首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

全国数模竞赛论文查重

发布时间:

全国数模竞赛论文查重

不会参与查重。

这里先介绍代码的降重方法,这是很多人容易忽略的,数学建模竞赛还会对大家在附录提交的代码进行一个查重。

方法一:给代码加上自己的注释

大家比赛时肯定会参考很多现成的代码,但是这就有了重复率的风险。在大家照搬其他人代码后,可以按照自己的理解对代码进行一个自己的注释,可以对代码的逻辑,数值传递,甚至是一些现有函数的功能进行注释这样就可以有效的降低代码的重复率。

方法二:改变代码的变量名称

大家可以选择改变代码中的变量名称来降低重复率,在文本中搜索时可以用(Ctrl+F)做到一键替换、可以将变量的名称改为全称或者简称,从而进行简单有效的降重。

方法三:利用公式编辑器

大家在降低重复率时可以选择用公式编辑器将重复率高的部分全部换为公式,或者插入文本框。这是最简单快捷的,但是作者对这种行为并不提倡,希望大家可以用自己的想法写出自己的文章。

方法四:做成表格

将自己的数据或者其他的罗列换成表格形式,可以有限避免查重。

数学建模竞赛国赛在提交前最好自己查重。

格式要求

本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题(全国评奖时,每个组别一、二等奖的总名额按每道题参赛队数的比例分配;但全国一等奖名额的一半将平均分配给本组别的每道题,另一半按每道题参赛队比例分配)。

论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。论文第一页为承诺书,具体内容和格式见本规范第二页。

论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。论文题目、摘要和关键词写在论文第三页上,从第四页开始是论文正文,不要目录。

论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。

论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。

论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距。打印文字内容时,应尽量避免彩色打印(必要的彩色图形、图表除外)。

提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。

组织形式

1.竞赛由全国大学生数学建模竞赛组织委员会(以下简称全国组委会)主持,负责每年发动报名、拟定赛题、组织全国优秀答卷的复审和评奖、印制获奖证书、举办全国颁奖仪式等。

2.竞赛分赛区组织进行。原则上一个省(自治区、直辖市)为一个赛区,每个赛区应至少有6所院校的20个队参加。邻近的省可以合并成立一个赛区。

每个赛区建立组织委员会(以下简称赛区组委会),负责本赛区的宣传发动及报名、监督竞赛纪律和组织评阅答卷等工作。未成立赛区的各省院校的参赛队可直接向全国组委会报名参赛。

3.设立组织工作优秀奖,表彰在竞赛组织工作中成绩优异或进步突出的赛区组委会,以参赛校数和队数、征题的数量和质量、无违纪现象、评阅工作的质量、结合本赛区具体情况创造性地开展工作以及与全国组委会的配合等为主要标准。

