隆胸别误导人了,乙醚是不能溶于水的,有机相和水相是分层的
通常工业用的的乙醇不能直 接用蒸馏法制取无水乙醇,因乙醇和的水形成恒沸点混合物。要把水除去,第一步是加入氧化钙(生石灰)煮沸回流,使乙醇中的水与生石灰作 用生成氢氧化钙,然后再将无水乙醇蒸出。这样得到无水乙醇,纯度最高越。纯度更高的无水乙醇可用金属镁或金属钠进行处理在250ml的圆底烧瓶中,放置干燥纯净的镁条,乙醇,装上回流冷凝管,并在冷凝管上附加一只无水氯化钙干燥管。在沸水浴或用火直接加热使达微沸,移去热源,立刻加入几粒碘片(此时注意不要振荡),顷刻即在碘粒附近发生作用,最后可以达到相当剧烈的程度。有时作用太慢则需要加热,如果在加碘后,作用仍不开始,则可再加入数粒碘(一般的将,乙醇与镁作用是缓慢的,如所用乙醇含水量超过则作用尤其困难)。待全部镁已经作用完毕后,加入乙醇和几粒沸石。回流1h,蒸馏,产物收存于玻璃瓶中,用一橡皮塞或磨口塞塞住。 [color=red]②[/color] [color=red]用金属钠制取。[/color] 装置和操作同①,在250ml圆底烧瓶中,放置2g金属钠和100ml纯度至少为的乙醇,加入几粒沸石。加热回流300min后,加入4g邻苯二甲酸二乙脂,再回流10min。取下冷凝管改成蒸馏装置,按收集无水乙醇的要求进行蒸馏。产品储于带有磨口塞或橡皮塞的容器中。 [b] [color=red]检验乙醇是否有水分,常用的方法是:取一支干燥试管,加入制得的绝对乙醇1 mL,随即加入少量无水硫酸铜粉末。如乙醇中含水分,则无水硫酸铜变为蓝色硫酸铜。
优点:良好的有机溶剂,能萃取多种多种有机物质,乙醚沸点低,易除去是其优点缺点:有毒,易挥发,能够溶于水,高浓度乙醚可致人昏迷,易燃
一般水溶性较大的物质可用乙醚或苯来萃取。乙醚沸点低,易除去是其优点。但沸点低,易燃,是其缺点
基于苯乙烯的用途广泛和需求量的不断提升,近年来世界各国苯乙烯生产发展迅速,并向着大型化发展。下面是我精心推荐的乙烯生产技术论文,希望你能有所感触!
苯乙烯生产技术研究
摘要:苯乙烯是一种重要的基本有机化工原料,主要用于生产聚苯乙烯树脂(PS)、丙烯腈-丁二烯- 苯乙烯三元共聚物(ABS)、苯乙烯- 丙烯腈共聚物(SAN)树脂、丁苯橡胶(SBR)和丁苯胶乳(SBR胶乳)、离子交换树脂、不饱和聚酯以及苯乙烯系热塑性弹性体SBS等。此外, 还可用于制药、染料、农药以及选矿等行业, 用途十分广泛。
一、苯乙烯生产工艺介绍
目前,世界上苯乙烯的生产方法有乙苯气相催化脱氢法、环氧丙烷—苯乙烯联产法、乙苯脱氢选择性氧化法、热解汽油抽提蒸馏回收法、乙苯—丙烯共氧法、甲苯甲醇合成法、丁二烯合成法等。其中,常用的方法有3种:催化脱氢法、乙苯脱氢选择性氧化(SMART)法、乙苯—丙烯共氧(POSM)法。下面就重点介绍这三种方法。
1.催化脱氢法
DOW化学公司与BASF公司与1937年联合开发出催化脱氢法,在长期生产中各公司在催化剂、反应器、流程、节能等方面各具特色,典型的如:Fina/Badger法、Monsanto/Lummus/UOP法、DOW法、Cosden/Badger法、CdF法等。其中Monsanto/Lummus/UOP法被世界上生产能力最大的一些苯乙烯装置所采用,与其他方法相比,每吨苯乙烯可节约蒸汽2t,降低生产成本16%。
2.乙苯脱氢选择性氧化法
乙苯氧化脱氢技术采用三段式反应器:一段脱氢反应器中乙苯和水蒸汽在脱氢催化剂层进行脱氢反应,在出口物流中加入定量的空气或氧气与水蒸汽进入二段反应器,二段反应器中装有高选择性氧化催化剂和脱氢催化剂,氧和氢反应产生的热量使反应物流升温,氧全部消耗,烃无损失,二段反应器出口物流进入三段反应器,完成脱氢反应。当脱氢反应温度为620~645℃、压力为~ MPa、蒸汽和乙苯质量比为(1∶1)~(2∶1)时,乙苯转化率为85%,苯乙烯选择性为92 %~96 %。
3.环氧丙烷—苯乙烯(PO/SM)联产法
环氧丙烷一苯乙烯(PO/SM)联产法又称共氧化法, 在130~160℃、~下,乙苯先在液相反应器中用氧气氧化生成乙苯过氧化物,生成的乙苯过氧化物经提浓到l7%后进入环氧化T序,在反应温度为110℃、压力为 MPa条件下,与丙烯发生环氧化反应成环氧丙烷和甲基苄醇。环氧化反应液经过蒸馏得到环氧丙烷,甲基苄醇在260℃、常压条件下脱水生成苯乙烯。反应产物中苯
乙烯与环氧丙烷的质量之比为:1。将乙苯脱氢的吸热和丙烯氧化的放热两个反应结合起来,节省了能量,解决了环氧丙烷生产中的三废处理问题。另外,由于联产装置的投资费用要比单独的环氧丙烷和苯乙烯装置降低25 %,操作费用降低50 %以上,因此采用该法建设大型生产装置时更具竞争优势。该法的不足之处在于受产品市场状况影响较大,且反应复杂,副产物多,投资大,乙苯单耗和装置能耗都要高于乙苯脱氢法工艺。
4.苯乙烯生产工艺国产化进展
华东理工大学开发的乙苯负压脱氢反应器采用轴径向反应器技术和气气快速混合两大关键技术,轴径向反应器是在床层顶部采用催化剂自封式结构、以使径向床的顶部造成轴径向二维流动的新颖径向反应器。与传统的径向反应器相比,这种催化剂自封式结构取消了催化床上部的机械密封区,简化了径向床结构,有效地利用此部分反应器空间中的催化剂,消除催化剂床的滞流区,有利于提高反应转化率,催化剂装卸方便。
二、苯乙烯的毒性机理
虽然苯乙烯具有燃爆性和毒性,但是由于对爆炸危险性的重视,因此很少出现苯乙烯的爆炸事故,而职业中毒却屡见不鲜,因此需对苯乙烯的职业中毒提高警惕。苯乙烯既有急性毒性又有慢性毒性,可对人体多个系统产生损害,虽然其生殖毒性、血液毒性和致癌作用尚不能确定,也应引起高度警惕。
1.对神经系统的影响
苯乙烯具有较强的致神经衰弱作用,苯乙烯大量吸入后可引起中毒性脑病,研究表明,脂质过氧化及神经逆质波动在中毒性脑病中有重要作用。少量苯乙烯吸入仅引起轻微头晕、头痛症状。并且近年国内有研究发现,苯乙烯长期接触组心电图异常率明显高于对照组,以心率失常居多,其中又以窦性心动过缓为主。
2.对消化系统的影响
短时间大量接触高浓度苯乙烯可引起恶心呕吐、腹痛、腹泻等消化道症状。长期接触苯乙烯可引起中毒性肝病,具有起病隐袭的特点。临床上以消化道症状为主,多数为肝肿大,但肝功能检查多为正常。
3.对泌尿生殖系统的影响
长期低浓度接触苯乙烯可引起肾功能损害,主要是通过抑制肾组织中酶的活动,使细胞三羧酸循环和膜吸收转运过程受到干扰,并使近曲小管上皮受损所致,短期接触也可影响肾小球的功能。此外,苯乙烯在体内的主要中间代谢产物苯乙烯-7,8-氧化物(SO)已被研究证明为一种强直接致突变剂。工人接触苯乙烯可引起精液DNA损伤。苯乙烯为高脂溶性的小分子化合物,在体内可经胎盘转运,与宫内的胎儿直接接触,从而对发育中的胚胎产生毒性作用,干扰器官的形成和胎儿的发育。
4.对呼吸系统的影响
一次大量吸入苯乙烯可引起呼吸道腐蚀性损伤,导致中毒性肺水肿。另外,苯乙烯可通过酶系统或呼吸爆发产生自由基、启动生物膜的脂质过氧化、并有炎性介质参与造成肺弥漫性损伤。短时间接触高浓度苯乙烯可引起咳嗽、咽痛等呼吸道刺激症状,长期接触低浓度苯乙烯对作业工人呼吸道有明显的刺激作用,可引起慢性鼻炎、慢性咽炎等。
对于安全专业来说,苯乙烯的生产工艺已经非常成熟,但是我们需要在工艺中找到潜在的危险,尽可能排除或者降低危害程度。
参考文献
[1]崔小明,李明.苯乙烯生产技术及国内外市场前景[J].弹性体,2005,15(3):53~59
[2]金栋.苯乙烯的市场现状及发展前景[J].精细化工及中间体,2007,4:28~32
[3] Anno. Styrene[J].Europear Chemical News,2004,80 (2096):13
[4]史永,张新民.苯乙烯综述(上)[J].上海化工,2000,7:23~28
[5]左文明,张群,王威等.苯乙烯生产工艺及国产化技术进展[J].炼油与化工,2007,18(3):55~58
[6]任引津,王世俊,何凤生,等.我国职业中毒临床及科研工作50年进展[J].中华劳动卫生职业病杂志,1999,17 (5):4~7
[7]任引津,王世俊,何凤生,等.我国职业中毒临床及科研工作50年进展[J].中华劳动卫生职业病杂志,1999,17 (5):4~7
作者简介:王连生,男,江苏扬州人,生于1960年5月,连云港凤蝶染化有限公司。
点击下页还有更多>>>乙烯生产技术论文
人类正面临有史以来最严重的环境危机,由于人口急剧的增加,资源的消耗日益扩大,人均耕地、淡水和矿产等资源占有量逐渐减少,人口与资源的矛盾越来越尖锐;环保问题就成为经济与社会发展的重要问题之一。作为国民经济支柱产业之一的化学工业及相关产业,在为创造人类的物质文明作出重要贡献的同时,在生产活动中不断排放出大量有毒物质,化学工业也为环境和人类的健康带来一定的危害。发达国家对环境的治理,已开始从治标,即从末端治理污染转向治本,即开发清洁工业技术,消减污染源头,生产环境友好产品。“绿色技术”已成为21世纪化工技术与化学研究的热点和重要科技前沿。 绿色化学又称绿色技术、环境无害化学、环境友好化学、清洁化学。绿色化学即是用化学及其它技术和方法去减少或消除那些对人类健康、社区安全、生态环境有害的原料、催化剂、溶剂、试剂、产物、副产物等的使用和产生。 化学可以粗略地看作是研究从一种物质向另一种物质转化的科学。传统的化学虽然可以得到人类需要的新物质,但是在许多场合中却既未有效地利用资源,又产生大量排放物,造成严重的环境污染。绿色化学则是更高层次的化学,它的主要特点是“原子经济性”,即在获得物质的转化过程中充分利用每个原料原子,实现“零排放”,因此既可以充分利用资源,又不产生污染。传统化学向绿色化学的转变可以看作是化学从“粗放型”向“集约型”的转变。绿色化学可以变废为宝,可使经济效益大幅度提高。绿色化学已在全世界兴起,它对我国这样新兴的发展中国家更是一个难得的机遇。1 采用无毒、无害并可循环使用的新物料 原料选择 工业化的发展为人类提供了许多新物料,它们在不断改善人类物质生活的同时,也带来大量生活废物,使人类的生活环境迅速恶化。为了既不降低人类的生活水平,又不破坏环境,我们必须研制并采用对环境无毒无害又可循环使用的新物料。 以塑料为例,据统计,到1989年美国在包装上使用的塑料就超过亿kg(20世纪90年代数量进一步上升),打开包装后即被抛弃,这些塑料废物破坏环境是我们面临的一大问题:掩埋它们将永久留在土地里中;焚烧它们会放出剧毒。 