原料钾是在地壳中含量占第七位的元素。但是,它在矿石、土壤、海洋、湖泊和江河中的含量都很低。具有经济价值的钾盐矿,是内陆海在干燥条件下,蒸发水分后干涸的沉积矿床。最主要的沉积钾盐矿有钾石盐(KCl、NaCl混合物)、无水钾镁矾(K₂SO₄·2MgSO₄)、钾盐镁矾(K₂SO₄·MgSO₄·3H₂O)和光卤石(KCl·MgCl₂·6H₂O)等。一些含钾的井水、湖水和卤水,也是钾肥原料的来源。氯化钾工业生产以钾石盐矿精制加工为主,在某些国家和地区采用光卤石为原料,少数国家从卤水提取。钾石盐矿富集和精制 由钾石盐矿富集氯化钾有三种方法:①浮选法,是应用最广泛和最经济的方法。其过程(见图)钾肥是以脂肪胺作为浮选剂,进行多次粗选,再进入精选系统进一步精制,底流返回粗选系统。②溶解结晶法,是利用氯化钠和氯化钾在热水和冷水中的溶解度不同,将氯化钾母液加热后与钾石盐混合。此时,氯化钾全部进入溶液,而氯化钠进入溶液较少,冷却后析出氯化钾结晶,经分离、洗涤和干燥即得产品。母液返回系统。如需制得工业用氯化钾精品,可用再结晶的方法精制,氯化钾纯度可达到。③重液分离法,是利用氯化钠和氯化钾的密度不同,选择密度介于两者之间的重介质,把磨细过的钾石盐矿置于其中,氯化钾上浮,氯化钠下沉,达到分离的目的。光卤石富集和精制 光卤石资源较丰富,但因它含钾量不高(纯光卤石仅含氧化钾17%),加工能耗较高,且大量副产氯化镁不易处理,故在氯化钾生产中所占比例不大,其富集主要有两种工艺:①冷溶法,含有氯化钠等杂质的光卤石矿在20~25℃下用水或淡盐水浸取,氯化镁首先溶出,当溶液中氯化镁含量增加时,溶入的一部分氯化钾会再结晶出来。所得氯化钾是含有氯化钠的混合物,用富集钾石盐的方法进一步加工制氯化钾。②热溶法,在约100℃水中溶解光卤石,在分离不溶物之后进行冷却结晶得氯化钾。含钾卤水加工 含钾卤水包括含钾湖水、含钾井水和盐田卤水等。以色列和约旦利用死海卤水,中国利用青海省察尔汗盐湖的卤水生产氯化钾。工艺是卤水在盐田里自然蒸发,直至约90%的氯化钠结晶出来;再将卤液移入另一组盐田,经蒸发、结晶得光卤石,再以富集光卤石的方法制取氯化钾。硫酸钾主要用可溶性硫酸盐钾矿为原料,少数国家和地区用氯化钾为原料制取。硫酸盐钾矿加工无水钾镁矾和软钾镁矾等是可溶性硫酸盐钾矿,采用与钾石盐矿富集相类似的方法进行处理即可用作肥料。制纯硫酸钾时,可以用氯化钾与可溶性硫酸盐钾矿进行复分解反应:K₂SO₄·2MgSO₄+4KCl==3K₂SO₄+2MgCl₂然后将溶液蒸发即可结晶出硫酸钾。明矾石综合利用制硫酸钾、氧化铝和硫酸,在苏联已有工业生产,在中国也有小规模生产。明矾石矿经磨细后,进行煅烧还原,分解出二氧化硫,用以生产硫酸。还原物料用碱液浸取,溶出硫酸钾和氧化铝,按铝矾土加工的拜耳法制氧化铝。溶液进一步蒸发、结晶和干燥,得到硫酸钾产品。此法在有明矾石资源而缺少铝矾土资源的地方有经济价值。由氯化钾制备 用硫酸分解氯化钾制取硫酸钾并副产盐酸,反应分两步进行,其反应式为:KCl+H₂SO₄→KHSO₄+HCl (1)KHSO₄+KCl→K₂SO₄+HCl (2)第一步反应是放热反应,在约200℃下进行;第二步反应是吸热反应,需要在600~700℃下进行。此法能耗较高,材料腐蚀问题比较严重,只有在需要盐酸的地区或国家用此法进行生产,如美国和比利时。综合利用富集精制钾石盐矿时,大量副产主要含有氯化钠和少量氯化钾的废卤液,将其泵送至人工筑堤的围场内,靠自然蒸发,以结晶固化。光卤石加工过程中还大量副产含氯化镁的废液,其处理更加困难,因为依靠自然蒸发、结晶、固化需要很长时间。在以色列用水解和煅烧的方法处理含氯化镁的废液,生产氧化镁和盐酸实现了工业化。氧化镁用于生产耐火材料,盐酸用于生产磷酸。
氯化钾形状为无色细长菱形或成一立方晶体,或白色结晶小颗粒粉末,如同食盐,味咸。那么氯化钾有什么用呢?我精心收集了氯化钾的用途,供大家欣赏学习!