全国数模竞赛论文格式

奥运会临时超市网点设计模型(小三黑体,题目直接用竞赛试题题目,不必另起) 摘要 (一级标题,4号黑体,居中)(论文其他内容小4号宋体字,单倍行距,左侧装订)本文根据题目附录中提供的问卷调查数据,利用关系数据库查询语言,从不同侧面进行了准确统计,找出了运动会期间观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律:大部分(约72%)的观众坐公交和地铁出行;过半数(约52%)的观众选择西餐作为餐饮方式;绝大部分(约88%)的观众消费额在300以下,其中200到300之间人数约占44%。根据观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律,对不同消费档次(非餐饮)的观众进行统计,分别测算出题目(图2)中20个商区的人流量分布:A1:6.83% A2:5.09% A3:5.63% A4:6.19% A5:6.72% A6:11.73% A7:5.04% A8:4.49% A9:3.95% A10:3.40%B1:2.81% B2:2.26% B3:4.55% B4:3.95% B5:4.49% B6:7.27% C1:1.69% C2:2.60% C3:5.39% C4:5.84%在解决了问题1、2的基础上,对不同消费档次的观众赋予不同消费档次指数,然后,通过对综合购买力的分析以及对各消费档次观众的消费水平进行全面、综合考查,并以此为依据对问题3建立了线性优化模型,运用数学软件MATLAB编程对模型进行二维搜索,得到了模型最优解,设计出了各商区两种类型迷你超市网MS的分布方案: 商区网类型 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10小MS个数 5 4 4 4 5 8 4 3 3 2大MS个数 5 4 4 5 5 9 4 4 3 3 商区网类型 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4小MS个数 2 3 4 3 4 6 2 2 4 3大MS个数 2 1 3 3 3 5 1 2 4 5最后,通过综合分析,我们建立的模型能够准确描述各商区消费水平,得出两种不同类型MS个数分布基本均衡,既满足了奥运会期间的购物需求,又考虑了商业赢利。关键词(一级标题,四号黑体,居中)人流量;二维搜索;消费档次指数;线性优化模型;综合购买力(3-5个)(第一页只有摘要和关键词,而且论文从这一页开始编页号,页码居中)一. 问题的提出(一级标题,四号黑体,居中)2008年北京奥运会的建设工作已经进入全面设计和实施阶段。奥运会期间,在比赛主场馆的周边地区需要建设由小型商亭构建的临时商业网点,称为迷你超市(Mini Supermarket, 以下记做MS)网,以满足观众、游客、工作人员等在奥运会期间的购物需求,主要经营食品、奥运纪念品、旅游用品、文体用品和小日用品等。在比赛主场馆周边地区设置的这种MS,在地点、大小类型和总量方面有三个基本要求:满足奥运会期间的购物需求、分布基本均衡和商业上赢利。图1给出了比赛主场馆的规划图。作为真实地图的简化,在图2中仅保留了与本问题有关的地区及相关部分:道路(白色为人行道)、公交车站、地铁站、出租车站、私车停车场、餐饮部门等,其中标有A1-A10、B1-B6、C1-C4的黄色区域是规定的设计MS网点的20个商区。为了得到人流量的规律,一个可供选择的方法,是在已经建设好的某运动场(图3)通过对预演的运动会的问卷调查,了解观众(购物主体)的出行和用餐的需求方式和购物欲望。假设我们在某运动场举办了三次运动会,并通过对观众的问卷调查采集了相关数据,参照采集的数据,请你按以下步骤对图2的20个商区设计MS网点:1. 根据附录中给出的问卷调查数据,找出观众在出行、用餐和购物等方面所反映的规律。 2. 假定奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。依据1的结果,测算图2中20个商区的人流量分布(用百分比表示)。3. 如果有两种大小不同规模的MS类型供选择,给出图2中20个商区内MS网点的设计方案(即每个商区内不同类型MS的个数),以满足上述三个基本要求。4. 阐明你的方法的科学性,并说明你的结果是贴近实际的。(图2,图3请见附录2)。二. 问题假设(一级标题,四号黑体,居中)1.奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。2.观众在一天内的行程如下: 进场馆——>出场餐饮——>餐饮完回场馆——>出场馆且进场馆和出场馆路径相同,出场餐饮和餐饮完回场路径相同。3.出场餐饮与餐饮完回场馆时不考虑出行方式,只按餐饮方式采取最短路径。4.各场馆内进出口与看台一一对应(即进场时一个进口只能到达唯一确定看台,出场时一个出口对应唯一看台,看台之间不能相互跨越)。5.每位观众通过出行或餐饮路径上所有商区(包括看台出口所对的商区)。6.三个场馆人数固定(A区为10万人,B区为6万人,C区为4万人),每个看台人数固定,均为1万人(即商区A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、B1、B2、B3、B4、B5、B6、C1、C2、C3、C4对应的二十个看台每个均为一万人)。7.观众在奥运期间的出行方式、餐饮方式、消费额档次均不变,且服从问卷调查所得规律。三. 假设合理性分析及说明(一级标题,四号黑体,居中)根据最短路径原则,观众从各车站或停车场到场馆往返路径相同;同理,餐饮往返路径也相同。因此只须考虑观众看完比赛从场馆到车站或停车场的路径(下称第一类路径)以及观众出场馆到达餐饮地点的路径(下称第二类路径)即可。即对各商区人流量只须计算这两类路径的人流量,各商区总人流量为观众走这两类路径人流量的2倍。为方便计算,本模型中人流量仅为第一类和第二类路径人流量之和。从图2可以看出,各场馆到餐饮地点或者无车可乘或者相距很近无须乘车,故在观众出场馆餐饮时只根据餐饮方式采取最短路径,忽略出行方式。四. 符号约定(一级标题,四号黑体,居中)W: 出行方式为公交(东西);N: 出行方式为公交(南北);E: 出行方式为地铁东;R: 出行方式为地铁西;P: 出行方式为私车;T: 出行方式为出租;C: 餐饮方式为中餐;F: 餐饮方式为西餐;B: 餐饮方式为商场;五. 模型建立与求解(一级标题,四号黑体,居中)1. 问题1求解根据附录中给出的问卷调查数据,我们利用数据库编程(Visual Basic +SQL关系数据查询语言)首先统计得出了三次问卷调查中按年龄、出行方式、餐饮方式、消费水平分档的各类人数,如表1所示。……………………………………………………………………………………………………………………………………………..为了能清楚看出观众在出行、用餐和购物等方面反映的情况,用百分比表示各出行方式、餐饮方式、消费额档次人群的分布情况,如表2所示:(略)………………………………………………….………………………………………………………………………………………………………2.问题2求解商区人流量与平均购物欲望是影响商区选址的主要因素。各商区人流量与观众出行方式、餐饮方式有关。商区人流量的消费档次水平分布,体现了该商区人流的平均购物欲望。因此,以消费档次水平为划分标准,分别按出行方式及餐饮方式对人群进行统计,不同消费档次水平人数及百分比表示如表3所示:……………………………………………..……………………………………………...……………………………………………3.问题3求解…………………………………………..………………………………………….商区Z的综合购买力(百万元)H =商区Z各个消费档次购买力之和。各个消费档次购买力为:该消费档次人流量╳消费档次指数根据以上标准可以建立以总出售能力最小作为目标函数的模型: Min f=m1╳( + + )+m2╳( + + )约束条件为: ╳m1+ ╳m2>= (i=1,2……10) ╳m1+ ╳m2>= (j=1,2……6) ╳m1+ ╳m2>= (k=1,2,3,4) , , , , , >=1且为整数 m1=1 && m1<=4 m2=m1+0.2; while m2<=7 s1=0;vlb=[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];vub=[];a=[-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2];%b=[-20.1020,-13.4069,-15.3143,-16.7830,-18.4440,-35.2131,-16.7830,-15.0859,-13.4069,-11.7279,-10.0663,-8.3783,-13.4027,-10.0663,-11.7363,-21.7978,-5.9456,-7.7796,-14.9323,-17.3817];b=[-20.1027,-15.0825,-16.7618,-18.4591,-20.1203,-35.2161,-15.1094,-13.4121,-11.7328,-10.0535,-8.3921,-6.7038,-13.4033,-11.7418,-13.4121,-21.7996,-5.0290,-7.7802,-15.8503,-17.3827];c=[m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2];[x,lam]=lp(c,a,b,vlb,vub) for i=1:20 s1=s1+x(i)*m1+x(20+i)*m2; end if min_value>s1 min_value=s1; t=x; p=m1; q=m2; end m2=m2+0.2; end m1=m1+0.2;endplot(j,x);附录2:图二图三

一、数学建模论文格式要求

论文题目(三号黑体,居中)

一级标题(四号黑体,居中)

论文中其他汉字一律采用小四号宋体,单倍行距。论文纸用白色A4,上下左右各留出2.5厘米的页边距。

首页为论文题目和作者的专业、班级、姓名、学号,第二页为论文题目和摘要,论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字“1”开始连续编号。

第四页开始论文正文正文应包括以下八个部分:

1 问题提出:叙述问题内容及意义;

2 基本假设:写出问题的合理假设;

3 建立模型:详细叙述模型、变量、参数代表的意义和满足的条件及建模的思想;

4 模型求解:求解、算法的主要步骤;

5 结果分析与检验:(含误差分析);

6 模型评价:优缺点及改进意见;

7参考文献:限公开发表文献,指明出处;

参考文献在正文引用处用方括号标示参考文献的编号,如[1][3]等。

参考文献按正文中的引用次序列出,其中书籍的表述方式为:

[编号]作者,书名,出版地:出版社,出版年

参考文献中期刊杂志论文的表述方式为:

[编号]作者,论文名,杂志名,卷期号:出版年

参考文献中网上资源的`表述方式为:

[编号]作者,资源标题,网址,访问时间(年月日)

8 附录:计算框图,原程序及打印结果。

二、全国数学建模竞赛论文格式规范.

1 论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。

2 论文第一页为承诺书,具体内容和格式见本规范第二页。

3 论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。

4 论文题目和摘要写在论文第三页上,从第四页开始是论文正文。

5 论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。

6 论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。

7 论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。

8 提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。

9 引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。

参考文献按正文中的引用次序列出,其中书籍的表述方式为:

[编号] 作者,书名,出版地:出版社,出版年。

参考文献中期刊杂志论文的表述方式为:

[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:

[编号] 作者,资源标题,网址,访问时间(年月日)。

10 在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。

11 本规范的解释权属于全国大学生数学建模竞赛组委会。

论文用白色A4纸打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。

论文第一页为承诺书,具体内容和格式见本规范第二页。

论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。

论文题目、摘要和关键词写在论文第三页上(无需译成英文),并从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。注意:摘要应该是一份简明扼要的详细摘要,请认真书写(但篇幅不能超过一页)。

从第四页开始是论文正文(不要目录)数学建模论文格式标准数学建模论文格式标准。论文不能有页眉或任何可能显示答题人身份和所在学校等的信息。

论文应该思路清晰,表达简洁(正文尽量控制在20页以内,附录页数不限)。

引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:

