首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

石墨烯纳米材料论文

发布时间:

石墨烯纳米材料论文

超级材料—石墨烯

“超级材料”这个词近来被大量的使用——陶瓷超级材料,气凝胶超级材料,弹性体超级材料。但是有一种超级材料把它们都淹没了,它让它的发现者获得了诺贝尔奖,并为科学的炒作和兴奋定义了上限。它有可能使处理、电力储存、甚至太空 探索 发生革命性的变化,这就是石墨烯材料。那么石墨烯的市场应用主要有哪些方面的呢?

石墨烯是由单层碳原子排列成六边形晶格的一种异形体(形式)。它是碳的许多其他异形体的基本结构元素,如石墨、钻石、碳、碳纳米管和富勒烯。石墨烯有许多不同寻常的性质,它能有效地传导热量和电,它的导电性也非常高,而且几乎是透明的。它不仅具有令人难以置信的物理特性,还被广泛引用为每一重量基础上创造的最坚固的材料。例如,石墨烯在原子小的情况下,可以使处理器中的晶体管更加紧密地封装,并允许许多电子行业向前迈进一大步。

在未来的石墨烯时代,随着批量化生产以及石墨烯技术等难题的逐步突破,石墨烯的产业化应用步伐正在加快,基于已有的研究成果,未来,石墨烯将会在以下领域率先实现商业化应用:

01 基础研究方面的应用

石墨烯对物理学基础研究有着特殊意义,它使得一些此前只能在理论上进行论证的量子效应可以通过实验经行验证。在二维的石墨烯中,电子的质量仿佛是不存在的,这种性质使石墨烯成为了一种罕见的可用于研究相对论量子力学的凝聚态物质——因为无质量的粒子必须以光速运动,从而必须用相对论量子力学来描述,这为理论物理学家们提供了一个崭新的研究方向:一些原来需要在巨型粒子加速器中进行的试验,可以在小型实验室内用石墨烯进行。

02 传感器方面的应用

石墨烯可以做成化学传感器,这个过程主要是通过石墨烯的表面吸附性能来完成的,根据部分学者的研究可知,石墨烯化学探测器的灵敏度可以与单分子检测的极限相比拟。石墨烯独特的二维结构使它对周围的环境非常敏感。石墨烯是电化学生物传感器的理想材料,石墨烯制成的传感器在医学上检测多巴胺、葡萄糖等具有良好的灵敏性。

03 新能源电池方面的应用

新能源电池也是石墨烯最早商用的一大重要领域。美国麻省理工学院已成功研制出表面附有石墨烯纳米涂层的柔性光伏电池板,可极大降低制造透明可变形太阳能电池的成本,这种电池有可能在夜视镜、相机等小型数码设备中应用。另外,石墨烯超级电池的成功研发,也解决了新能源 汽车 电池的容量不足以及充电时间长的问题,极大加速了新能源电池产业的发展。这一系列的研究成果为石墨烯在新能源电池行业的应用铺就了道路。

04 防腐涂料领域的应用

目前国内防腐涂料消费量近180万吨,占世界防腐涂料总消费量的40%以上。我国防腐涂料需求主要集中在船舶、石油化工、桥梁、集装箱等领域。涂料中添加石墨烯后,石墨烯能够形成稳定的导电网格,有效提高锌粉的利用率,同时,石墨烯涂层能在金属表而与活性介质之间形成物理阻隔层,对基底材料起到良好的防护作用。

近年石油化工、铁路交通、新能源、基础设施建设等更是蓬勃发展,为防腐涂料提供了广阔的市场空间。烯旺 科技 致力于对石墨烯涂料进行大规模商业和工业应用,为全球客户提供高效产品和全方位解决方案,打破中国重防腐涂料和核心原料严重依赖进口的局面,为涂料行业工业4.0提供坚实的基础。 作为石墨烯应用的开拓者,石墨烯防腐涂料和功能性涂料成为烯旺 科技 重点发展战略之一。烯旺 科技 整合集团投资的涂料资源,组织顶尖科研人员,率先开发了石墨烯复合陶瓷耐蚀树脂和涂料系列产品以及独特的石墨烯改性锌粉底漆等。

05 医疗 健康 领域的应用

今年3月,南京医科大学和烯旺 科技 共同研发的一项石墨烯无创治疗肿瘤新技术,被美国生物医学顶级期刊《Advanced Therapeutics》(先进医疗) 作为封面论文发表,这种无创、低副作用、低成本的全新治疗策略,或将成为治愈癌症的一大进步,有望成为未来肿瘤治疗的主流方法之一。

在慢性病的治疗上,石墨烯具有巨大的医疗潜力。石墨烯释放的远红外,作用于人体时会引发细胞原子与分子的共振,共振效应可将远红外线的热能传递到人体皮下的较深部分,作用于血管微循环系统,可加速血液循环,强化各组织间的新陈代谢,调理身体,促进慢性病的康复。石墨烯在医疗领域的发展令人惊喜,运用非药物疗法治病,一方面减少损伤,一方面节省费用,不仅让医疗技术变得更加成熟,提高医疗活动的效率和质量,更可以与传统医疗技术形成互补,同时降低医疗成本。借助这样治疗方式,才能不断让优质的医疗资源普惠到更多人群中。

石墨烯 科技 为医学领域带来了重大突破,更为人类 健康 贡献了非凡力量。烯旺 科技 在石墨烯医疗领域的更多应用,让更多科学以及医学专家坚信,在未来数十年内,更多现在无法解决的问题,石墨烯将发挥更大的作用。

总而言之,从现今石墨烯技术的实际应用以及技术水平来看,对石墨烯的很多发展已经有了决定性的进度,其中在防腐涂料及医疗 健康 领域,烯旺 科技 已发展到可以规模商业应用的阶段。我们相信,随着越来越多成熟石墨烯应用的加速落地,石墨烯,将重新定义世界,让我们一起期待世界的改变。