1、氯化钾的作用
主要用于无机工业,是制造各种钾盐如氢氧化钾、硫酸钾、硝酸钾、氯酸钾、红矾钾等的基本原料。医药工业用作利尿剂及防治缺钾症的药物。染料工业用于生产G盐,活性染料等。农业上则是一种钾肥。其肥效快,直接施用于农田,能使土壤下层水分上升,有抗旱的作用。但在盐碱地及对烟草、甘薯、甜菜等作物不宜施用。此外,还用于制造枪口或炮口的消焰剂,钢铁热处理剂,以及用于照相。
食品行业中,可用作食盐代用品应用于农产、水产、畜产、发酵、调味、罐头、方便食品等,制作低钠产品,以降低钠含量过高对机体的不良影响;也用于强化钾(供人体电解质用),配制运动员饮料等。
2、氯化钾是什么
无色细长菱形或成一立方晶体,或白色结晶小颗粒粉末,外观如同食盐,无臭、味咸。常用于低钠盐、矿物质水的添加剂。氯化钾是临床常用的电解质平衡调节药,临床疗效确切,广泛运用于临床各科。
3、氯化钾的生产工艺
、浮选法:采用浮选剂从含钾矿浆生产氯化钾的方法。基于氯化钾和氯化钠晶体表面有不同程度被水润湿的性质,当加入浮选药剂后,即能改变他们的表面性质,扩大他们的表面润湿性差异,鼓入空气后产生小气泡,氯化钾晶体附着在小气泡上形成泡沫上升到矿浆表面。
所用浮选剂包括:捕收剂,含有16~18个碳原子的脂肪胺。调节剂,调节捕收剂和起泡剂的作用,改善浮选条件,一般有三种:抑制剂,如淀粉、硫酸铝等;活化剂,如铅盐、铋盐等;调整剂,如碳酸钠、硫酸钠等。起泡剂,松油和二恶烷和吡喃系的单原子和双原子醇类。
、光卤石法:原料为光卤石矿时,其方法有:全溶法:用加热到105℃的饱和氯化钠的卤水溶解光卤石,分离去氯化钠和不溶物后,将所得澄清液冷却到25℃,析出氯化钾晶体,经洗涤、干燥即得。母液经蒸发浓缩,回收其中氯化钾后,一部分排放,一部分返回溶浸光卤石矿。此法所得产品质量好,但能耗高。
1、适应症:治疗低钾血症:各种原因引起的低钾血症,如进食不足、呕吐、严重腹泻、应用排钾性利尿药。低钾性家族周期性麻痹、长期应用糖皮质激素和补充高渗葡萄糖等。预防低钾血症 当患者存在失钾情况,尤其是如果发生低钾血症对患者危害较大时(如使用洋地黄化的患者),需预防性补充钾盐,如进食很少、严重或慢性腹泻,长期服用肾上腺皮质激素、失钾性肾病、以及Bartter综合症等。洋地黄中毒引起频发性,多源性早搏或快速心律失常。
2、用法用量:成人一次(1片-2片),一日2次,饭后服用,并按病情需要调整剂量,一般成人一日最大剂量为6g(12片),对口服片剂出现胃肠道反应者可改用口服溶液,稀释于冷开水或饮料中内服。
钾是细胞内的主要阳离子,其浓度为150~160mmol/L;而细胞外的主要阳离子是钠离子,钾浓度仅为~5 mmol/L.机体主要依靠细胞膜上的Na+-K ±ATP酶来维持细胞内的K+、Na+浓度差。体内的酸碱平衡状态对钾代谢有影响,如酸中毒时H+进入细胞内,为了维持细胞的电位差,K+释出到细胞外,引起或加重高钾血症。
而代谢紊乱也会影响酸碱平衡。正常的细胞内外钾离子浓度及浓度差与细胞的某些重要功能有着密切的关系,包括维持碳水化合物代谢、糖原储存、蛋白质代谢,细胞内渗透压和酸碱平衡,心肌兴奋性和传导性;维持骨骼肌正常张力和神经冲动传导,以及可使肠道、子宫和支气管平滑肌张力上升等。 猜你喜欢:
1.什么是复合肥料
2.大青盐的功效与作用
3.花肥的使用方法
4.浮萍的功效与作用
5.宝宝为什么会缺钾
我国钾肥的主要生产原料是卤水,生产出来的形态是氯化钾。一般都是采用反复选-冷结晶工艺。硝酸钾和硫酸钾都是一般都需要采用氯化钾与强酸反应,(如浓硝酸、浓硫酸),然后生产硝酸钾和硫酸钾。硫酸钾一般采用的曼海姆工艺,就是用硫酸和硫化钾反应,生产硫酸钾和氯化氢,氯化氢用吸收塔吸收做其他利用,放热直接送到加热管道,用于最后的烘干。建议看看《中国化肥产业技术与展望》本书,基本上涵盖了我国主要化肥的生产工艺。
随着科技负效应的显现,工程伦理越来越受的人们的重视。化学工程有着与其他工程不同的特点。下面是我为大家整理的化学工程应用 毕业 论文,供大家参考。
《 化学工程中计算流体力学应用分析 》