参考文献中期刊杂志论文的表述方式为:

[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:

[编号] 作者,资源标题,网址,访问时间(年月日)。

注意:

1.摘要在整篇论文评阅中占有重要权重,请认真书写摘要(注意篇幅)。摘要中把论文的主要内容及特点充分表达出来。论文主要部分要阐述题目,假设,分析,建模,解模和结果的全过程,对模型的检验及模型的优缺点和发展前景也要有所表述

2. 引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出数学建模论文格式标准论文。正文引用处用方括号

标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:

[编号] 作者,书名,出版地:出版社,出版年。

参考文献中期刊杂志论文的表述方式为:

[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:

[编号] 作者,资源标题,网址,访问时间(年月日)。

二、论文格式规范

(一)   “论文首页”编写

竞赛论文首页为“编号页”,只包含队号、队员姓名、学校名信息,第二页起为摘要页和正文页。参赛队有关信息不得出现于首页以外的任何一页,包括摘要页,否则视为违规。

(二)   “论文摘要页”编写

竞赛使用“统一摘要面”。为了保证评审质量,提请参赛研究生注意摘要一定要将论文创新点、主要想法、做法、结果、分析结论表达清楚,如果一页纸不够,摘要可以写成两页。

(三)   “论文文本”要求————“全国研究生数学建模竞赛论文格式规范”

l  每个参赛队可以从A、B、C、D、E题中任选一题完成论文。(赛题类型以比赛下载为准)

l  论文用白色A4版面;上下左右各留出至少2.5厘米的页边距;从左侧装订。

l  论文题目和摘要写在论文封面上,封面页的下一页开始论文正文。

l  论文从编号页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1 ”开始连续编号。

l  论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。

l  论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其他汉字一律采用小四号宋体字,行距用单倍行距。程序执行文件,和源程序一起附在电子版论文中以备检查。

l  请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),请认真书写(注意篇幅一般不超过两页,且无需译成英文)。全国评阅时对摘要和论文都会审阅。

l  引用别人的成果或其他公开的资料(包括网上甚至在“博客”上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:

[编号] 作者,书名,出版地:出版社,出版年。

参考文献中期刊杂志论文的表述方式为:

[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:

[编号] 作者,资源标题,网址,访问时间(年月日)。

全国研究生数学建模竞赛评审委员会

全国数学竞赛论文模型模板

数学建模论文模板论文通常要包括哪些内容? 我去年就参加了全国大学生数学建模竞赛,这些资料是我去年暑假整理的论文模板,如果资料不足的话,再联系我……………… 全国大学生数学建模竞赛论文格式规范 \x09本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题. \x09论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订. \x09论文第一页为承诺书,具体内容和格式见本规范第二页. \x09论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页. \x09论文题目和摘要写在论文第三页上,从第四页开始是论文正文. \x09论文从第三页开始编写页码,页码必须位于每页页脚中部,用 *** 数字从“1”开始连续编号. \x09论文不能有页眉,论文中不能有任何可能显示答题人身份的标志. \x09论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中).论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印. \x09提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文).全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选. \x09引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出.正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码.参考文献按正文中的引用次序列出,其中书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年. 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年. 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日). \x09在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效). \x09本规范的解释权属于全国大学生数学建模竞赛组委会. [注] 赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格).评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅.论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”. 全国大学生数学建模竞赛组委会 2009年3月16日修订 数学建模论文一般结构 1摘要 (单独成页) 主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表) 作用:了解文件重要性,对文件有大致认识 最佳页副:页面2/3. 2、问题重述和分析 3、问题假设 假设是建模的基础,具有导向性,容易被忽视.常犯错误有缺少假设或假设不切实际.对一些关键性的或对结果有重大影响的条件或参数应该在假设中明确约定. 作假设的两个原则: ① 简化原则:抓住主要矛盾,舍弃次要因素,方便 数学处理. ② 贴近原则:贴近实际. 以上两个原则是相互制约的,要掌握好“度”.通常是先建模后假设. 4、符号说明 (3.4可以合并) 5、模型建立与求解(重要程度 :60%以上) 6、模型检验(误差一般指均方误差) 7、结果分析 (6.7可以合并) 8、模型的进一步讨论 或 模型的推广 9、模型优缺点 10、参考文件 11、附件(结果千万不能放在附件中) 论文最佳页面数:15-21页 \x09论文结构一 题目 摘要 1.问题的重述 2.合理假设 3.符号约定 4.问题的分析 5.模型的建立与求解 6.模型的评价与推广 1、误差分析 2、模型的改进与推广 对XXXX切实可行的建议和意见: 1.…… 2.…… …… 7.参考文献 8.附录 \x09数学建模论文一般格式 \x09摘要 (主要理解、主要方法、主要结果、主要特点) 或(背景、目标、方法、结果、结论、建议) \x09问题重述与分析 \x09问题假设 \x09符号说明 \x09模型建立与求解 \x09模型检验 \x09结果分析 \x09模型的进一步讨论 \x09模型优缺点 优秀论文要点: 1.\x09语言精练、有逻辑性、书写有条理 2.\x09文字与图形相结合,使内容直观、清晰、明了、容易理解 3.\x09切忌只用文字进行说明,多运用图形或表格,并对图形或表格做精简的分析,毕竟文字性东西太过于枯燥、乏味,没人有耐性去看那么冗长的文章 4.\x09对论文中所引用或用到的知识、软件要清晰地予以说明. 5.\x09在附录中附上论文所必须要的一些数据(图形或表格),并将论文中所编写的程序附上去 各步骤解释 摘要:主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表) 作用:了解文件重要性,对文件有大致认识 最佳页副:页面2/3 问题重述与分析: 一向导、对题意的理解、 \x09建模的创造性 创造性是灵魂,文章要有闪光点. 好创意、好想法应当既在人。 论文格式模板 您好,论文格式 1、论文格式的论文题目:(下附署名)要求准确、简练、醒目、新颖。 2、论文格式的目录 目录是论文中主要段落的简表。(短篇论文不必列目录)3、论文格式的内容提要: 是文章主要内容的摘录,要求短、精、完整。 字数少可几十字,多不超过三百字为宜。4、论文格式的关键词或主题词 关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。 主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。 5、论文格式的论文正文: (1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。 引言要短小精悍、紧扣主题。 〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。 主体部分包括以下内容:a.提出问题-论点;b.分析问题-论据和论证;c.解决问题-论证方法与步骤;d.结论。6、论文格式的参考文献 一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。 参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。 中文:标题--作者--出版物信息(版地、版者、版期) 英文:作者--标题--出版物信息 所列参考文献的要求是: (1)所列参考文献应是正式出版物,以便读者考证。 (2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。按照上边的论文格式来写,可以使你的论文更加容易被读者了解,被编辑采纳。 论文格式模版 (天头留出25毫米空白) 分类号 密级 U C D___________ 编号1 0 4 8 6 (此处间隔20毫米) (以上四项用仿宋标4号) 武 汉 大 学 硕 士 学 位 论 文 (论文题目与上一行间隔为25毫米) (以上二行用宋体标2号字) 论 文 题 目 (题目用楷体标1号字) 研 究 生 姓 名: 指导教师姓名、职称: 学 科、专 业 名 称: 研究方向: (以上四项用宋体标4号字) (此处间隔为25毫米) 二00八年四月 (黑体标3号字) (地脚留出25毫米空白边缘) 分类号 密级 U C D 编号 1 0 4 8 6 武 汉 大 学 硕 士 学 位 论 文 大为•卡坦文化框架理论关涉下的 林语堂翻译研究 研 究 生 姓 名: 指导教师姓名、职称: 学 科、专 业 名 称:英语语言文学 研究方向:翻译理论与实践 二00八年四月 (地脚留出25 毫米空白边缘) A Study of Lin Yutang's Translations Under David Katan's Theory of Cultural Frames (Times New Roman 小二加粗) A Thesis Submitted in Partial Fulfillment of the Requirements For the Master's Degree of Arts in English Language and Literature (Times New Roman 四号) Candidate: Supervisor: Academie Title: Professor (Times New Roman 四号) April 2008 Graduate Program in English Language and Literature Wuhan University (Times New Roman 四号) 郑 重 声 明 (宋体四号) 本人的学位论文是在导师指导下独立撰写并完成的,学位论文没有剽窃、抄袭,造假等违反学术道德、学术规范和侵权行为,本人愿意承担由此产生的法律责任和法律后果,特此郑重声明。 (宋体小四号) 学位论文作者 (签名): (宋体小四号)2008年4月30日 (宋体小四号) 摘要 (黑体标准小二号) Abstract (Times New Roman 黑体标准小二号) 说 明:外文内封按论文格式的规定要求打印,但各专业语种可根据本专业的实际而定。 分类号:英语H31、俄语 H35、法语 H32、德语 H33、日语 H36 希望能帮助到您。 数学建模论文,求样式 下面是论文的主体: 1.问题重述 主要是对需要解决的问题用自己的语言进行描述,这个就看你自己的文笔功底了. 2.模型假设 对你将要建立的模型进行理想假设,比如说将一些可能对结果影响不显著,但考虑起来需要很多时间的的问题理想化. 3.符号说明 将你要建立的模型中的一些参量用符号代替表示. 4.模型建立 这个是介绍你模型建立的原理和步骤,以及最终的模型结果,一般是一个评价函数,也可以是另外的形式,不过一定要给出一个能解决问题的大的方法 5.问题一、二、三(视具体的需要回答问题的个数而定,最好分条回答) 利用你上面建立的模型,对题目提出的问题进行求解,这个部分需要你通过程序来实现,最后给出这个问题的结果,如果是满不满意这样的问题,需要给出明确回答满意或不满意,如果是一个量的结果,就需要把通过你的模型以及代码得到的准确结果进行阐述. 6.模型改进 解决完上面题目提出的问题之后,可以对你的模型不足的地方再提出来,并提出改进的方案,以完善整个模型. 7.参考文献 最后将你的参考文献写上,包括你在网上查的的资料,以及别人的论文或者书籍等等. 如果最后需要你一并交上程序代码的话,还需要一个附录,里面包括程序代码,或者如果你上面的问题的结果太长的话(比如要给出几百个点的坐标这样的),可以将这些结果也放在这一块.。