随着微纳电子器件热功率密度的迅速增长,控制其温度已成为电子信息产业发展和应用的迫切需求。热界面材料的选择是热控技术的关键问题之一,开发高性能石墨烯基复合热界面材料已成为科学和工业界研究热点。其存在的关键问题是从原子尺度深刻理解复合体系中声子输运机理,进而协同提升石墨烯有效热导 率和界面热导。本文从石墨烯自身声子耦合热阻和界面热阻两方面综述石墨烯复 合体系导热的研究进展,讨论了提升石墨烯基复合体系界面热导的两种机制,同时分析了渐变界面和非平衡声子对界面热输运的调控机理。最后,我们对复合体系导热性能研究的发展趋势进行总结和展望。 01 引言 随着新兴的 5G 通信、物联网、新能源 汽车 电子、可穿戴设备、智慧城市、 航空航天等 科技 的兴起,芯片等器件朝着小型化、高功率密度、多功能化等方向发展。高度集成化和先进封装技术有效地提高了芯片功率密度并缩小了散热空间, 致使热流分布不均匀和局部过热等散热问题成为制约高性能芯片开发的核心问题之一。据统计,电子器件的温度每升高 10 -15 ,芯片使用寿命将会降低 50%。由此可见,控制电子器件的温度已成为电子产业发展的迫切需求。 热界面材料广泛被用于集成电路封装和器件散热,通过填充电子芯片与散 热器接触表面的微空隙及表面凹凸不平的孔洞来减少散热热阻。制约散热的热阻(RTIM)由两部分组成(图 1):热界面材料自身的热阻(Rc)和封装外壳与热界 面材料的界面热阻(Rint)。目前商用的热界面材料,其界面热阻 Rint(10-7~10-6 m2·KW-1),远小于自身的 Rc(10-6~10-5 m2·KW-1)。因此,热界面材料是电子器件热管理系统的重要组成部分,对提高散热效率和控制电子器件温度至关重要。 聚合物基复合材料具有良好的热机械性能,且质量轻、韧性好、低成本和易加工等特性。因此其全球市场份额占到热界面材料的 90%以上。聚合物基复合材料是聚合物基体和高导热填料组成的复合体系。二维纳米材料热导率远大于传统的填料,例如石墨烯热导率高达 2000~3000 Wm-1K-1(铜的 7~10 倍),且具有高比表面积和高机械强度等优异的性质,是极具应用前景的填料。因此,开发高性能石墨烯基复合体系的热界面材料已成为研究热点。 石墨烯基复合体系热界面材料的导热性能取决于石墨烯有效热导率和石墨烯/基体界面热导。石墨烯基复合体系中声子输运分为两个通道:(1)基体 石墨 烯的面外声子 石墨烯的面内声子-基体;(2)基体 石墨烯的面外声子 基体。分子模拟结果发现,第一种声子输运通道的热阻比第二种通道高 30 倍。 对比发现石墨烯“面内声子-面外声子”的非平衡声子输运对石墨烯有效热导率的发挥具有重要作用。从实验测量、理论分析及数值模拟方面均已证明了纳米尺度低维材料不同模式声子存在非平衡现象且对其热输运有重要影响。此外,石墨烯与基体之间的化学结构、机械性能、物理性质等诸多差异,使得石墨烯基复合体系中存在大量的界面结构,而界面是影响热输运的主要因素之一。这使得纳米尺度界面热输运成为石墨烯基复合体系热传导的核心问题。为了提高石墨烯基复合体系的热传导特性,本文将从石墨烯内非平衡声子和复合体系中界面非平衡声子两个方面讨论复合体系中石墨烯与基体的声子耦合热阻。02 石墨烯非平衡的内热阻 式中 J12 和 ΔT12 分别是模式 1 到 2 的热流和二者温差。通过建立声子间弱耦合解析 5 模型,可以定量描述和分析声子耦合强度的物理参数:耦合因子和耦合长度。耦合因子越小、耦合长度越长,对应着内热阻越大。 国内外一些课题组也在石墨烯非平衡的内热阻方面有突出的成果和贡献。美国德洲大学 Shi 等在研究拉曼法测量石墨烯热导率精度时也发现不同模式声子存在不同的温度,即它们之间处于非平衡态。普渡大学阮秀林等通过第一性原理模拟计算也表明,悬空石墨烯面内声子与面外声子的弱耦合作用促使不同模式声子处于非平衡态。 此后,美国普渡大学阮修林和清华大学曹炳阳等,通过模拟提取了石墨烯的不同模式声子温度,进一步从理论上研究不同模式声子非平衡态问题。上海交通大学鲍华与普渡大学阮修林等计算发现,当忽略石墨烯内非平衡声子输运,基于激光辐照测量得到的悬空石墨烯热导率将被低估 1.4-2.6 倍。此外研究者还发现在基于石墨烯的异质结中也存在非平衡声子输运 现象,例如:石墨烯/氮化硼、石墨烯/硅等异质结。因此,石墨烯内声子非平衡现象严重影响其有效热导率和实验表征的准确性。 03 复合体系界面热阻 提高石墨烯基热界面材料导热性能,除了上述内热组问题,还需考虑石墨烯/基体的界面热输运。石墨烯基复合体系热导提高不显著,主要源于在石墨烯和基体之间的界面影响声子输运,并产生较大界面热阻。大界面热阻的原因是多方面原因造成的。石墨烯和基体之间的作用力通常比较弱,远小于共价键。石墨烯和基体之间存在纳米尺度的空隙,空隙两段的原子之间几乎没有力的作用,空隙同时降低了两种材料的接触面积和作用力。即使完美接触的位置,由于两种材料本征热输运性质的差异和声子本征模式不匹配也会造成热阻。因此,提高复合体系界面热导研究可归纳为增强界面处原子间相互作用力和提升界面处两材料的 声子态密度匹配两个方面。

