计算机信息管理在第三方物流中的应用 摘要:本文以提高计算机信息管理在企业物流中的应用程度为出发点,通过对第三方企业物流专业现状分析,就我国企业的物流管理信息系统建设进行了系统规划,给出了系统规划的框架,并就物流管理信息系统的安全性提出了建议。 关键词:信息管理,第三方物流,系统安全,外部信息,内部信息 我国物流市场现状 对于企业的发展而言,物流愈来愈成为其发展的瓶颈。目前,我国国内没有一家能让众企业均信服的第三方物流(简称TPC)企业,使得许多企业都拿出大量资金自己做物流。因此,第三方物流企业应该抓住这个时机,搞好自己的物流管理。 现代物流是以计算机信息管理和通信技术为核心的产业,但目前的企业物流尚处于传统的传递、送货阶段。因此,第三方物流企业要有严格的、科学的管理系统实现事务处理信息化、信息处理电子化的能力,充分利用计算机和计算机网络来处理信息,以提高自身竞争力。要达到此目的,其关键就是加紧物流管理信息系统的开发建设。 物流管理信息系统的设计与开发 第三方企业物流要做大、做强,展示本身企业的形象,从技术而言,开发物流管理信息系统就应从大局着眼,全盘考虑。首先就是管理者和技术人员的充分统筹规划,在企业内部开发适合自己信息管理系统,建立自己的供求网站,其次是对现行的规章制度整合优化,并对新内容进行开发。 系统的设计模式 此系统可以从第三方物流企业的市场地位方面进行考虑并进行开发。 由此可见,第三方物流管理信息系统建设包括两部分:外部的网上信息交流和内部的信息处理。 外部信息交流 客户管理子系统:网上接受订单模块;查询模块。财务结算子系统:基本费用结算模块;特别费用结算模块;查询费用结算模块。 内部信息处理 仓储管理子系统:仓库管理模块;库存管理模块;查询模块。运输管理子系统:车辆、人员变动管理模块;运输任务调度管理模块;查询模块。财务结算子系统:费用结算模块;查询模块。管理层子系统:权限设置模块;查询模块。 建立本企业的网站 物流企业建立自己的因特网站,在该网站上将企业的运作方式、配送情况每日在网上发布。通过运用现代化电子商务手段,实现网上配送的信息发布与收集,方便了客户、节省了物流成本、提高了物流效果,从而为企业带来更多的利润。 物流管理信息系统的安全性 根据系统分外部和内部两大模块,系统的安全性问题可从两方面进行保障。 外部信息交流中的安全 在与其他企业的信息交流中,接受企业定单、反馈信息等重要信息都在网上进行。针对网络上的不安全因素(例如:网络黑客攻击、网络病毒传播、网络系统本身不安全等)可采取相应的对策,例如:数据加密技术、数字签名技术、报文鉴别技术、访问控制技术、密钥管理技术、身份认证技术等。 内部信息处理中的安全 安全的运行环境是企业物流信息的基本要求,而形成一支高度自觉、遵纪守法的技术职工队伍则是计算机信息系统安全工作的最重要环节。要抓好这个环节的安全工作,可从两方面着手:一方面是从技术入手。即开发并应用好企业物流管理信息系统中的权限设置模块,对接触此信息管理系统的工作人员设置不同的访问权限、设置口令、进行身份确认,对用户的定时、定终端登陆用机的安全实施严格的访问控制技术,严格有效地制约对计算机的非法访问,防范非法用户的入侵。另一方面是由管理入手。任何的企业发展都要以人为本,第三方物流企业也不例外,企业可以在思想品质、职业道德、规章制度等方面做一定的工作。 发展现代物流产业是市场发展的必然趋势,第三方物流信息管理的设计与开发将会带来企业的外溢效应,实现计算机化全面管理在规划物流管理信息系统时会对一些较落后的环节进行优化的同时,可加快物流产业向现代化、信息化、产业化、集团化、专业化发展的进程,从而有利于拓展市场,扩大生存空间,提高企业的整体经济效益,有利于物流企业实现可持续发展。 参考文献: 1.王国华.计算机物流信息管理系统的实施与应用[J].科技情报开发与经济,2004,14 2.朱明.数据挖掘[M].中国科学技术大学出版社,2002
毕业论文排版干货,有需要的留下邮箱,发您
论文数据来源置于图名称的下方, 黑体,小五号。 如果数据来源于网站, 须写明网址; 如果数据来源于期刊等论文按参考文献的格式写明。 如果图是自创无须数据来源。
1、如果采用的数据是表格的形式,可以在表格的下方加上:资料来源于......
