首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

中学数学实验毕业论文

发布时间:

中学数学实验毕业论文

浅谈数学中的研究性学习 (转,供参考)找个自己感兴趣的题目去写,参考范文! 现代社会知识更新的速度不断加快,在高中阶段,对学生传授的知识是有限的,学校教育不可能让学生学的知识用上一辈子。人们在获得生存与发展中所面临的问题越来越具有社会性、复杂性和不可预见性,人们所必需的知识范围与能力素养的范围急剧扩大。而作为一名数学教师我们有责任引导学生从数学的角度分析社会生活和实践活动中的问题、开展探究活动,让学生在获得必要的数学知识与技能的同时,认识知识探究与问题探索的基本方法和途径,提高参与社会生活的探究、发现和改造等一切活动中进行决策的基本能力。 一、 正确的认识是开展数学研究性学习的基础 弄清概念:什么是数学研究性学习 数学研究性学习是培养学生在数学教师指导下,从自身的数学学习和社会生活、自然界以及人类自身的发展中选取有关数学研究专题,以探究的方式主动地获取数学知识、应用数学知识解决数学问题的学习方式。它同社会实践等教育活动一样,从特定的数学角度和途径让学生联系社会生活实例,通过亲身体验进行数学的学习。数学研究性学习强调要结合学生的数学学习和社会生活实践选择课题,学生从自身数学学习实践出发,找到他们感兴趣的、有探究价值的数学问题。开展数学研究性课题学习将会转变学生的数学学习方式,变传统的“接受性、训练性学习”为新颖的“研究性学习”,它有利于克服当前数学教学中注重教师传授而忽视学生发展的弊端,有利于调动学生的研究热情,激发学生的求知欲和进取精神,从而有效提高学生对数学的探究性学习能力、实践能力、创造能力和创新意识。 数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学和现实问题的一种有意义的主动学习,是以学生动手动脑,主动探索实践和相互交流为主要学习方式的学习研究活动。 二、如何进行数学研究性学习 数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学的和现实的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和相互交流为主要学习方式的学习研究活动。它能营造一个使学生勇于探索争论和相互学习鼓励的良好氛围,给学生提供自主探索、合作学习、独立获取知识的机会。古希腊哲学家德谟克利特曾经指出:“教育力图达到的目标不是完备的知识,而是充分的理解。”我国古代教育家说得更精辟且形象:教学中应“授之以‘渔’”,而不仅是“授之以‘鱼’”。数学研究性学习更加关注学习过程,然而老师又如何让学生在数学课堂上进行研究性学习呢? (一) 从教材切入让学生在数学家探索数学规律的研究思维过程中体验研究性学习 ?在高中数学教材中有大量的材料可切入研究性学习的探索。在课堂教学中,教师应把握住“遵循大纲、教材,但又不拘泥于大纲、教材”的原则,结合生产、生活实际适当地加深、加宽,选出探究的切入点,对学生创新意识和能力进行初步培养。如:在讲复数的概念的引入时,告诉学生数的发展是由生产与生活的需要和解方程的需要推动的,是科学实际和生产、生活相结合的产物,然后要学生:解方程: 。学生一定会说无解或无实数解,教师引导学生分析“无解”和“无实数解”的区别,要学生探讨是不是有什么新的东西?如果有应该是怎样的?学生会通过探求及讨论发现此方程的解有但不是实数从而就会想到是虚的,教师要求学生用已有的方法求出方程的解,学生往往会感觉困难,教师就要问学生为什么困难?学生会说无法求,教师要求学生探求一个新的东西出来解决。 通过问题的层层揭示,并通过联系数的开方知识、解方程知识等手段来突破难点。这一过程使学生亲历数学研究之中,是学生主动地获取知识、应用知识、解决问题的学习活动。这一过程能充分调动学生的参与意识,培养学生的探索精神,启迪学生的思维,使学生能自然地掌握知识。 教师引导学生把提出的新东西进行归纳、总结,上升到理论。然后提出新的问题。如上面这节课对要求学生:解方程:x3-1=0.这样处理能再次将理论和实践结合起来,使学生感悟到在数学学研究中理论和实践之间的辩证关系。课后教师可以再布置几个探究性思考题,让学生在课外进一步巩固课堂上的探究方法和思路,拓展和活跃学生思维。 指导学生进行一题多解和一题多变也是一种研究性学习的方法。 这样以数学教材为载体渗透研究性学习,有一定的灵活性能更好的培养学生探求规律的能力。数学知识探索是数学学习的核心,用类似科学的研究方式,让学生置于探索和研究的气氛之中,亲身参与研究,体会知识及规律的探索方法,提高学生发现和解决问题的能力。 (二) 把握教材例、习题的潜在功能,有效培养学生的研究性学习能力 数学知识由纷繁复杂的客观世界抽象而来,研究性学习能力是学习数学知识的必要条件。很多教师都有一个发现:在学习单个知识时,学生似乎学得不错,但学完了多个知识或一个系统后,却变成简单的题目都不会,这除了综合能力不高外,还与平时没有养成研究性学习有关。像二倍角公式的理解就不能只知道2α是α的二倍角,类似的:4α是2α的二倍,α是的二倍, 例如:已知Sin= ,? ?, 求4的三角函数值。 分析:由,两次运用二倍角公式;又如:Cosα=2Cos 2? ?- 1 = 1 – 2Sin2 ???????? ?Cos 2? ??=? ,? Sin2 ?= ?????? ????tan2 ?= 这实际上是二倍角公式的逆向运用,得到的半角公式(或降幂公式)。有了对例题的深刻理解和研究性学习就能解决一类问题,如求的值;化简等。 通过变式、逆用、一题多解等训练思维的深度,引导学生不满足表面知识,能深入钻研问题,探求各种知识的联系,从而找到解决问题的本质和规律。 在教学上要鼓励学生敢于主动、独立的发现问题、探讨问题,敢于提问,敢于发表自己的不同观点,例如:在△ABC中 ,,求CosC值,可我在批改作业时,没有考究教材参考资料提供的答案(实际上只有),结果把正误答案颠倒。发现错误后,我主动向全班同学道歉,并表扬了善于研究思考、敢于坚持真理的同学。并及时提出新问题:(1)在△ABC中若 ,,求CosC值。有几个解?(2)在△ABC中,成立吗?作为留给学生的课外研究性学习题。学习了正弦定理后,再回头证明。通过这一问题的深刻探讨,不但使学生牢固掌握知识,更大大提升了学习的自信心和学习的热情,在潜移默化中培养了学生的科学态度和研究性学习精神。在学习等比数列前n项和知识时,有一题是:在等比数列中:已知 。在求解过程中学生得到了:? ,进一步发现:成等比数列 ,这就是研究性学习所得的成果,继续引导这一结论并推广就就可完成下面一题。证明:等比数列的也成等比数列。学生们总结前面的学习也较顺利地完成了证明,心理充满了成功的喜悦。真的没有漏洞吗?鼓励学生进行研究性学习探讨其严谨性,有学生举出了反例:数列 1,-1,1,-1……是公比q= -1等比数列,但 ,并不是等比数列;这一发现令人吃惊,因为在课本和其他所有的课外书都没有此说法。从理论上讨论:当,显然当n为偶数且q= -1时, ,不可能为等比数列。由此可见数学研究性学习的重要。 (三) 数学开放题与研究性学习 ??? 研究性学习的开展需要有合适的载体,即使是学生提出的问题也要加以整理归类。作为研究性学习的载体应有利于调动学生学习数学的积极性,有利于学生创造潜能的发挥。实践证明,数学开放题用于研究性学习是合适的。 自70年代日本、美国在中小学教学中较为普遍地使用数学开放题以来,数学开放题已逐渐被数学教育界认为是最富有教育价值的一种数学问题,因为数学开放题能够激起学生的求知欲和学习兴趣,而强烈的求知欲望浓厚的学习兴趣是创新能力发展的内在动力。80年代介绍到我国后,在国内引起了广泛的关注,各类刊物发表了大量的介绍、探讨开放题的理论文章或进行教学实验方面的文章,并形成了一个教育界讨论研究的亮点。 高考命题专家也敏锐地觉察到开放题在考查学生创新能力方面的独特作用,近几年在全国和各地的高考试题中连续出现具有开放性的题目。 数学开放题体现数学研究的思想方法,解答过程是探究的过程,数学开放题体现数学问题的形成过程,体现解答对象的实际状态,数学开放题有利于为学生个别探索和准确认识自己提供时空,便于因材施教,可以用来培养学生思维的灵活性和发散性,使学生体会学习数学的成功感,使学生体验到数学的美感。因此数学开放题用于学生研究性学习应是十分有意义的。 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 21、浅谈中学数学中的反证法 22、数学选择题的利和弊 23、浅谈计算机辅助数学教学 24、数学研究性学习 25、谈发展数学思维的学习方法 26、关于整系数多项式有理根的几个定理及求解方法 27、数学教学中课堂提问的误区与对策 28、中学数学教学中的创造性思维的培养 29、浅谈数学教学中的“问题情境” 30、市场经济中的蛛网模型 31、中学数学教学设计前期分析的研究 32、数学课堂差异教学 33、浅谈线性变换的对角化问题 34、圆锥曲线的性质及推广应用 35、经济问题中的概率统计模型及应用 36、通过逻辑趣题学推理 37、直觉思维的训练和培养 38、用高等数学知识解初等数学题 39、浅谈数学中的变形技巧 40、浅谈平均值不等式的应用 41、浅谈高中立体几何的入门学习 42、数形结合思想 43、关于连通性的两个习题 44、从赌博和概率到抽奖陷阱中的数学 45、情感在数学教学中的作用 46、因材施教与因性施教 47、关于抽象函数的若干问题 48、创新教育背景下的数学教学 49、实数基本理论的一些探讨 50、论数学教学中的心理环境 51、以数学教学为例谈谈课堂提问的设计原则 52、不等式证明的若干方法 53、试论数学中的美 54、数学教育与美育 55、数学问题情境的创设 56、略谈创新思维 57、随机变量列的收敛性及其相互关系 58、数字新闻中的数学应用 59、微积分学的发展史 60、利用几何知识求函数最值 61、数学评价应用举例 62、数学思维批判性 63、让阅读走进数学课堂 64、开放式数学教学