石墨烯纳米复合材料学位论文

纳米材料技术作为一门高新科学技术,纳米技术具有极大的价值和作用。下面我给大家分享一些纳米材料与技术3000字论文, 希望能对大家有所帮助!纳米材料与技术3000字论文篇一:《试谈纳米复合材料技术发展及前景》 [摘要]纳米材料是指材料显微结构中至少有一相的一维尺度在100nm以内的材料。纳米材料由于平均粒径微小、表面原子多、比表面积大、表面能高,因而其性质显示出独特的小尺寸效应、表面效应等特性,具有许多常规材料不可能具有的性能。纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米材料将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。 [关键词]高聚物纳米复合材料 一、 纳米材料的特性 当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能: 1、尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。 2、表面效应 一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。 纳米微粒尺寸d(nm) 包含总原子表面原子所占比例(%)103×1042044×1034022.5×1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与 其它 原子结合。若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。 3、量子隧道效应 微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,这称为纳米粒子的宏观量子隧道效应。它的研究对基础研究及实际 应用,如导电、导磁高聚物、微波吸收高聚物等,都具有重要意义。 二、高聚物/纳米复合材料的技术进展 对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳米复合材料分为以下几类: 1、高聚物/粘土纳米复合材料 由于层状无机物在一定驱动力作用下能碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,它不仅可让聚合物嵌入夹层,形成“嵌入纳米复合材料”,还可使片层均匀分散于聚合物中形成“层离纳米复合材料”。其中粘土易与有机阳离子发生交换反应,具有的亲油性甚至可引入与聚合物发生反应的官能团来提高其粘结。其制备的技术有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制成“嵌入纳米复合材料”,而剥离法则是采用一些手段对粘土片层直接进行剥离,形成“层离纳米复合材料”。 2、高聚物/刚性纳米粒子复合材料 用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是改善其力学性能的另一种可行性 方法 。随着无机粒子微细化技术和粒子表面处理技术的 发展 ,特别是近年来纳米级无机粒子的出现,塑料的增韧彻底冲破了以往在塑料中加入橡胶类弹性体的做法。采用纳米刚性粒子填充不仅会使韧性、强度得到提高,而且其性价比也将是不能比拟的。 3、高聚物/碳纳米管复合材料 碳纳米管于1991年由S.Iijima 发现,其直径比碳纤维小数千倍,其主要用途之一是作为聚合物复合材料的增强材料。 碳纳米管的力学性能相当突出。现已测出碳纳米管的强度实验值为30-50GPa。尽管碳纳米管的强度高,脆性却不象碳纤维那样高。碳纤维在约1%变形时就会断裂,而碳纳米管要到约18%变形时才断裂。碳纳米管的层间剪切强度高达500MPa,比传统碳纤维增强环氧树脂复合材料高一个数量级。 在电性能方面,碳纳米管作聚合物的填料具有独特的优势。加入少量碳纳米管即可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加入的碳黑相比,碳纳米管有高的长径比,因此其体积含量可比球状碳黑减少很多。同时,由于纳米管的本身长度极短而且柔曲性好,填入聚合物基体时不会断裂,因而能保持其高长径比。爱尔兰都柏林Trinity学院进行的研究表明,在塑料中含2%-3%的多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。 三、前景与展望 在高聚物/纳米复合材料的研究中存在的主要问题是:高聚物与纳米材料的分散缺乏专业设备,用传统的设备往往不能使纳米粒子很好的分散,同时高聚物表面处理还不够理想。我国纳米材料研究起步虽晚但 发展 很快,对于有些方面的研究 工作与国外相比还处于较先进水平。如:漆宗能等对聚合物基粘土纳米复合材料的研究;黄锐等利用刚性粒子对聚合物改性的研究都在学术界很有影响;另外,四川大学高分子 科学 与工程国家重点实验室发明的磨盘法、超声波法制备聚合物基纳米复合材料也是一种很有前景的手段。尽管如此,在总体水平上我国与先进国家相比尚有一定差距。但无可否认,纳米材料由于独特的性能,使其在增强聚合物 应用中有着广泛的前景,纳米材料的应用对开发研究高性能聚合物复合材料有重大意义。特别是随着廉价纳米材料不断开发应用,粒子表面处理技术的不断进步,纳米材料增强、增韧聚合物机理的研究不断完善,纳米材料改性的聚合物将逐步向 工业 化方向发展,其应用前景会更加诱人。 参考 文献 : [1] 李见主编.新型材料导论.北京:冶金工业出版社,1987. [2]都有为.