数学建模竞赛论文格式

在各领域中,大家都接触过论文吧,通过论文写作可以培养我们独立思考和创新的能力。写起论文来就毫无头绪?下面是我为大家收集的数学建模竞赛论文格式,仅供参考,希望能够帮助到大家。

一、纸质版论文格式规范

第一条,论文用白色A4纸打印(单面、双面均可);上下左右各留出至少2.5厘米的页边距;从左侧装订。

第二条,论文第一页为承诺书,第二页为编号专用页,具体内容见本规范第3、4页。

第三条,论文第三页为摘要专用页(含标题和关键词,但不需要翻译成英文),从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。摘要专用页必须单独一页,且篇幅不能超过一页。

第四条,从第四页开始是论文正文(不要目录,尽量控制在20页以内);正文之后是论文附录(页数不限)。

第五条,论文附录至少应包括参赛论文的所有源程序代码,如实际使用的软件名称、命令和编写的全部可运行的源程序(含EXCEL、SPSS等软件的交互命令);通常还应包括自主查阅使用的数据等资料。赛题中提供的数据不要放在附录。如果缺少必要的源程序或程序不能运行,可能会被取消评奖资格。论文附录必须打印装订在论文纸质版中。如果确实没有需要以附录形式提供的信息,论文可以没有附录。

第六条,论文正文和附录不能有任何可能显示答题人身份和所在学校及赛区的信息。

第七条,引用别人的成果或其他公开的资料(包括网上资料)必须按照科技论文写作的规范格式列出参考文献,并在正文引用处予以标注。

第八条,本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。在不违反本规范的前提下,各赛区可以对论文增加其他要求。

二、电子版论文格式规范

第九条,参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求命名和提交以下两个电子文件,分别对应于参赛论文和相关的支撑材料。

第十条,参赛论文的电子版不能包含承诺书和编号专用页(即电子版论文第一页为摘要页)。除此之外,其内容及格式必须与纸质版完全一致(包括正文及附录),且必须是一个单独的文件,文件格式只能为PDF或者Word格式之一(建议使用PDF格式),不要压缩,文件大小不要超过20MB。

第十一条,支撑材料(不超过20MB)包括用于支撑论文模型、结果、结论的所有必要文件,至少应包含参赛论文的所有源程序,通常还应包含参赛论文使用的数据(赛题中提供的原始数据除外)、较大篇幅的`中间结果的图形或表格、难以从公开渠道找到的相关资料等。所有支撑材料使用WinRAR软件压缩在一个文件中(后缀为RAR);如果支撑材料与论文内容不相符,该论文可能会被取消评奖资格。支撑材料中不能包含承诺书和编号专用页,不能有任何可能显示答题人身份和所在学校及赛区的信息。如果确实没有需要提供的支撑材料,可以不提供支撑材料。

三、本规范的实施与解释

第十二条,不符合本格式规范的论文将被视为违反竞赛规则,可能被取消评奖资格。

第十三条,本规范的解释权属于全国大学生数学建模竞赛组委会。

说明:

(1)本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。

(2)赛区可自行决定是否在竞赛结束时收集参赛论文的纸质版,但对于送全国评阅的论文,赛区必须提供符合本规范要求的纸质版论文(承诺书由赛区组委会保存,不必提交给全国组委会)。

(3)赛区评阅前将纸质版论文第一页(承诺书)取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(由各赛区自行决定是否使用)。评阅后,赛区对送全国评阅的论文在第二页建立“送全国评阅统一编号”(编号方式由全国组委会规定),然后送全国评阅。

数学建模论文格式模板以及要求

导语:伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,成为人们生活中非常重要的一门学科。下面是我分享的数学建模论文格式模板及要求,欢迎阅读!