摘要:计算流体力学是以多种计算方程为基础,在多种化学反应设备中进行能量、质量和动量的综合计算,分析出不同守恒定律中,这些变量的主控形式和变化规律,从而优化工程设计和工艺设备,提高化学反应中正向变化的进行,提高热量交换和原材料的反应速率等。从化学工程经济效益的角度分析,有利于工程成本的节约,提升了经济回报。 文章 计算流体力学的基本原理进行分析,并 总结 了其砸你化学工程中搅拌、热交换、精馏塔和化学反应工程的具体应用。
关键词:计算流体力学;求解;基本原理;化学工程;应用
化学工程在我国具有较长的研究与应用历程,并在实际的生产与生活中取得到巨大的应用成效,不仅能够供给正常的生活需求,同时根据新材料的开发,能够满足现代型环保材料的使用。在化学工程中,较多的反映环境和反应机制都是在溶液中进行的,具有质量守恒和热量守恒定律的应用。而这种质量与能量的关系正是计算流体力学的主要原理。通过对实际应用环境和原理的分析,能够优化工程设计和工艺改进,提高化学工程的生产效率。
1计算流体力学在化学工程中的基本原理
计算流体力学简称CFD,是通过数值计算 方法 来求解化工中几何形状空间内的动量、热量、质量方程等流动主控方程,从而发现化工领域中各种流体的流动现象和规律,其主要以化学方程式中的动量守恒定律、能量守恒定律及质量守恒方程为基础。一般情况下,计算流体力学的数值计算方法主要包括数值差分法、数值有限元法及数值有限体积法,其也是一门多门学科交叉的科目,计算流体力学不仅要掌握流体力学的知识,也要掌握计算几何学和数值分析等学科知识,其涉及面广。
针对计算流体力学的真实模拟,其主要目的是对流体流动进行预测,以获得流体流动的信息,从而有效控制化工领域中的流体流动。随着信息技术的发展,市场上也出现了计算流体力学软件,其具有对流场进行分析、计算、预测的功能,计算流体力学软件操作简单,界面直观形象,有利于化学工程师对流体进行准确的计算。
2计算流体力学砸你化学工程中的实际应用
在搅拌中的应用分析
在搅拌的化学反应中,反映介质之间的流动性比较复杂,依据传统的计算形式根本无法解决,并在化学试剂在搅拌中存在不均匀扩散的特点,在湍流的形式中能量的分布状况也存在着空间特点。若是依据实验手段测得反映中物质、能量和质量的变化规律,其得出的结构往往存在较差时效性,实验骗差加大。
通过对二维计算流体力学的应用,能够对搅拌中流体的形式进行模拟,并进行质量、能量等数据的验证。但是流体的变化,不仅与化学试剂的浓度、减半速度有关,还与时间、容器的形状等有着之间的联系,需要建立三维空间模拟形式进行计算流行力学。随着科学技术和研究水平的提高,在通过借助多普勒激光测速仪后,已经对三维计算形式有了较大的突破,这对于化工工程中原料的有效应用和工程成本的减低具有促进的作用,但是在三维计算流体力学中还存在一定的缺陷,需要在今后的研究中不断的完善。
在化学工程换热器中的应用分析
换热器是化学工程中主要的应用设备,通过管式等换热器、板式换热器、冷却塔和再沸器等的应用,能够有效的控制化学试剂在反应中的温度变化。其中根据换热器的形式不同,计算流体力学的方式也就不同。在管式换热器中主要是通过流体湍流速度的改变,增加换热速率的。在板式换热器中是通过加大流体的接触面积,提高换热效率的。而在冷却塔和再沸器中,热量交换的形式更为复杂,但是却群在重复性换热的特点,增加了换热的时间,提高了换热的效果。从总体上分析,计算流量力学中,需要对温度变化、流体的速度变化、热交换面积变化和时间变化进行分析。通过CFD计算流体力学的应用,能够计算出不同设备的热交换效果,并根据生产的实际需求进行换热器的选择使用。
在精馏塔中的应用
CFD已成为研究精馏塔内气液两相流动和传质的重要工具,通过CFD模拟可获得塔内气液两相微观的流动状况。在板式塔板上的气液传质方面,Vi-tankar等应用低雷诺数的k-ε模型对鼓泡塔反应器的持液量和速度分布进行了模拟,在塔气相负荷、塔径、塔高和气液系统的参数大范围变化的情况下,模拟结果和现实的数据能够较好的吻合。
Vivek等以欧拉-欧拉方法为基础,充分考虑了塔壁对塔内流体的影响,用CFD商用软件FLUENT模拟计算了矩形鼓泡塔内气液相的分散性能,以及气泡数量、大小和气相速度之间的关系,取得了很好的效果。在填料塔方面,Petre等建立了一种用塔内典型微型单元(REU)的流体力学性质来预测整塔的流体力学性质的方法,对每一个单元用FLUENT进行了模拟计算,发现塔内的主要能量损失来自于填料内的流体喷溅和流体与塔壁之间的碰撞,且用此方法预测了整塔的压降。