第三期工程科技 论坛 ——‘纳米材料与技术’ 报告 会. [3]rohlich J,Kautz H,Thomann R[J].Polymer,2004,45(7):2155-2164. 纳米材料与技术3000字论文篇二:《试论纳米技术在新型包装材料中的应用》 【摘 要】作为一门高新科学技术,纳米技术具有极大的价值和作用。进入20世纪90年代,纳米科学得到迅速的发展,产生了纳米材料学、纳米化工学、纳米机械学及纳米生物学等,由此产生的纳米技术产品也层出不穷,并开始涉及汽车行业。 【关键词】纳米技术 包装材料 1 纳米技术促进了汽车材料技术的发展 纳米技术可应用在汽车的任何部位,包括发动机、底盘、车身、内饰、车胎、传动系统、排气系统等。例如,在汽车车身部分,利用纳米技术可强化钢板结构,提高车体的碰撞安全性。另外,利用纳米涂料烤漆,可使车身外观色泽更为鲜亮、更耐蚀、耐磨。内装部分,利用纳米材料良好的吸附能力、杀菌能力、除臭能力使室内空气更加清洁、安全。在排气系统方面,利用纳米金属做为触媒,具有较高的转换效果。 由于纳米技术具有奇特功效,它在汽车上得到了广泛的应用,提升汽车性能的同时延长使用寿命。 2 现代汽车上的纳米材料 (1)纳米面漆。汽车面漆是对汽车质量的直观评价,它不但决定着汽车的美观与否,而且直接影响着汽车的市场竞争力。所以汽车面漆除要求具有高装饰性外,还要求有优良的耐久性,包括抵抗紫外线、水分、化学物质及酸雨的侵蚀和抗划痕的性能。纳米涂料可以满足上述要求。纳米颗粒分散在有机聚合物骨架中,作承受负载的填料,与骨架材料相互作用,有助于提高材料的韧性和其它机械性能。研究表明,将10%的纳米级TiO2粒子完全分散于树脂中,可提高其机械性能,尤其可使抗划痕性能大大提高,而且外观好,利于制造汽车面漆涂料;将改性纳米CaCO3以质量分数15%加入聚氨酯清漆涂料中,可提高清漆涂料的光泽、流平性、柔韧性及涂层硬度等。 纳米TiO2是一种抗紫外线辐射材料,加之其极微小颗粒的比表面积大,能在涂料干燥时很快形成网络结构,可同时增强涂料的强度、光洁度和抗老化性;以纳米高岭土作填料,制得的聚甲基丙烯酸甲酯纳米复合材料不仅透明,而且吸收紫外线,同时也可提高热稳定性,适合于制造汽车面漆涂料。 (2)纳米塑料。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。随着汽车应用塑料数量越来越多,纳米塑料会普遍应用在汽车上。主要有阻燃塑料、增强塑料、抗紫外线老化塑料、抗菌塑料等。阻燃塑料是燃烧时,超细的纳米材料颗粒能覆盖在被燃材料表面并生成一层均匀的碳化层,起到隔热、隔氧、抑烟和防熔滴的作用,从而起到阻燃作用。 目前汽车设计要求规定,凡通过乘客座舱的线路、管路和设备材料必须要符合阻燃标准,例如内饰和电气部分的面板、包裹导线的胶套,包裹线束的波纹管、胶管等,使用阻燃塑料比较容易达到要求。增强塑料是在塑料中填充经表面处理的纳米级无机材料蒙脱土、CaCO3、SiO2等,这些材料对聚丙烯的分子结晶有明显的聚敛作用,可以使聚丙烯等塑料的抗拉强度、抗冲击韧性和弹性模量上升,使塑料的物理性能得到明显改善。 抗紫外线老化塑料是将纳米级的TiO2、ZnO等无机抗紫外线粉体混炼填充到塑料基材中。这些填充粉体对紫外线具有极好的吸收能力和反射能力,因此这种塑料能够吸收和反射紫外线,比普通塑料的抗紫外线能力提高20倍以上。据报道这类材料经过连续700小时热光照射后,其扩张强度损失仅为10%,如果作为暴露在外的车身塑料构件材料,能有效延长其使用寿命。抗菌塑料是将无机的纳米级抗菌剂利用纳米技术充分地分散于塑料制品中,可将附着在塑料上的细菌杀死或抑制生长。这些纳米级抗菌剂是以银、锌、铜等金属离子包裹纳米TiO2、CaCO3等制成,可以破坏细菌生长环境。据介绍无机纳米抗菌塑料加工简单,广谱抗菌,24小时接触杀菌率达90%,无副作用。 (3)纳米润滑剂。纳米润滑剂是采用纳米技术改善润滑油分子结构的纯石油产品,它不会对润滑油添加剂、稳定剂、处理剂、发动机增润剂和减磨剂等产品产生不良作用,只是在零件金属表面自动形成纯烃类单个原子厚度的一层薄膜。由于这些微小烃类分子间的相互吸附作用,能够完全填充金属表面的微孔,最大可能地减小金属与金属间微孔的摩擦。与高级润滑油或固定添加剂相比,其极压可增加3倍-4倍,磨损面减小16倍。由于金属表面得到了保护,减小了磨损,使用寿命成倍增加。 另外,由于纳米粒子尺寸小,经过纳米技术处理的部分材料耐磨性是黄铜的27倍、钢铁的7倍。目前纳米陶瓷轴承已经应用在奔驰等高级轿车上,使机械转速加快、质量减小、稳定性增强,使用寿命延长。 (4)纳米汽油。纳米汽油最大优点是节约能源和减少污染,目前已经开始研制。该技术是一种利用现代最新纳米技术开发的汽油微乳化剂。它能对汽油品质进行改造,最大限度地促进汽油燃烧,使用时只要将微乳化剂以适当比例加入汽油便可。交通部汽车运输节能技术检测中心的专家经试验后认为,汽车在使用加入该微乳化剂的汽油后,可降低其油耗10%~20%,增加动力性能25%,并使尾气中的污染物(浮碳、碳氢化合物和氮氧化合物等)排放降低50%~80%。它还可以清除积碳,提高汽油的综合性能。更令人注意的是,纳米技术应用在燃料电池上,可以节省大量成本。因为纳米材料在室温条件下具有优异的储氢能力。根据实验结果,在室温常压下,约2/3的氢能可以从这些纳米材料中得以释放,故其能替代昂贵的超低温液氢储存装置。 (5)纳米橡胶。汽车中橡胶材料的应用以轮胎的用量最大。在轮胎橡胶的生产中,橡胶助剂大部分成粉体状,如炭黑、白炭黑等补强填充剂、促进剂、防老剂等。