2、如果采用的数据是以文字的形式插入内容中,如[1]、[2],在最后的参考文献中标注来源。
3、也有的数据是以文字的形式插入内容中,如[1]、[2],然后在每页的下方插入脚注,表明数据的来源。
论文数据来源标注的格式:作者,作品的名称,出版社,出版年份,引用页码,甚至可以将段落都标上去,尽量把引用的数据来源说明清楚。
扩展资料:
论文写作注意事项:
1、论文摘要中应排除本学科领域已成为常识的内容;切忌把应在引言中出现的内容写入摘要;一般也不要对论文内容作诠释和评论(尤其是自我评价)。
2、不得简单重复题名中已有的信息。
3、结构严谨,表达简明,语义确切。摘要先写什么,后写什么,要按逻辑顺序来安排。句子之间要上下连贯,互相呼应。摘要慎用长句,句型应力求简单。每句话要表意明白,无空泛、笼统、含混之词,但摘要毕竟是一篇完整的短文,电报式的写法亦不足取。摘要不分段。
4、用第三人称。建议采用“对……进行了研究”、“报告了……现状”、“进行了……调查”等记述方法标明一次文献的性质和文献主题,不必使用“本文”、“作者”等作为主语。
5、要使用规范化的名词术语,不用非公知公用的符号和术语。新术语或尚无合适汉文术语的,可用原文或译出后加括号注明原文。
6、除了实在无法变通以外,一般不用数学公式和化学结构式,不出现插图、表格。
7、不用引文,除非该文献证实或否定了他人已出版的著作。
参考资料来源:百度百科-论文写作
1.首先确定计算机毕业论文的题目。论文写作首先需要解决的问题就是选择一个好的适合自己的论文题目。题目的选择需要结合个人的专业研究方向与手中已经拥有的想法。优先选择自己熟悉的内容与方向,可以节约时间与精力。及时地将自己的想法与指导老师沟通,请老师把把关,避免走弯路。同时要考虑自己能否将想法用文字很好地组织表达出来,选择一个自己能坚持下去的题目是至关重要的。研读大量与自己的论文题目相关的文献资料,勤思考多总结,保证其可行性。2.接着列好计算机毕业论文的提纲。选好论文题目后,不要急于下笔,先整理一份论文提纲。列提纲时要作全方位的考量,多加思考。一定要找到属于自己的亮点,别人写过的东西都是陈词滥调不值得下笔,必须要有新意。根据论文题目整理好自己的写作思路,先主干后枝叶,论文才能如大树般稳固茂盛。3.收集计算机毕业论文的相关资料。论文的重点在于论据能否支撑你的论点,证明其正确性、合理性。查阅相关的文献资料并加以整理,注意其可信度与权威性,才能使你的论文更具有说服力。将相关材料整合分析,从中汲取有价值的部分丰富自己的论文内容。在收集资料时一定要将其出处记录下来。4.撰写绪论。绪论是一篇论文的基础部分,也是相当重要的一部分。根据你搜集、整理、分析的文献完成文献综述,用简洁的文字表达从原始文献中得到的东西。其内容应当包括引言、正文、结论,附录。文献综述的全面性、丰富性关系到论文的重心、创新点、闪光点,对论文写作有着相当重要的作用。5.全文撰写。将论文题目、相关资料、绪论都准备好之后,就可以开始撰写全文的工作了。事先做好计划安排,合理分配写作时间,才能高效率地完成论文。严格按照自己制定的计划进行写作,切勿拖沓,更不能中断。严格把握论文写作的标准与质量。6.整理格式。完成全文的撰写后,根据相关格式要求进行格式修改。7.精心修改。以“十年磨一剑”的严谨态度审视修改自己的论文,通读全篇,看能否说服自己。注意行文的思路与结构,乃至每一个标题、每一个段落、每一句话,每一个词。也可以请指导老师指出自己的论文的不足,加以修改。(以上内容由学术堂提供)
数据挖掘在软件工程技术中的应用毕业论文
【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。
【 关键词 】数据挖掘技术;软件工程中;应用软件技术
随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。
1数据挖掘技术应用存在的问题
信息数据自身存在的复杂性
软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。
在评价标准方面缺乏一致性
数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。
2数据挖掘技术在软件工程中的应用
数据挖掘执行记录
执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。
漏洞检测
系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.