(一)论文形式:科学论文

科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。

注意:它不是感想,也不是调查报告。

(二)论文选题:新颖,有意义,力所能及。

要求:

有背景.

应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。

有价值

有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。

有基础

对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。

有特色

思路创新,有别于传统研究的新思路;

方法创新,针对具体问题的特点,对传统方法的改进和创新;

结果创新,要有新的,更深层次的结果。

问题可行

适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过初中生(高中生)的能力范围。

(三)(数学应用问题)数据资料:来源可靠,引用合理,目标明确

要求:

数据真实可靠,不是编的数学题目;

数据分析合理,采用分析方法得当。

(四)(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便于人们更深刻地认识所研究的对象。

要求:

抽象化简适中,太强,太弱都不好;

抽象出的数学问题,参数选择源于实际,变量意义明确;

数学推理严格,计算准确无误,得出结论;

将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见;

问题和方法的进一步推广和展望。

(五)(数学理论问题)问题的研究现状和研究意义:了解透彻

要求:

对问题了解足够清楚,其中指导教师的作用不容忽视;

问题解答推理严禁,计算无误;

突出研究的特色和价值。

(六)论文格式:符合规范,内容齐全,排版美观

1. 标题:是以最恰当、最简明的词语反映论文中主要内容的逻辑组合。

要求:反映内容准确得体,外延内涵恰如其分,用语凝练醒目。

2. 摘要:全文主要内容的简短陈述。

要求:

1)摘要必须指明研究的主要内容,使用的主要方法,得到的主要结论和成果;

2)摘要用语必须十分简练,内容亦须充分概括。文字不能太长,6字以内的文章摘要一般不超过3字;

3)不要举例,不要讲过程,不用图表,不做自我评价。

3. 关键词:文章中心内容所涉及的重要的单词,以便于信息检索。

要求:数量不要多,以3-5各为宜,不要过于生僻。

(七). 正文

1)前言:

问题的背景:问题的来源;

提出问题:需要研究的内容及其意义;

文献综述:国内外有关研究现状的回顾和存在的问题;

概括介绍论文的内容,问题的结论和所使用的方法。

2)主体:

(数学应用问题)数学模型的组建、分析、检验和应用等。

(数学理论问题)推理论证,得出结论等。

3)讨论:

解释研究的结果,揭示研究的价值, 指出应用前景, 提出研究的不足。

要求:

1)背景介绍清楚,问题提出自然;

2)思路清晰,涉及到得数据真是可靠,推理严密,计算无误;

3)突出所研究问题的难点和意义。

5. 参考文献:

是在文章最后所列出的文献目录。他们是在论文研究过程中所参考引用的主要文献资料,是为了说明文中所引用的的论点、公式、数据的来源以表示对前人成果的尊重和提供进一步检索的线索。

要求:

1)文献目录必须规范标注;

2)文末所引的文献都应是论文中使用过的文献,并且必须在正文中标明。

(七)数学建模论文模板

1. 论文标题

摘要

摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。

一般说来,摘要应包含以下五个方面的内容:

①研究的主要问题;

②建立的什么模型;

③用的什么求解方法;

④主要结果(简单、主要的);

⑤自我评价和推广。

摘要中不要有关键字和数学表达式。

数学建模竞赛章程规定,对竞赛论文的评价应以:

①假设的合理性

②建模的创造性

③结果的正确性

④文字表述的清晰性 为主要标准。

所以论文中应努力反映出这些特点。

注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

一、 问题的重述

数学建模竞赛要求解决给定的问题,所以一般应以“问题的重述”开始。

此部分的目的是要吸引读者读下去,所以文字不可冗长,内容选择不要过于分散、琐碎,措辞要精练。

这部分的内容是将原问题进行整理,将已知和问题明确化即可。

注意:在写这部分的内容时,绝对不可照抄原题!

应为:在仔细理解了问题的基础上,用自己的语言重新将问题描述一篇。应尽量简短,没有必要像原题一样面面俱到。

二、 模型假设

作假设时需要注意的问题:

①为问题有帮助的所有假设都应该在此出现,包括题目中给出的假设!

②重述不能代替假设! 也就是说,虽然你可能在你的问题重述中已经叙述了某个假设,但在这里仍然要再次叙述!

③与题目无关的假设,就不必在此写出了。

三、 变量说明

为了使读者能更充分的理解你所做的工作,

对你的模型中所用到的变量,应一一加以说明,变量的输入必须使用公式编辑器。 注意:

①变量说明要全 即是说,在后面模型建立模型求解过程中使用到的所有变量,都应该在此加以说明。

②要与数学中的习惯相符,不要使用程序中变量的写法

比如:一般表示圆周率;cba,, 一般表示常量、已知量;zyx,, 一般表示变量、未知量

再比如:变量21,aa等,就不要写成:a[0],a[1]或a(1),a(2)

四、模型的建立与求解

这一部分是文章的重点,要特别突出你的创造性的工作。在这部分写作需要注意的事项有:

①一定要有分析,而且分析应在所建立模型的前面;

②一定要有明确的模型,不要让别人在你的文章 中去找你的模型;

③关系式一定要明确;思路要清晰,易读易懂。

④建模与求解一定要截然分开;

⑤结果不能代替求解过程:必须要有必要的求解过程和步骤!最好能像写算法一样,一步一步的.写出其步骤;

⑥结果必须放在这一部分的结果中,不能放在附录里。

⑦结果一定要全,题目中涉及到的所有问题必须都有详细的结果和必须的中间结果!

⑧程序不能代替求解过程和结果!

⑨非常明显、显而易见的结果也必须明确、清晰的写在你的结果中!

⑩每个问题和问题之间以及5个小点之间都必须空一行。

问题一:

1.建模思路:

①对问题的详尽分析;

②对模型中参数的现实解释;这有助于我们抓住问题的本质特征,同时也会使数学公式充满生气,不再枯燥无味

③完成内容阐述所必需的公式推导、图表等

2.模型建立:

建立模型并对模型作出必要的解释

对于你所建立的模型,最好能对其中的每个式子都给出文字解释。

3.求解方法:

给出你的求解思路,最好能想写算法一样,写出你的算法。

4.求解结果:

你的求解结果必须精心设计(最好使用表格的形式),使人一目了然。

结果必须要全,对于你求解的一些必须的中间结果,也必须在这里反映出来。

5.模型的分析与检验

在计算出相应的结果之后,你必须对你的结果做出相应的解释。 因为你的结果往往是数学的结果,一般人无法理解。 你必须归纳出你的结论和建议。 这里主要应包括:

①这个结果说明了什么问题?