我国也大量使用塑料包装,而且在农村还广泛地使用塑料大棚和地膜,造成的“白色污染”也越来越严重。解决这个问题的根本出路在于研制可以自然分解或生物降解的新型塑料,目前国际上已有一些成功的方法,例如:光降解塑料和生物降解塑料。前者已经投入生产。光生物双降解塑料研究是我国“八五”科技攻关的一个重大项目,已取得一些进展。 溶剂的选择 大量的与化学制造相关的污染问题不仅来源于原料和产品,而且源自在其制造过程中使用的物质。最常见的是在反应介质,分离和配方中所用的溶剂。在传统的有机反应中,有机溶剂是最常用的反应介质,这主要是因为它们能较好地溶解有机化合物。但有机溶剂的毒性和难以回收又使之成为对环境有害的因素。因此,在无溶剂存在下进行的有机反应,用水作反应介质,以及超临界流体作反应介质或萃取溶剂将成为发展洁净合成的重要途径。 固相反应 固相化学反应实际上是在无溶剂化作用的新颖化学环境下进行的反应,有时可比溶液反应更为有效并达到更好的选择性。它是避免使用挥发性溶剂的一个研究动向。 以水为溶剂的反应 由于大多数有机化合物在水中的溶解性差,而且许多试剂在水中会分解,因此一般避免用水作反应介质。但水作为反应溶剂有其独特的优越性,因为水是地球上自然丰度最高的“溶剂”,价廉、无毒、不危害环境。此外水溶剂特有的疏水效用对一些重要有机转化是十分有益的,有时可提高反应速率和选择性,更何况生命体内的化学反应大多是在水中进行的。 水相有机合成在有机金属类反应,水相Lewis酸催化的反应现都已取得较大进展。因此在某些有机化学反应中,开发利用以水作溶剂是大有可为的。 超临界流体作为有机溶剂 超临界流体是指超临界温度及超临界压力下的流体,是一种介于气态与液态之间的流体。在无毒无害溶剂的研究中,最活跃的研究项目是开发超临界流体(SCF),特别是超临界CO2作溶剂。超临界CO2是指温度和压力在其临界点(℃,7 )以上的CO2流体。它通常具有流体的密度,因而有常规常态溶剂的溶解度;在相同条件下,它又具有气体的粘度,因而又具有很高的传质速度。而且,由于具有很大的可压缩性,流体的密度,溶剂溶解度和粘度等性能可由压力和温度的变化来调节。其最大优点是无毒、不可燃、价廉等。 催化剂的选择 许多传统的有机反应用到酸、碱液体催化剂。如烃类的烷基化反应一般使用氢氟酸、硫酸、三氯化铝等液体酸做催化剂,这些液体酸催化剂的共同缺点是:对设备腐蚀严重,对人身危害和产生废渣污染环境。为了保护环境,多年来人们从分子筛、杂多酸、超强酸等新催化材料入手,大力开发固体酸做为烷基催化剂。其中采用新型分子筛催化剂的乙苯液相烃化技术较为成熟,这种催化剂选择性高,乙苯收率超过,而且催化剂寿命长。2 化学反应的绿色化 为了节约资源和减少污染,合成效率成了当今合成方法学研究中关注的焦点。合成效率包括两方面,一是选择性(化学、区域、非对映体和对映体选择性),另一个就是原子经济性,即原料分子中究竟有百分之几的原子转化为产物,理想的原子经济反应是原料分子中的原子百分之百的转变为产物,不产生副产物或废弃物,实现废物的“零排放”。为此,化学化工工作者在设计合成路线时,要减少“中转”、增加“直快”、“特快”,更加经济合理地利用原料分子中的每一个原子,减少中间产物的形成,少用或不用保护基或离去基,避免副产物或废弃物的产生。实现原子经济反应的有效手段很多,在些不作赘述。3 生物技术的应用 生物科学是当代科学的前沿。生物技术是世界范围内新技术革命的重要组成部分,生物化工是21世纪最具有发展潜力的产业之一,它将成为创造巨大社会财富的重要产业体系。采用生物技术已在能源、采油、采矿、肥料、农药、蛋白质、聚合物、表面活性剂、催化剂、基本有机化工原料、精细化学品的制造等方面得到广泛应用。从发展绿色化学的角度出发,它最大的特点和魅力就在节约能源和易于实现无污染生产而且可以实现用一般化工技术难以实现的化工过程,其产品常常又具有特殊性能。因此,生物技术的研究和应用倍受青睐。 绿色化学是人类的一项重要战略任务。绿色化学的根本目的是从节约资源和防止污染的观点来重新审视和改革传统化学,从而使我们对环境的治理可以从治标中转向治本。绿色化学的发展不仅将对环境保护产生重大影响,而且将为我国的企业与国际接轨创造条件!
有机化学的发展简史“有机化学”这一名词于1806年首次由贝采里乌斯提出。当时是作为“无机化学”的对立物而命名的。由于科学条件限制,有机化学研究的对象只能是从天然动植物有机体中提取的有机物。因而许多化学家都认为,在生物体内由于存在所谓“生命力”,才能产生有机化合物,而在实验室里是不能由无机化合物合成的。1824年,德国化学家维勒从氰经水解制得草酸;1828年他无意中用加热的方法又使氰酸铵转化为尿素。氰和氰酸铵都是无机化合物,而草酸和尿素都是有机化合物。维勒的实验结果给予“生命力”学说第一次冲击。此后,乙酸等有机化合物相继由碳、氢等元素合成,“生命力”学说才逐渐被人们抛弃。由于合成方法的改进和发展,越来越多的有机化合物不断地在实验室中合成出来,其中,绝大部分是在与生物体内迥然不同的条件下合成出来的。“生命力”学说渐渐被抛弃了,“有机化学”这一名词却沿用至今。从19世纪初到1858年提出价键概念之前是有机化学的萌芽时期。在这个时期,已经分离出许多有机化合物,制备了一些衍生物,并对它们作了定性描述,认识了一些有机化合物的性质。法国化学家拉瓦锡发现,有机化合物燃烧后,产生二氧化碳和水。他的研究工作为有机化合物元素定量分析奠定了基础。1830年,德国化学家李比希发展了碳、氢分析法,1833年法国化学家杜马建立了氮的分析法。这些有机定量分析法的建立使化学家能够求得一个化合物的实验式。当时在解决有机化合物分子中各原子是如何排列和结合的问题上,遇到了很大的困难。最初,有机化学用二元说来解决有机化合物的结构问题。二元说认为一个化合物的分子可分为带正电荷的部分和带负电荷的部分,二者靠静电力结合在一起。早期的化学家根据某些化学反应认为,有机化合物分子由在反应中保持不变的基团和在反应中起变化的基团按异性电荷的静电力结合。但这个学说本身有很大的矛盾。类型说由法国化学家热拉尔和洛朗建立。此说否认有机化合物是由带正电荷和带负电荷的基团组成,而认为有机化合物是由一些可以发生取代的母体化合物衍生的,因而可以按这些母体化合物来分类。类型说把众多有机化合物按不同类型分类,根据它们的类型不仅可以解释化合物的一些性质,而且能够预言一些新化合物。但类型说未能回答有机化合物的结构问题。这个问题成为困扰人们多年的谜团。从1858年价键学说的建立,到1916年价键的电子理论的引入,才解开了这个不解的谜团,这一时期是经典有机化学时期。1858年,德国化学家凯库勒和英国化学家库珀等提出价键的概念,并第一次用短划“—”表示“键”。他们认为有机化合物分子是由其组成的原子通过键结合而成的。由于在所有已知的化合物中,一个氢原子只能与一个别的元素的原子结合,氢就选作价的单位。一种元素的价数就是能够与这种元素的一个原子结合的氢原子的个数。凯库勒还提出,在一个分子中碳原子之间可以互相结合这一重要的概念。1848年巴斯德分离到两种酒石酸结晶,一种半面晶向左,一种半面晶向右。前者能使平面偏振光向左旋转,后者则使之向右旋转,角度相同。在对乳酸的研究中也遇到类似现象。为此,1874年法国化学家勒贝尔和荷兰化学家范托夫分别提出一个新的概念:同分异构体,圆满地解释了这种异构现象。他们认为:分子是个三维实体,碳的四个价键在空间是对称的,分别指向一个正四面体的四个顶点,碳原子则位于正四面体的中心。当碳原子与四个不同的原子或基团连接时,就产生一对异构体,它们互为实物和镜像,或左手和右手的手性关系,这一对化合物互为旋光异构体。勒贝尔和范托夫的学说,是有机化学中立体化学的基础。1900年第一个自由基,三苯甲基自由基被发现,这是个长寿命的自由基。不稳定自由基的存在也于1929年得到了证实。在这个时期,有机化合物在结构测定以及反应和分类方面都取得很大进展。但价键只是化学家从实践经验得出的一种概念,价键的本质尚未解决。现代有机化学时期 在物理学家发现电子,并阐明原子结构的基础上,美国物理化学家路易斯等人于1916年提出价键的电子理论。他们认为:各原子外层电子的相互作用是使各原子结合在一起的原因。相互作用的外层电子如从—个原了转移到另一个原子,则形成离子键;两个原子如果共用外层电子,则形成共价键。通过电子的转移或共用,使相互作用的原子的外层电子都获得惰性气体的电子构型。这样,价键的图象表示法中用来表示价键的短划“—”,实际上是两个原子共用的一对电子。1927年以后,海特勒和伦敦等用量子力学,处理分子结构问题,建立了价键理论,为化学键提出了一个数学模型。后来马利肯用分子轨道理论处理分子结构,其结果与价键的电子理论所得的大体一致,由于计算简便,解决了许多当时不能回答的问题。
问题一:化工是干什么的 化学工业(chemical industry)、化学工程(chemical engineering)、化学工艺(chemical techno-logy)都简称为化工。化学工业包括石油化工(petrochemicals), 农业化工(agrochemicals), 化学医药(pharmaceuticals), 高分子(polymers), 涂料(paints), 油脂(oleochemicals)等。它们出现于不同历史时期,各有不同涵义,却又关系密切,相互渗透,具有连续性,并在其发展过程中被赋予新的内容。人类早期的生活更多地依赖于对天然物质的直接利用。渐渐地这些物质的固有性能满足不了人类的需求,于是产生了各种加工技术,有意识有目的地将天然物质转变为具有多种性能的新物质,并且逐步在工业生产的规模上付诸实现。广义地说,凡运用化学方法改变物质组成或结构、或合成新物质的,都属于化学生产技术,也就是化学工艺,所得的产品被称为化学品或化工产品。早期生产化学品的是手工作坊,后演变为工厂,并逐渐形成一个特定的生产部门,即化学工业。随着生产力的发展,有些生产部门,如冶金、炼油、造纸、制革等,已作为独立的生产部门从化学工业中划分出来。当大规模石油炼制工业和石油化工蓬勃发展之后,以化学、物理学、数学为基础并结合其他工程技术,研究化工生产过程的共同规律,解决生产规模放大和大型化中出现的诸多工程技术问题的学科化学工程诞生并得到迅速地发展,从而将化学工业生产提高到一个新水平,从经验的或半经验的状态进入到理论和预测的新阶段。 人类为了求得生存和发展,不断地与大自然作斗争,逐步地加深了对周围世界的认识,从而掌握了征服自然、改造世界的本领。