开源软件
对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。
版本控制信息
为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。
3数据挖掘在软件工程中的应用
关联法
该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。
分类方法
该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。
聚类方法
该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。
4数据挖掘在软件工程中的应用
对克隆代码的数据挖掘
在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。
软件数据检索挖掘
该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。
①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。
②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。
③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。
应用于设计的三个阶段
软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。
面向项目管理数据集的挖掘
软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。
5结束语
软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。
参考文献
[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).
[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).
[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).
正常不应该算抄袭的,只能说是借鉴吧!有共同的地方也属于正常现象。
同一个观点每个人表述方法不一样, 一般来说不算抄袭,但是已经发表,也看到你说有一个点的思路雷同, 这就不能确定了,若果是已经既定、公示的理论,就没事比如1+1=2,大家都知道,就没必要明示。
寿险行业数据挖掘应用分析寿险是保险行业的一个重要分支,具有巨大的市场发展空间,因此,随着寿险市场的开放、外资公司的介入,竞争逐步升级,群雄逐鹿已成定局。如何保持自身的核心竞争力,使自己始终立于不败之地,是每个企业必须面对的问题。信息技术的应用无疑是提高企业竞争力的有效手段之一。寿险信息系统经过了多年的发展,已逐步成熟完善,并积累了相当数量的数据资源,为数据挖掘提供了坚实的基础,而通过数据挖掘发现知识,并用于科学决策越来越普遍受到寿险公司的重视。数据挖掘数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。其表现形式为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。目前业内已有很多成熟的数据挖掘方法论,为实际应用提供了理想的指导模型。CRISP-DM(Cross-Industry Standard Process for Data Mining)就是公认的、较有影响的方法论之一。CRISP-DM强调,DM不单是数据的组织或者呈现,也不仅是数据分析和统计建模,而是一个从理解业务需求、寻求解决方案到接受实践检验的完整过程。