②是否达到了建模目的?

③模型的适用范围怎样?

④模型的稳定性与可靠性如何?

问题二:

问题三:

问题四:

问题五:

五、模型的评价与推广

这一部分应包括:

①你的模型完成了什么工作?达到了什么目的?得出了什么规律?

②你的建模方法是否有创造性?为今后的工作提供了什么思路?结果有什么理论或实际用途?

③模型中有何不足之处?有何改进建议?

④模型中有何遗留未解决的问题?以及解决这些问题可能的关键点和方向。

这一部分一定要有!

六、参考文献

引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中

书籍的表述方式为:

[编号] 作者,书名,出版地:出版社,出版年。

参考文献中期刊杂志论文的表述方式为:

[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:

[编号] 作者,资源标题,网址,访问时间(年月日)。

七、附录

不便于编入正文的资料都收集在这里。 应包括:

①某一问题的详细证明或求解过程; ②流程图;

③计算机源程序及结果;

④较繁杂的图表或计算结果(一般结果只要不超过A4一页,尽量都放在正文中)。

免责声明:本站文章信息来源于网络转载是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。不保证信息的合理性、准确性和完整性,且不对因信息的不合理、不准确或遗漏导致的任何损失或损害承担责任。本网站所有信息仅供参考,不做交易和服务的根据,如自行使用本网资料发生偏差,本站概不负责,亦不负任何法律责任,并保证最终解释权。

数模竞赛论文查重率

美国大学生数学建模竞赛查重不超30%。系统查到数学建模论文重复率达到30%以上会有提示,有作弊之嫌

一般不会重查查重率一般会规定不得超过15%数学建模挑战杯论文查重率多少,就是根据实际问题来建立数学模型挑战杯论文查重率多少,对数学模型来进行求解,然后根据结果去解决实际问题当需要从定量挑战杯论文查重率多少的角度分析和研究一个实际问题时,人们就要在深入调查研究了解对象。

如果是初中及以下的参赛不高于25%,高中及以上的征文重复率不高于10%一征文比赛查重率不能超过多少 既然是参加比赛,那么比赛的举办方肯定会对提交上来的文章有查重率的要求,那比赛论文查重率多少算通过呢这个问题的答。

一般来说,论文的查重率不能高于30%如果是高校毕业论文,毕业论文的查重率一般要求在25%以内一些顶尖大学学位论文的查重率要求在15%以内1不同的高校有不同的要求不同的学校对论文查重率要求不一样,至于具体。

高校对于其论文中数学建模的论文查重率一般会规定不得超过15%,当然还会有更加严格的数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题当需要从定量的角度分析和研究一个实际问题。

硕士论文查重一般要求是百分之十五左右论文查重率百分之三十是很容易通过的一个指标,而百分之五就很严苛了,知网查重虽然可以说是所有查重系统中最权威的学术论文检测系统,但也同样存在检测偏差。

论文查重系统还是会计算重复率3不同论文查重系统数据库是不一样的,不同的学校要求的论文查重系统是有差异的,并且对重复率要求也是不一样的一般学校要求重复率在30%左右,比较严格的学校要求重复率在20%左右。

全国大学生数模竞赛论文格式

「01」参赛作品的组成各参赛队提交的参赛作品通常有 “参赛论文”和“支撑材料”两部分,其中“参赛论文”是必要的。注意:(1)参赛论文中不能包含承诺书和编号专用页。文件格式只能用PDF或Word格式之一(建议用PDF格式),不要压缩。(2)支撑材料是能够对参赛论文中模型、结果和结论起补充支撑作用的必要资料。通常应包含所有可运行的源程序代码、参赛队查阅并使用的数据及难以从公开渠道查询的相关资料等。所有必要内容需使用WinRAR压缩为一个文件(ZIP或RAR格式)。(3)如需提交支撑材料,参赛论文应与支撑材料分开,以两个独立文件的形式分别通过客户端对应功能提交特别提醒:(1)在参赛论文电子版及支撑材料压缩包内任何位置(含文件夹名、文件名和文档属性等)均不得出现与参赛队有关的信息。参赛学生可先将需要上传的支撑材料放置在一个文件夹内(文件夹和文件命名不可出现与参赛队有关的信息),然后使用压缩工具对该文件夹进行压缩得到支撑材料压缩文件。(2)竞赛管理系统对参赛论文和支撑材料的文件名不做要求,参赛队在提交参赛论文和支撑材料后,系统将自动根据报名信息对文件重新命名。有关参赛队号及论文编号之间的对照关系仅用于赛区对参赛作品的备案。(3)源程序应作为附录放入参赛论文正文之后,与论文正文编辑在同一个文件中。(4)源程序除应作为附录放入参赛论文中之外,还应放入支撑材料中。(如确实没有所需要提供的支撑材料,此项可以空缺,即可以不上传支撑材料。)「02」参赛作品的提交参赛作品的提交包括三个部分,分别为参赛作品 MD5 码、电子文档和纸质版的提交。1.参赛作品MD5码的提交 各参赛队务必在2021年9月12日22:00前将“参赛论文”和“支撑材料”对应文件的MD5码通过客户端对应功能上传到竞赛管理系统,过时无效。所有参赛队必须在9月12日20:00之前通过客户端内已经集成的功能完成“参赛论文”及其“支撑材料”电子版 MD5 码的生成。9日18:00至12日20:00之间可由客户端多次上传MD5码。12日20:00至22:00之间最多只允许上传1次。请特别注意,只要对电子文件进行了打开保存操作(含自动保存),文件对应的MD5码都将发生改变,必须将新的MD5码在12日20:00之前再次通过客户端上传到竞赛管理系统。递递强烈建议,在12日21:00之前上传完毕!2.参赛作品电子文档的提交 各参赛队务必在2021年9月12日22:00至13日20:00之间,将已上传到竞赛管理系统的MD5码对应的“参赛论文”与“支撑材料”电子文档通过客户端对应功能上传至竞赛管理系统,过时无效。此外,还需按所在赛区组委会要求提交必要材料,以备核查。若参赛队所在赛区要求对“参赛论文”及“支撑材料”的电子文档命名,请参考第三和第四小节中有关参赛队编号及文件命名的规则。3.参赛作品纸质版的提交 在竞赛结束前,请各参赛队按照《全国大学生数学建模竞赛论文格式规范》中的要求打印与参赛论文电子文档完全一致的纸质论文(包括参赛论文中的附录内容,但不包括支撑材料中除源程序之外的其他内容)。 同时打印承诺书和编号专用页,签字后附在论文之前一并装订。将装订好的纸质论文提交所在学校负责人,经统一汇总、核对后在规定时间内送交赛区组委会(接收纸质论文的方式及截止时间由各赛区组委会决定)。若某些赛区不要求参赛队提交纸质论文,而由赛区组委会代为打印,需按赛区组委会要求执行。