经过漫长的历史实践,人类越发善于利用自然条件,并且为自己创造了丰富的物质世界。 古代人们的生活更多地依赖于对天然物质的直接利用,或从中提取所需要的东西。由于这些物质的固有性能满足不了人们的需求,便产生了各种加工技术,把天然物质转变成具有多种性能的新物质,并且逐步在工业生产的规模上付诸实现。凡运用化学方法改变物质组成或结构、或合成新物质的,都属于化学生产技术,也就是化学工艺;所得产品被称为化学品或化工产品。这样,许多自然界没有的物质被源源不断地创制出来。起初,生产这类产品的是手工作坊,后来演变为工厂,并逐渐形成了一个特定的生产部门,即化学工业。随着生产力的发展,有些生产部门,如冶金、炼油、造纸、制革等,已作为独立的生产部门从化学工业中划分出来。当大规模石油炼制工业和石油化工蓬勃发展之后,以化学、物理学、数学为基础并结合其他工程技术,研究化工生产过程的共同规律,解决规模放大和大型化中出现的诸多工程技术问题的学科--化学工程进一步完善了。它把化学工业生产提高到一个新水平,从经验或半经验状态进入理论和预测的新阶段(见化学工程发展史),使化学工业以其更大规模生产的创造能力,为人类增添大量物质财富,加快了人类社会发展的进程。 在现代汉语中,化学工业、化学工程和化学工艺都简称为化工,它们出现于不同历史时期,各有不同涵义,却又关系密切,互相渗透。在人们头脑里,“化工”这个词,习惯上耽成为一个总的知识门类和事业的代名词,它在国民经济和工程技术上所具有的重要意义,引起了人们广泛的兴趣,吸引着成千上万的人,为之献出毕生精力。下面简要地从人类社会生活的各个方面,来说明化工绚丽多彩的内容及其重要贡献。 精细化工 精细化学工业是生产精细化学品工业的通称,简称“精细化工”。精细化学品的含义,国外迄今仍在讨论中。目前,凡具有以......>> 问题二:化工是做什么用的,有哪些用途? 化工行业就是从事化学工业生产和开发的企业和单位的总称。 化工行业包含化工、炼油、冶金、能源、轻工、石化、环境、医药、环保和军工等部门从事工程设计、精细与日用化工、能源及动力、技术开发、生产技术管理和科学研究等方面的行业。 化工 编辑本段概述化学工业在各国的国民经济中占有重要地位,是许多国家的基础产业和支柱产业。化学工业的发展速度和规模对社会经济的各个部门有着直接影响,世界化工产品年产值已超过15000亿美元。由于化学工业门类繁多、工艺复杂、产品多样,生产中排放的污染物种类多、数量大、毒性高,因此,化学工业是污染大户。同时,化工产品在加工、贮存、使用和废弃物处理等各个环节都有可能产生大量有毒物质而影响生态环境、危及人类健康。化学工业发展走可持续发展道路对于人类经济、社会发展具有重要的现实意义。编辑本段行业分类我们将化工行业划分为三大类:石油化工、基础化工以及化学化纤三大类。其中基础化工分为九小类:化肥、有机品、无机品、氯碱、精细与专用化学品、农药、日用化学品、塑料制品以及橡胶制品。编辑本段原料分类 [1] 无机化工原料单质 、 工业气体 、无机碱 、无机酸、无机盐 、氧化物 、非金属矿产、其他未分类无机化工原料化学矿硫矿、钾矿、磷矿、硼矿、其他化学矿有机化工原料烷烃及衍生物 、烯烃及衍生物 、炔烃及衍生物 ;醇类 、酸类 、醛类 、酮类 、脂类 、醚类 、砜类 、胺类; 碳水化合物类 、羧酸及衍生物 、醌类 、芳香烃及衍生物 、酸酐有机中间体、杂环类、硝基物、卤化物、其他未分类有机化工原料塑料原料通用塑料 :聚乙烯、 聚丙烯、 聚氯乙烯、 聚苯乙烯工程塑料 :聚苯醚、 聚苯硫醚、 聚甲醛、 聚醚酰亚胺、 聚碳酸酯、 聚碳酸酯聚合物、聚酰胺、 聚酯树脂 、热塑性弹性体、色母再生料、其他未分类塑料原料橡胶原料橡胶原料:天然橡胶合成橡胶:丁苯橡胶、 顺丁橡胶、 丁晴橡胶 、乙丙橡胶、 再生胶 、橡胶辅料 、丁基橡胶、 氯丁橡胶、 异戊二烯橡胶 SBS 、其他未分类橡胶原料树脂树脂:天然树脂、环氧树脂、酚醛树脂、丙烯酸树脂、不饱和聚酯树脂、离子交换树脂、氨基树脂、有机硅树脂 、其他未分类树脂石油及制品原油 、燃料油、润滑油脂、溶剂油、石油焦、石蜡、沥青、成品油、石油制品、油品添加剂、气体类石油产品化工助剂涂料助剂、水处理化学品、信息用化学品、电子工业用助剂、造纸助剂橡胶助剂:防老剂 、硫化剂、 促进剂、 防焦剂、 分散剂、 其他橡胶助剂塑料助剂阻燃剂 、热稳定剂、光稳定剂 、抗氧剂、着色剂、荧光增白剂、发泡剂、交联剂、偶联剂、抗静电剂、 润滑剂、脱模剂、流滴剂、防霉剂、固化剂及固化促进剂、增塑剂皮革助剂纺织、印染助剂、吸附剂、表面活性剂、乳化剂、发泡剂、金属加工助剂、其他未分类化工助剂食品添加剂酸度调节剂、抗氧化剂、漂白剂 、着色剂、抗结剂、消泡剂、护色剂、酶制剂、乳化剂、膨松剂、增味剂、防腐剂、甜味剂、增稠剂、水分保持剂、营养强化剂、其他未分类食品添加剂饲料添加剂营养性添加剂、非营养性添加剂、氨基酸类 、矿物质类 、维生素类 、抗生素类 、抗菌素类、酶制剂 、抗氧化剂 、防霉剂、其他未分类饲料添加剂 化学试剂:乙醇 丙酮 高锰酸钾催化剂专用催化剂、催化剂用载体、其他未分类催化剂玻璃深加工玻璃、普通玻璃、建筑玻璃、特种玻璃、其他未分类玻璃肥料氨肥、钾肥、磷肥、复合肥料、生物肥料、微量元素肥料、细菌肥料 、农药肥料、植物生长调节剂、其他未分类肥料农药除草剂、杀菌剂、杀虫、杀螨、杀鼠剂、混合剂型、生物农药、其他未分类农药合成药品抗感染类 、解热镇痛药 、......>> 问题三:化工主要是做什么的? 如果是生产工厂,一般是生产一种或者几种相同类型的化工产品原料。当然,像涂料厂也可叫化工厂,说得细就太复杂了。国内的化工厂除了将产品卖给国内的客户,也会有些做出口。如果工厂本身没有出口权就会通过贸易公司做。 化工贸易公司可以做N种化工产品,但也会分两大类,有机化工和无机化工。 有机化工原料一般用做精细产品,无机化工原料一般用于工业用产品。 问题四:化工是做什么的?! 化工行业比较广泛了,有石油化工、煤化工、天然气化工等,具体到工作上有研发、设计、生产等。研发做催化剂、新工艺、新设备等,设计院是工程公司,生产单位具体的就是技术工、工艺员、管理岗等。我们日常生活的吃穿住行都离不开化工产品的,比如 液化气的生产、聚乙烯、聚丙烯、食品添加剂、微生物发酵等都属于化工行业。 问题五:化工公司主要是做什么的? 化工公司得看你是生产商还是贸易商。如果是生产工厂,一般是生产一种或者几种相同类型的化工产品原料。当然,像涂料厂也可叫化工厂,说得细就太复杂了。国内的化工厂除了将产品卖给国内的客户,也会有些做出口。如果工厂本身没有出口权就会通过贸易公司做。化工贸易公司可以做N种化工产品,但也会分两大类,有机化工和无机化工。有机化工原料一般用做精细产品,无机化工原料一般用于工业用产品。具体是卖给那些公司,化工原料的用途很广泛,销售偿象是生产塑料制品/油漆/护肤品/日化品/加工食品等等的厂家。化工贸易公司一般是将产品做出口,当然有些也做内销。化工业在国内目前已经很成熟,国际出口量也非常大,做成功了当然就赚钱。 问题六:化工是干嘛的? 化学工程与工艺专业 业务培养目标: 业务培养目标:本专业培养具备化学工程与化学工艺方面的知识,能在化工、炼油、冶金、能源、轻工、医药、环保和军工等部门从事工程设计、技术开发、生产技术管理和科学研究等方面工作的工程技术人才。 业务培养要求:本专业学生主要学习化学工程学与化学工艺学等方面的基本理论和基本知识,受到化学与化工实验技能、工程实践、计算机应用、科学研究与工程设计方法的基本训练.具有对现有企业的生产过程进行模拟优化、革新改造,对新过程进行开发设计和对新产品进行研制的基本能力。 毕业生应获得以下几方面的知识和能力: 1.掌握化学工程、化学工艺、应用化学等学科的基本理论、基本知识; 2.掌握化工装置工艺与设备设计方法,掌握化工过程模拟优化方法; 3.具有对新产品、新工艺、新技术和新设备进行研究、开发和设计的初步能力; 4.熟悉国家对于化工生产、设计、研究与开发、环境保护等方面的方针、政策和法规; 5.了解化学工程学的理论前沿,了解新工艺、新技术与新设备的发展动态; 6.掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力。 主干课程: 主干学科:化学、化学工程与技术。 主要课程:物理化学、化工原理、化学反应工程和一门必选的专业方向课程。 主要实践性教学环节:包括化学与化工基础实验、认识实习、生产实习、计算机应用及上机实践、课程设计、毕业设计(论文)等,一般安排40周。 修业年限:四年 授予学位:工学学士 相近专业:化学工程与工艺 制药工程 化工与制药 问题七:化工是什么工作? 中国的经济渐渐的发展,科技水平也渐渐的提高。以前的化工生产一般都在现场操作,现在的生产都在总控室操作,距离现场都会有一定的距离,保证工作人员的安全。看怎样的企业,你所在怎样的工段。小型企业可能会在现场生产。现场生产存在着一定的危险,最好进一些待遇比较好的公司,保障你的人生安全! 问题八:化工是干什么工作的? 化工要干的工作很多了,目前最为普遍的就是炼油和煤化工,这事比较好的。再就是化肥厂,如生产尿素、磷肥等。还有属于精细化工的,生产基本的化工原料等。还有生产多晶硅、颜料、涂料、油漆等!总之化工包括的范围太大了,产品丰富多彩! 问题九:化工操作工是做什么的 你好朋友,现在我来简单的回你的提问: 1、化工操作工是做什么的? 回答:首先我要说的是化工操作工一般称为工艺人员,化工操作工一般分为主操和副操,主操一般是操作DCS之类的,主要的负责工艺系统控制的,而外操一般是在现场操作的,因为有些操作是系统不能完成的,所以需要人到现场去操作,要升为主操就必须从副操干起(大企业一般都是这样,小企业例外).化工操作工一般需要倒班的.没办法,化工的连续性决定了工作性质. 油品分析工种,化学分析 回答:其实两者大致原理一样,就是对产品进行采样分析,如果产品合不合础就是靠分析出来的. 希望我的回答对你有帮助. 问题十:化工是什么? 化学工业(chemical industry)、化学工程(chemical engineering)、化学工艺(chemical techno-logy)都简称为化工。化学工业包括石油化工(petrochemicals), 农业化工(agrochemicals), 化学医药(pharmaceuticals), 高分子(polymers), 涂料(paints), 油脂(oleochemicals)等。它们出现于不同历史时期,各有不同涵义,却又关系密切,相互渗透,具有连续性,并在其发展过程中被赋予新的内容。人类早期的生活更多地依赖于对天然物质的直接利用。渐渐地这些物质的固有性能耿足不了人类的需求,于是产生了各种加工技术,有意识有目的地将天然物质转变为具有多种性能的新物质,并且逐步在工业生产的规模上付诸实现。广义地说,凡运用化学方法改变物质组成或结构、或合成新物质的,都属于化学生产技术,也就是化学工艺,所得的产品被称为化学品或化工产品。 简单的说,化工就是出于经济或其他目的,将一种或几种原料加工,使之发生化学反应,从而生成所学产物的过程,此过程一般是在工厂规模下实现的