《数学教学方法综合》

【摘要】文章在综述数学教学方法已有研究的基础上,分析了数学教学方法改革的趋势,探讨了已有研究存在的不足,对今后数学教学方法的研究进行了展望。

【关键词】数学教学方法研究综述

1. 引言

我国的数学教学方法是在继承传统,学习国外理论和经验中构建起来的。不但继承吸收了传统优秀的教学方法,而且在学习国外结合自己的实践的过程中产生了不少新的运用比较广泛的教学方法。

2. 教学方法界定的研究

中外对教学方法有不同的界定。由于时代、社会背景、文化氛围的不同,以及研究者研究问题的角度的差异,使得中外不同时期的教学理论研究者对“教学方法”概念的说法也不尽相同。

(1)教学方法要服务于教学目的和教学任务的要求。

(2)教学方法是师生双方共同完成教学活动内容的手段。

(3)教学方法是教学活动中师生双方行为体系。

3. 教学方法本质的研究

教学方法,如果我们从更高角度去理解的话,我们可以理解为教法。教法,在国内基本是围绕三个方面理解:一是指教学方法论,也包含教学原则;二是指教学模式;三是指教学技能。关于教学方法的本质,有以下几种说法。

3.1 教学法说

教学是双边活动,教为学提供有利条件,使学法更合理并不断科学化。教还可以使学在速度与质量上得以优化。因此,教与学,必然同在于一个法。

3.2 学法前提说

有学者认为,现代教学论不能只重视教学方法的研究,还得重视学习方法的研究,教学方法的本质要求我们在实施教学时必须要考虑到教法的要求和学法的要求,使教与学结合,做到既教知识又教方法。

3.3 教法学法统一说

持这种观点的学者认为,教学方法不仅仅理解为“教师在教学过程中为了完成教学任务所采用的方式和在教师指导下学生的学习方式”。教学方法的本质教法学法的辩证统一。

4. 教学方法分类的研究

人们在长期的教学实践中积累了很多的教学方法。而教学方法的分类就是把多种多样的教学方法,按照一定的规则或者标准,将它们有机地组织成为一个体系。

4.1 国外学者对教学方法的分类

巴班斯基根据对人的活动的认识,把教学活动分成三种,即知识信息活动的组织、个人活动的调整、活动过程的随机检查。从而把教学方法划分为三大类:①组织和自我组织学习认识活动的方法;②激发学习和形成学习动机的方法;③检查和自我检查教学效果的方法。

拉斯卡依据新行为主义的学习理论,即刺激——反应联结理论。教学方法——学习刺激——预期的学习结果。

5. 教学方法运用问题的研究

有了正确的教学思想的指导,理解了教学方法的特性与功能,在具体的教学当中如何科学的运用是广大老师关注的问题。综述已有的研究,关于如何运用的观点如下。

5.1 综合运用说

任何教学方法都有它的优点和缺点。回顾以往,往往是由一个极端走向另一个极端,片面、盲目、形而上学是造成教学效果严重低下的主要原因。因此,有人提出要把各种教学方法综合的运用。要想做到综合运用,必须有:①教法学法相统一;②讲习知识的的方法于训练智能的方法要统一;③常规教学方法与现代教学方法相统一。

5.2 发扬借鉴说

有这种观点的学者认为,在运用教学方法的时候,应该做到:①发扬国内教学方法中的优势;②有选择的学习国外的先进理论和方法;③借鉴教学控制论,掌握教学平衡,提高教学质量。尤其对新的教学方法,更要有选择的学习、吸收。

5.3 目的要求说

学者认为,不能抛开教学目的去选择教学方法,如果抛开教学目的,盲目的选择,教学必然不会成功。因此,选择教学方法应该考虑以下几点:①教学目的;②学生的素质和特点;③教材内容;④教师的素质和特点;⑤教学条件。教学目标以及教学任务的完成,最终取决于学生,并且通过学生表现出来。所以,教师选择的教学方法也是为学生服务的,教学方法的选择也是建立在对中学各类基本知识的逻辑推理上的模糊评价。

6. 数学教学方法改革的趋向

6.1 强调提高教学效率

所谓教学效率,就是单位时间内所完成的教学任务。20世纪美国全国数学教师协会(NCTM)拟定的八十年代《行动计划》中第四条,明确提出:“必须把既讲效果又讲效率的严格标准应用于数学教学”。

6.2 强调发挥学生的积极性,鼓励学生独立发现和探索

传统的教学法是灌输式,把学生看作容器,不注意发展学生的智力,不能适应时代发展的要求。因此一些教育学家、心理学家提出了新的教学理论。布鲁纳也认为,学习重要的不是记忆事实,而是获得知识的过程。他提出“发现法”,强调“教数学……要让学生自行思考数学,参与到掌握知识的过程中去。”

发现法有利于促进学生理解,学会发现的方法,培养探究能力,有利于知识的记忆,提高学习的积极性。

6.3 面向全体适应个别差异

近些年来我们现在的教育,已经开始注意面向全体学生,同时适应个别差异。近年来,国外在这方面进行了许多试验,提倡分组教学。

7. 以往教学方法研究中存在问题

近几十年来,我国数学教育工作者将国外先进的教育理论与我国数学教育实践相结合,摸索出许多具有中国特色的数学教学方法,如:讲授法、谈话法、演示法、读书指导法、参观法、实验法、实习作业法、练习法、问题法(或发现法),等等。

但随着社会的发展,知识的更新以及教育教学理论的发展,这些教学方法需要加以反思。传统的数学教学方法研究主要存在以下几个问题:

①方法及名称繁多,缺乏科学的教育实验。

②强调单一教学方法而忽视教学方法的选择与组合。

③理论总结不够,体系混乱。

④以教为中心。长期以来,数学教学方法的研究往往侧重于教材和教师,而忽视了学生学习的心理规律。

⑤重知识轻能力。

⑥重结果轻过程。

⑦忽视非智力因素的作用。

8. 展望

纵观近几年来国际数学教育发展的趋势和我国数学教育发展的现状,我国数学教学方法的发展有以下几种趋势:

第一,计算机辅助数学教学(CAI)将大面积开展。计算机是当今社会先进生产工具的代表,21世纪,计算机工业将是全球最大的工业之一。 CAI必将渗透到教育的各个领域。

第二,引入以“问题解决”为中心的教学模式。“问题解决”对数学教育有着重大的意义。

第三,引入体现数学应用意识的教学方法。数学应用是数学教育的根本目的之一。随着新技术革命的深入发展,数学应用也越来越被人们重视。

第四,“再创造”、“发现式”教学方法将得到重视。

参考文献

[1]李定仁,徐继存.教学论研究二十年[M].北京:人民教育出版社,2001.

[2] 林六十,高仕汉,李小平.数学教育改革的现状与发展[M].武汉:华中理工大学出版社,1997.

[3] 陈丽.浅析中学数学教学方法的继承与发展[J].理科教学探索,2007:19

[4] 杨骞.我国数学教育研究近20年回顾与思考[J].大连教育学报.1999.