CRISP-DM将整个挖掘过程分为以下六个阶段:商业理解(Business Understanding),数据理解(Data Understanding),数据准备(Data Preparation),建模(Modeling),评估(Evaluation)和发布(Deployment)。商业理解就是对企业运作、业务流程和行业背景的了解;数据理解是对现有企业应用系统的了解;数据准备就是从企业大量数据中取出一个与要探索问题相关的样板数据子集。建模是根据对业务问题的理解,在数据准备的基础上,选择一种更为实用的挖掘模型,形成挖掘的结论。评估就是在实际中检验挖掘的结论,如果达到了预期的效果,就可将结论发布。在实际项目中,CRISP-DM模型中的数据理解、数据准备、建模、评估并不是单向运作的,而是一个多次反复、多次调整、不断修订完善的过程。行业数据挖掘经过多年的系统运营,寿险公司已积累了相当可观的保单信息、客户信息、交易信息、财务信息等,也出现了超大规模的数据库系统。同时,数据集中为原有业务水平的提升以及新业务的拓展提供了条件,也为数据挖掘提供了丰厚的土壤。根据CRISP-DM模型,数据挖掘首先应该做的是对业务的理解、寻找数据挖掘的目标和问题。这些问题包括:代理人的甄选、欺诈识别以及市场细分等,其中市场细分对企业制定经营战略具有极高的指导意义,它是关系到企业能否生存与发展、企业市场营销战略制定与实现的首要问题。针对寿险经营的特点,我们可以从不同的角度对客户群体进行分类归纳,从而形成各种客户分布统计,作为管理人员决策的依据。从寿险产品入手,分析客户对不同险种的偏好程度,指导代理人进行重点推广,是比较容易实现的挖掘思路。由于国内经济发展状况不同,各省差异较大,因此必须限定在一个经济水平相当的区域进行分析数据的采样。同时,市场波动也是必须要考虑的问题,一个模型从建立到废弃有一个生命周期,周期根据模型的适应性和命中率确定,因此模型需要不断修订。挖掘系统架构挖掘系统包括规则生成子系统和应用评估子系统两个部分。规则生成子系统主要完成根据数据仓库提供的保单历史数据,统计并产生相关规律,并输出相关结果。具体包括数据抽取转换、挖掘数据库建立、建模(其中包括了参数设置)、模型评估、结果发布。发布的对象是高层决策者,同时将模型提交给应用评估子系统.根据效果每月动态生成新的模型。应用评估子系统可以理解为生产系统中的挖掘代理程序,根据生成子系统产生的规则按照一定的策略对保单数据进行非类预测。通过系统的任务计划对生产数据产生评估指标。具体包括核心业务系统数据自动转入数据平台、规则实时评估、评估结果动态显示、实际效果评估。规则评估子系统根据规则进行检测。经过一段时间的检测,可利用规则生成子系统重新学习,获得新的规则,不断地更新规则库,直到规则库稳定。目前比较常用的分析指标有: 险种、交费年期、被保人职业、被保人年收入、被保人年龄段、被保人性别、被保人婚姻状况等。实践中,可结合实际数据状况,对各要素进行适当的取舍,并做不同程度的概括,以形成较为满意的判定树,产生可解释的结论成果。
数据挖掘不能作为硕士毕业论文的。写纯粹的数据挖掘算法类的论文是不行的,不过可以将数据挖掘应用到某一个系统中,写数据挖掘的应用,这个应该是可以的。
浅谈数据挖掘技术在企业客户关系管理的应用论文
摘 要:高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技
关键词:客户关系管理毕业论文
高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技术和信息技术的发展,客户关系管理如何能结合数据挖掘技术和数据仓库技术,增强企业的核心竞争力已经成为企业亟待解决的问题。因为,企业的数据挖掘技术的运用能够解决客户的矛盾,为客户设计独立的、拥有个性化的数据产品和数据服务,能够真正意义上以客户为核心,防范企业风险,创造企业财富。
关键词:客户关系管理毕业论文