以粉体状物质而言,纳米化是现阶段橡胶的主要发展趋势。新一代纳米技术已成功运用其它纳米粒子作为助剂,而不再局限于使用炭黑或白炭黑,汽车中最大的改变即是,轮胎的颜色已不再仅限于黑色,而能有多样化的鲜艳色彩。另外无论在强度、耐磨性或抗老化等性能上,新的纳米轮胎均较传统轮胎都优异,例如轮胎侧面胶的抗裂痕性能将由10万次提高到50万次。 (6)纳米传感器。传感器是纳米技术应用的一个重要领域,随着纳米技术的进步,造价更低、功能更强的微型传感器将广泛应用在社会生活的各个方面。半导体纳米材料做成的各种传感器,可灵敏地检测温度、湿度和大气成分的变化,这在汽车尾气和大气环境保护上已得到应用。纳米材料来制作汽车尾气传感器,可以对汽车尾气中的污染气体进行吸附与过滤,并对超标的尾气排放情况进行监控与报警,从而更好地提高汽车尾气的净化程度,降低汽车尾气的排放。我国纳米压力传感器的研制已获得成功,产品整体性能超过国外的超微传感器,缩小了我国在这一技术领域与世界先进国家存在的差距。有专家认为,到2020年,纳米传感器将成为主流。 (7)纳米电池。早在1991年被人类发现的碳纳米管韧性很高,导电性极强,兼具金属性和半导体性,强度比钢高100倍, 密度只有钢的1/6。我国科学家最近已经合成高质量的碳纳米材料,使我国新型储氢材料研究一举跃入世界先进行列。此种新材料能储存和凝聚大量的氢气,并可做成燃料电池驱动汽车,储氢材料的发展还会给未来的交通工具带来新型的清洁能源。 结语 随着材料技术的发展,纳米技术已成为当今研究领域中最富有活力,对未来经济和社会发展有着十分重要影响的研究对象。纳米科技正在推动人类社会产生巨大的变革,未来汽车技术的发展,有极大部分与纳米技术密切相关,纳米材料和纳米技术将会给汽车新能源、新材料、新零部件带来深远的影响。对于汽车制造商而言,纳米技术的有效运用,有效地促进技术升级、提升附加价值。相信在不久的将来,纳米技术必将在汽车的制造领域得到更广泛的应用。 参考文献 [1]肖永清.纳米技术在汽车上的应用[J].轻型汽车技术,2004.12. [2]潘钰娴,樊琳.纳米材料的研究和应用[J].苏州大学学报(工科版),2002. [3]周李承,蒋易,周宜开,任恕,聂棱.光纤纳米生物传感器的现状及发展[J].传感器技术,2002,(1):18~21 纳米材料与技术3000字论文篇三:《试谈纳米技术及纳米材料的应用》 摘要:本文主要论述了纳米材料的兴起、纳米材料及其性质表现、纳米材料的应用示例、纳米材料的前景展望,以供与大家交流。 关键词:纳米材料;应用;前景展望 1.纳米技术引起纳米材料的兴起 1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。80年代初,德国科学家H.V.Gleiter成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后,纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的 热点 。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 2.纳米材料及其性质表现 2.1纳米材料 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 2.2纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。 3.纳米材料的应用示例 目前纳米材料主要用于下列方面: 3.1高硬度、耐磨WC-Co纳米复合材料 纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。 3.2纳米结构软磁材料 Finemet族合金已经由日本的Hitachi Special Metals,德国的Vacuumschmelze GmbH和法国的 Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的 Alps Electric Co.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。 3.3电沉积纳米晶Ni 电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为 EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。 3.4Al基纳米复合材料 Al基纳米复合材料以其超高强度(可达到1.6GPa)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如 Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为0.8~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为Gigas TM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑性行为:在1s-1的高应变速率下,延伸率大于500%。 4.纳米材料的前景趋向 经过我国材料技术人员多年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。 近年来还有一些引人注目的发展趋势新动向,如:(1)纳米组装体系蓝绿光的研究出现新的苗头;(2)巨电导的发现;(3)颗粒膜巨磁电阻尚有潜力;(4)纳米组装体系设计和制造有新进展。