初中数学实验论文范文

七年级数学小论文怎么写?下面是小编搜集的七年级数学小论文500字范文,希望对大家有帮助! 七年级数学小论文500字(一) 在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙. 例如,三角形.三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形.通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度.用6个正三角形就可以铺满地面. 再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度.用4个正四边形就可以铺满地面. 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度.它不能铺满地面. 六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度.用3个正四边形就可以铺满地面. 七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度.它不能铺满地面. 由此,我们得出了.n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度.若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面. 我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面. 例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形…… 现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的. 七年级数学小论文500字(二) 1证明一个三角形是直角三角形 2用于直角三角形中的相关计算 3有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学着作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。” 从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方 用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得: 勾2+股2=弦2 亦即: a2+b2=c2 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。 在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为: 弦=(勾2+股2)(1/2) 即: c=(a2+b2)(1/2) 定理: 如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。 如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理) 七年级数学小论文500字(三) 我每次做数奥都是拿起一道题拉起来就做,因为我觉得这样做起来很快。可是今天做数奥时,有一道题改变了我的看法,做得快不一定是做得对,主要还是要做对。 今天,我做了一道题目把我难住了,我苦思冥想了好几个小时都没有想出来,于是我只好乖乖地去看基础提炼,让它来帮我分析。这道题目是这样的:求3333333333的平方中有多少个奇数数字?分析是这样的:3333333333的平方就是3333333333×3333333333,这道乘法算式由于数字太多使计算复杂,我们可以运用转化的方法化繁为简,也就是把一个因数扩大3倍,另一个因数缩小3倍,积不变。使题目转化为求9999999999×1111111111=(10000000000-1)×1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘积中有十个奇数数字。这道题,我们还可以位数少的两个数相乘算起,就能发现积中奇数的数字个数。即3×3=9→积中有1个奇数数字。33×33=1089→积中有2个奇数数字。333×333=110889→积中有3个奇数数字。3333×3333=11108889→积中有4个奇数数字。…… 从上面试算中,容易发现积是由1,0,8,9四个数字组成的,1和8的个数相同,比一个因数中的3的个数少1,0和9各一个,分别在1和8的后面。积中奇数的数字个数与一个因数中3的个数相同,可以推导出原题的积是:11111111108888888889,积中有10个奇数数字。 做了这道题,我知道做数奥不能求快,要求懂它的方法。 七年级数学小论文500字(四) 今天,我遇到两道数学题,并得到了一些窍门。 第一题:幼儿园买进大小两种毛巾各40条,共用58。8元。大毛巾比小毛巾的2倍多0.12元。这两种毛巾各多少元?其实,这道题还是较简单的。只要用解方程就行了。先算出大小毛巾的价钱,在计算,不一会,我就做完了。 乔布斯水果店原来将一批苹果按100%的利润(即利润是成本的100%)定价出售,由于定价过高,无人购买。后来不得不按38%的利润重新定价,这样售出了其中的40%。此时,因害怕剩余水果腐烂变质,不得不再次降价,售出了剩余的全部水果。结果,实际获得的总利润是原定利润的30.2%,那么第二次降价后的价格是原来定价的62.5%。第二次降价的利润是:(1.302-40%×1.38-0.6)÷(1-40%)=25%,价格是原定价的(1+25%)÷(1+100%)=62.5%。接着道题要把这批苹果看成1,价格也看成1,这批苹果总共分两次卖,第一次卖了0.4,第二次卖了0.6。总的利润是30.2%,总的售出价格就是1.302,第一次卖了40%×1.38,1.302-40%×1.38就是第二次卖出的总货款。再减掉二次的成本60%,就得到第二次多卖出的钱。利润就是销售价比成本价多出来的钱再除以成本,所以用这个钱除以第二次的成本1-40%,就等于第二次降价后的利润,这时候需要注意,原来的定价应该是(1+100%),所以用(1+25%)÷(1+100%)相除就等于所要答案。 某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15,小轿车10元。某日通过该收费站的大客车和小客车数量比是5:6,小客车与小轿车数量比是4:11,收取小轿车通行费比大客车多210元。求这天这三种车辆通过的数量。解题思路:先把两个比换算成同样的比例,这样三个之间就可以作比较。小轿车比大轿车多出210元,车子的数量比是33:10,实际上收费比是3:1,这样形成的差33×1-10×3=3,210除以3就等于每个配给的量是70辆。就是5:6=10:12,4:11=12:33,30:10=3:1,33×1-10×3=3,210÷3=70(辆);大客车:70×30÷30=70(辆),小客车:70×6÷5=84(辆),小轿车:84×11÷4=231(辆)。 不要担心题目有多难,无论什么数学题总会有答案的,数学就是这么简单,就要看你逻辑性、思维和分析能力是否强。希望你们也爱上数学! 七年级数学小论文500字(五) 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。[七年级数学小论文500字]相关文章:1.趣味数学小论文2.数学小论文作文3.数学小论文的作文4.数学小论文200字5.关于数学小论文6.数学高中小论文7.小学有关数学小论文8.高中的数学小论文9.数学与生活(小论文)精选10.数学生活小论文