一、数据挖掘技术与客户关系管理两者的联系
随着时代的发展,银行客户关系管理的发展已经越来越依赖数据挖掘技术,而数据挖掘技术是在数据仓库技术的基础上应运而生的,两者有机的.结合能够收集和处理大量的客户数据,通过数据类型与数据特征,进行整合,挖掘具有特殊意义的潜在客户和消费群体,能够观察市场变化趋势,这样的技术在国外的银行业的客户关系管理广泛使用。而作为国内的银行企业,受到国外银行业市场的大幅度冲击,显得有些捉襟见肘,面对大量的数据与快速发展的互联网金融体系的冲击,银行业缺乏数据分析和存储功能,往往造成数据的流逝,特别是在数据的智能预测与客户关系管理还处于初步阶段。我国的银行业如何能更完善的建立客户关系管理体系与数据挖掘技术相互融合,这样才能使得企业获得更强的企业核心竞争力。
二、数据挖掘技术在企业客户关系管理实行中存在的问题
现今,我国的金融业发展存在着数据数量大,数据信息混乱等问题,无法结合客户关系管理的需要,建立统一而行之有效的数据归纳,并以客户为中心实行客户关系管理。
1.客户信息不健全
在如今的银行企业,虽然已经实行实名制户籍管理制度,但由于实行的年头比较短,特别是以前的数据匮乏。重点体现在,银行的客户信息采集主要是姓名和身份证号码,而对于客户的职业、学历等相关信息一概不知,极大的影响了客户关系管理体系的构建。另外,数据还不能统一和兼容,每个系统都是独立的系统,比如:信贷系统、储蓄系统全部分离。这样存在交叉、就不能掌握出到底拥有多少客户,特别是那些需要服务的目标客户,无法享受到银行给予的高质量的优质服务。
2.数据集中带来的差异化的忧虑
以客户为中心的客户关系管理体系,是建立在客户差异化服务的基础上的,而作为银行大多数以数据集中,全部有总行分配,这样不仅不利于企业的差异化服务,给顾客提供优质得到个性化业务,同时,分行也很难对挖掘潜在客户和分析客户成分提供一手的数据,损失客户的利益,做到数据集中,往往是不明智的选择。
3.经营管理存在弊端
从组织结构上,我国的银行体系设置机构庞杂,管理人员与生产服务人员脱节现象极其普遍,管理人员不懂业务,只是一味的抓市场,而没有有效的营销手段,更别说以市场为导向,以客户为核心,建立客户关系管理体系。大多数的人完全是靠关系而非真正意义上靠能力,另外,业务流程繁琐,不利于客户享受更多的星级待遇,这与数据发掘的运用背道而驰,很难体现出客户关系管理的价值。
三、数据挖掘技术在企业的应用和实施
如何能更好的利用数据挖掘技术与客户关系管理进行合理的搭配和结合是现今我们面临的最大问题。所有我们对客户信息进行分析,利用模糊聚类分析方法对客户进行分类,通过建立个性化的信息服务体系,真正意义的提高客户的价值。
1.优化客户服务
以客户为中心提高服务质量是银行发展的根源。要利用数据挖掘技术的优势,发现信贷趋势,及时掌握客户的需求,为客户提高网上服务,网上交易,网上查询等功能,高度体现互联网的作用,动态挖掘数据,通过智能化的信贷服务,拓宽银行业务水平,保证客户的满意度。
2.利用数据挖掘技术建立多渠道客户服务系统
利用数据挖掘技术整合银行业务和营销环节为客户提供综合性的服务。采用不同的渠道实现信息共享,针对目标客户推荐银行新产品,拓宽新领域,告别传统的柜台服务体系,实行互联网与柜台体系相结合的多渠道服务媒介体系。优化客户关系管理理念,推进营销战略的执行。提高企业的美誉度。
四、数据挖掘技术是银行企业客户关系管理体系构建的基础
随着信息技术的不断发展,网络技术的快速推进,客户关系管理体系要紧跟时代潮流,紧密围绕客户为中心,利用信息优势,自动获取客户需求,打造出更多的个性化、差异化客户服务理念,使得为企业核心竞争能力得到真正意义的提高。
给你一个硕士百论文基本格式。说几句我写论文的体会。。。首先,按照格式,拟出要度写的论文的提纲问,重点是正文,正文的提纲,主要反映论点答,要大约知道准备作几个方面来论专述,这由你掌握或可以找到的论据来决定。然后针对论文内属容收集素材和资料