Larachi等发现流体在REU的能量损失(包括流体在填料层与层之间碰撞、与填料壁的碰撞引起的能量损失等)以及流体返混现象是影响填料效率的主要因素,而它们都和填料的几何性质相关,因此用CFD模拟计算了单相流在几种形状不同的填料中流动产生的压降,为改进填料提供了理论依据。CFD模拟精馏塔内流体流动也存在一些不足,如CFD模拟规整填料塔内流体流动的结果与实验值还有一定的偏差。这是由于对于许多问题所应用的数学模型还不够精确,还需要加强流体力学的理论分析和实验研究。
在化学反应工程中的应用研究
在化学反应工程中,反应物和生成物的化学反应速率与反应器、温度和压力等有着较大的联系,在实际的反应中可以利用计算流体力学进行数据的获取。但是这数据的获取具有一定的温度限制,当反应中温度过大,就会造成分子的剧烈运动,其运动轨迹的变化规律就会异常,在利用计算流体力学的模型计算中,计算数据与实际情况会发生较大的偏差。由于高温中分子的运动轨迹和运动速度难以获取,在计算流体力学的实际计算中,就要借助FLUENT进行三维建型,并利用测速反应器进行速度的测量,通过综合的比较分析,利用限元法进行数据的计算。可以得出不同环境下的反应器的流线、反应器内部的浓度梯度及温度梯度。通过CFD软件预测反应器的速度、温度及压力场,可以更进一步理解化学反应工程中的聚合过程,详细、准确的数据可以优化化学反应中的操作参数。
3结束语
计算流体力学对于化学工程的应用具有实际意义,并在经济效益的提高上具有重要的价值,在近几年,化学工程技术人员不断的计算流体力学中展开研究,以二维空间计算和模拟为基础,不断的完善三维空间的流量计算,并得出了一系列的流体流动规律。根据计算流体力学在化学工程中的广泛应用,在今后的化学工程发展中,应加强此类学科的教学与延伸,提供出更有效的反应设备和工艺操作。
参考文献
[1]余金伟,冯晓锋.计算流体力学发展综述[J].现代制造技术与装备,2013(06).
[2]舒长青,王友欣.计算流体力学在化学工程中的应用[J].化工管理,2014(06).
《 能源化学工程专业化工热力学教学思考 》
[摘要]《化工热力学》是能源化学工程专业一门理论性和逻辑性较强的专业基础课,文章阐述了作者在《化工热力学》课程教学过程中如何提高学生对学习本课程兴趣的教学实践和教学体会。通过明确教学内容和教学主线,改变传统的单一的课堂教学,将课堂教学与学科动态及工程实践密切结合,激发学生学习兴趣,培养学生自主学习能力和工程意识,以满足培养能源化学工程领域领军人物的要求。
[关键词]化工热力学;能源化学工程;教学实践;教学体会
化工热力学是化工类学生的专业必修课程之一,主要讲述热力学定律在化学工程领域的应用,包括化工过程中各种形式的能量之间相互转换规律及过程趋近平衡的极限条件等。它是培养学生分析和解决实际化工问题思维方法的重要专业理论基础课[1-3]。然而该课程的课程内容抽象、计算繁琐,学生感到非常难学又缺乏实际应用,在课程学习过程中学生产生恐惧和厌学心理,达不到良好的教学效果,因此,我们对该课程的教学内容和 教学方法 进行一些改革和尝试,希望激发学生学习的兴趣,进而更好地掌握这门课程,为后续专业课程的学习夯实基础。
武汉大学2013年新开设的能源化学工程专业是由1958年原武汉水利电力学院开办的“电厂化学”专业发展而来,主要面向电力行业及高效洁净能源领域(包括超临界火电、核电、生物质能、氢能、新型化学电源等),培养掌握化学与化工基础理论及能源化学专业知识和技能的未来行业发展的领军人物。
目前,本专业主要有水处理、材料腐蚀与防护、化学监督与控制、能源化学四个主要研究方向。为了适应学校对新专业发展和一流学科建设的要求,2015年在本专业大三学生中新增设了《化工热力学》这门化工类专业的专业基础课程。如何调动学生的课堂积极性,培养学生的创新能力,夯实学生的专业基础,使他们在54学时的学习过程中理解并掌握本门课程的基本概念,并且将抽象的理论与实际的能源化学过程联系起来是本课程的核心教学任务。本文结合我校能源化学工程专业的培养目标,浅谈《化工热力学》的教学体会,着重对教学方式进行了探索和实践,为培养能源化学工程领域的领军人物奠定基础。
1明确教学内容与课程主线