随着微纳电子器件热功率密度的迅速增长,控制其温度已成为电子信息产业发展和应用的迫切需求。热界面材料的选择是热控技术的关键问题之一,开发高性能石墨烯基复合热界面材料已成为科学和工业界研究热点。其存在的关键问题是从原子尺度深刻理解复合体系中声子输运机理,进而协同提升石墨烯有效热导 率和界面热导。本文从石墨烯自身声子耦合热阻和界面热阻两方面综述石墨烯复 合体系导热的研究进展,讨论了提升石墨烯基复合体系界面热导的两种机制,同时分析了渐变界面和非平衡声子对界面热输运的调控机理。最后,我们对复合体系导热性能研究的发展趋势进行总结和展望。 01 引言 随着新兴的 5G 通信、物联网、新能源 汽车 电子、可穿戴设备、智慧城市、 航空航天等 科技 的兴起,芯片等器件朝着小型化、高功率密度、多功能化等方向发展。高度集成化和先进封装技术有效地提高了芯片功率密度并缩小了散热空间, 致使热流分布不均匀和局部过热等散热问题成为制约高性能芯片开发的核心问题之一。据统计,电子器件的温度每升高 10 -15 ,芯片使用寿命将会降低 50%。由此可见,控制电子器件的温度已成为电子产业发展的迫切需求。 热界面材料广泛被用于集成电路封装和器件散热,通过填充电子芯片与散 热器接触表面的微空隙及表面凹凸不平的孔洞来减少散热热阻。制约散热的热阻(RTIM)由两部分组成(图 1):热界面材料自身的热阻(Rc)和封装外壳与热界 面材料的界面热阻(Rint)。目前商用的热界面材料,其界面热阻 Rint(10-7~10-6 m2·KW-1),远小于自身的 Rc(10-6~10-5 m2·KW-1)。因此,热界面材料是电子器件热管理系统的重要组成部分,对提高散热效率和控制电子器件温度至关重要。 聚合物基复合材料具有良好的热机械性能,且质量轻、韧性好、低成本和易加工等特性。因此其全球市场份额占到热界面材料的 90%以上。聚合物基复合材料是聚合物基体和高导热填料组成的复合体系。二维纳米材料热导率远大于传统的填料,例如石墨烯热导率高达 2000~3000 Wm-1K-1(铜的 7~10 倍),且具有高比表面积和高机械强度等优异的性质,是极具应用前景的填料。因此,开发高性能石墨烯基复合体系的热界面材料已成为研究热点。 石墨烯基复合体系热界面材料的导热性能取决于石墨烯有效热导率和石墨烯/基体界面热导。石墨烯基复合体系中声子输运分为两个通道:(1)基体 石墨 烯的面外声子 石墨烯的面内声子-基体;(2)基体 石墨烯的面外声子 基体。分子模拟结果发现,第一种声子输运通道的热阻比第二种通道高 30 倍。 对比发现石墨烯“面内声子-面外声子”的非平衡声子输运对石墨烯有效热导率的发挥具有重要作用。从实验测量、理论分析及数值模拟方面均已证明了纳米尺度低维材料不同模式声子存在非平衡现象且对其热输运有重要影响。此外,石墨烯与基体之间的化学结构、机械性能、物理性质等诸多差异,使得石墨烯基复合体系中存在大量的界面结构,而界面是影响热输运的主要因素之一。这使得纳米尺度界面热输运成为石墨烯基复合体系热传导的核心问题。为了提高石墨烯基复合体系的热传导特性,本文将从石墨烯内非平衡声子和复合体系中界面非平衡声子两个方面讨论复合体系中石墨烯与基体的声子耦合热阻。02 石墨烯非平衡的内热阻 式中 J12 和 ΔT12 分别是模式 1 到 2 的热流和二者温差。通过建立声子间弱耦合解析 5 模型,可以定量描述和分析声子耦合强度的物理参数:耦合因子和耦合长度。耦合因子越小、耦合长度越长,对应着内热阻越大。 国内外一些课题组也在石墨烯非平衡的内热阻方面有突出的成果和贡献。美国德洲大学 Shi 等在研究拉曼法测量石墨烯热导率精度时也发现不同模式声子存在不同的温度,即它们之间处于非平衡态。普渡大学阮秀林等通过第一性原理模拟计算也表明,悬空石墨烯面内声子与面外声子的弱耦合作用促使不同模式声子处于非平衡态。 此后,美国普渡大学阮修林和清华大学曹炳阳等,通过模拟提取了石墨烯的不同模式声子温度,进一步从理论上研究不同模式声子非平衡态问题。上海交通大学鲍华与普渡大学阮修林等计算发现,当忽略石墨烯内非平衡声子输运,基于激光辐照测量得到的悬空石墨烯热导率将被低估 1.4-2.6 倍。此外研究者还发现在基于石墨烯的异质结中也存在非平衡声子输运 现象,例如:石墨烯/氮化硼、石墨烯/硅等异质结。因此,石墨烯内声子非平衡现象严重影响其有效热导率和实验表征的准确性。 03 复合体系界面热阻 提高石墨烯基热界面材料导热性能,除了上述内热组问题,还需考虑石墨烯/基体的界面热输运。石墨烯基复合体系热导提高不显著,主要源于在石墨烯和基体之间的界面影响声子输运,并产生较大界面热阻。大界面热阻的原因是多方面原因造成的。石墨烯和基体之间的作用力通常比较弱,远小于共价键。石墨烯和基体之间存在纳米尺度的空隙,空隙两段的原子之间几乎没有力的作用,空隙同时降低了两种材料的接触面积和作用力。即使完美接触的位置,由于两种材料本征热输运性质的差异和声子本征模式不匹配也会造成热阻。因此,提高复合体系界面热导研究可归纳为增强界面处原子间相互作用力和提升界面处两材料的 声子态密度匹配两个方面。