华阳新材料集团是一家专业从事高分子材料研究、开发和生产的企业,其产品包括聚酰胺、聚醚酮、聚醚醚酮等高性能工程塑料、特种树脂以及高分子复合材料等。化工专业毕业生可以在该企业从事新材料研发、生产技术、质量控制、市场推广等方面的工作。通过参与企业的研发工作,可以掌握先进的高分子材料生产技术和市场需求,提升自己的专业素养和实践能力。同时,该企业还注重人才培养和晋升机制,为化工专业毕业生提供广阔的发展空间和良好的职业前景。
水处理缓蚀剂三聚磷酸钠的生产工艺根据我搜集的一些网站来看,建议看看这个,要做毕业论文以及毕业设计的,推荐一个网站 ,里面的毕业设计什么的全是优秀的,因为精挑细选的,网上很少有,都是相当不错的毕业论文和毕业设计,对毕业论文的写作有很大的参考价值,希望对你有所帮助。别的相关范文很多的,推荐一些比较好的范文写作网站,希望对你有帮助,这些精选的范文网站,里面有大量的范文,也有各种文章写作方法,注意事项,应该有适合你的,自己动手找一下,可不要照搬啊,参考一下,用自己的语言写出来那才是自己的。 如果你不是校园网的话,请在下面的网站找:毕业论文网: 分类很细 栏目很多毕业论文: 毕业设计: 开题报告: 实习论文: 写作指导:
“超分子”一词早在20世纪30年代已经出现,但在科学界受到重视却是50年之后了.代写毕业论文超分子化学可定义为“超出分子的化学”,是关于若干化学物种通过分子间相互作用结合在一起所构成的,具有较高复杂性和一定组织性的整体的化学.在这个整体中各组分还保持某些固有的物理和化学性质,同时又因彼此间的相互影响或扰动而表现出某些整体功能1.超分子体系的微观单元是由若干乃至许许多多个不同化合物的分子或离子或其他可单独存在的具有一定化学性质的微粒聚集而成.聚集数可以确定或不确定,这与一分子中原子个数严格确定具有本质区别,把多个组分的基本微观单元聚集成“超分子”的凝聚力是一些(相对于共价键)较弱的作用力.如范氏力(含氢键)、亲水或憎水作用等超分子化合物的分类杂多酸类超分子化合物杂多酸是一类金属一氧簇合物,一般呈笼型结构,是一类优良的受体分子,它可以与无机分子、离子等底物结合形成超分子化合物.作为一类新型电、磁、非线性光学材料极具开发价值3,有关新型Keg-gin和Dawson型结构的多酸超分子化合物的合成及功能开发日益受到研究者的关注.杜丹等4,5合成了Dawson型磷钼杂多酸对苯二酚超分子膜及吡啶Dawson型磷钼多酸超分子膜修饰电极,发现该膜电极对抗坏血酸的催化峰电流与其浓度在~范围内呈良好的线性关系.靳素荣等6合成了9钨磷酸/结晶紫超分子化合物,并对其光致变色性质进行了探究,即合成化合物具有光敏性,漫反射日光即可使其变蓝.王升富等7合成了磷钼杂多酸-L-半胱氨酸自组装超分子膜电极,发现该膜电极对酸性溶液中的NO2-有明显的电催化还原作用.毕丽华等8合成了多酸超分子化合物,首次发现了杂多酸超分子化合物溶于适当有机溶剂中可表现出近晶相液晶行为.刘术侠等9以Dawson型砷钼酸、金刚烷胺为原料合成了超分子化合物(C10H18N)6As2Mo18O62·6CH3CN·8H2O,该化合物具有可逆的光致变色特性,并提出了一个可能变色机理.多胺类超分子化合物由于二氧四胺体系可有效地稳定如Cu(Ⅱ)和Ni(Ⅱ)等过渡金属离子的高价氧化态,若二氧四胺与荧光基团相连,则光敏物质荧光的猝灭或增强就与相连的二氧四胺配合物与光敏物质间是否发生电子转移密切相关,即通过金属离子可以调节荧光的猝灭或开启,起到光开关的作用.苏循成等10合成了8羟基喹啉取代的二氧四胺大环配体,其中含有2个独立的螯合基团,在适当情况下能分别与金属离子配位.大环冠醚由于其自组装性能及分子识别能力而引起人们广泛的重视.近来,冠醚又成为在超分子体系中用于建构主体分子的一种重要的建造单元.代写硕士论文李晖等11利用了冠醚分子的分子识别能力及蒽醌分子的光敏性,设计合成了一种新的氮杂冠醚取代蒽醌分子,并以该分子作为主体分子,以稀土离子作为客体构成超分子体系,并研究了超分子体系内的能量转移过程.卟啉类超分子化合物卟啉及其金属配合物、类似物的超分子功能已应用于生物相关物质分析,展示了更加诱人的前景,并将推动超分子络合物在分析化学中应用的深入开展.树状超分子化合物树状大分子(dendrimer)是20世纪80年代中期出现的一类较新的合成高分子.薄志山等12首次合成以阴离子卟啉作为树状分子的核,树状阳离子为外层,基于卟啉阴离子与树状阳离子之间静电作用力来组装树状超分子复合物.镧系金属离子(Ln3+)如Tb3+和Eu3+的发光具有长寿命(微秒级)、窄波长、对环境超灵敏性等特点,是一种优良的发光材料,但镧系金属离子在水溶液中只有很弱的发光.朱麟勇等13合成了聚醚型树枝体与聚丙烯酸线性聚合体的两亲杂化嵌段共聚物,研究表明聚醚树枝体通过对Tb3+能量传递,使Tb3+发光强度大幅度提高的“天线效应”.液晶类超分子化合物侧链液晶聚合物具有小分子液晶和高分子材料的双重特性,晏华在《超分子液晶》14中具体讨论了超分子和液晶的内在联系,探讨了超分子液晶分子工程和超分子液晶热力学.李敏等15从分子设计的角度出发,合成了以对硝基偶氮苯为介晶基团的丙烯酸类液晶聚合物,液晶基元上作为电子受体的硝基和作为电子给体的烷氧基可与苯环、NN之间形成一个离域的π电子体系.初步的研究表明:电晕极化制备的该类聚合物的取向膜具有二阶非线性光学性质.堪东中等16用4,4′-二羧酸1,6二酚氧基正己烷与等摩尔的4,4′-联吡啶合成了“T”型超分子液晶,并观察到随构筑“T”型介晶基元分子结构的变化,组装超分子体系由单向性液晶向稳定的双向性液晶转变的规律性.酞菁类超分子化合物田宏健等17合成了带负电荷取代基的中位四(4′-磺酸基苯基)卟啉及锌络合物和带正电荷取代基的2,9,16,23四(4′-N,N,N三甲基)苯氧基酞菁季铵碘盐及锌络合物,并用Job氏光度滴定的方法确定了它们的组成,为面对面的杂二聚体或三明治式的杂三聚体超分子排列.发现在超分子体系中卟啉与酞菁能互相猝灭各自的荧光,用纳秒级的激光闪光光解技术观察到卟啉的正离子在600~650nm和酞菁负离子自由基在550~600nm的瞬态吸收光谱.结果表明在超分子体系中存在分子间的光诱导电子转移过程.2超分子化合物的合成分子自组装近年来分子自组装作为一种新的化学合成方法倍受关注,代写医学论文尤其是分子尺寸在1~100nm的化合物,它们用常见的化学合成法一般很难得到.最近,Yan等18运用超分子自组装方法合成了长度达厘米级、直径达毫米级、管壁达400nm的管,成为超分子化学合成上的一个亮点.刘雅娟等19利用一对互补的分子组分5(4十二烷氧基苯乙烯基2,4,6(1H,3H)嘧啶三酮和4胺基2,6二十二烷基胺基1,3,5三嗪的自组装过程构筑了一种直径约为5μm的超分子纳米管.变温傅里叶红外光谱研究表明,在纳米管的形成过程中,氢键、π-π相互作用和范德华力等非共价键相互作用导致了超分子纳米管的形成.Reinhoudt等报道了最多具有47个钯配合物的有机金属树状分子,准弹性光散射实验(QELS)、原子力显微镜(AFM)和透射电镜(TEM)表明聚集体为直径200nm的圆球,Puddephatt合成了直到第4代的树状铂配合物(28个配位中心).模板合成1992年Mobil公司的科研人员首次利用阳离子型表面活性剂的超分子液晶模板,合成了有介孔结构的氧化硅和铝硅酸盐,其中最具有代表性的是有六方排列介孔孔道的MCM-4120.以环糊精(α-CD,β-CD,γ-CD)作为环的轮烷的合成及性能研究尤其引人注目.环糊精边缘是亲水的,内腔是疏水的,环糊精作为主体与疏水客体分子自我识别可形成轮烷.刘育21在以环糊精为受体的分子识别和组装方面做了深入的研究.Isnin等成功地合成了不对称的轮烷.分子一端为二甲基(二茂铁甲基)铵盐,另一端为萘2磺酸盐.Stoddart等用聚乙烯醇与α-CD作用,端基为2,4二硝基苯时,得到了含有20~23个α-CD的珍珠项链型轮烷.Stoddart等在室温下合成一系列的索烃.在室温下以二苯34冠10(BPP34CI0)作为模板得到了索烃,收率高达70%其他方法最近,赵朴素等运用密度泛涵B3LYP方法,在6-31G水平上设计优化了丁二酮肟与苯甲酸通过四重氢键构筑的异三体超分子,代写职称论文显示形成三聚体的反应可自发进行,实验合成出相关异三聚体23.赵士龙等24在水热条件下,合成了新型超分子化合物(bipyH2)2(H2P2Mo5O23).H2O,研究表明,杂多阴离子与质子化的4,4′-bipy和水分子通过氢键连成无限二维网状结构,形成超分子化合物.栾国有等25利用中温水热方法合成了化合物(H3NCH2CH2NH3)2(HPO4)2Mo5O15,并确定其构型为5个MoO6八面体通过共边和共角连接形成1个五元环,其环平面的上下两侧各有一组HPO4四面体通过共用3个O原子与Mo—O簇键合,并且H2P2Mo5O234-与H3NCH2CH2NH3通过强的氢键作用,形成一种新型的有机无机超分子杂化材料.3超分子化合物的应用在光化学上的应用Lehn等设计了专门用于光释放碱金属离子的穴醚,他们利用2硝基苄基醚充当一个大环的桥键,紫外光照可使此键断裂,形成单环化合物,后者对碱金属离子的络合能力大大下降.张海容等26发现在微量环已烷存在下,BCD可诱导BNS发射强的RTP.尹伟等27用Eu2+与邻菲咯啉(Phen)、2噻吩甲酰三氟丙酮(TTA)和联吡啶(Dpy)形成的四元、三元和二元系列配合物与上述2种分子筛组装成新的系列超分子纳米发光材料,并对它们的发光性能进行了比较.陈彰评28合成了卟啉冠醚4,4二甲基联吡啶超分子模型化合物.研究发现4,4二甲基联吡啶能很好地配合到卟啉与冠醚形成的空穴中去,在光照条件下,生成的卟啉激发态分子能很好地进行电子转移,形成了一个很好的光开关模型.在压电化学传感器的应用超分子化学的主客体适应原理,在压电化学传感器中得到广泛的应用.