初中数学学习是学习者在原有数学认知结构基础上,通过新旧知识之间的“同化”或“顺应”,形成新的数学认知结构的过程。那2000字的初中数学论文怎么写呢?下面我给大家分享一些2000字的初中数学论文 范文 ,大家快来跟我一起欣赏吧。 2000字的初中数学论文范文篇一 浅谈初中数学 学习 方法 指导 在新课程背景下,如何让初一新生感到数学好学,把学数学当成一种乐趣,真正做初中数学的小主人。在此,笔者就初中 数学学习方法 的指导提出一些自己的见解,于同行共勉。 一、指导学生读 目前初中新生学习数学存在一个严重的问题就是不善于读数学书,他们往往是死记硬背。比如在学平方根概念时,同学们都知道“一般地,如果一个数的平方等于a,那么这个数叫做a的平方根。”“一个正数有正、负两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。”可是在做判断题时,4是16的平方根( );16的平方根是4( )。这两道判断题前面一道总是做不对,后面一道倒是都能做全对。因为他们更熟悉“一个正数有两个平方根,却不能很好的理解平方根的概念,就因为没好好读懂平方根概念,这使初一新生自学能力和实际应用能力得不到很好的训练。因此,重视读法指导对提高初中新生的学习能力是至关重要的。在教学过程中,教师应指导学生学会读书的方法,做到眼到、口到、心到、手到。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细的读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读“懂”,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。 二、指导学生听 初中新生往往对课程增多、课堂学习容量加大不适应,顾此失彼、精力分散,使听课效率下降,因此,重视听法指导,使他们学会听,是提高学习效率的关键。 数学教学中,首先应培养学生学习思想专注、专心听讲,激活其原认识结构,并使学生的信息接受与教师的信息输出协调一致,从而获得最佳学习效果。其次,要培养学生会听,注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,让学生抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能使其由“听会”转变为“会听”。 三、指导学生思考 数学学习是学习者在原有数学认知结构基础上,通过新旧知识之间的“同化”或“顺应”,形成新的数学认知结构的过程。由于这种“同化”或“顺应”的工作最终必须由每个学习者相对独立地完成。因此,在教学过程中老师对学生要进行思法指导,教师应着力于以下几点:①从学生思维的“最近发展区”入手来开展启发式教学,培养学生积极主动思考,使学生会思考。②从创设问题情境来开展探索式教学,培养学生追根究底的思考习惯,使学生学会深思;③从挖掘“问题链”来开展变式训练,培养学生观察、比较、分析、归纳、推理、概括的能力,使学生学会善思;④从回顾解题策略、方法的优劣来开展评价,培养学生去分析,使学生学会 反思 。 四、指导学生写 初一新生在解题书写上往往存在着条理不清,逻辑混乱等问题。比如在学习乘、除、乘方的混合运算的运算顺序时,下列这些错误学生很容易犯,(-3)2=-32,(2×3)2=2×32,(3\4)2=32\4等等。还有在学习有理数的混合运算时会出现这样的情况,8-8×(3\2)2=0×9\4=1,这主要是我们在教学中不大重视对学生进行写法指导。在教学中老师要及时纠正学生易犯的错误。比如:①要教会学生将文字语言转化为数学符号语言,还要注意数学符号中数学演算的前提条件;②要将学生在推理的同时学会书写表达,让学生在反复训练中熟练掌握常用的书写格式;③要训练学生根据已知条件来分析作图,正确地将文字语言转化为直观图形,以便更好的利用数形结合解决问题。 五、指导学生记 教学生如何克服遗忘,以科学的方法记忆数学知识,对学生来说是很有益处的。初中新生由于正处在初级的 逻辑思维 阶段,识记知识时机械记忆的成分较多,理解记忆的成分较少,这就不能适应初中学生的新要求。因此,重视对学生进行 记忆方法 指导,这是初中数学教学的必然要求。教学中,首先要重视改革 教学方法 ,抛弃满堂灌,以避免学生“消化不良”,其次要善于结合数学实际,教给学生相应的方法。比如:①理解记忆法,因为理解的东西才能记得准,记得牢,所以必须“先懂后记”。② 简化记忆法,简化记忆方法分两类,一类是把文字“浓缩”之后记忆,另一类是用字母符号表达抽象记忆。③形象记忆法,内容形象、直观、记忆就深刻、难忘,把知识形象化能帮助记忆。④对比记忆法,“有对比才有鉴别”把相类似的问题放在一起找出区别与联系,分清异同,增强记忆效果。⑤口诀记忆法,将数学知识编成“ 顺口溜 ”,生动有趣,印象深刻,不易遗忘。⑥系统记忆法,建立一个完整的知识体系,便于整体上掌握知识,可用关系图来帮助记忆。 总之,对初中新生数学学习方法的指导,必须与教学改革同步进行,协调开展,持之以恒。要力求做到转变思想与传授方法结合,课上与课下结合,学法与教法结合,教师指导与学生探求结合,统一指导与个别指导结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法,同时要理论联系实际,因人而异,因材施教,充分调动学生的学习积极性。 2000字的初中数学论文范文篇二 浅析初中数学学习方法 新的课改要求学生掌握一定的学习方法,才能让学生在数学探究活动中,进一步得到获取数学知识的能力,这样的数学课堂教学活动,真正体现出“以学生为主体,教师为主导”的课堂教学模式,这是改革的关键之一。长期从事初中数学教学工作的我,从以下几个方面来谈谈自己的认识,仅供参考! 当前,初中学生学习数学这门科的方法方面的情况:许多学生已进入初中,对初中数学教师的上课的方法,不适应,由小学阶段的“手把式”教学,转变为自主学习式,教师的作用是一个编导,由于学生的依赖性尚未完全脱离,因此,小学阶段“顶呱呱”的学生,就要小学时的轻松了。其次,学生对数学课本的内容,没有一定的阅读习惯与方式方法,习惯于“哇啦哇啦”地读一通,就了事,抓不住重点,对课本的公式、定理,习惯“死记硬背”,导致对概念、公式的理解能力较差,实际运用能力相应的也较差。再次,学生进入初中,对课堂四十分钟,不能有效利用,许多学生对老师的讲解时,东张西望,精力不集中,开小差,更谈不上做笔记,因此,学生的学习效果极差。也有部分学生在小学阶段受老师的影响,对待问题不善于分析、理解,只是一味地模仿老师的做法。去解答习题。也有部分学生一遇到难题,不是自动去思考,查找有关资料,或对手探究,而是“翘首”望着老师,等待老师的解答。由于学生学习数学的方法欠缺,顾此失彼的现象严重,部分学生不善于言谈,口头表达能力较差,也有学生“滔滔不绝”,而做题的格式混乱,模糊不清;在识记理解知识方面,死记的东西多,理解消化的知识较少;也学生对老师批改的作业,弃之不过目,对错了的习题,没有去找到错误的原因??等等。 作为数学教师,要引导学生的学法,从以下几个方面去进行: 一、初中数学教师要按照《九年义务 教育 阶段数学课程标准》中,指出“数学教学活动是师生积极参与、交往互动、共同发展的过程 数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,掌握有效的数学学习方法。学生学习应当是一个生动活泼的、主动的和富有个性的过程。除接受学习外,动手实践、自主探索与合作交流也是学习数学的重要方式。学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。教师教学应该以学生的认知发展水平和已有的 经验 为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,通过有效的 措施 ,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学 思维训练 ,获得基本的数学活动经验。”要达到这个标准,需要初中数学教师较好第引导学生学习数学这门科的学习方法,让学生在愉快、轻松的数学课题教学活动中,获得知识,训练能力。 二、初中数学教师要指导学生有效阅读数学课本 学生阅读数学课本后,应该对数学课本上的知识有一定的了解或做到了心中有数,以便教师在讲解或组织学生分组探究、学生自主学习,有一定的基础。比如,组织学生学习“垂线”知识时,先指导学生自己阅读数学课本,找到“垂线的定义”、“ 垂线的画法”、“ 垂线的性质”、“ 点到直线的距离”。通过学生阅读,将老师提出的问题,在课本中找到了,就达到了预习的目的,这些预习提问是本课的重要内容,学生通过认真阅读课文,有些问题可以自己解决,难点问题在课堂上进行突破。其次,在课题教学活动中,教师引导学生阅读课本,将实行分段阅读,如“点到直线的距离”所在段,提出“如何正确了解点到直线的距离?”,学生通过作图与概念对比起来进行分析、理解,就能很容易掌握“点到直线的距离”概念。这样,学生带着问题去阅读,在解决问题的过程中不仅可以很快理解点与线关系,而且在概念的抽象过程中意识到类比和归纳方法的存在。课堂阅读在例、习题的教学中有更多的应用,引导学生边看、边想、边讨论、边解书中的例、习题,先自己想一下怎么做,再对照例题,这样学生就积极思考、探索、质疑,从而加强学生自我检查学习效果的能力。最后,数学教师要引导学生进行课后阅读数学课本。结合每章节所学内容,进一步认真阅读教材,做到概念清晰明了、理解熟记。通过复习使知识系统化、条理化,让学生学会自我整理知识。引导学生自我 总结 ,比如“垂线”这节课的小结为:要掌握好垂线、垂线段、点到直线的距离这几个概念;要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形;垂线的性质为今后知识的学习奠定了基础,应 该熟练掌握。这样学生学会并掌握学习数学的方法,讲是学生终身受用。学会学习不仅要靠老师的指导,尤其要靠学生不断积累方法,并在自己的实践中得以有效运用。 三、初中数学教师盐善于引导学生总结学习规律,让学生掌握切实可行的学习方法 比如,在组织学生学习“一元一次方程”时,归纳为:什么是已知数,什么是未知数,什么是方程,什么是方程的解,什么是解方程;会判别一个式子是否是方程;会列一元一次方程;会检验一个数是否是某一个方程的解。数学教师在教材处理、教法选择、教学设计中,要注意去揭示知识的形成过程、概念的概括过程、展现思维过程;注意由此及彼、由表及里,让学生从中观察、比较、归纳、领悟一系列的学习规律,通法通理,总结学习的方式方法。 四、初中数学教师要耐心指导学生的学习方法 任何一种学习方法都不是每一个学生都能适合的,这就需要初中数学教师,要充分了解学生的基础上,针对不同的学生,分别加以指导。比如对于差生的指导,要讲求一定的方式方法,可以对他们采取个别辅导,既辅导知识也辅导学法。因材施教,帮助每一个学生真正地去学习,真正地会学习,真正地学习好,这是面向全体学生,全面提高学生素质,全面提高教学质量的关键。 总之,初中数学教师要以系统整体的观点进行学法指导,对学生进行学习方法的传授、诱导、渗透,帮助学生掌握科学的有的放矢的学习方法,指导学生学会读书、学会听课、学会讨论、学会复习、学会提问、学会总结,以指导学生加强自身修养,激发学习动机,指导学生掌握和形成具有自己个性特点的科学的学习方法,指导学生养成良好的学习习惯,提高学习能力。

数学建模实验论文

数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进. 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法. (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法. (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用. (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式. (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型. (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.① 离散系统仿真--有一组状态变量.② 连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型 取决于是否考虑时间因素引起的变化.线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。

数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。

数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用

一、高等数学教学的现状

(一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二) 教学 方法 传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体 措施

(一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献

[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.

[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.

[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.

数学建模论文范文二:数学建模教学中数学素养和创新意识的培养

前言

创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.

因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].

在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.

而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.

近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].

所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.

因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].

因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.

1掌握数学语言独有的特点和表达形式

准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.

用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.

现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.

2借助数学建模教学使学生学会使用数学语言构建数学模型

根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.

而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.

对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.

3借助数学实验教学,展示高度抽象

的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.

因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.

配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.

选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.

教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.

教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.

数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.

4突出学生的主体作用,循序渐进培养学生学习、实践到创新

实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.

在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.

再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.

同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.

通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.

5具体的教学策略和途径

数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:

1)注重背景的阐述

让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.

2)注重模型建立与求解过程中的数学语言的使用

在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.

3)注重经典算法的数学软件的实现和改进

由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.

参考文献:

[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.

[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。

[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.

[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.

[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.

[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.

[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.

随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

1.准备阶段

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义

(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力

所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].

(四)加强数学建模教育有助于提高学生科技论文的撰写能力

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].

三、开展数学建模教育及活动的具体途径和有效方法

(一)开展数学建模课堂教学

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].

(二)开展数模竞赛的专题培训指导工作

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

(三)建立数学建模网络课程

以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]

(四)开展校内数学建模竞赛活动

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛

全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

参考文献:

[1]辞海[M].上海辞书出版社,2002,1:237.

[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.

[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.

[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.

[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.

[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.

大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。

对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。

一、数学建模的概念

想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。

二、在小学数学教学中运用数学建模的策略

1.根据事物之间的共性进行数学建模

想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。

教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。

2.认识建模思想的本质

建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。

建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。

3.发挥教材在数学建模上的作用

教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。

数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。

1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。

3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。

Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。

5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。

7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。

8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司A.K.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。

9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。

10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn) 和托克 (A.W.Tucker) 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。

数学建模全国优秀论文相关 文章 :

★ 数学建模全国优秀论文范文

★ 2017年全国数学建模大赛获奖优秀论文

★ 数学建模竞赛获奖论文范文

★ 小学数学建模的优秀论文范文

★ 初中数学建模论文范文

★ 学习数学建模心得体会3篇

★ 数学建模论文优秀范文

★ 大学生数学建模论文范文(2)

★ 数学建模获奖论文模板范文

★ 大学生数学建模论文范文

小学数学实验毕业论文题目大全

数学是整个小学 教育 教学的重点和难点,同时也是很多学生的弱项,小学数学教师如何提高教学质量,激发学生学习兴趣,是贯穿于整个教学中的主要任务。下面我给大家带来小学数学论文题目与选题参考,希望能帮助到大家!

