新的体制约束状态,出现了明显的供给过剩,需求对经济增长的约束与拉动作用明显增强,投资、消费膨胀的内在动力明显不足;同时,由于我国市场机制尚不健全,市场经济发育不成熟,市场体制的控制力还有限,从而不能形成一种有效地传导机制。市场化的改革对人们的经济行为、心理行为带来了很大影响,银行开始考虑贷款风险,投资者开始考虑投资回报,而消费者也开始考虑最佳的消费时机和预期收入。这说明,我们的微观经济层面已生长出一种内在的约束机制,然而社会各个方面对这些积极的因素还很不适应,微观主体内在约束机制较强与宏观经济市场传导机制不畅之间的矛盾,导致了投资行为受阻、消费行为审慎和储蓄持续稳定增长。当前影响我国居民储蓄的因素有很多,概括起来有以下几点:居民对社会经济形势的预期、可选择的投资渠道、信贷消费的发展、利率因素的影响、"假性"存款的影响、消费领域的信用等级、高收入阶层消费状况、就业形势压力、体制改革、居民收入水平等。 由于我现在的时间和能力有限,只能综合考虑,选取一部分变量进行研究,而且为了方便查找数据,只建立我国城镇居民储蓄存款模型进行研究。本文选用当年的收入增长率来考察收入因数对储蓄率的影响。用城镇居民的储蓄率作为被解释变量。另外还选取了中国1979年到2002年的各年的城镇居民收入的基尼系数、一年期储蓄利率和通货膨胀率作为解释变量。 四、数据及处理 本文模型数据样本为从1979-2002年。 年份 城镇居民储蓄率 城镇居民收入增长率 一年期储蓄利率 通货膨胀率 城镇居民基尼系数 1979 0.06368087 0.264869934 3.78 0.02 0.16 1980 0.08740586 0.220385089 5.04 0.059804 0.15 1981 0.07093626 0.104176446 5.4 0.024052 0.15 1982 0.08105586 0.139165412 5.67 0.01897 0.15 1983 0.09963501 0.093723563 5.76 0.015071 0.16 1984 0.13025584 0.245357008 5.76 0.027948 0.19 1985 0.15161502 0.184241122 6.72 0.08836 0.19 1986 0.17454542 0.280700971 7.2 0.060109 0.2 1987 0.2175453 0.167515864 7.2 0.072901 0.23 1988 0.17862152 0.219728929 7.68 0.185312 0.23 1989 0.2721202 0.199827095 11.12 0.177765 0.23 1990 0.32760614 0.123579703 9.92 0.021141 0.24 1991 0.31032443 0.163667824 7.92 0.028888 0.25 1992 0.3016907 0.228819425 7.56 0.053814 0.27 1993 0.3199061 0.311233327 9.26 0.131883 0.3 1994 0.42486435 0.397210898 10.98 0.216948 0.28 1995 0.44898036 0.261076104 10.98 0.147969 0.28 1996 0.40903477 0.198208003 9.21 0.060938 0.29 1997 0.30935015 0.127739779 7.17 0.007941 0.3 1998 0.25777978 0.108852141 5.02 -0.026 0.295 1999 0.21234608 0.134557035 2.89 -0.02993 0.3 2000 0.1239205 0.125688358 2.25 -0.01501 0.32 2001 0.24155306 0.14364071 2.25 -0.0079 0.33 2002 0.29897822 0.173106495 2.03 -0.01308 0.319 数据来源:各年份的《中国统计年鉴》 注:Y代表城镇居民储蓄率 X1代表城镇居民收入增长率 X2代表一年期储蓄利率 X3代表通货膨胀率 X4代表城镇居民基尼系数 五、模型及处理 基于以上数据,建立的模型是: Y=β1+β2X1+β3X2+β4X3+β5X4+u β1度量了截距项,它表示在没有收入的时候人们也要花钱消费,储蓄率为负。 β2度量了当城镇个人可支配收入率变动1%时,储蓄增长率的变动。 β3度量了当利率变动一个单位,其实也就是1%时,储蓄的增量的变动。 β4度量了当通货膨胀率变动一个单位,储蓄增量的变动。 β5度量了基尼系数对储蓄率的影响。这也是本文的重点变量。 u是随机误差项。 对Y做回归 利用eviews最小二乘估计结果如下 Variable Coefficient Std. Error t-Statistic Prob. C -0.264646 0.045525 -5.813154 0.0000 X1 0.317426 0.175678 1.806864 0.0875 X2 0.024054 0.003688 6.523093 0.0000 X3 0.024476 0.205508 0.119099 0.9065 X4 1.127523 0.149318 7.551127 0.0000 R-squared 0.897971 Mean dependent var 0.234065 Adjusted R-squared 0.875298 S.D. dependent var 0.116109 S.E. of regression 0.041002 Akaike info criterion -3.360748 Sum squared resid 0.030260 Schwarz criterion -3.113901 Log likelihood 43.64860 F-statistic 39.60525 Durbin-Watson stat 1.541473 Prob(F-statistic) 0.000000 根据以上结果,初步得出的模型为 Y=-0.264646+0.317426X1+0.024054X2 +0.024476X3+1.127523X4. 1.经济意义的检验 该模型可以通过初步的经济意义的检验,系数的符号符合经济理论。 2.统计检验 从表中可以看出,显然通货膨胀率的系数通不过T检验,R2=0.897971, 2值为0.875298,模型的拟合情况较好。F检验的值为39.60525,整个模型对储蓄率的增长影响是显著的。 3.多重共线性的检验 从F值可知此模型整体显著,但是分析各个变量后发现X1和X3不显著,可能存在多重共线性,运用消除多重共线性的逐步回归方法我们可以得到要放弃X3 这个变量,重新做回归分析得到: Y=β1+β2X1+β3X2+β5X4+u Variable Coefficient Std. Error t-Statistic Prob. C -0.271487 0.041322 -6.570056 0.0000 X1 0.314787 0.113799 2.766177 0.0119 X2 0.024487 0.003178 7.704986 0.0000 X4 1.145280 0.137886 8.305987 0.0000 R-squared 0.897094 Mean dependent var 0.229740 Adjusted R-squared 0.881658 S.D. dependent var 0.115517 S.E. of regression 0.039739 Akaike info criterion -3.461967 Sum squared resid 0.031583 Schwarz criterion -3.265624 Log likelihood 45.54360 F-statistic 58.11739 Durbin-Watson stat 1.556309 Prob(F-statistic) 0.000000 从新模型的整体效果来看,R值和F值都很好,而且各个变量的t统计量也表明各个变量对储蓄率的增长都有显著影响。 因此模型可设为Y= -0.271487+0.314787X1+0.024487X2+1.145280X4 4.异方差性检验 对新模型进行异方差性的检验,运用white检验,得到如下结果: White Heteroskedasticity Test: F-statistic 2.669433 Probability 0.054505 Obs*R-squared 11.50596 Probability 0.073942 Obs*R-squared的计算结果是11.50596,,由于选用的没有交叉乘积项的方式,所以自由度为7,在0.05的显著水平下,查表得 (7)=12.59〉11.50596,所以接受原假设,即该模型不存在异方差性。 5.自相关性的检验 从上表可知DW值为1.556309,且样本容量n=24,有三个解释变量的条件下,给定显著性水平 =0.01,查D-W表得,d =0.882,d =1.407,这时有d

相关百科

热门百科

首页
发表服务