超分子用作压电化学传感器的敏感涂层,利用超分子的非凡空间结构,通过分子间的协同作用,对目标分子进行分子识别.代写留学生论文符合空间结构的分析物被选择性地吸附,可以明显提高压电化学传感器的选择性.利用多种冠醚衍生物作为QCM涂层测定有机蒸气,如传感器阵列、模式识别等,在二元、三元、四元有机蒸气混合物中识别,猜测结果较好,并用于定量分析.利用单苯15冠5(B15C5)、单苯18冠6(B18C6)、二苯30冠10(DB30C10)涂于TSM化学传感器电极表面,可对39种有机蒸气进行分析,其中B15C5(涂载量12mg)对甲酸的检出限为μg/L,并具有很宽的线性范围.Dickert等用涂BCD的QCM和SAW测定四氯乙烯,测定下限可达几个10-6(Y).以后,他们又用交联BCD作为QCM的涂层测定氯苯,大量的二乙醚存在时(二乙醚-氯苯的体积比为50000∶1),不干扰测定,线性范围10×10-6~500×10-6(Y),并用于监测Grignard反应终点.Nelli等用间苯二酚杯芳烃衍生物作QCM敏感涂层,对硝基苯有较高的选择性,在相对湿度高达90%和有H2,H2S,NO,SO2,CH4,n-C4H1O共存时不干扰测定.Dermody等用多种杯芳烃衍生物,在SAW石英表面分子自组装成双分子层,测定苯、氯苯、甲苯等.Pinalli等用间苯二酚杯芳烃衍生物,测定气相中酒精的含量,线性范围1×10-3~4×10-3(Y),重现性好.Malitesta等用分子印迹电合成聚合制备仿生QCM传感器.姚守拙等用咖啡因(CAF)作模板分子制成BAW传感器,对CAF的响应范围为×10-9~×10-4mol/L,在时检出限×10-9mol/L,回收率~超分子化合物的识别作用所谓分子识别就是主体(或受体)对客体(或底物)选择性结合并产生某种特定功能的过程,是组装及组装功能的基础,是酶和受体选择性的根基.互补性(complementarity)及预组织(preorganization)是决定分子识别过程的2个关键原则,前者决定识别过程的选择性,后者决定识别过程的键和能力.对羧酸根、磷酸根的识别研究目的主要在于探讨主体分子对氨基酸、肽、核苷酸等的识别,进而研究对肽、核酸的催化水解反应.大环多胺及其金属配合物能很好地识别羧酸根、磷酸根的主体分子.带吖啶基团的配合物,通过Zn2+配合物的超分子自组装可对对二甲酸进行选择性识别.假如在大环多胺环外还有可以配位的氨基,则它与Cu(Ⅱ)能形成更加稳定的配合物.化合物(结构见图1)与Co(Ⅲ)形成的配合物与PO43-能形成相当坚固的配合物.因为分子识别的目的,这是系统可以作为一个能使磷酸键合位置移动的新摸型超分子化合物作为分子器件方面的研究分子器件是一种由分子元件组装的体系(即超分子结构),它被设计成为在电子、离子或光子作用下能完成特定功能的体系.刘祁涛31用对苯二甲酸terph为配体,合成了Cu2(bpy)2(terph)Cl2·4H2O晶体,其中bpy为2,2′联吡啶.代写英语论文应用苯三甲酸(TMA)为配体可以合成Cu3(TMA)(H2O)3n配位超分子晶体,为由配体超分子的途径制造纳米级的孔材料、实现纳米反应器的设想提供了可能.8羟基喹啉、邻菲咯啉的许多金属配合物都具有荧光,且配合物稳定.把8羟基喹啉或邻菲咯啉引入大环,由于两者都具有独立的配位功能,可以形成稳定的超分子化合物,并进一步发展为光化学器件.超分子化合物在色谱和光谱上的应用顾玉宗等32利用LB技术,以二十碳酸作辅助成膜材料,在疏水处理的P-Si上分别制备了2,4,6,10和20层聚乙烯咔唑(PVK)超分子膜.对这种体系的表面光电压谱(SPS)研究结果表明,表面光电压随PVK膜层数的增加而增强,在紫外区增强较为明显,随着膜层数的增加,表面光电压有趋于饱和的趋势.膜对基底的敏化主要是由于PVK的光导电性引起的.杨扬等33成功地用高效液相色谱法分离了某些超分子化合物合成过程中间产物富电子对苯二酚聚醚链(HQ)系列产品.超分子催化及模拟酶的分析应用超分子的反应性和催化性,与酶对底物的识别和催化底物参加反应极相似.代写工作总结以模拟天然酶对底物的分子识别和高效催化活性为目的的模拟酶(或称人工酶)研究近十多年来是生物化学和有机化学的重要课题.其中对过氧化物模拟酶的分析应用研究非凡突出.慈云祥等将氨基酸、蛋白质、核酸,对某些金属卟啉的模拟酶活性的影响加以应用,并结合免疫分析技术,建立模拟酶作示踪物的酶免疫分析方法,或以模拟酶作非放射性探针标记物建立核酸序列分析方法在分析化学上的应用Shinkai等在研究硼酸衍生化卟啉的分子组装行为,并用于测定糖分子构型方面取得了许多成果.例如:四(4硼酸基苯基)卟啉(TBPP)在水溶液中和糖分子存在下由π-π堆积成的聚集体,圆二色谱(CD)的激子偶合带(ECB)符号,对糖分子的绝对构型有专一性,可检测糖分子的绝对构型等等结语目前,超分子化学的理论和方法正发挥着越来越重要的作用,该学科的研究将更加紧密地与各化学分支相结合.可以预见,作为超分子化学起源的主客体化学将与有机合成化学、配位化学和生物化学互相促进,为生命科学、能源科学等共同做出巨大贡献;超分子化学方法在无机化学中的应用,代写留学生论文将使人们获得多种具特定功能的配合物、晶体、陶瓷等材料;物理化学则要改变当前超分子化学的定性科学现状,从微观和宏观上把选择性分子间力、分子识别、分子自组装等过程用适当的变量进行定量描述,从而提高人们对超分子化学的熟悉和猜测、控制能力,最终要寻求解释超分子体系内在运动规律和预言此类体系整体功能的理论工具2.参考文献:1吴世康.超分子光化学前景J.感光化学与光化学,1994,12(4):孙得志,朱兰英,宋兴民.超分子化学、选择性分子间力和若干化学研究领域J.聊城师院学报(自然科学版),1998,11(2):王恩波,胡长文,许林.多酸化学导论M.北京:化学工业出版社,杜丹,关晓凤,崔仁发,等.Dawson型磷钼杂多酸对苯二酚超分子膜电极电化学性能的研究J.湖北大学学报(自然科学版),2001,23(1):杜丹,王升富,黄春保.吡啶2Dawson型磷钼杂多酸超分子薄膜修饰电极分析J.测试学报,2001,20(4):靳素荣,姚礼峰.9钨磷酸/结晶紫超分子化合物的合成及表征J.合成化学,2001,9(3):王升富,杜丹,邹其超.磷钼杂多酸L半胱氨酸自组装超分子膜电极对亚硝酸根电催化还原的研究J.分析化学,2002,30(2):毕丽华,黄如丹,王恩波,等.多酸超分子化合物的合成及液晶性质J.高等学校化学学报,1999,20(9):刘术侠,王春梅,李德惠,等.一个新的超分子化合物(C10H18N)As2Mo18O62·6CH3CN·8H2O的合成、结构及性质J.化学学报,2004,62(14):苏循成,周志芬,林华宽,等.功能取代二氧四胺大环超分子配合物的溶液热力学性质研究J.南开大学学报(自然科学版),2000,33(4):李晖,许慧君,周庆复.冠醚取代蒽醌超分子体系的设计与合成及分子的能量转移的研究J.感光科学与光化学,2002,18(1):薄志山,张希,杨梅林.基于静电吸引的自组装树状超分子复合物J.高等学校化学学报,1997,18(2):朱麟勇,童晓峰,李妙贞,等.嵌段共聚物PAANa2DendrPE聚集体超分子结构中树枝体对铽离子发光增强的天线效应研究J.感光科学与光化学,2000,18(2):晏华.超分子液晶M.北京:科学出版社,李敏,周恩乐,徐纪平.含对硝基偶氮苯侧基的丙烯酸酯类液晶聚合物的超分子结构J.高等学校化学学报,1995,16(4):堪东中,万雷,方江邻,等.二元羧酸与4,4′联吡啶氢键缔合组装主链型超分子液晶J.高分子学报,2002,(6):田宏健,周庆复,沈淑引.酞菁卟啉超分子的形成及光致电子转移过程J.物理化学学报,1996,12(1):,ZHOUYong2feng,,2004,303(2):刘雅娟,吕男,杨文胜.一种超分子纳米管的变温红外光谱研究J.分子科学学报,2001,17(3):王彤文,戴乐蓉.混合超分子液晶模板法合成六方介孔相含钛氧化钴J.物理化学学报,2001,17(1):10-14.
中文摘要论述了PVC的结构性能。PVC可分为软PVC和硬PVC。其中硬PVC大约占市场的2/3,软PVC占1/3。软PVC一般用于地板、天花板以及皮革的表层,但由于软PVC中含有柔软剂(这也是软PVC与硬PVC的区别),容易变脆,不易保存,所以其使用范围受到了局限。硬PVC不含柔软剂,因此柔韧性好,易成型,不易脆,无毒无污染,保存时间长,因此具有很大的 开发应用价值。PVC的本质是一种真空吸塑膜,用于各类面板的表层包装,所以又被称为装饰膜、附胶膜,应用于建材、包装、医药等诸多行业。其中建材行业占的比重最大,为60%,其次是包装行业,还有其他若干小范围应用的行业。由于PVC树脂具有耐氧化、耐火等特性,易成型,价格合理,现在也广泛用于电缆外护套的生产,在电缆电线行业应用广泛。我公司用的PVC树脂型号是H-70和ZH-70(阻燃型),由于PVC的结构比较稳定、在生产中和应用中没有任何污染,所以在生产中应用广泛。在电缆中还有很多材料都是高分子材料,电缆线芯中间我们用的一种填充材料是网状聚丙烯,用于衬托电缆的圆整性。绕包时用的是一种聚酯带,它具有强度高,耐火等特性。所以说高分子材料它是当今世界上深受喜爱、颇为流行并且也被广泛应用的一种合成材料。 关键词: 应用广泛、耐老化、耐氧化、耐火、结构稳定、易成型、柔韧性好、无污染、价格合理、
1、 塑料管应用现状研究 摘要:主要介绍了塑料管应用现状和生产现状。本世纪50年代以后,随着石油化学工业的飞速发展,石油深加工技术日趋完善,塑料制品种类多样化,产量迅速增长,使之逐步发展成为一种新型工程材料。塑料管和传统管材相... 类别:材料工程学 作者::佚名 日期:2008-02-07 [查看详细] 2、 试论各种塑料管道的特点及应用 摘要:简明介绍硬聚氯乙烯管(UPVC)、芯层发泡管(PSP)、硬聚氯乙烯消音管、塑料波纹管、氯化聚氯乙烯管(CPVC)、高密度取乙烯管(HDPE)、交联聚乙烯管(PEX)、钢塑复合管、铝塑复合管(PA... 类别:材料工程学 作者::王乐农 日期:2008-02-07 [查看详细] 3、 塑料光纤传光原理 摘要:塑料光纤POF之所以能传光是因为光纤具有芯皮结构,光在POF中传输是按全反射原理进行的,光在SIPOF中的传输方式为全反射式锯齿型,光在GIPOF中的传输方式为正弦曲线型;子午线就是光线的传播路...