小学数学论文题目

1、小学低年级数学游戏 教学 方法 的案例研究

2、以学习为中心的小学数学教学过程研究

3、激发小学生数学学习兴趣的实践研究

4、农村小学与初中数学教学衔接问题的研究

5、小学低年级学生数学学习兴趣的培养

6、游戏化教学在小学数学教学中的应用与研究

7、激发兴趣对小学生数学探究能力影响的研究

8、小学数学教学中信息技术应用策略研究

9、《几何画板》在小学平面图形上的教学应用研究

10、小学高年级学生数学直觉思维能力培养的研究

11、培养小学第一学段学生计算能力的策略研究

12、交互式电子白板在小学数学教学中的应用研究

13、基于学习共同体的学校教研组建设调查研究

14、小学阶段教师对数学评价任务的认识研究

15、小学低年级数学游戏教学方法的案例研究

16、中美小学阶段数学课程标准比较研究

17、小学 四年级数学 教师课堂提问有效性调查研究

18、农村小学 三年级数学 体验式教学调查与实验探究

19、农村小学与初中数学教学衔接问题的研究

20、小学课堂环境改善的行动研究

21、网络环境下小学数学主题教学模式应用研究

22、培养小学生数学学习兴趣的教学策略研究

23、小学五年级 儿童 数学学习策略干预对改善其执行功能的研究

24、小学生数学 创新思维 的培养

25、促进小学生数学课堂参与的教学策略研究

26、使学生真正成为学习的主人

27、改革课堂教学的着力点

28、谈素质教育在小学数学教学中的实施

29、素质教育与小学数学教育改革

30、浅谈学生数学思维能力的培养

31、浅议表象积累与培养学生的思维能力

32、也谈学生创新意识培养

33、实施创新教学策略 培养学生创新意识

34、谈谈计算教学的改革

35、小学数学数与计算教学的回顾与思考

36、小学数学教材结构的研究与探讨

37、 小学数学应用题的研究

38、 改进教学方法培养创新技能

39、21世纪我国小学数学教育改革展望

40、面向21世纪的小学数学课程改革与发展

41、不拘一格育“鸣凤”

42、使学生真正成为学习的主人

43、 改革课堂教学的着力点

44、谈素质教育在小学数学教学中的实施

45、素质教育与小学数学教育改革

46、 浅谈学生数学思维能力的培养

47、浅议表象积累与培养学生的思维能力

48、也谈学生创新意识培养

49、《9和几的进位加法》教学设计

50、实施创新教学策略 培养学生创新意识

51、10以内加法整理和复习

52、改良“有余数除法计算”教法

53、给学生创新的时间和空间

54、和谐愉悦 主动探索--一年级《统计》教学片断评析

55、小学数学教育--教师之家--教师培训

56、面向21世纪的数学素质及其培养

57、能被3整除的数的特征

58、数学教学中培养学生创造思维能力

59、改进几何初步知识教学的初步探索

最新小学数学论文题目

1、基于DEA-Tobit模型的中国西部农村小学效率研究

2、中美职前小学教师教育中数学课程的比较研究——以上海师范大学和纽约城市大学为例

3、小学教育专业数学教学中应用现代教育技术探索

4、基于数学 文化 观的小学教育专业高等数学课程研究

5、数学史与小学数学教学:历史文化向度的思考——以竖式乘法为例

6、关于小学教育专业初等数论课程例题和练习题的几点思考

7、小学教育专业数学课程整合的策略

8、小学教育专业数学课教学突出专业特点的研究

9、小学教育专业(本科)高数类课程建设和教学改革的思考

10、高师小学数学教育类课程改革的路径选择

11、小学教育专业理科高等数学教学改革实践

12、用初等数论知识巧解小学数学题

13、Floyd算法在中心小学选址上的应用

14、小学教育本科专业数学课程教学研究

15、师范院校小学数学教育专业课程设置的现状及对策研究

16、学教育专业有效高等数学教学的探讨

17、关于小学教育本科专业数学课程目标的思考

18、整合数学类课程,提高小学教育专业本科学生的数学素养

19、小学教育专业数学核心课程体系探析

20、地方高校小学教育专业数学课程改革研究——以湖北科技学院为个例

21、浅谈微积分学习对提高小学数学教师素质的作用

22、基于数学文化观的小学教育专业高等数学课程研究

23、论高等数学与小学数学思维上的相通性

24、高师小学数学微格教学的 反思 与实践

25、新建本科院校小学教育专业数学分析教学初探

26、小学教育专业数学分析课程教学的几点思考

27、初中起点六年制本科小学教育专业(数学方向)高等代数课程的教学探索

28、小学教育专业本科生高等数学学习状况的调查研究

29、师范数学教学与小学数学教师学科知识相关性的调查研究

30、五年制师范小学教育专业《高等代数》教材初探

31、实践取向小学教育理科方向高等代数课程建设的探索与实践优先出版

32、高等数学与小学数学的链接点

33、学习义务教育教学大纲改革小学数学教学

34、小学教育专业微积分教学设计探讨——以《微分的概念》教学设计为例

35、高等数学与小学数学相关性的研究

36、对高师小学教育专业《高等数学》的思考

37、九年义务教育小学数学教学大纲审查说明

38、对小学教育专业数学类课程体系建构的思考

39、小学职前教师概率课程教学研究

40、试论高等数学课程体系改革——以小学教育专业为例

小学生数学论文题目与选题

1、浅议表象积累与培养学生的思维能力

2、浅谈学生创新意识培养

3、实施创新教学策略

4、改良“有余数除法计算”教法 小学数学数与计算教学的回顾与思考

5、小学数学教材结构的研究与探讨

6、小学数学应用题的研究

7、改进教学方法培养创新技能

8、21世纪我国小学数学教育改革展望

9、面向21世纪的小学数学课程改革与发展

10、改革课堂教学的着力点

11、谈素质教育在小学数学教学中的实施

12、素质教育与小学数学教育改革

13、浅谈学生数学思维能力的培养

14、改革课堂教学的着力点

15、谈素质教育在小学数学教学中的实施

16、素质教育与小学数学教育改革

17、浅谈学生数学思维能力的培养

18、浅议表象积累与培养学生的思维能力

19、谈学生创新意识培养

20、实施创新教学策略

21、谈谈计算教学的改革

22、信息技术与小学数学课程整合的研究与实践

23、运用CAI技术,优化素质教育

24、合理运用学具提高数学课堂教学效率

25、略谈“问题解决”与小学数学教学

26、渗透数学思想方法提高学生思维素质

27、引导学生参与教学过程发挥学生的主体作用

28、优化数学课堂练习设计的探索与实践

29、实施“开放性”教学促进学生主体参与

30、数学练习要有趣味性和开放性

31、“五、四、三自主式学法指导”教学模式初探

32、引导学生主动参与教学活动

33、改进几何初步知识教学的初步探索

34、多媒体课件在优化课堂教学中的功能及其策略研究

35、创新从习惯抓起

36、培养学生的创新意识要处理好的几个关系

37、让学生在数学学习中获得持续发展

38、小学数学创新学习的实验与研究

39、小学数学课题教学中学生创新意识的培养

40、浅谈小学数学总复习的“步步反馈,逐层提高”法

41、入情才能入理激情方能启思

42、实施“生活数学”教育培养自主创新能力

43、数学作业批改中巧用评语

44、提高元认知水平培养自学能力

45、“圆的面积”的教案

46、圆柱的认识

47、运用多媒体辅助教学优化数学教学方法

48、组织课堂讨论优化课堂教学

49、重视学生获取知识的思维过程

50、小论文巧算圆的面积

51、倒推转化巧拿硬币

52、联系生活实际提高课堂效率

53、数学教学中如何调动学生的学习积极性

54、根据心理学的理论进行计算法则教学

55、简单应用题教学再探

56、创设情境,培养学生创造个性

57、数学教学中培养学生创造思维能力

58、启动学海搁浅之舟-- 转化数学学习后进生的体会

59、学生“四会”能力的培养

60、联系实际,强化操作,努力优化数学教学

小学数学论文题目与选题参考相关 文章 :

小学数学教学论文参考(2)

★ 小学数学课题研究论文范文

★ 数学教育毕业论文题目参考选题大全

★ 小学数学应用题论文(2)

★ 小学数学课题方案

★ 小学数学教育专业毕业论文

★ 小学数学建模的优秀论文范文

★ 浅谈小学数学教育教学论文

★ 班主任教育论文题目选题大全

这里搜集了一些小学数学教学论文题目,仅供参考。1、课堂有效提问的初步探究2、小学数学数与计算教学的回顾与思考3、小学数学教材结构的研究与探讨4、小学数学应用题的研究5、改进教学方法培养创新技能6、使学生真正成为学习的主人7、改革课堂教学的着力点8、谈素质教育在小学数学教学中的实施9、素质教育与小学数学教育改革10、浅谈学生数学思维能力的培养11、实施创新教学策略,培养学生创新意识12、10以内加法整理和复习13、改良“有余数除法计算”教法14、给学生创新的时间和空间15、谈谈计算教学的改革16、面向21世纪的数学素质及其培养17、能被3整除的数的特征18、年、月、日19、培养自学能力,推进素质教育20、浅谈小学数学总复习的“步步反馈,逐层提高”法21、入情才能入理 激情方能启思22、实施“生活数学”教育,培养自主创新能力23、数学作业批改中巧用评语24、提高认知水平,培养自学能力25、圆的面积”的教案26、圆柱的认识27、运用多媒体辅助教学,优化数学教学方法28、组织课堂讨论 优化课堂教学29、重视学生获取知识的思维过程30、小论文巧算圆的面积31、联系生活实际提高课堂效率32、数学教学中如何调动学生的学习积极性33、根据心理学的理论进行计算法则教学34、简单应用题教学再探35、创设情境,培养学生创造个性36、学生“四会”能力的培养37、营造探究氛围一例38、实施创新教育 培养创新人格39、《9和几的进位加法》教学设计40、信息技术与小学数学41、合理运用学具 提高数学课堂教学效率42、略谈“问题解决”与小学数学教学43、渗透数学思想方法 提高学生思维素质44、引导学生参与教学过程 发挥学生的主体作用45、培养学生的创新意识要处理好的几个关系46、浅谈“数形结合”在小学低段数学教学中的应用47、借助学具,提高数学课堂效率48、对数学新课程理念下练习课教学的几点思考48、多通道促进数学课堂公平50、上“活”概念课,灵动新课堂51、对学生数学作业订正现状调查分析及对策52、对小学数学动态生成式课堂结构的认识53、对新课程中估算教学的几点想法54、谈小学应用题教学如何为学生自主探索创造条件55、小学数学课堂中的口头评价56、让新理念成为把握教材的支撑点57、立足现实起点,提高课堂效率58、谈课堂教学中有效情境的创设59、提高数学课堂教学效率之我见60、为学生营造一片探究学习的天地

在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。关于数学方面的论文我们可以写哪些呢?下面我给大家带来关于数学方向的优秀论文题目有哪些,希望能帮助到大家!