奥运会临时超市网点设计模型(小三黑体,题目直接用竞赛试题题目,不必另起) 摘要 (一级标题,4号黑体,居中)(论文其他内容小4号宋体字,单倍行距,左侧装订)本文根据题目附录中提供的问卷调查数据,利用关系数据库查询语言,从不同侧面进行了准确统计,找出了运动会期间观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律:大部分(约72%)的观众坐公交和地铁出行;过半数(约52%)的观众选择西餐作为餐饮方式;绝大部分(约88%)的观众消费额在300以下,其中200到300之间人数约占44%。根据观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律,对不同消费档次(非餐饮)的观众进行统计,分别测算出题目(图2)中20个商区的人流量分布:A1:6.83% A2:5.09% A3:5.63% A4:6.19% A5:6.72% A6:11.73% A7:5.04% A8:4.49% A9:3.95% A10:3.40%B1:2.81% B2:2.26% B3:4.55% B4:3.95% B5:4.49% B6:7.27% C1:1.69% C2:2.60% C3:5.39% C4:5.84%在解决了问题1、2的基础上,对不同消费档次的观众赋予不同消费档次指数,然后,通过对综合购买力的分析以及对各消费档次观众的消费水平进行全面、综合考查,并以此为依据对问题3建立了线性优化模型,运用数学软件MATLAB编程对模型进行二维搜索,得到了模型最优解,设计出了各商区两种类型迷你超市网MS的分布方案: 商区网类型 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10小MS个数 5 4 4 4 5 8 4 3 3 2大MS个数 5 4 4 5 5 9 4 4 3 3 商区网类型 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4小MS个数 2 3 4 3 4 6 2 2 4 3大MS个数 2 1 3 3 3 5 1 2 4 5最后,通过综合分析,我们建立的模型能够准确描述各商区消费水平,得出两种不同类型MS个数分布基本均衡,既满足了奥运会期间的购物需求,又考虑了商业赢利。关键词(一级标题,四号黑体,居中)人流量;二维搜索;消费档次指数;线性优化模型;综合购买力(3-5个)(第一页只有摘要和关键词,而且论文从这一页开始编页号,页码居中)一. 问题的提出(一级标题,四号黑体,居中)2008年北京奥运会的建设工作已经进入全面设计和实施阶段。奥运会期间,在比赛主场馆的周边地区需要建设由小型商亭构建的临时商业网点,称为迷你超市(Mini Supermarket, 以下记做MS)网,以满足观众、游客、工作人员等在奥运会期间的购物需求,主要经营食品、奥运纪念品、旅游用品、文体用品和小日用品等。在比赛主场馆周边地区设置的这种MS,在地点、大小类型和总量方面有三个基本要求:满足奥运会期间的购物需求、分布基本均衡和商业上赢利。图1给出了比赛主场馆的规划图。作为真实地图的简化,在图2中仅保留了与本问题有关的地区及相关部分:道路(白色为人行道)、公交车站、地铁站、出租车站、私车停车场、餐饮部门等,其中标有A1-A10、B1-B6、C1-C4的黄色区域是规定的设计MS网点的20个商区。为了得到人流量的规律,一个可供选择的方法,是在已经建设好的某运动场(图3)通过对预演的运动会的问卷调查,了解观众(购物主体)的出行和用餐的需求方式和购物欲望。假设我们在某运动场举办了三次运动会,并通过对观众的问卷调查采集了相关数据,参照采集的数据,请你按以下步骤对图2的20个商区设计MS网点:1. 根据附录中给出的问卷调查数据,找出观众在出行、用餐和购物等方面所反映的规律。 2. 假定奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。依据1的结果,测算图2中20个商区的人流量分布(用百分比表示)。3. 如果有两种大小不同规模的MS类型供选择,给出图2中20个商区内MS网点的设计方案(即每个商区内不同类型MS的个数),以满足上述三个基本要求。4. 阐明你的方法的科学性,并说明你的结果是贴近实际的。(图2,图3请见附录2)。二. 问题假设(一级标题,四号黑体,居中)1.奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。2.观众在一天内的行程如下: 进场馆——>出场餐饮——>餐饮完回场馆——>出场馆且进场馆和出场馆路径相同,出场餐饮和餐饮完回场路径相同。3.出场餐饮与餐饮完回场馆时不考虑出行方式,只按餐饮方式采取最短路径。4.各场馆内进出口与看台一一对应(即进场时一个进口只能到达唯一确定看台,出场时一个出口对应唯一看台,看台之间不能相互跨越)。5.每位观众通过出行或餐饮路径上所有商区(包括看台出口所对的商区)。6.三个场馆人数固定(A区为10万人,B区为6万人,C区为4万人),每个看台人数固定,均为1万人(即商区A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、B1、B2、B3、B4、B5、B6、C1、C2、C3、C4对应的二十个看台每个均为一万人)。7.观众在奥运期间的出行方式、餐饮方式、消费额档次均不变,且服从问卷调查所得规律。三. 假设合理性分析及说明(一级标题,四号黑体,居中)根据最短路径原则,观众从各车站或停车场到场馆往返路径相同;同理,餐饮往返路径也相同。因此只须考虑观众看完比赛从场馆到车站或停车场的路径(下称第一类路径)以及观众出场馆到达餐饮地点的路径(下称第二类路径)即可。即对各商区人流量只须计算这两类路径的人流量,各商区总人流量为观众走这两类路径人流量的2倍。为方便计算,本模型中人流量仅为第一类和第二类路径人流量之和。从图2可以看出,各场馆到餐饮地点或者无车可乘或者相距很近无须乘车,故在观众出场馆餐饮时只根据餐饮方式采取最短路径,忽略出行方式。四. 符号约定(一级标题,四号黑体,居中)W: 出行方式为公交(东西);N: 出行方式为公交(南北);E: 出行方式为地铁东;R: 出行方式为地铁西;P: 出行方式为私车;T: 出行方式为出租;C: 餐饮方式为中餐;F: 餐饮方式为西餐;B: 餐饮方式为商场;五. 模型建立与求解(一级标题,四号黑体,居中)1. 问题1求解根据附录中给出的问卷调查数据,我们利用数据库编程(Visual Basic +SQL关系数据查询语言)首先统计得出了三次问卷调查中按年龄、出行方式、餐饮方式、消费水平分档的各类人数,如表1所示。……………………………………………………………………………………………………………………………………………..为了能清楚看出观众在出行、用餐和购物等方面反映的情况,用百分比表示各出行方式、餐饮方式、消费额档次人群的分布情况,如表2所示:(略)………………………………………………….………………………………………………………………………………………………………2.问题2求解商区人流量与平均购物欲望是影响商区选址的主要因素。各商区人流量与观众出行方式、餐饮方式有关。商区人流量的消费档次水平分布,体现了该商区人流的平均购物欲望。因此,以消费档次水平为划分标准,分别按出行方式及餐饮方式对人群进行统计,不同消费档次水平人数及百分比表示如表3所示:……………………………………………..……………………………………………...……………………………………………3.问题3求解…………………………………………..………………………………………….商区Z的综合购买力(百万元)H =商区Z各个消费档次购买力之和。各个消费档次购买力为:该消费档次人流量╳消费档次指数根据以上标准可以建立以总出售能力最小作为目标函数的模型: Min f=m1╳( + + )+m2╳( + + )约束条件为: ╳m1+ ╳m2>= (i=1,2……10) ╳m1+ ╳m2>= (j=1,2……6) ╳m1+ ╳m2>= (k=1,2,3,4) , , , , , >=1且为整数 m1=1 && m1<=4 m2=m1+0.2; while m2<=7 s1=0;vlb=[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];vub=[];a=[-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2];%b=[-20.1020,-13.4069,-15.3143,-16.7830,-18.4440,-35.2131,-16.7830,-15.0859,-13.4069,-11.7279,-10.0663,-8.3783,-13.4027,-10.0663,-11.7363,-21.7978,-5.9456,-7.7796,-14.9323,-17.3817];b=[-20.1027,-15.0825,-16.7618,-18.4591,-20.1203,-35.2161,-15.1094,-13.4121,-11.7328,-10.0535,-8.3921,-6.7038,-13.4033,-11.7418,-13.4121,-21.7996,-5.0290,-7.7802,-15.8503,-17.3827];c=[m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2];[x,lam]=lp(c,a,b,vlb,vub) for i=1:20 s1=s1+x(i)*m1+x(20+i)*m2; end if min_value>s1 min_value=s1; t=x; p=m1; q=m2; end m2=m2+0.2; end m1=m1+0.2;endplot(j,x);附录2:图二图三