结合我校《化工热力学》课程以工程应用为中心、专业研究方向覆盖面广等特点,我们选用了朱自强等编著、化学工业出版社出版的《化工热力学》作为教材[4],同时,也鼓励学生使用部分参考教材(《化工热力学》,冯新等编,2008;《化工热力学(第二版)》,陈钟秀等编,2000;《化工热力学导论(原著第七版)》,.史密斯等编,刘洪来等译,2007)[5-7]。化工热力学发展时间较长,已形成较完整的知识体系,如何在54学时内有效地把关键知识点教授给学生是本课程教学实践的关键。
由于本专业学生在大二《物理化学》课程中已经系统学习了理想气体相关的状态方程及其应用,因此在本课程教学中不再赘述,而是重点介绍工程实际应用较多的二参数状态方程、化工热力学分析、溶液热力学、流体相平衡和化学反应平衡等。在教学实践中,首先,详细分析《化工热力学》教材结构,围绕主线内容合理编排知识点;其次,建立好各知识点之间的逻辑关系,让学生在大脑中建立化工热力学框架图;最后,根据能源化学工程专业的需要,适当删减补充了教材内容,结合学科动态,增强化工热力学的应用能力,如燃料电池开路电压的计算、水/二氧化碳共电解制合成气过程中气体组成的计算等。
2改变单一课堂教学模式,培养学生自主学习能力
化工热力学课程设计的公式多而繁杂,学生在开始学习阶段容易产生恐惧厌学心理,传统的单一课堂教学模式具有“教师主导学生学习”的特点,与本课程“教师引导学生学习”的教学目的存在较大偏差。因此,应改变传统单一课堂讲授模式,充分采用“启发式”和“参与式”相结合的教学方法。
首先,教师在 课前预习 阶段设疑(提出问题),促使学生思考,复习旧知识,预习新知识;其次,教师在教学实践过程中采用多媒体和板书相结合的教学方式解疑(解决问题),并通过对例题和习题的讲解加深学生对化工热力学原理、方法和应用的理解,同时,教学过程中应避免陷于抽象的说教和枯燥的公式推导之中,重点讲述化工热力学知识点的应用条件和物理意义;最后,课堂教学结束后,教师主动与学生面对面交流答疑(探讨问题),并设置思考题让学生查阅相关资料。通过“设疑—解疑—答疑”的渐进式教学方法达到对关键知识点举一反三的目的,同时,吸引学生注意力,培养学生自主学习能力,提高学生学习的积极性和主动性。
3课堂教学与工程实践密切结合,培养学生初步的工程观点
化工热力学由于理论性较强、基本概念多且抽象,而且本科生在学习过程中接触科研课题及工程实践的机会较少,将课堂教学内容与科研课题及工程实践紧密结合起来,建立“以应用为中心”、“探究式”的特色教学模式,紧密联系我校在能源化学工程领域(特别是超临界火电、核电、生物质能、氢能、新型化学电源等方面)开发利用的化学工程实际问题,把学科前沿领域的科研成果带入课堂,可以使他们强化科研思想、激发听课兴趣、培养创新能力;同时,可以让学生获取利用化工热力学基本原理解决工程实际问题提供思路和方法,培养学生初步的工程观点。
4考核方式方法研究
传统的期末一张考卷为准的考试方式不利于学生能力的培养,也不能全面地体现学生对所学知识的掌握程度,为了更加系统全面地评价学生对课程内容的认识情况,我们对课程的考核方式方法进行了改革探索。目前,课程成绩总评包括平时成绩和期末成绩两部分,其中平时成绩包括学生的课堂综合表现、课程预习、作业三个部分,各占10%;期末考试采用开卷方式考试,考试的题目偏重于对知识点的理解和其在能源化学过程中的应用。然而由于该课程的课程内容抽象、计算繁琐,教学过程中发现仍有部分学生存在畏惧厌学心理,因此,在今后的教学实践中应考虑进一步激发学生的学习兴趣,增强学生的主观能动性,在课堂教学中引入分组讨论,开展导向性的专题研究,将课程内容与能源化学过程(特别是学科动态)相结合,培养学生查阅资料和分工协作的能力,为学生下一步学习专业课程夯实基础。
5结束语
在《化工热力学》课程的教学实践和尝试中,首先要明确教学内容与主线,打破单一的学生被动听讲的模式,理论联系实际应用,调动学生学习的积极性和主动性,激发学生对教学内容的兴趣,并且在教学的过程中对教学方法进行改革创新,因材施教,为学生下一步学习更专业的能源化学工程知识和从事新能源行业工作奠定扎实的基础。
参考文献
[1]陆小华,冯新,吉远辉,等.迎接化工热力学的第二个春天[J].化工高等 教育 ,2008,3:19-21.