本科学位论文是侧重于动手能力的,所以称为毕业设计,大数据处理类的,如果真的去搭建云平台是稍微有些不太好做,毕竟咱们个人的计算机终端是不够的,所以我觉得侧重于大数据安全,有一些算法,简单仿真,或者基于hadoop对某个行业的数据进行下分析计算也是没问题,到实例部分其实你用数据挖掘的方法去做,结果差不多
如果好好学,或者不好好学但有见识有觉悟,非常简单,非常的简单,特别是硕士论文,博士论文比较有难度。至于本科的毕业论文,那基本就是混日子的简单写写就行了。1、硕士论文,目标要明确,工具资源得齐备,思路的清晰,细节不会可以用工具,然后写大纲给老师把关。如果方向也没有,大纲也没有,让导师给。2、坚决不能抄袭,相似度30%延迟毕业,50%取消学位,信用记录负面;3、要善于站在巨人的肩膀上,国内的论文少用,多用国外的,谷歌学术和谷歌搜索是一个不错的工具,谷歌商店发布的谷歌白领助手可以帮助你打开这些工具,free。4、论文的核心在于价值,不在于表面文字华丽词藻功夫,当然有了核心的学术价值,在配送华丽词藻更合适。
写论文因人而异,一篇毕业论文的诞生,不仅需要掌握自己领域的技巧,还需要将知识、逻辑思维和写作技巧结合在一起,最后还要修改论文。目前,大多数学校论文的方向仅限于图书知识。没有实践能力,就很难理解这一点的深层含义,也就不可能把理论运用到实践中去,有些学生撰写仓促,导致出现许多的问题。 在平时和课堂做研究的时候不做笔记不收集素材,的确现在的大学生在大学生活中除了吃饭,睡觉和打游戏,都在浪费大学的学习时间。当然你没有一点写作技巧。毕业前,你才想起你还有些毕业论文,你就知道麻烦来了,花很短的时间去阅读各种写作材料和写作技巧,然后急急忙忙的开始写论文,格式要求等等一切都是未知的,导致你最后写出来的论文根本不符合逻辑。所以通过对论文的撰写和复习,学生不仅可以看到论文的不足之处,而且可以使学校和研究生招生单位更好地了解每个学生的专业水平和工作态度。
不好写呗 不能从网上当 论文答辩之前老师们会分析你的毕业论文 好像是有一个什么工具 只要把你的论文弄进去就会有哪些是从网上当的 而且还有出处 所以才要你在最后写参考文献啊
统计学毕业论文选题
毕业论文的题目是开始写作的关键,先选好题,再下笔。下面是我整理的统计学毕业论文选题,希望大家喜欢。
统计学毕业论文选题
1、具有预测能力的呼叫中心系统的设计与实现
2、PVAR模型在研究经济增长与能源消费关系中的应用
3、基于有限元的深基坑组合型围护结构可靠度分析
4、一些带有偏序结构的完全码
5、Stein方法在复合泊松分布近似中的应用
6、各类分布产生的背景
7、保险金融中的计数过程的若干渐近性
8、高中概率教学的现状、问题及对策研究
9、随机变量序列的极限定理
10、Cayley树上非对称马氏链及任意相依随机变量序列强极限定理的若干研究
11、一类混合随机序列的概率极限定理
12、保证齿轮质量的结构和工艺措施研究
13、道路施工机群资源配置和计划调度沥青混凝土路面机械化施工系统状态分析与技术经济评价研究
14、高速公路服务区合理规模与布局研究
15、基于图像区域统计特征的隐写分析技术研究
16、统计收敛的测度理论
17、关于φ-混合随机变量序列的矩完全收敛性的研究
18、混合相依随机变量序列极限理论的若干结果
19、两两NQD列的一些收敛性质
20、电力市场环境下的电能质量评估研究
21、本科概率论试验课程设计初探
22、基于随机模拟试验的稳健优化设计方法研究
23、随机变量序列部分和乘积的几乎处处中心极限定理
24、AQSI序列的强极限定理
25、几类相依混合随机变量列的大数律和L~r收敛性
26、现代经济计量学建立简史
27、任意随机变量序列的相关定理
28、新建电气化铁路电能质量影响预测研究
29、鞅差与相依随机变量序列部分和精确渐近性
30、ND序列若干收敛性质的研究
31、证券组合投资决策的均匀试验设计优化研究
32、相依随机变量序列部分和收敛速度