石墨烯复合材料论文

氧化石墨烯的干燥可以用普通烘箱或真空烘箱烘干。氧化石墨烯(grapheneoxide)是石墨烯的氧化物,其颜色为棕黄色,市面上常见的产品有粉末状、片状以及溶液状的。因经氧化后,其上含氧官能团增多而是性质较石墨烯更加活泼,可经由各种与含氧官能团的反应而改善本身性质。

石墨烯是一种由碳原子以sp2杂化轨道组成的一种纳米材料。石墨烯具有优异的光学,电学,力学特性,也具有非常好的导电性,是非常高效的一种材料。

氧化石墨烯在酸性溶剂中会团聚氯磺酸可以“溶解”石墨形成石墨烯,这也是少数石墨发生溶解(分散成单层石墨烯)的情况,与之相对应的是,通过强还原剂金属钾插入石墨据说也可以实现美国莱斯大学和以色列理工学院的科学家们找到了一种可使用化学溶液大批量制造出高纯度石墨烯的方法。研究人员表示,这有望大大降低具有广泛用途的炭素复合材料和触摸屏的生产成本,也将推进基于纳米技术的新材料的研发。相关研究成果发表在《自然·纳米技术》杂志网络版上。石墨烯是单层原子厚的石墨薄片。2004年,英国曼彻斯特大学的安德烈·海姆等人,使用胶带从石墨晶体上一层层剥离并制备出了仅由一层碳原子构成的石墨烯。石墨烯是已知最坚固的材料之一,且作为单质,它在室温下传递电子的速度比其他已知导体都快,具有很好的导电性,因此在太阳能电池、传感器等方面具有广泛的应用。自问世之日起,石墨烯就引起了全世界的研究热潮。研究论文的作者之一、莱斯大学化学和分子生物学家马特奥·帕斯夸里表示,石墨能够溶解在一种名为氯磺酸的超强酸中。研究人员在测量溶液时惊喜地发现,石墨中单个的石墨烯薄层会在溶液中自然剥落开来。帕斯夸里表示,目前,有很多高效的方法可以制造氧化石墨烯,其导电性与石墨烯相比相形见绌,而制造纯粹的石墨烯的方法还比较少,而且效率都不高,利用新方法则可得到大量纯石墨烯。该研究团队表示,每升酸溶液中可溶解两克石墨烯。使用高浓度的、含有石墨烯的溶液,科学家们制造出了透明的薄膜。该导电薄膜制成的触摸屏成本要低于目前智能手机上使用的触摸屏。此外,研究人员还利用该方法制造出了液晶。石墨烯不仅可用来开发制造出纸片般薄的超轻型飞机材料、超坚韧的防弹衣,甚至能让科学家梦寐以求的2.3万英里长太空电梯成为现实。该论文的另一个作者、美国莱斯大学的化学家詹姆士·图尔表示,如果这种方法被证明可用以成批制造石墨烯光纤,将能降低超坚固炭素复合材料的成本,炭素复合材料在航空航天、汽车和建筑等领域具有广泛的用途。

石墨烯之所以被称为科学界的明星,是因为石墨烯的作用非常大,它能够改变我们很多物品的特性,是我们人类重点研究的对象之一。

石墨烯复合材料学位论文

在这个时代最具有发展潜力的材料。这个材料不但耐用,而且随着设计的不同,还具备各种不同的神奇功能。一片将导热性发挥至极致的石墨烯材料,似乎可以充当一把切冰的刀呢,根据实验者的说法,当这个材料碰触到冰块的一角时,手指就可以立即感受到温度的变化,温度的传递可以说是毫无延迟,而且这块石墨烯材料完全没有经过事先加热的,所以能把冰块融化的热能全部都来自实验者手指上的体温。这样的石墨烯可能才只有三十几度,但却可以跟烧红到几百度的刀势均力敌。 石墨烯的导热性质或许可以帮助我们撷取近乎无限的能源。我们现在所使用的很多发电方法 都和热能脱离不了关系,不管是现在火力发电站还是核能发电站都会经过一个程序,就是把热能转换成其他的能量形式,不管是燃烧或是让核子分裂,目的都是要借由产生大量的热能来换成我们日常可用的电能。 可惜的是热能得来不易,燃烧用的燃料会有用尽的一天,而且还很容易造成空气污染。而核能所带来的辐射让我们十分头疼,核废料的处理也是个问题。但是如果有了石墨烯的帮忙,我们或许可以更轻易地取或许热能,还是几乎不可能被用尽的热能。 在我们脚底的数公里下,就有着近乎无限的地热存在,越是往下,温度就会越高,这些地热也是有些麻烦的不然全世界都靠地热来发电就好了,也不用一直寻找其他的能源。一直以来之所以无法广泛的利用这些地热,是因为我们很难去把地下的热能带到地表上来使用。 我们可能要假设水路管道,让水流下去与地热源接触,当水被热能蒸散后会往上飘,就可以另外一条管道去回收,然后利用蒸汽产生的推力来发电。然而,蒸汽在随管道上升时热能会散失到土壤里,而且也不是所有蒸发的水汽都会顺着我们的管线上来,所以这个程序会有种种因素让我们回收的热能不完全,架设这些地下管道的工程很耗成本,维修起来也是十分的困难,所以只有在地热源比较浅的地方,像冰岛这类火山岛我们才看到地热发电厂的存在。如果想要在其他地带架设地下管道,需要在不可思议的深度,而使回收的热能不合乎成本,但是有了石墨烯这样具有强大导热能力的材料,就有办法减少热能传送时消耗,它的导热系数高达五千,而散热能力强的铜金属才只有四百而已,所以说石墨烯的导热能力是具有开创性的。 石墨烯就像一个热能传送门,热能进去了就只会出去,不会残留在石墨烯上太久,我们可以利用这点,制造一条很长的石墨烯热能导线,一头放置在十几里的地下另外一头则接在地面上的发电站里,这样一来就可以利用相当高的效率把热能从地底带到地表。当然,就算有强大的导热能力,也不可能妄想毫无止尽的加热石墨烯,毕竟石墨烯的燃点说高不高,只有350度,很容易在传热过程中起火,所以需要一些防止燃烧的配套措施。他能承载的热能并不是无限的,所以这种方法和传统方法相比,究竟哪个方法会比较方便?现在这套方法还停留在理论,还没有人真的投入这项实验当中,也没办法真的颠覆地热能。 石墨烯的潜力是无可限量的,只可惜现在的生产技术还不够成熟,虽然已经有很多人投入了研究,但这些可以说是科幻片的产物。不过谁知道呢,或许在过个几年,我们真的看见这样东西出现了,现代 科技 技术可谓是真正的日新月异,我相信也期待不久的将来。你是怎么看的呢?欢迎来一起讨论,喜欢的朋友请关注加收藏,谢谢! 文章来源于网络若有侵权请告知删除