二、论文格式规范

(一)   “论文首页”编写

竞赛论文首页为“编号页”,只包含队号、队员姓名、学校名信息,第二页起为摘要页和正文页。参赛队有关信息不得出现于首页以外的任何一页,包括摘要页,否则视为违规。

(二)   “论文摘要页”编写

竞赛使用“统一摘要面”。为了保证评审质量,提请参赛研究生注意摘要一定要将论文创新点、主要想法、做法、结果、分析结论表达清楚,如果一页纸不够,摘要可以写成两页。

(三)   “论文文本”要求————“全国研究生数学建模竞赛论文格式规范”

l  每个参赛队可以从A、B、C、D、E题中任选一题完成论文。(赛题类型以比赛下载为准)

l  论文用白色A4版面;上下左右各留出至少2.5厘米的页边距;从左侧装订。

l  论文题目和摘要写在论文封面上,封面页的下一页开始论文正文。

l  论文从编号页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1 ”开始连续编号。

l  论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。

l  论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其他汉字一律采用小四号宋体字,行距用单倍行距。程序执行文件,和源程序一起附在电子版论文中以备检查。

l  请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),请认真书写(注意篇幅一般不超过两页,且无需译成英文)。全国评阅时对摘要和论文都会审阅。

l  引用别人的成果或其他公开的资料(包括网上甚至在“博客”上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:

[编号] 作者,书名,出版地:出版社,出版年。

参考文献中期刊杂志论文的表述方式为:

[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

参考文献中网上资源的表述方式为:

[编号] 作者,资源标题,网址,访问时间(年月日)。

全国研究生数学建模竞赛评审委员会

数学建模竞赛论文格式

在各领域中,大家都接触过论文吧,通过论文写作可以培养我们独立思考和创新的能力。写起论文来就毫无头绪?下面是我为大家收集的数学建模竞赛论文格式,仅供参考,希望能够帮助到大家。

一、纸质版论文格式规范

第一条,论文用白色A4纸打印(单面、双面均可);上下左右各留出至少2.5厘米的页边距;从左侧装订。

第二条,论文第一页为承诺书,第二页为编号专用页,具体内容见本规范第3、4页。

第三条,论文第三页为摘要专用页(含标题和关键词,但不需要翻译成英文),从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。摘要专用页必须单独一页,且篇幅不能超过一页。

第四条,从第四页开始是论文正文(不要目录,尽量控制在20页以内);正文之后是论文附录(页数不限)。

第五条,论文附录至少应包括参赛论文的所有源程序代码,如实际使用的软件名称、命令和编写的全部可运行的源程序(含EXCEL、SPSS等软件的交互命令);通常还应包括自主查阅使用的数据等资料。赛题中提供的数据不要放在附录。如果缺少必要的源程序或程序不能运行,可能会被取消评奖资格。论文附录必须打印装订在论文纸质版中。如果确实没有需要以附录形式提供的信息,论文可以没有附录。

第六条,论文正文和附录不能有任何可能显示答题人身份和所在学校及赛区的信息。

第七条,引用别人的成果或其他公开的资料(包括网上资料)必须按照科技论文写作的规范格式列出参考文献,并在正文引用处予以标注。

第八条,本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。在不违反本规范的前提下,各赛区可以对论文增加其他要求。

二、电子版论文格式规范

第九条,参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求命名和提交以下两个电子文件,分别对应于参赛论文和相关的支撑材料。

第十条,参赛论文的电子版不能包含承诺书和编号专用页(即电子版论文第一页为摘要页)。除此之外,其内容及格式必须与纸质版完全一致(包括正文及附录),且必须是一个单独的文件,文件格式只能为PDF或者Word格式之一(建议使用PDF格式),不要压缩,文件大小不要超过20MB。

第十一条,支撑材料(不超过20MB)包括用于支撑论文模型、结果、结论的所有必要文件,至少应包含参赛论文的所有源程序,通常还应包含参赛论文使用的数据(赛题中提供的原始数据除外)、较大篇幅的`中间结果的图形或表格、难以从公开渠道找到的相关资料等。所有支撑材料使用WinRAR软件压缩在一个文件中(后缀为RAR);如果支撑材料与论文内容不相符,该论文可能会被取消评奖资格。支撑材料中不能包含承诺书和编号专用页,不能有任何可能显示答题人身份和所在学校及赛区的信息。如果确实没有需要提供的支撑材料,可以不提供支撑材料。

三、本规范的实施与解释

第十二条,不符合本格式规范的论文将被视为违反竞赛规则,可能被取消评奖资格。

第十三条,本规范的解释权属于全国大学生数学建模竞赛组委会。

说明:

(1)本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。

(2)赛区可自行决定是否在竞赛结束时收集参赛论文的纸质版,但对于送全国评阅的论文,赛区必须提供符合本规范要求的纸质版论文(承诺书由赛区组委会保存,不必提交给全国组委会)。

(3)赛区评阅前将纸质版论文第一页(承诺书)取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(由各赛区自行决定是否使用)。评阅后,赛区对送全国评阅的论文在第二页建立“送全国评阅统一编号”(编号方式由全国组委会规定),然后送全国评阅。

相关百科

热门百科

首页
发表服务