关键词:超高分子 量聚乙烯 工程塑料1 引言UHMWPE是一种线型结构的具有优异综合性能的热塑性工程塑料。世界上最早由美国Allied Chemical公司于1957年实现工业化,此后德国Hoechst公司、美国Hercules公司、日本三井石油化学公司等也投入工业化生产。我国上海高桥化工厂于1964年最早研制成功并投入工业生产,70年代后期又有广州塑料厂和北京助剂二厂投入生产。限于当时条件,产物分子量约150万左右,随着工艺技术的进步,目前北京助剂二厂的产品分子量可达100万~300万以上。UHMWPE的发展十分迅速,80年代以前,世界平均年增长率为,进入80年代以后,增长率高达15%~20%。而我国的平均年增长率在30%以上。1978年世界消耗量为12,000~12,500吨,而到1990年世界需求量约5万吨,其中美国占70%。UHMWPE平均分子量约35万~800万,因分子量高而具有其它塑料无可比拟的优异的耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能。而且,UHMWPE耐低温性能优异,在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。UHMWPE优异的物理机械性能使它广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。另外,由于UHMWPE优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节等在临床医学上使用。2 UHMWPE的成型加工由于UHMWPE熔融状态的粘度高达108Pa*s,流动性极差,其熔体指数几乎为零,所以很难用一般的机械加工方法进行加工。近年来,UHMWPE的加工技术得到了迅速发展,通过对普通加工设备的改造,已使UHMWPE由最初的压制-烧结成型发展为挤出、吹塑和注射成型以及其它特殊方法的成型。 一般加工技术(1)压制烧结压制烧结是UHMWPE最原始的加工方法。此法生产效率颇低,易发生氧化和降解。为了提高生产效率,可采用直接电加热法〔1〕;另外,Werner和Pfleiderer公司开发了一种超高速熔结加工法〔2〕,采用叶片式混合机,叶片旋转的最大速度可达150m/s,使物料仅在几秒内就可升至加工温度。(2)挤出成型挤出成型设备主要有柱塞挤出机、单螺杆挤出机和双螺杆挤出机。双螺杆挤出多采用同向旋转双螺杆挤出机。60年代大都采用柱塞式挤出机,70年代中期,日、美、西德等先后开发了单螺杆挤出工艺。日本三井石油化学公司最早于1974年取得了圆棒挤出技术的成功。北京化工大学于1994年底研制出Φ45型UHMWPE专用单螺杆挤出机,并于1997年取得了Φ65型单螺杆挤出管材工业化生产线的成功。(3)注塑成型日本三井石油化工公司于1974年开发了注塑成型工艺,并于1976年实现了商业化,之后又开发了往复式螺杆注塑成型技术。1985年美国Hoechst公司也实现了UHMWPE的螺杆注塑成型工艺。北京塑料研究所1983年对国产XS-ZY-125A型注射机进行了改造,成功地注射出啤酒罐装生产线用UHMWPE托轮、水泵用轴套,1985年又成功地注射出医用人工关节等。(4)吹塑成型UHMWPE加工时,当物料从口模挤出后,因弹性恢复而产生一定的回缩,并且几乎不发生下垂现象,故为中空容器,特别是大型容器,如油箱、大桶的吹塑创造了有利的条件。UHMWPE吹塑成型还可导致纵横方向强度均衡的高性能薄膜,从而解决了HDPE薄膜长期以来存在的纵横方向强度不一致,容易造成纵向破坏的问题。 特殊加工技术 冻胶纺丝以冻胶纺丝—超拉伸技术制备高强度、高模量聚乙烯纤维是70年代末出现的一种新颖纺丝方法。荷兰DSM公司最早于1979年申请专利,随后美国Allied公司、日本与荷兰联合建立的Toyobo-DSM公司、日本Mitsui公司都实现了工业化生产。中国纺织大学化纤所从1985年开始该项目的研究,逐步形成了自己的技术,制得了高性能的UHMWPE纤维〔3〕。UHMWPE冻胶纺丝过程简述如下:溶解UHMWPE于适当的溶剂中,制成半稀溶液,经喷丝孔挤出,然后以空气或水骤冷纺丝溶液,将其凝固成冻胶原丝。在冻胶原丝中,几乎所有的溶剂被包含其中,因此UHMWPE大分子链的解缠状态被很好地保持下来,而且溶液温度的下降,导致冻胶体中UHMWPE折叠链片晶的形成。这样,通过超倍热拉伸冻胶原丝可使大分子链充分取向和高度结晶,进而使呈折叠链的大分子转变为伸直链,从而制得高强度、高模量纤维。UHMWPE纤维是当今世界上第三代特种纤维,强度高达,比强度是化纤中最高的,又具有较好的耐磨、耐冲击、耐腐蚀、耐光等优良性能。它可直接制成绳索、缆绳、渔网和各种织物:防弹背心和衣服、防切割手套等,其中防弹衣的防弹效果优于芳纶。国际上已将UHMWPE纤维织成不同纤度的绳索,取代了传统的钢缆绳和合成纤维绳等。UHMWPE纤维的复合材料在军事上已用作装甲兵器的壳体、雷达的防护外壳罩、头盔等;体育用品上已制成弓弦、雪橇和滑水板等。 润滑挤出(注射)润滑挤出(注射)成型技术是在挤出(注射)物料与模壁之间形成一层润滑层,从而降低物料各点间的剪切速率差异,减小产品的变形,同时能够实现在低温、低能耗条件下提高高粘度聚合物的挤出(注射)速度。产生润滑层的方法主要有两种:自润滑和共润滑。(1)自润滑挤出(注射)UHMWPE的自润滑挤出(注射)是在其中添加适量的外部润滑剂,以降低聚合物分子与金属模壁间的摩擦与剪切,提高物料流动的均匀性及脱模效果和挤出质量。外部润滑剂主要有高级脂肪酸、复合脂、有机硅树脂、石腊及其它低分子量树脂等。挤出(注射)加工前,首先将润滑剂同其它加工助剂一起混入物料中,生产时,物料中的润滑剂渗出,形成润滑层,实现自润滑挤出(注射)。有专利报道〔4〕:将70份石蜡油、30份UHMWPE和1份氧相二氧化硅(高度分散的硅胶)混合造粒,在190℃的温度下就可实现顺利挤出(注射)。(2)共润滑挤出(注射)UHMWPE的共润滑挤出(注射)有两种情况,一是采用缝隙法〔5、6〕将润滑剂压入到模具中,使其在模腔内表面和熔融物料间形成润滑层;二是与低粘度树脂共混,使其作为产物的一部分(详见)。如:生产UHMWPE薄板时,由定量泵向模腔内输送SH200有机硅油作润滑剂,所得产品外观质量有明显提高,特别是由于挤出变形小,增加了拉伸强度。 辊压成型〔1〕辊压成型是一种固态加工方法,即在UHMWPE的熔点以下对其施加一很大的压力,通过粒子形变,有效地将粒子与粒子融合。主要设备是一带有螺槽的旋转轮和一带有舌槽的弓形滑块,舌槽与螺槽垂直。在加工过程中有效地利用了物料与器壁之间的摩擦力,产生的压力足够使UHMWPE粒子发生形变。在机座末端装有加热支台,经过模口挤出物料。如将此项辊压装置与挤压机联用,可使加工过程连续化。 热处理后压制成型〔8〕把UHMWPE树脂粉末在140℃~275℃之间进行1min~30min的短期加热,发现UHMWPE的某些物理性能出人意料地大大改善。用热处理过的UHMWPE粉料压制出的制品和未热处理过的UHMPWE制品相比较,前者具有更好的物理性能和透明性,制品表面的光滑程度和低温机械性能大大提高了。 射频加工〔9〕采用射频加工UHMWPE是一种崭新的加工方法,它是将UHMWPE粉末和介电损耗高的炭黑粉末均匀混合在一起,用射频辐照,产生的热可使UHMWPE粉末表面发生软化,从而使其能在一定压力下固结。用这种方法可在数分钟内模压出很厚的大型部件,其加工效率比目前UHMWPE常规模压加工高许多倍。 凝胶挤出法制备多孔膜〔10〕将UHMWPE溶解在挥发溶剂中,连续挤出,然后经一个热可逆凝胶/结晶过程,使其成为一种湿润的凝胶膜,蒸除溶剂使膜干燥。由于已形成的骨架结构限制了凝胶的收缩,在干燥过程中产生微孔,经双轴拉伸达到最大空隙率而不破坏完整的多孔结构。这种材料可用作防水、通氧织物和耐化学品服装,也可用作超滤/微量过滤膜、复合薄膜和蓄电池隔板等。与其它方法相比,由此法制备的多孔UHMWPE膜具有最佳的孔径、强度和厚度等综合性能。3 UHMWPE的改性 物理机械性能的改进与其它工程塑料相比,UHMWPE具有表面硬度和热变形温度低、弯曲强度以及蠕变性能较差等缺点。这是由于UHMWPE的分子结构和分子聚集形态造成的,可通过填充和交联的方法加以改善。 填充改性采用玻璃微珠、玻璃纤维、云母、滑石粉、二氧化硅、三氧化二铝、二硫化钼、炭黑等对UHMWPE进行填充改性,可使表面硬度、刚度、蠕变性、弯曲强度、热变形温度得以较好地改善。用偶联剂处理后,效果更加明显。如填充处理后的玻璃微珠,可使热变形温度提高30℃。玻璃微珠、玻璃纤维、云母、滑石粉等可提高硬度、刚度和耐温性;二硫化钼、硅油和专用蜡可降低摩擦因数,从而进一步提高自润滑性;炭黑或金属粉可提高抗静电性和导电性以及传热性等。但是,填料改性后冲击强度略有下降,若将含量控制在40%以内,UHMWPE仍有相当高的冲击强度。 交联交联是为了改善形态稳定性、耐蠕变性及环境应力开裂性。通过交联,UHMWPE的结晶度下降,被掩盖的韧性复又表现出来。交联可分为化学交联和辐射交联。化学交联是在UHMWPE中加入适当的交联剂后,在熔融过程中发生交联。辐射交联是采用电子射线或γ射线直接对UHMWPE制品进行照射使分子发生交联。UHMWPE的化学交联又分为过氧化物交联和偶联剂交联。(1)过氧化物交联过氧化物交联工艺分为混炼、成型和交联三步。混炼时将UHMWPE与过氧化物熔融共混,UHMWPE在过氧化物作用下产生自由基,自由基偶合而产生交联。这一步要保证温度不要太高,以免树脂完全交联。经过混炼后得到交联度很低的可继续交联型UHMWPE,在比混炼更高的温度下成型为制件,再进行交联处理。UHMWPE经过氧化物交联后在结构上与热塑性塑料、热固性塑料和硫化橡胶都不同,它有体型结构却不是完全交联,因此在性能上兼有三者的特点,即同时具有热可塑性和优良的硬度、韧性以及耐应力开裂等性能。国外曾报道用2,5-二甲基-2,5双过氧化叔丁基己炔-3作交联剂〔11〕,但国内很难找到。清华大学用廉价易得的过氧化二异丙苯(DCP)作为交联剂进行了研究〔12〕,结果发现:DCP用量小于1%时,可使冲击强度比纯UHMWPE提高15%~20%,特别是DCP用量为时,冲击强度可提高48%。