谈到石墨烯,貌似谁都能搭上两句,然而石墨烯的神奇之处到底在哪里,似乎并不为大多数人所熟知。石墨烯在面内的杨氏模量接近1 TPa,其碳碳键具有相当的刚度,且单原子超薄层状特性使得其在弯曲、扭曲和其它形变中表现出良好的柔性。在已知材料中,其面内电导和热导率是最高的,但层间的各项性能就不那么好了。 碳纳米管可以看做将石墨烯平面卷起,将平面内性质转化为轴向的一种材料,其轴向强度是最高的。因此与石墨烯类似,碳纳米管也易于进行弯曲、扭曲等形变。与多层石墨烯类似,碳纳米管也有单壁碳纳米管(SWNT)和多壁碳纳米管(MWNTs)]等嵌套结构,其机械性能等有显著区别。 作为所谓的“万金油”,碳纳米管或石墨烯复合材料是近年来研究热点中的热点,应用前景令人期待。然而,近二十年的研究并没有让碳纳米管和石墨烯复合材料大规模进入实用领域,载荷转移、界面、分散性和粘度等问题依然悬而未决。 石墨烯负载的复合材料:在石墨烯表面引入第二组分并在其表面进行外延伸展得到的复合材料。 石墨烯包裹的复合材料:用石墨烯片将第二组分包裹得到的复合材料,可以更有效地防止第二组分的聚合。 石墨烯内嵌的复合材料:将石墨烯纳米片作为填充物充分分散在第二组分的基体相中得到的复合材料。其中,基体相可以是纳米材料,也可以是块体材料组成。基于石墨烯的层状复合材料:将第二组分和石墨烯片交替堆积而成,该结构可以使石墨烯与第二组分的接触面积最大化,并有利于电子的产生、传输和分离。

石墨烯材料研究现状与发展论文

我认为未来发展应该是比较不错的,这样的电池储存能力是比较强的,安全系数比较高,性价比比较高。

石墨烯应用领域中科院近期发布的一份报告指出,石墨烯的研究和产业化发展持续升温,从石墨烯专利领域分布来看,其应用技术研究布局热点包括:石墨烯用作锂离子电池电极材料、太阳能电池电极材料、薄膜晶体管制备、传感器、半导体器件、复合材料制备、透明显示触摸屏、透明电极等。主要集中在如下四个领域:传感器领域。石墨烯因其独特的二维结构在传感器中有广泛的应用,具有体积小、表面积大、灵敏度高、响应时间快、电子传递快、易于固定蛋白质并保持其活性等特点,能提升传感器的各项性能。主要用于气体、生物小分子、酶和DNA电化学传感器的制作。新加坡南洋理工大学开发出了敏感度是普通传感器1000倍的石墨烯光传感器;美国伦斯勒理工学院研制出性能远超现有商用气体传感器的廉价石墨烯海绵传感器。储能和新型显示领域。石墨烯具有极好的电导性和透光性,作为透明导电电极材料,在触摸屏、液晶显示、储能电池等方面有很好的应用。石墨烯被认为是触摸屏制造中最有潜力替代氧化铟锡的材料,三星、索尼、辉锐、3M、东丽、东芝等龙头企业均在此领域作了重点研发布局。美国德州大学奥斯汀分校研究人员利用KOH对石墨烯进行化学修饰重构形成多孔结构,得到的超级电容的储能密度接近铅酸电池。密歇根理工大学科学家研发出一种独特蜂巢状结构的三维石墨烯电极,光电转换效率达到7.8%,且价格低廉,有望取代铂在太阳能电池中的应用。东芝公司研发出石墨烯与银纳米线复合透明电极,并实现了大面积化。半导体材料领域。石墨烯被认为是替代硅的理想材料,大量有实力的企业均开展了石墨烯半导体器件的研发。韩国成均馆大学开发出了高稳定性n型石墨烯半导体,可以长时间暴露在空气中使用。美国哥伦比亚大学研发出石墨烯-硅光电混合芯片,在光互连和低功率光子集成电路领域具有广泛的应用前景。IBM的研究人员开发出了石墨烯场效应晶体管,其截止频率可达100GHz,频率性能远超相同栅极长度的最先进硅晶体管的截止频率。生物医学领域。石墨烯及其衍生物在纳米药物运输系统、生物检测、生物成像、肿瘤治疗等方面的应用广阔。以石墨烯为基层的生物装置或生物传感器可以用于细菌分析、DNA和蛋白质检测。如美国宾夕法尼亚大学开发的石墨烯纳米孔设备可以快速完成DNA测序。石墨烯量子点应用于生物成像中,与荧光体相比具有荧光更稳定、不会出现光漂白和不易光衰等特点。石墨烯在生物医学领域的应用研究虽处于起步阶段,但却是产业化前景最为广阔的应用领域之一。

未来发展是很有前途的,集多种优良性能于一身,应用潜力很大,是引领高科技的超级材料;突破石墨烯的技术研发,加快石墨烯的产业进程。

石墨烯在中国的研究与发展:

中国在石墨烯研究上具有独特的优势,从生产角度看,作为石墨烯生产原料的石墨,在我国储能丰富,价格低廉。正是看到了石墨烯的应用前景,许多国家纷纷建立石墨烯相关技术研发中心,尝试使用石墨烯商业化,进而在工业、技术和电子相关领域获得潜在的应用专利。

如欧盟委员会将石墨烯作为“未来新兴旗舰技术项目”,设立专项研发计划,拨出10亿欧元经费。英国政府也投资建立国家石墨烯研究所,力图使这种材料在未来几十年里可以从实验室进入生产线和市场。

石墨烯有望在诸多应用领域中成为新一代器件,为了探寻石墨烯更广阔的应用领域,还需继续寻求更为优异的石墨烯制备工艺,使其得到更好的应用。

石墨烯用途是:

石墨烯可以用来制作晶体管,由于石墨烯结构的高度稳定性,这种晶体管在接近单个原子的尺度上依然能稳定地工作。

相比之下,如今以硅为材料的晶体管在10纳米左右的尺度上就会失去稳定性;石墨烯中电子对外场的反应速度超快这一特点,又使得由它制成的晶体管可以达到极高的工作频率。

相关百科

热门百科

首页
发表服务