33、行为两两NQD随机变量阵列加权和的收敛性
34、数值计算的统计确认研究与初步应用
35、基于证据理论的足球比赛结果预测方法
36、城市工业用地集约利用评价与潜力挖掘
37、节理化岩体边坡稳定性研究
38、随机变分不等式及其应用
39、基于模糊综合评价的靶场实时光测数据质量评估
40、基于路径的加权地域通信网可靠性研究
41、LNQD样本近邻估计的大样本性质
42、20CrMoH齿轮弯曲疲劳强度研究
43、我国股票市场与宏观经济之间的协整分析
44、一类Copula函数及其相关问题研究
45、乐透型彩票N选M中奖号码的概率分析
46、协整理论在汽车发动机系统故障诊断中的应用
47、2010年上海世博会会展中断风险分析和保险建议
48、贝儿康有限公司激励设计研究
49、云模型在系统可靠性中的应用研究
50、离散更新模型破产概率及赤字的上下界估计
51、输电线微风振动与疲劳寿命
52、电器产品模糊可靠性分析中模糊可靠度的研究
53、变分不等式及变分包含解的存在性与算法
54、隧道测量误差控制方案的'研究
55、塔式起重机臂架可靠性分析软件开发
56、分布式认证跳表及其在P2P分布式存储系统中的应用
57、房地产行业企业所得税纳税评估实证研究
58、天然气管道断裂事故分析
59、粗集理论及其在数据预处理过程中的应用
60、集装箱码头后方堆场荷载统计分析和概率模型
61、多工序制造过程计算机辅助误差诊断控制系统
62、实(复)值统计型测度的表示理论及其它在统计收敛上的应用
63、应用统计教育部重点实验室程序库建设
64、基于个体的捕食系统模型
65、相依样本下移动平均过程的矩完全收敛
66、基坑变形监测分析及单撑—排桩墙支护结构抗倾覆可靠度研究
67、基于综合的交通冲突技术的城市道路交叉口安全评价方法研究
68、暗挖地铁车站下穿对既有结构安全性影响分析
69、随机变量阵列的强收敛性
70、基于随机有限元的疲劳断裂可靠性研究
71、高中数学教学概率统计部分浅析
72、敏感问题二阶段抽样调查的统计方法及应用
73、三大重要分布及其性质的进一步研究
74、随机变量的统计收敛性及统计收敛在数据处理方面的应用
75、多变量密度函数小波估计的一致中心极限定理
76、混合Copula构造及相关性应用
77、数学职前教师对正态分布的理解水平的研究
78、煤矿事故系统脆性模型的建立与仿真
79、基于贝叶斯网络的客户信用风险评估及系统设计
80、河北北方学院学生成绩关联分析及预测
81、房地产项目现金流管理研究
82、高压电磁感应信号的采集及处理算法的研究
83、基于神经网络的逆变电源可靠性研究
84、跳频序列的局部随机性与线性复杂度分析
85、金川二矿区中段平面运输系统数据分析与模拟模型研究
86、房地产投资风险定量评价与规避策略研究
87、审计统计抽样技术方法研究与设计运行
88、几种概率统计滤波法在重磁数据处理中的研究及应用
89、模糊随机变量序列的极限定理
90、数据挖掘的若干新方法及其在我国证券市场中应用
91、城市道路交通流特征参数研究
92、辽宁红沿河核电厂可能最大风暴潮的估算
93、潜油电泵轴的可靠性分析与设计
94、起重机金属结构极限状态法设计研究
95、相依随机变量极限理论的若干结果
96、局部次高斯随机序列的强极限定理
97、基于自然风险度量的农业保险定价及其财政补贴研究
98、NA和(ρ|~)混合序列的某些收敛性质
99、可交换随机变量序列的极限理论
100、一类相依重尾随机序列的强极限定理及其应用
python数据挖掘技术及应用论文选题如下:1、基于关键词的文本知识的挖掘系统的设计与实现。2、基于MapReduce的气候数据的分析。3、基于概率图模型的蛋白质功能预测。4、基于第三方库的人脸识别系统的设计与实现。5、基于hbase搜索引擎的设计与实现。6、基于Spark-Streaming的黑名单实时过滤系统的设计与实现。7、客户潜在价值评估系统的设计与实现。8、基于神经网络的文本分类的设计与实现。