随DCP用量的增加,热变形温度提高,可用于水暖系统的耐热管道。(2)偶联剂交联UHMWPE主要使用两种硅烷偶联剂:乙烯基硅氧烷和烯丙基硅氧烷,常用的有乙烯基三甲氧基硅烷和乙烯基三乙氧基硅烷。偶联剂一般要靠过氧化物引发,常用的是DCP,催化剂一般采用有机锡衍生物。硅烷交联UHMWPE的成型过程首先是使过氧化物受热分解为化学活性很高的游离基,这些游离基夺取聚合物分子中的氢原子使聚合物主链变为活性游离基,然后与硅烷产生接枝反应,接枝后的UHMWPE在水及硅醇缩合催化剂的作用下发生水解缩合,形成交联键即得硅烷交联UHMWPE。(3)辐射交联在一定剂量电子射线或γ射线作用下,UHMWPE分子结构中的一部分主链或侧链可能被射线切断,产生一定数量的游离基,这些游离基彼此结合形成交联链,使UHMWPE的线型分子结构转变为网状大分子结构。经一定剂量辐照后,UHMWPE的蠕变性、浸油性和硬度等物理性能得到一定程度的改善。用γ射线对人造UHMWPE关节进行辐射,在消毒的同时使其发生交联,可增强人造关节的硬度和亲水性,并且使耐蠕变性得以提高〔13〕,从而延长其使用寿命。有研究〔14〕表明,将辐照与PTFE接枝相结合,也可改善UHMWPE的磨损和蠕变行为。这种材料具有组织容忍性,适于体内移植。 加工性能的改进UHMWPE树脂的分子链较长,易受剪切力作用发生断裂,或受热发生降解。因此,较低的加工温度,较短的加工时间和降低对它的剪切是非常必要的。为了解决UHMWPE的加工问题,除对普通成型机械进行特殊设计外,还可对树脂配方进行改进:与其它树脂共混或加入流动改性剂,使之能在普通挤出机和注塑机上成型加工,这就是中介绍的润滑挤出(注射)。 共混改性共混法改善UHMWPE的熔体流动性是最有效、最简便和最实用的途径。目前,这方面的技术多见于专利文献。共混所用的第二组份主要是指低熔点、低粘度树脂,有LDPE、HDPE、PP、聚酯等,其中使用较多的是中分子量PE(分子量40万~60万)和低分子量PE(分子量<40万)。当共混体系被加热到熔点以上时,UHMWPE树脂就会悬浮在第二组份树脂的液相中,形成可挤出、可注射的悬浮体物料。(1)与低、中分子量PE共混UHMWPE与分子量低的LDPE(分子量1,000~20,000,以5,000~12,000为最佳)共混可使其成型加工性获得显著改善,但同时会使拉伸强度、挠曲弹性等力学性能有所下降。HDPE也能显著改善UHMWPE的加工流动性,但也会引起冲击强度、耐摩擦等性能的下降。为使UHMWPE共混体系的力学性能维持在一较高水平,一个有效的补偿办法是加入PE成核剂,如苯甲酸、苯甲酸盐、硬脂酸盐、己二酸盐等,可以借PE结晶度的提高,球晶尺寸的微细均化而起到强化作用,从而有效阻止机械性能的下降。有专利〔15〕指出,在UHMWPE/HDPE共混体系中加入很少量的细小的成核剂硅灰石(其粒径尺寸范围5nm~50nm,表面积100m2/g~400m2/g),可很好地补偿机械性能的降低。(2)共混形态UHMWPE的化学结构虽然与其它品种的PE相近,但在一般的熔混设备和条件下,它们的共混物都难以形成均匀的形态,这可能与组份之间粘度相差悬殊有关。采用普通单螺杆混炼得到的UHMWPE/LDPE共混物,两组份各自结晶,不能形成共晶,UHMWPE基本上以填料形式分散于LDPE基体中。熔体长时间处理和使用双辊炼塑机混炼,两组份之间作用有所加强,性能亦有进一步的改善,不过仍不能形成共晶的形态。Vadhar发现〔16〕,当采用两步共混法,即先在高温下将UHMWPE熔融,再降到较低温度下加入LLDPE进行共混,可获得形成共晶的共混物。Vadher用溶液共混法也得到了能形成共晶的UHMWPE/LLDPE共混物。(3)共混物的力学强度对于未加成核剂的UHMWPE/PE体系,其在冷却过程中会形成较大的球晶,球晶之间存在着明显的界面,而在这些界面上存在着由分子链排布不同引起的内应力,由此会导致裂纹的产生,所以与基体聚合物相比,共混物的拉伸强度常常有所下降。当受到外力冲击时裂纹会很快地沿球晶界面发展而导致最后的破碎,因此又引起冲击强度的下降。 流动改进剂改性流动改进剂促进了长链分子的解缠,并在大分子之间起润滑作用,改变了大分子链间的能量传递,从而使得链段位移变得容易,改善了聚合物的流动性。用于UHMWPE的流动改进剂主要是指脂肪族碳氢化合物及其衍生物。其中脂肪族碳氢化合物有:碳原子数在22以上的n-链烷烃及以其作主成分的低级烷烃混合物;石油分裂精制得到的石蜡等。其衍生物是指末端含有脂肪族烃基、内部含有1个或1个以上(最好为1个或2个)羧基、羟基、酯基、羰基、氮基甲酰基、巯基等官能团;碳原子数大于8(最好为12~50)并且分子量为130~2000(以200~800为最佳)的脂肪酸、脂肪醇、脂肪酸酯、脂肪醛、脂肪酮、脂肪族酰胺、脂肪硫醇等。举例来说,脂肪酸有:癸酸、月桂酸、肉豆蔻酸、棕榈酸、硬酯酸、油酸等。北京化工大学制备了一种有效的流动剂(MS2)〔17〕,添加少量(~)就能显著改善UHMWPE的流动性,使其熔点下降达10℃之多,能在普通注塑机上注塑成型,而且拉伸强度仅有少许降低。另外,用苯乙烯及其衍生物改性UHMWPE,除可改善加工性能使制品易于挤出外,还可保持UHMWPE优良的耐摩擦性和耐化学腐蚀性〔18〕;1,1-二苯基乙炔〔19〕、苯乙烯衍生物〔20〕、四氢化萘〔21〕皆可使UHMWPE获得优良的加工性能,同时使材料具有较高的冲击强度和耐磨损性。 液晶高分子原位复合材料液晶高分子原位复合材料是指热致液晶高分子(TLCP)与热塑性树脂的共混物,这种共混物在熔融加工过程中,由于TLCP分子结构的刚直性,在力场作用下可自发地沿流动方向取向,产生明显的剪切变稀行为,并在基体树脂中原位就地形成具有取向结构的增强相,即就地成纤,从而起到增强热塑性树脂和改善加工流动性的作用。清华大学赵安赤等采用原位复合技术,对UHMWPE加工性能的改进取得了明显的效果〔22〕。用TLCP对UHMWPE进行改性,不仅提高了加工时的流动性,采用通常的热塑加工工艺及通用设备就能方便地进行加工,而且可保持较高的拉伸强度和冲击强度,耐磨性也有较大提高。 聚合填充型复合材料高分子合成中的聚合填充工艺是一种新型的聚合方法,它是把填料进行处理,使其粒子表面形成活性中心,在聚合过程中让乙烯、丙烯等烯烃类单体在填料粒子表面聚合,形成紧密包裹粒子的树脂,最后得到具有独特性能的复合材料。它除具有掺混型复合材料性能外,还有自己本身的特性:首先是不必熔融聚乙烯树脂,可保持填料的形状,制备粉状或纤维状的复合材料;其次,该复合材料不受填料/树脂组成比的限制,一般可任意设定填料的含量;另外,所得复合材料是均匀的组合物,不受填料比重、形状的限制。与热熔融共混材料相比,由聚合填充工艺制备的UHMWPE复合材料中,填料粒子分散良好,且粒子与聚合物基体的界面结合也较好。这就使得复合材料的拉伸强度、冲击强度与UHMWPE相差不大,却远远好于共混型材料,尤其是在高填充情况下,对比更加明显,复合材料的硬度、弯曲强度,尤其是弯曲模量比纯UHMWPE提高许多,尤其适用作轴承、轴座等受力零部件。而且复合材料的热力学性能也有较好的改善:维卡软化点提高近30℃,热变形温度提高近20℃,线膨胀系数下降20%以上。因此,此材料可用于温度较高的场合,并适于制造轴承、轴套、齿轮等精密度要求高的机械零件。采用聚合填充技术还可通过向聚合体系中通入氢或其它链转移剂,控制UHMWPE分子量大小,使得树脂易加工〔23〕。美国专利〔24〕用具有酸中性表面的填料:水化氧化铝、二氧化硅、水不溶性硅酸盐、碳酸钙、碱式碳酸铝钠、羟基硅灰石和磷酸钙制成了高模量的均相聚合填充UHMWPE复合材料。另有专利〔25〕指出,在60℃,且有催化剂存在的条件下,使UHMWPE在庚烷中干燥的 氧化铝表面聚合,可得到高模量的均相复合材料。齐鲁石化公司研究院分别用硅藻土、高岭土作为填料合成了UHMWPE复合材料〔26〕。 UHMWPE的自增强〔27、28〕在UHMWPE基体中加入UHMWPE纤维,由于基体和纤维具有相同的化学特征,因此化学相容性好,两组份的界面结合力强,从而可获得机械性能优良的复合材料。UHMWPE纤维的加入可使UHMWPE的拉伸强度和模量、冲击强度、耐蠕变性大大提高。与纯 UHMWPE相比,在UHMWPE中加入体积含量为60%的UHMWPE纤维,可使最大应力和模量分别提高160%和60%。这种自增强的UHMWPE材料尤其适用于生物医学上承重的场合,而用于人造关节的整体替换是近年来才倍受关注的,UHMWPE自增强材料的低体积磨损率可提高人造关节的使用寿命。4 UHMWPE的合金化UHMWPE除可与塑料形成合金来改善其加工性能外(见和),还可获得其它性能。其中,以PP/UHMWPE合金最为突出。通常聚合物的增韧是在树脂中引入柔性链段形成复合物(如橡塑共混物),其增韧机理为“多重银纹化机理”。而在PP/UHMWPE体系,UHMWPE对PP有明显的增韧作用,这是“多重裂纹”理论所无法解释的。国内最早于1993年报道采用UHMWPE增韧PP取得成功,当UHMWPE的含量为15%时,共混物的缺口冲击强度比纯PP提高2倍以上〔29〕。最近又有报道,UHMWPE与含乙烯链段的共聚型PP共混,在UHMWPE的含量为25%时,其冲击强度比PP提高一倍多〔30〕。以上现象的解释是“网络增韧机理”〔31〕。PP/UHMWPE共混体系的亚微观相态为双连续相,UHMWPE分子与长链的PP分子共同构成一种共混网络,其余PP构成一个PP网络,二者交织成为一种“线性互穿网络”。其中共混网络在材料中起到骨架作用,为材料提供机械强度,受到外力冲击时,它会发生较大形变以吸收外界能量,起到增韧的作用;形成的网络越完整,密度越大,则增韧效果越好。为了保证“线性互穿网络”结构的形成,必须使UHMWPE以准分子水平分散在PP基体中,这就对共混方式提出了较高的要求。北京化工大学有研究发现:四螺杆挤出机能将UHMWPE均匀地分散在PP基体中,而双螺杆挤出机的共混效果却不佳。EPDM能对PP/UHMWPE合金起到增容的作用。由于EPDM具备的两种主要链节分别与PP和UHMWPE相同,因而与两种材料都有比较好的亲合力,共混时容易分散在两相界面上。EPDM对复合共晶起到插入、分割和细化的作用,这对提高材料的韧性是有益的,能大幅度地提高缺口冲击强度。另外,UHMWPE也可与橡胶形成合金,获得比纯橡胶优良的机械性能,如耐摩擦性、拉伸强度和断裂伸长率等。其中,橡胶是在混合过程中于UHMWPE的软化点以上进行硫化的。5 UHMWPE的复合化UHMWPE可与各种橡胶(或橡塑合金)硫化复合制成改性PE片材,这些片材可进一步与金属板材制成复合材料。除此之外,UHMWPE还可复合在塑料表面以提高耐冲击性能。在UHMWPE软化点以上的温度条件下,将含有硫化剂的未硫化橡胶片材与UHMWPE片材压制在一起,可制得剥离强度较高的层合制品,与不含硫化剂的情况相比,其剥离强度可提高数十倍。用这种方法同样可使未硫化橡胶与塑料的合金(如EPDM/PA6、EPDM/PP、SBR/PE)和UHMWPE片材牢固地粘接在一起。参考文献:〔1〕 钟玉荣,卢鑫华.塑料〔J〕,1991,20(1):30〔2〕 孙大文.塑料加工应用〔J〕,1983(5):1〔3〕 杨年慈.合成纤维工业〔J〕,1991,14(2):48〔4〕 JP 63,161,075〔P〕〔5〕 .〔J〕,1981,27(1):8