最全组合数学论文题目

1、并行组合数学模型方式研究及初步应用

2、数学规划在非系统风险投资组合中的应用

3、金融经济学中的组合数学问题

4、竞赛数学中的组合恒等式

5、概率 方法 在组合数学中的应用

6、组合数学中的代数方法

7、组合电器局部放电超高频信号数学模型构建和模式识别研究

8、概率方法在组合数学中的某些应用

9、组合投资数学模型发展的研究

10、高炉炉温组合预报和十字测温数学建模

11、证券组合的风险度量及其数学模型

12、组合数学中的Hopf方法

13、PAR方法在组合数学问题中的应用研究

14、概率方法在组合数学及混合超图染色理论中的应用

15、一些算子在组合数学中的应用

16、陀螺/磁强计组合定姿方法的相关数学问题研究

17、高中数学人教版新旧教材排列组合内容的比较研究

18、生物絮凝吸附-曝气生物滤池组合工艺处理生活污水的数学模拟研究

19、基于数学形态学-小波分析组合算法的牵引网故障判定方法

20、证券组合投资的灰色优化数学模型的研究

21、一些算子在组合数学中的应用

22、概率方法在组合数学中的应用

23、组合数学中的Hopf方法

24、概率方法在组合数学中的某些应用

25、概率方法在组合数学及混合超图染色理论中的应用

26、竞赛数学中的组合恒等式

27、Stern-Lov醩z定理及在组合结构中的应用

28、几类特殊图形的渐近估计及数值解

29、Fine格路和有禁错排

30、基于DFL的Agent自主学习模型及其应用研究

31、基于DFL的多Agent自动推理平台设计

32、预应力混凝土斜拉桥施工监控概率方法研究

33、最大概率方法与最近邻准则下的图像标注

34、亚式期权定价的偏微分方程方法和概率方法

35、编目空间碎片的碰撞概率方法研究及应用

36、基于概率方法的机器人定位

37、民用建筑内部给水设计秒流量的概率方法研究

38、图论中的组合方法和概率方法

39、物理概率方法预估贮存寿命研究

40、静载下结构参数识别的误差分析和概率方法

41、概率方法在组合计数证明中的应用

42、基于非概率方法的结构全寿命总费用评估

43、概率方法在组合数学中的应用

44、概率方法与邻点可区别全染色的色数上界

45、既有钢筋混凝土结构耐久性评定的概率方法

46、概率方法在多任务EEG脑机接口中的应用研究

47、应用概率方法对居住小区给水设计秒流量的推求

48、概率方法与图的染色问题

49、概率方法对居住小区设计秒流量的推求

50、概率方法在组合数学中的某些应用

51、概率方法在组合恒等式证明中的应用

52、遗传算法的研究与应用

53、基于空间算子代数理论的链式多体系统递推动力学研究

54、关于Weidmann猜想及具有转移条件微分算子的研究

55、实数编码遗传算法杂交算子组合研究

56、基于OWA算子理论的混合型多属性群决策研究

57、序列算子与灰色预测模型研究

58、具有转移条件的Sturm-Liouville算子和具有点作用的Schrodinger算子谱分析的研究

59、高精度径向基函数拟插值算子的构造及其应用

60、多线性算子加权Hardy算子与次线性算子的相关研究

数学建模论文题目

1、高中数学核心素养之数学建模能力培养的研究

2、小学数学建模数字化教学的设计与实施策略——以“自行车里的数学问题”为例

3、培养低年段学生数学建模意识的微课教学

4、信息化背景下数学建模教学策略研究

5、数学建模思想融入解析几何的实际应用探讨

6、以数学建模为平台培养大学生创新能力的SWOT分析──以内蒙古农业大学为例

7、基于高等数学建模思维的经济学应用

8、以数学建模促进应用型本科院校数学专业的发展

9、高等代数在数学建模中的应用探讨

10、融入数学建模思想的线性代数案例教学研究

11、以“勾股定理的应用”为例谈初中数学的建模教学

12、经管概率统计中的数学建模思想研究——评《经管与 财税 基础》

13、数学建模实例——河西学院校内充电站最佳选址问题

14、基于数学建模探讨高职数学的改革途径

15、大数据时代大学生数学建模应用能力的提升研究

16、“数学写作之初见建模”教学设计及思考

17、大学数学教学过程中数学建模意识与方法的培养简析

18、基于建模思想的高等数学应用研究

19、小学数学建模教学实践

20、依托对口支援平台培养大学生的数学建模能力

21、跨界研究在数学建模教与学中的应用

22、基于结构参数的机织物等效导热率数学建模

23、数学建模对大学生综合素质影响的调查研究

24、计算机数学建模中改进遗传算法与最小二乘法应用

25、数学建模在高中数学课堂的教学策略分析

26、发动机特性数字化处理与数学建模

27、数学建模中的数据处理——以大型百货商场会员画像描绘为例

28、数学建模竞赛对医学生 学习态度 和自学能力的影响

29、数学建模思想与高等数学教学的融会贯通

30、试论数学建模思想在小学数学教学中的应用

31、浅析飞机地面空调车风量测控系统数学建模及工程实施

32、高中数学教学中数学建模能力的培养——基于核心素养的视角

33、注重数学建模 提炼解题思路——对中考最值问题的探究

34、在数学建模教学中培养思维的洞察力

35、刍议数学建模思想如何渗透于大学数学教学中

36、数学建模竞赛背景下对高校数学教学的思考

37、数学建模课程对高职学生创新能力的培养探究

38、高等数学教学中数学建模思想方法探究

39、初中数学教学中数学建模思想的渗透

40、无线激光通信网络海量信息快速调度数学建模

41、基于多元线性回归模型的空气质量数据校准——2019年大学生数学建模竞赛D题解析

42、中学数学建模教学行为探究

43、数学建模竞赛成果诊断倒逼教学资源库优化的机制研究

44、基于数学建模活动的高校数学教学改革

45、数学建模与应用数学的结合研究

46、谈初中数学建模能力的培养

47、数学建模在初中数学应用题解答中的运用

48、基于数学建模思想的高等数学 教学方法 研究

49、数学建模融入高等数学翻转课堂模式研究

50、数学软件融入数学建模课程教学的探讨

最新小学数学教学论文题目

小学数学教材问题探析

小学数学生活化教学研究

小学数学___教学方法有效性分析

小学数学多媒体课件设计研究

小学生数学思维培养探究

小学数学中创新意识的培养

数学作业批改中巧用评语

新课标下小学数学教学改革研究

数学游戏在小学数学教学中的应用

《9和几的进位加法》教学设计

小学数学教学中素质 教育 研究

小学数学学困生的转化策略

小学数学教学中的情感教育

《六的乘法口诀》教学 反思

浅谈数学课堂中学生问题意识的培养

问答式学习课堂教学怎样转向小组合作学习

浅谈农村课堂的有效交流

浅谈在实践活动中提高学生解决实际问题的能力

浅谈小学应用题教学

浅谈学生合作意识的培养

“层次性体验”在数学课堂中的应用

数学课堂教学中学生探索能力的培养

小学数学低段学生阅读能力培养点滴

“观察、 品味、 顿悟” 我谈小学数学空间与图形教学

浅谈小学数学课堂教学中的“留白”

润物细无声--小班化数学作业面批有效策略的尝试

“我的妈妈体重 50 千克” 对培养良好数感的思考

“圆的面积” 教学一得

利用图解法解决逆推题

我教《24 时计时法》

《解简易方程》 教学反思

“可能性” 的反思

折线统计图折射出的“光芒”

《平均数》 教学反思

数学课堂上的“失误“也是一种资源

幽默语言在教学中的应用

“圆的认识” 教学片断与反思

计算机多媒体与小学数学教学的整

充分发挥学生的主体作用

“圆柱的体积” 教学反思

“平行四边形的面积” 听课反思

听“逆向求和应用题” 有感

小学低年级教学策略的实践与反思

“相遇问题” 建立“数学模型”