[2]梁浩,刘惠茹,王春花.《化工热力学》教学实践与尝试[J].广东化工,2010,37(1):157-158.
[3]李兴扬,唐定兴,沈凤翠,等.化工热力学教学改革与体验[J].化工高等教育,2011,3:71-73.
[4]朱自强,吴有庭.化工热力学(第三版)[M].北京:化学工业出版社,2009.
[5]冯新,宣爱国,周彩荣,等.化工热力学[M].北京:化学工业出版社,2008.
[6]陈钟秀,顾飞燕,胡望明.化工热力学(第二版)[M].北京:化学工业出版社,2000.
[7]史密斯JM,范内斯HC,阿博特MM,等编;刘洪来,陆小华,陈新志,等译.化工热力学导论(原著第七版)(IntroductiontoChemicalEngineeringThermodynamics,SevenEdition).北京:化学工业出版社,2007.
有关化学工程应用毕业论文推荐:
1. 化学工程毕业论文
2. 化学毕业论文精选范文
3. 化工毕业论文范文大全
4. 化学毕业论文范例
5. 化学毕业论文范文
6. 化工毕业设计论文范文
改革开放以来,我国化工行业发展迅速,为国民经济发展做出了重要贡献。同时,我国化工行业经营环境也日趋复杂,面临的风险和安全隐患也越来越大。下面是我为大家推荐的化工类 毕业 论文,供大家参考。
化工类毕业论文 范文 一:化学工程学科集群分析
一、我国化学工程与技术专业学科集群现象
经过调查统计,我国共有100多所高校招有化学工程与技术专业硕士研究生,该专业研究方向过多,一个专业出现87个研究方向。研究方向的划分有的甚至是跨学科的。如化学工程与技术专业是属于工学的,应用化学专业是属于理学,可应用化学居然是化学工程与技术专业的一个研究方向。同属于一个研究方向,研究方向的名称也是多样化的,缺乏统一标准,如安徽大学、南昌大学的绿色化学工程,上海大学就称为绿色化学与工艺。为了解决上述问题,我们请教了化工领域的专家,给这87个研究方向做一个归类,分为9个大的方向(表1)。由表1可以发现我国化学工程与技术专业是存在学科集群现象的,表现在:专业的学科建设,已经不单是化学工程的问题,而涉及到了化学化工研究的所有领域,包括应用化学、环境化工、工业催化、资源与材料工程、新能源技术、生物工程与技术、过程系统工程、油气加工及石油化工等。我国化学工程与技术专业学科集群的力度较大,表现在:各个高校的研究方向基本上都比较多,如清华大学、中国矿业大学、北京工业大学、北京理工大学、华南理工大学、华东理工大学、上海大学等高校,其研究方向都是传统与现代并存,传统化学化工的研究方向所占比例较大,如化学工程,包含的研究方向较多。部分代表21世纪化学化工发展方向的研究方向,在很多学校都受到重视,如资源与材料工程,研究方向也比较多。
二、化学工程与技术专业学科集群的创新及竞争优势
本文选择山西省高校做研究,分析其师资力量情况,以分析化学工程与技术专业集群的创新及竞争优势。山西省作为我国化工3大生产基地,化学化工产业是山西省的支柱产业,化学化工专业是山西省高校、特别是工科院校的学科优势之一。选择山西大学、中北大学、太原理工大学的化学化工学院为样本(见表2),按照前文对学科集群的认识,这些学院都有9个以上相关专业和研究方向,已经形成了一定的学科集群规模。其中论文指该学院教师被SCI、EI、ISTP3大检索刊物收录的论文数。中北大学的数据包含了CA论文。山西大学的数据不包括ISTP论文。专著指该学院教师出版的学术专著数,不包括教材。项目及奖项指该学院教师申请的省部级以上项目、经费及省部级以上奖项。发明专利指:该学院教师申请并且授权的发明专利。3所高校的化学化工学院拥有一定数量的教授和博士生导师,博士学位的教师也占到了较大比例。3所学院教师的科研成果也较为可观,被3大检索刊物收录的论文数量较多,出版了一定数量的专著,申请了一定数量的国家自然科学基金项目。山西大学化学化工学院承担了国家自然科学基金的重大攻关项目,以及“863”项目,甚至获得了国家科技进步奖和国家技术发明奖二等奖各1项。中北大学化学与环境学院承担过“973”项目,获得过国家技术发明二等奖1项,三等奖2项,国防科学技术一等奖2项。中北大学和山西大学还拥有发明专利十几项。从师资力量来看,应该说学科集群让山西省高校化学化工领域的创新取得了一定的成就,使得山西省高校化学化工专业在全国具有了一定的竞争优势和影响力。