关于在珠海市斗门塑料编织厂的实践报告“实践”是件听起来轻松,实则却“蕴味”十足,甚至意义深刻的事。实践能使你已成的“惯性”和被特定环境“保护”的生活重新增添一些色彩,确切地说,这是一个“过程”,过程中夹杂着忙与快乐。 “万事开头难”这话一点儿也不假,虽然我参与实践的时间不长,但求职之路的艰辛和求到职之后的茫然让我感叹市场竞争的激烈,感悟到了生活的艰辛。一、实践过程电脑绣花用的是编程,但我不会。况且也不需要暑期打零工的。整理东西,每天在劳累中度过。学不到一点知识。学的最多的可能是对人生的一份坦然,不得以我放弃了这份工作。每天感叹生活的单调与乏味,却不想依靠父母的帮助。哀叹啊,哀叹。奔波了好多天之后,我找到了一份真正意义上的暑期社会实践单位。珠海市斗门塑料编织厂。厂长姓张,人很可亲。清瘦显得他活力无限。我跟他说,我学的是工商专业,但没学过什么专业课程,我还顺便提及辅修过市场营销这门课程。他顿了顿,想了想说,我这儿的机器上有很多针,各种各样的型号都有,分类很严密。有时是大的一排,有时是小的一排,大小有时又要交错相差。这样吧,我先把你安排到拌料间,去学习一下材料的分配和用料的安全。然后去销售部门吧。我点了点头,同意了。第二天一大早,我就跟着张厂长来到了拌料车间,车间里堆满了聚乙烯颗粒。张厂长领了我来到一个姓赵的师傅面前说,赵师傅,这是来参加暑期社会实践的,您就好好照顾照顾吧。我站在那儿,盯着赵师傅熟练的忙碌着,一袋袋的原料按不同的比例被投放到了搅拌机里。我沉默着,虽然我知道“沉默是金”,但此时此刻却是一块没有光泽的石头。我依然沉默着。等到那师傅忙完后,他给我讲起了塑料业的发展,塑料的降解功能。塑料是一个新兴行业,发展时间还不长。但目前随着塑料制品的日益增多,“白色污染”也越来越严重。而21世纪又是一个环保世纪,为了保护我们的家园,全世界都对塑料行业提出了一个严峻的问题,就是生产出来的塑料产品尽量是环保的,可降解的。连我们厂也都要这样。现在中国的普通老百姓还在追求价的廉宜和结实度,而国外却都已向环保靠拢了。你看那个塑料厂已被国外退回了好多产品,就是因为产品的质量不合格,无环保性能,不可降解。降解塑料与同类的普通塑料具有相当或相近的应用性能和卫生性能,在完成其使用功能后,能在自然环境条件下较快地降解。成为易广泛被吸收的碎末。并随着时间的推移进一步降解成为CO2和水。但从总体而言,当前降解塑料还处于技术阶段,有待于进一步深化研究,工艺进一步完善。并致力于提高性能,降解成本,拓宽用途和逐步推向市场化进程中。目前,已初步明确,聚乙烯是可生物降解的。且在聚乙烯中加入改良性淀粉后可提高其生物降解性。其基本的降解机理是可降解的。塑料制品中所含的淀粉在短期内被土壤中的微生物分泌的酶迅速降解而生成空洞,导致制品的力学性能下降。并伴随着空洞的形成,表面积扩大,从而增大与土壤的接触面;同时配方中还添加了氧化剂和土壤的金属盐。反应生成过氢氧化物。这些将导致聚乙烯链的断裂而降解成为易被微生物吞噬的低分子化合物。最终回到生物圈,进入自然循环。我惊讶极了,一个小小的师傅竟然懂的那么多,中国加入了WTO,不止企业的管理人员,连师傅也加入了经济发展的行业中,步伐真快啊。我实践的那家单位虽小,但却为我们的社会创造了不少的财富,若不论财富,那它毕竟为我们提供了若干个岗位,一个企业“以人为本”,人人都把其当作是自己的一部分,那企业的魅力是怎样的大啊。二、实践心得和体会暑期的实践生活虽然不长,只有那仅仅的3周,但却为我的人生刻下了一段铭心的经历。我不知道别人是如何看待这次的实践生活,但对我来说却是意义非凡的。使我在享受生活的同时也品尝到了生活的艰辛。想要经营一个企业不是容易的,靠蛮劲和热血是无法解决的,谁能保证这些有效期有多长。可以说,近1个月的工作使我成长了不少,从中有不少感悟,下面就是我的一点心得:第一是要真诚:你可以伪装你的面孔你的心,但绝不可以忽略真诚的力量。第一天去服务部实习,心里不可避免的有些疑惑:不知道师傅怎么样,应该去怎么做啊,要去干些什么等等!踏进公司的办公室,只见几个陌生的脸孔用莫名而疑惑的眼神看着我。我微笑着和他们打招呼,尴尬的局面立刻得到了缓解,大家多很友善的微笑欢迎我的到来。从那天起,我养成了一个习惯,每天早上见到他们都要微笑的说声:“师傅早”,那是我心底真诚的问候。我总觉得,经常有一些细微的东西容易被我们忽略,比如轻轻的一声问候,但它却表达了对老师同事对朋友的尊重关心,也让他人感觉到被重视与被关心。仅仅几天的时间,我就和师傅们打成一片,很好的跟他们交流沟通学习,我想,应该是我的真诚,换得了老师的信任。他们把我当朋友也愿意指导我,愿意分配给我任务。 第二是沟通:要想在短暂的实习时间内,尽可能多的学一些东西,这就需要跟师傅有很好的沟通,加深彼此的了解,刚到销售部,师傅并不了解你的工作学习能力,不清楚你会做哪些工作,不清楚你想了解什么样的知识,所以跟师傅建立起很好的沟通是很必要的。同时我觉得这也是我们将来走上社会的一把不可获缺的钥匙。通过沟通了解,师傅我有了大体的了解,一边有针对性的教我一些塑料知识,一边根据我的兴趣给予我更多的指导与帮助,在这次的工作中,我真正学到了教科书上所没有的知识,拥有了实践经验,这才真正体现了知识的真正价值,学以致用。 第三是激情与耐心:激情与耐心,就像火与冰,看似两种完全不同的东西,却能碰撞出最美丽的火花。在中心时,老师就跟我说,想做塑料这一块,激情与耐心必不可少,在产品更新方面,这一行业就像做新闻工作,不断的在更新,这就需要你有激情去发现与创造,而你的耐心就要用到不断的学习新知识,提高自己的专业水平当中去。第四是“主动出击”:当你可以选择的时候,把主动权握在自己手中。在公司的时候,我会主动的打扫卫生,主动地帮师傅做一些力所能及的事情,并会积极地寻找合适的时间,向老师请教问题,跟师傅像朋友那样交流,谈生活学习以及未来的工作,通过这些我就和师傅走的更近,在实习当中,,师傅就会更愿意更多的指导我,使我获得更大的收获。我心里感觉很高兴,因为我的主动,我巩固了我所学的知识,并且得到了师傅的认可。第五是讲究条理:如果你不想让自己在紧急的时候手忙脚乱,就要养成讲究条理性的好习惯。“做什么事情都要有条理,”这是从小爸爸给我的忠告。在销售部的文件材料很多,这就需要很有条理的去整理好,以免用的时候翻箱倒柜的去找,耽搁时间,浪费精力,误了事情。所以主管的桌子上总是收拾得井井有条。这一点对我感触很深,同时让我联想到在一本书上看到这么一个故事,一位在美国电视领域颇有成就的美籍华人当部门经理时,总裁惊讶于他每天都能把如山的信件处理完毕,而其他经理桌上总是乱糟糟堆满信件。他说,“虽然每天信件很多,但我都按紧急性和重要性排序,再逐一处理。”总裁于是把这种做法推广到全公司,整个公司的运作变得有序,效率也提高了。所以说:养成讲究条理的好习惯,能让我们在工作中受益匪浅。整个的实习过程是紧张而愉快的,我的工作态度和成效也得到了师傅和同事们的一致称赞。作为我在踏出社会之前的为数不多的几次实践中,这次的实践的确给予了我很多。今后,我将继续保持认真负责的工作态度,高尚的思想觉悟,进一步完善和充实自己,争取在以后的学习中更好的完善自己,在以后的实践中更好的运用去自己的只是,做一个合格的大学生,将来做一名对社会有用的人。我感谢我的实践生活,它考验了我,激励了我,使我由贪玩变得好学,由懒惰变得勤快,由茫然变得自信,由幼稚变得成熟……
乙醚的制备方法
1. 醚的制备方法:聚全氟甲基醚油连续光氧化。
2. 一种以四氟乙烯和氧气为原料,四氟乙烯的流速为1-10L/min,氧气的流速为1-12L/min,合成速率为的连续光氧化制备全氟甲基醚油的方法和装置。送入内部有足够溶剂二氟二氯甲烷的光聚合釜,低温环境由制冷机组提供。在- 60 ~ - 20℃条件下,反应功率 ~ 4kw,波长2000 ~ 3000,紫外灯照射下进行连续光氧化聚合。将反应物从光聚合反应器放入光聚合反应器中。溶剂二氟二氯甲烷、低分子聚合物和未反应物质经过紫外线灯照射和加热后,返回光聚合反应器继续参与反应。光反应器的温度可根据合成产物馏分的组成进行调节。
乙醚的制备如下:
1、在干燥的三角烧瓶中加入12ml乙醇,缓缓加入12ml浓H2SO4昆合均匀。
2、滴液漏斗中加入25ml乙醇。
3、如图连接好装置。
4、用电热套加热,使反应温度比较迅速升到1400C。开始由滴液漏斗慢慢滴加乙醇。
5、控制滴入速度与馏出液速度大致相等(1滴/s)。
6、维持反应温度在135-1450摄氏度内30-45min滴完,继续加热10min,直到温度升到1600摄氏度,停止反应。
乙醚的精制:
1、将馏出液转至分液漏斗中,依次用8ml5%NaO,H8ml饱和NaCI洗涤,最后用8ml饱和CaCI2洗涤2次。
2、分出醚层,用无水CaCI2干燥。
3、分出醚,蒸馏收集33-380摄氏度馏液。
4、计算产率。
乙醚介绍:
乙醚是一种有机物,结构式为C2H5OC2H5。外观为无色透明液体,有特殊刺激气味,带甜味,极易挥发,其蒸汽重于空气。在空气的作用下能氧化成过氧化物、醛和乙酸,暴露于光线下能促进其氧化。主要用作优良溶剂。毛纺、棉纺工业用作油污洁净剂。火药工业用于制造无烟火药。医学用作麻醉剂。
化学性质比较稳定,很少与除酸之外的试剂反应。在空气中会慢慢氧化成过氧化物,过氧化物不稳定,加热易爆炸,应避光保存。