如何提高课堂语言评价的有效性

“20 以内退位减法” 教学反思

关于数学方向的优秀论文题目相关 文章 :

★ 关于数学专业毕业论文题

★ 数学方面毕业论文题目参考大全

★ 关于数学专业毕业论文题目参考

★ 数学的优秀论文

★ 数学优秀论文范文

★ 数学学术论文的题目

★ 数学教育论文题目

★ 数学教育方向的论文范文

★ 数学教育方向相关论文(2)

为您奉上一部分,请参考:谈谈计算教学的改革小学数学数与计算教学的回顾与思考小学数学教材结构的研究与探讨小学数学应用题的研究(一)改进教学方法培养创新技能21世纪我国小学数学教育改革展望面向21世纪的小学数学课程改革与发展不拘一格育“鸣凤”使学生真正成为学习的主人改革课堂教学的着力点谈素质教育在小学数学教学中的实施素质教育与小学数学教育改革浅谈学生数学思维能力的培养浅议表象积累与培养学生的思维能力也谈学生创新意识培养实施创新教学策略 培养学生创新意识10以内加法整理和复习改良“有余数除法计算”教法给学生创新的时间和空间和谐愉悦 主动探索——一年级《统计》教学片断评析小学数学教育--教师之家--教师培训教学策略A、B、C面向21世纪的数学素质及其培养能被3整除的数的特征年、月、日培养自学能力 推进素质教育浅谈小学数学总复习的“步步反馈,逐层提高”法入情才能入理 激情方能启思实施“生活数学”教育 培养自主创新能力数学作业批改中巧用评语提高元认知水平 培养自学能力“圆的面积”的教案圆柱的认识运用多媒体辅助教学 优化数学教学方法组织课堂讨论 优化课堂教学

小学数学实验论文范文

在小学数学教学中,要想使学生的创新能力得到培养和提高,其前提和基础是要充分发挥学生的 发散思维 ,鼓励他们从不同的角度进行观察和实践,探索多种解题思路,激发他们的 创新思维 。下文是我为大家整理的小学 四年级数学 教学论文 范文 ,欢迎阅读!

一、人教版小学数学实验教材的分析

人教版小学数学实验教材是秉持“以人为本”的基本设计思想来设计编排的,其实现了将数学知识点由难到易的排版,让学生有一个循序渐进的学习过程。教材在教学内容上与生活实践相联系,让学生学会在生活中运用数学知识。比如,在三年级下册的教材中,就有“制作年历”和“校园设计”这两个实践活动,这两个实践活动能够锻炼学生在实际生活中运用数学知识来解决问题的能力,而在数学算法的要求上更是多样化,这样能够帮助学生培养多方面思考问题的能力,避免学生学得的知识范围过于狭隘。

二、教学实践的具体要求

1.结合教材要求,站在学生的立场进行教学安排

教师对教材的使用也是影响学生学习效果的一个主要因素。教师在教学中,应当更多地与学生进行沟通与交流,了解学生的学习动向,结合本班学生学习的实际情况,制订有效的实践教学方案。在实际教学中发现学生学习的薄弱点,然后进行针对性的训练,帮助学生完成小学数学学习。比如,在第二册数学实验教材中,要求学生学会认识时间,而一些学生在对时间的学习上存在着一定的困难。在进行时间认识的教学前,教师可以先问学生:“同学们知道现在是第几节课吗?”树立起学生的时间观念,在接下来的课堂教学时,可以先讲解时针的转动规律,接着介绍分针与秒针,由难及易,步步深入。

2.将课堂作为教学实践基地,激发学生的学习热情

小学数学的教学形式主要是课堂教学,教师应当充分地利用课堂教学的时间,指导学生学习数学知识,而激发学生的学习热情是学生学好小学数学的关键,教师可以进行教学方式多元化的教学,结合教材要求,开展一些与数学学习相关的实践活动,激发学生的学习兴趣。激趣的最好 方法 就是进行游戏教学,比如,在进行10以内的加减教学时,教师可以结合实际生活,设置一个让学生买菜的情境,让学生在买菜的过程中体会到数学加减法在实际生活中的运用情况,帮助学生进行算术练习。

3.课后进行教学 反思 ,优化教学方式

每次的实践教学结束后,教师应该及时地对教学进行反思,找到教学中存在的不足,并且在今后的教学中不断地优化。在教学工作中,不断地吸取先进的教学理念,结合实际情况进行教学。小学数学实践教学是一个漫长的探索过程,教师应当很好地结合小学数学实验教材,在新课标的要求下进行教学,让学生更加全面地学好小学数学知识,为学生今后的数学学习打下坚实的基础。

作者:邵小洁 工作单位:江西省上饶市实验小学

一、创新情境数学教学模式

在小学数学教学中引入情境式的教学模式对于培养小学生的创新思维具有积极的促进作用。在课堂教学活动中通过不同的情境来讲授知识能够激发和培养小学生的创造性的思维,由情境可认启发学生对解题思路的独特的想法与思路,这一过程既是形成数学构思的过程,也是展开合理解题思路的思维过程。在情境教学模式中,教师要鼓励学生展开创新思维,并积极主动地发表对解题思路的见解,从积极参与教学的实践中,学生的创新思维也就培养起来了。此外,在小学数学教学中,教师还要注意数学语言的使用要与课程内容以及学生的理解能力相适应,循序渐进地提高学生学习数学的积极性,更加积极地参与到情境教学模式中,不断提高学生的创新意识。例如,在教学“圆柱和圆锥的体积”这一章节时,教师可以准备各种圆柱形的实验品,如圆柱的玻璃器皿、圆柱木块等,分发给学生要求其动手量出长、宽、高等所需数据,并通过实践来求得体积。通过实验启发学生自己 总结 出计算圆柱体的体积公式,并引导学生是否可以用切割、计算体积差等方式求得体积。

二、提高学生学习数学的兴趣

小学生具有活泼好动,稳定性差的特点,在数学教学中提高学生学习数学的兴趣是非常重要的。“兴趣是最好的老师”,只有在兴趣的驱使下,小学生才能积极主动地学习数学课程,才能在兴趣的驱使下展开更多的创造性思维。数学教学本身具有理论性强的特点,理论的讲解枯燥乏味,难以吸引小学生的兴趣,也有很多小学生对数学课程有着厌学情绪,这时教师就要注意采用新鲜多样的方式来吸引小学生的兴趣。例如,利用多媒体、幻灯片等形式,以形象生动的方式展现数学的乐趣,提高学生在学习数学上的兴趣。数学课上教师还要注重将数学与实践紧密结合起来,拉近数学与小学生之间的距离,激发他们学习数学、应用数学的兴趣,从而提高小学数学的教学效率。例如,在学习“认识左右、上下、前后”这一内容时,教师可以通过座位编号的方式,利用学生的座位编号并进行确认练习,学生在相互认识的互动中对左右、前后、上下形成认识,这样能够有效提高他们对学习数学的兴趣。

三、通过交互合作的方式来培养小学生的创新意识

在小学数学课程教学中开展学生之间的交互式合作能够形成学生之间思想的交流,对其创新意识培养具有很好的促进作用。在交互式的合作中学生通过交流可以对所讨论的问题产生不同角度的认识和思考,有利于拓展学生的思维,激发其创新意识。通过交互式的合作,在学生之间能够对问题进行广泛讨论,也能找到更多的解决问题的方法。例如,在实践活动中教师带领学生走曲径小路,观赏美景时就可以假设问题:对于曲折的小路,如何计算出它的长度?并号召学生展开讨论,学生有的说用尺子,有的说用步测……通过学生之间交互式的合作讨论的方式,能够对学生的思维产生启发,这对创新思维的培养是非常重要的。创新型的 思维方式 对于创新意识的培养是至关重要的,在创新思维的引导下,小学生对学习数学的兴趣势必会增强。在小学数学教学中创新思维的培养可以通过一些有效的训练方法来实现,例如 逆向思维 的训练,有时会对数学问题的解答产生更为简便高效的作用;联想思维的训练,能够帮助学生从多角度来思考问题,对全面思考问题具有很好的效果,联想能够拓展思维的广度和深度,是创新意识培养的基础。

四、通过实践活动的方式培养小学生的创新意识

小学数学课程中要更多地加入实践课,让学生在实践中形成对数学知识的认识,在实践中创造并感知,从而激发小学生创新意识的养成。实践能够在小学生的头脑中形成更为稳定的知识,因为从具体形象的事中才能强化人们对知识内容的感知和记忆。例如,“100以内数的认识”这一章节的教学,教师就可以组织学生通过数一些玩具木棒、数花生等方式来加强学生学习的兴趣和强化知识内容。实践活动的方式还包括课下练习内容,安排练习题时可以设计一些具有乐趣的实践活动,让学生通过自身的探索活动加强对知识的感知和认识,小学生在自己的实践探索过程中不但会加强知识的认识,还会形成自己动手的成就感,也会提高对数学学习的兴趣。