三、化学工程与技术专业学科集群的协同创新模式
山西大学至今已与国内20余所高校、科研院所建立了学术交流与合作关系;与日本岩手大学、香港浸会大学等国家和地区的高校及科研单位签订协议,开展交流。在校企合作方面,与山西三维集团股份有限公司、太原钢铁(集团)公司、天脊集团等大型企业,在产品研发、岗位培训等多方面进行了良好的合作。太原理工大学与山西化工研究所建立了山西省化学工程技术中心,还与山西焦化集团公司等6个企业建立了长期稳定的产学研合作关系。中北大学安全工程系与航天一院、航天三院、北京理工大学、南京理工大学、第二炮兵工程学院、西安近代化学研究所等科研机构和相关生产企业进行了卓有成效的科研项目合作。从产学研合作角度来看,三所高校都与国内外相关院校、科研院所和企业建立了良好的产学研合作关系。从企业合作的视角来看,在研发方面,与山西省的产业集群密切相关,合作领域主要为新能源技术、环境化工、生物工程与技术。3所高校的化学工程与技术学科集群与山西省的产业集群具有一定的协同关系,构建了学科集群与产业集群协同创新的模式,围绕着山西省的产业特色,为山西省地方经济服务。
四、我国化学工程与技术专业集群的路径
从以上3所高校的情况来看,基本上已经完成了单个高校某个学科的集群,在3所高校内部相关专业之间建立了学科集群,集群的方式是建立化学化工学院,统筹化学化工各个专业,从多学科、多专业、多研究方向的角度,进行学科集群。关于区域性学科集群,即单个高校与该高校所在地高校、研究所和企业之间的集群,3所高校都作出了一定的努力,也取得了一定的实效。集群的方式是产学研合作,与山西省高校、科研院所和企业建立合作关系,从而服务地方经济。关于跨区域性学科集群,即单个高校与该高校所在地之外高校、研究所和企业之间的集群,中北大学有一定的建树,却没有进一步深入。中北大学之所以能够有一定建树的原因是该校原来是部属院校,与其他部属院校具有一定的合作关系。因此,中北大学的跨区域学科集群,仅仅局限于与兄弟院校的合作,还没有进一步深入到与其他省份企业的合作上。
五、结论
第一,我国高校化学工程与技术专业有87个研究方向,扩散性较强,涉及到了化学化工的各个领域,表明该专业的建设具有学科集群现象,并且已经以建院的形式,完成了单个高校某个学科的集群。第二,学科集群有利于团队建设,从而能够产生一定的创新成果,与产业集群一样,使得高校学科建设具有一定的竞争优势和影响力。第三,学科集群与高校所在地产业集群存在一定的协同关系,也就是说,学科集群首先必须与高校所在地经济发展特色密切相关。只有这样,才能实现产学研结合,服务地方经济。第四,从学科集群的路径来看,单个高校某个学科的集群已经完成,区域性学科集群也具有了一定的规模,跨区域性学科集群还有待于进一步发展。当然,我们相信,在区域性学科集群发展到一定程度后,必然会走向跨区域性学科集群。
化工类毕业论文范文二:生物质化学人才培训思考
一、生物质化学工程人才的需求分析
能源是人类社会赖以生存和发展的基础。随着经济的飞速发展,我国能源消耗快速增长,已跃居世界第二大能源消费国。我国能源总量和人均占有量却严重不足,石油供需约缺口1亿吨,天然气供需约缺口400亿标准立方米。而且,由于清洁利用的技术难度较大,化石能源在使用过程中引发了诸多的环境问题。生物质能是第四大一次能源,又是唯一可存储和运输的可再生能源。发展生物质能将缓解能源紧缺的现状和减少化石能源造成的环境污染。我国幅员辽阔,又是农业大国,生物质资源十分丰富。据测算,我国目前可供开发利用的生物质能源约折合亿吨标准煤。国家“十一五”发展规划明确提出“加快发展生物质能”。同时,随着化石资源日益枯竭,化学工业的原料也将逐步由石油等碳氢化合物向以生物质为代表的碳水化合物过渡。目前,世界各国纷纷把发展生物质经济作为可持续发展的重要战略之一。以生物质资源替代化石资源,转化为能源和化工原料的研究受到普遍重视。