五、结语

创新意识对个人发展具有极其重要的意义,因此要从小学阶段就着重培养学生的创新意识,这也是当前 教育 教学改革的一项重要内容,对此本文结合小学数学教学对如何培养小学生的创新意识进行了研究探讨。笔者针对小学数学教学的特点提出了四个方面的建议,包括情境时教学模式的采用、提高小学生学习数学的兴趣、交互式合作的方式以及实践活动的方式。小学数学教师要积极地探索多样化的教学方式来不断提高小学生的创新意识,为其今后的人生发展奠定良好的基础,为国家的人才培养奠定基础。

作者:林维旭 工作单位:山东省莱西市望城冯北小学

小学数学教学实践活动是小学数学教学过程中的一个重要部分,加强小学数学教学实践水平有助于提高小学数学教学效率,进一步增强学生对数学的学习兴趣。下面是我为大家整理的小学数学方面的论文,供大家参考。

一、趣味性激发学生的学习兴趣

教师在教学过程中要特别注意对学生学习兴趣的培养,力求生动有趣。激发学生学习的兴趣,找准新旧知识的连接点。学生在学习数学中完全陌生的内容是很少见的,对学习的内容总是感到既熟悉又陌生。要让学生在新旧知识的比较中找出共同点与区别点,顺利地完成正迁移,通过类似的探索解决新的问题。教师授课应采用启发自主式,教师学做导演,让学生扮演主角,让学生积极参与课堂教学的全过程,真正体现“以学生为主体的课堂教学模式”。教师应鼓励学生大胆举手踊跃发言,提出质疑,展开讨论。教师要积极评价学生回答的问题,保护学生学习的积极性。在教学中,教师运用多变的教学方法,尽可能创造轻松、愉快、和谐的学习环境,使学生轻松地掌握所学知识。例如,教师可根据所学的内容以故事的形式讲一些相关的人或事,创设情境增加学生的好奇心,营造出一个轻松和谐的氛围。教师还可以根据所学内容以游戏的方式,让学生体会到学习兴趣之乐。如在低年级教学中用开火车、开房门、找朋友、夺红旗、放鞭炮等游戏,使学生“动”起来、“活”起来,真正成为课堂的主体,使学生在轻松、愉快的气氛中学到数学知识。这样,不但吸引了学生的注意力,也更容易让学生理解和接受新知识,学生十分欢迎,兴趣更浓,教学效果也更好。

二、竞争情境激发学生的学习兴趣

好胜心是每个学生的天性,在教学中充分激发学生的好胜心,让学生得到进取之乐。如,在口算时看谁算得又快又准确,在回答时实行抢答,看谁先回答出来。在进行简便运算时,看谁的方法最简便。在解答计算分数百分数应用题难度较大的时,看谁最先解答出来,比一比谁用的方法对,并亲自讲解争当小老师。学生的参与欲望是一个不容忽视的因素,而学生的认知环节是学生学习动机的源泉,也是学生积极参与思维学习的原因。所以,教师在教学中要不断设置认知环节,激发学生的参与竞争的欲望。

三、树立标杆激发学生的学习兴趣

人无论大小,都有自己的理想和目标,只是理想和目标不同而已。所以,一定要给学生树立一个理想和目标,无论是本班的,还是本校的,或是从本校走出去的成功人士,都可成为学生的标杆性人物。俗话说,榜样的力量是无穷的。有了这样一个榜样,就会使学生有一个努力的方向和奋斗的目标。有了这个目标,学生就会为实现这个目标,而更加刻苦和努力。同时,也会激发出学生的学习兴趣。

四、严格管理强促学生的学习兴趣

子不教父之过,教不严师之惰。在学生成长的道路上,教师要经常和学生的家长进行沟通,让家长充分了解自己孩子的学习状况。在教师和家长的共同努力下,对学生进行针对性的管理,从而强促学生的学习兴趣,使学生在不断进步中成长。有成绩要表扬,有错误要及时纠正,让学生永远在正确的轨道上前行。虽然要严格管理,但是要注意严中有松,张弛有度。在教学中努力解放学生的嘴巴,让学生敢说、爱说、喜说。例如,在教学“两位数加法”时,先放一段优美动听的儿歌:“小白兔,白又白……”然后问:“这首歌大家熟悉吗?今天小白兔和小灰兔进行一场拔萝卜比赛,我们一起去看看好吗?”(出示主题画),鼓励学生大胆说出图上内容,说出两只小兔各自的位置,说出它们的表情及内心活动,还有对话内容。在得出算式“28+41”的时候,我不急于教给学生算法,而是通过小组讨论的形式,让人人动口,说出自己的想法,在组内交流后,将合理的算法说给教师和同学听。在学生得出用计算器、口算、竖式算等方法的时候,我又发动学生讨论哪种方法更好些?为什么?学生有的说用计算器方法好,最准,但携带麻烦;有的说,口算最好,速度快,但有可能出现错误;有的说竖式算得好,又快又准确,不过要注意数位对齐,又费稿纸……课堂气氛活跃起来。在课结束时,我让学生总结出本节课学会了什么?学生争先巩后地抢着说,热情很高,不仅说出了这节课所学的全部知识点,还体验到了求得新知的喜悦。

五、巧用游戏激发学习兴趣

游戏是孩子的天性。在低年级数学教学中,艺术性地使用游戏,能大大激发学生的兴趣,满足学生爱玩、好动的心理需要,使他们在欢乐活跃、气氛高涨的氛围中学习知识。例如,教学“面积和面积单位”一课时,在学习了平方厘米这一面积单位后,教师故意让学生用它度量教室地面的面积,学生都非常踊跃地参与到这个活动中,当他们忙着忙着自然会产生“要有一个更大的面积单位”的需要。这时,教师顺势抛疑:“这个更大的面积单位就请你们创造一个,叫什么呢?”诱导学生从平方厘米、平方分米的名称创造出平方米,进而根据三者所具有的共同因素帮助学生类推出平方米的意义。这样的游戏活动,使学生体验到了数学学习的乐趣。总之,教无定法,人各有法,引起兴趣就是最好的方法。兴趣是最好的老师。因此,教师和家长一定要千方百计地从方方面面激发和培养学生的学习兴趣,让他们在快乐中学习,他们会受益无穷。

一、整合练习内容,提高练习的实效性

教材为师生的教与学活动提供了大量生动、有趣的习题,它们是教师传授知识、学生习得技能的重要载体。但在当前的小学数学教学中,很多教师对习题的处理仍然停留在浅尝辄止的层面上,或者是简单机械的重复,缺少对习题本身的思考,甚至是为了练习而练习,以至于不能完全发挥教材习题的功能。叶圣陶先生曾经说过:“教材只能作为教课的依据,要教得好,使学生受益,还得靠老师的善于运用。”因此,教师作为学生学习的指导者,应该在深入钻研课程标准、教材和学生学情的基础上,立足并尊重教材,对教材的习题资源进行深度解读,让教学行为基于教材但又不为教材所束缚,正确领会教材编写的意图,从实际出发,对教材进行适度开发,整合练习的内容,以提高课堂练习的实效性。如教学苏教版四年级下册“乘法运算律”以后,教材在“试一试”、“练一练”的基础上又安排了大量的题组练习,但在实际教学中因受教学课时的划分及一节课教学时间的限制,逐条解决所有习题显然费时费力,也难以完成既定的教学任务。因此笔者在教学时在认真领会编者意图的基础上,根据实际情况,将几个内在联系存在高度一致的习题重新组合,赋予新的题组一个更为清晰的教学方向。例如将几组题型单一的利用乘法运算律进行简便运算的题目放在一起,在小组接力的活动中通过比赛来做,可以使单调乏味的习题解答变得轻松有趣、简单高效。

二、丰富练习形式,激发练习的趣味性

“兴趣是最好的老师。”数学学习兴趣是培养小学生良好学习品质的有效途径,是实现有效教学的前提。在练习中,教师结合学生已有知识设计生动活泼、富有情趣的习题,让学生能感受到数学的趣味性,对数学产生亲切感,这样有助于激发学生数学学习的兴趣,也有利于培养学生的思维能力和创新意识。教师可根据儿童的心理特点,呈现新颖的题型、丰富练习的形式,让学生做练习的主人,充分发挥学生的主体性。如设计改错题,让学生做医生;设计判断题,让学生当法官;设计操作实验题,让学生成为设计师……教学中可根据教材特点,多采用游戏性、趣味性、竞赛性的练习,设置悬念,引起认知冲突,激发学生的求知欲望。如猜谜语、讲故事、做游戏、模拟表演等。这种寓教于乐的练习,既培养了学生做练习的兴趣,又能取得满意的练习效果,使学生在轻松、愉悦的氛围中学习,在具体的情境中理解和认识数学知识。

三、关注个性差异,体现练习的层次性

新课程的基本理念指出:“义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。”学生是有差异的个体,每个学生在认知水平,心理特点等方面都存在着差异。这就要求教师在使所有学生获得共同的数学教育的同时,还要让更多的学生有机会接触、了解或是钻研自己感兴趣的数学问题,最大限度的满足每一个学生的数学需要。教师应该设计不同类型、不同层次的练习题,从模仿性的基础练习到提高性的变式练习,再到拓展性的思考练习,照顾不同层次的学生,让所有学生都能“跳一跳摘到属于自己的果子”,都有体验成功的机会。

四、贴近生活实际,增强练习的应用性

相关百科

热门百科

首页
发表服务