政府、科研机构和道化学、杜邦、中石油、中石化、中粮等大型企业争相研发和储备相关技术,并取得了一系列重大进展。海南正和生物能源公司、四川古杉油脂化工公司和龙岩卓越新能源发展有限公司,依托我国自主知识产权的生物柴油生产技术,相继建成规模超过万吨的生产线,产品达到了国外同类产品的质量标准,各项性能与0#轻质柴油相当,经济效益和社会效益俱佳。我国对以生物质为原料生产化学品(即生物基化学品)极为重视,已列入科技攻关的重点。例如,生物柴油生产过程中大量副产的甘油是一种极具吸引力的非化石来源的绿色化工基础原料。从甘油出发生产1,2-丙二醇、1,3-丙二醇和环氧氯丙烷等大宗化工产品,已经实现或接近产业化。新兴产业的发展,最根本的是靠科技的力量,最关键的是要大幅度提高自主创新能力,其核心是人才的竞争。浙江是经济大省和能源小省,能源资源低于全国平均水平,一次能源消费自给率仅为5%;而气候条件优越,是我国高产综合农业区,森林覆盖率达60%,生物质资源居全国前列。浙江省乃至全国的生物质能源产业和生物质化学工业的蓬勃发展,对生物质化学工程人才的需求十分迫切。
二、生物质化学工程人才的知识结构
生物质化学工程(专业)模块是一个新生事物,并未包含在《全国普通高等学校本科专业目录》之中。在《专业目录》中与之接近的是生物工程专业。生物工程专业培养掌握现代工业生物技术基础理论及其产业化的原理、技术 方法 、生物过程工程、工程设计和生物产品开发等知识与能力的高级专业人才。生物工程专业重点关注围绕生物技术进行的工程应用,而生物质化学工程重点关注通过化学工程技术(包括生物化工技术)对生物质资源进行加工利用的工业过程。可见,生物质化学工程(专业)模块与生物工程专业的人才培养目标和知识体系存在着明显差异,其人才培养模式仍处于探索之中。生物质的组织结构与常规化石资源相似,加工利用化石资源的化学工程技术无需做大的改动,即可应用于生物质资源。但是,生物质的种类繁多,分别具有不同的特点和属性,利用技术远比化石资源复杂与多样。可见,生物质化学工程人才必须具有扎实的化学工程基础,并熟悉各类生物质资源的特点、用途和转化利用方式。因此,浙江工业大学将生物质化学工程人才的培养目标定位为:既能把握和解决各种化工过程的共性问题,胜任化工、医药、环保和能源等多个领域的科学研究、工艺开发、装置设计和生产管理等工作;又能将化学工程的基础知识灵活运用于生物质资源的转化利用和生物质化工产品的生产开发等领域,胜任生物质能源和生物质化工等新兴行业的工作。
三、生物质化学工程人才培养的探索与实践
(一)组织高水平学术会议,营造人才培养氛围
2007年4月,浙江工业大学与中国工程院化工、冶金与材料工程学部和浙江省科技厅共同主办了“浙江省生物质能源与化工论坛”。中国工程院学部工作局李仁涵副局长分析了我国能源技术的发展状况,强调了发展生物质能需注意工艺过程的绿色化。浙江省科技厅寿剑刚副厅长介绍了浙江省能源消费状况和新能源技术研发动态,鼓励省内外的科技工作者为改善浙江省能源紧缺现状而努力工作。浙江工业大学党委书记汪晓村回顾了浙江工业大学的发展历程,介绍了浙江工业大学化学工程学科在生物质能源领域的科学研究特色和人才培养思路。浙江工业大学的计建炳教授和石油化工科学研究院的蒋福康教授主持了学术交流与讨论。闵恩泽、李大东、舒兴田、岑可法、沈寅初、汪燮卿等六位院士分别从我国发展生物能源的机遇与挑战、我国生物质能源产业发展状况、生物质燃料(清洁汽柴油、生物柴油)利用技术、生物柴油联生产物利用技术和以生物质为原料进行化工生产等几个方面进行了精辟论述。2009年4月,浙江工业大学承办了“中国工程院工程科技论坛第84场———生产生物质燃料的原料与技术”。浙江工业大学副校长马淳安教授在开幕式上致辞,介绍了浙江工业大学化学工程学科在生物质能源领域开展的科学研究和人才培养工作。浙江省可再生能源利用技术重大科技专项咨询专家组组长、浙江工业大学化工与材料学院生物质能源工程研究中心主任计建炳教授主持了学术交流与讨论。国家最高科学技术奖获得者、两院院士闵恩泽做了题为“21世纪崛起的生物柴油产业”的 报告 ,重点阐释了我国发展生物能源和生物质化工的机遇与挑战。在两次会议上,来自石油化工研究院、清华大学、浙江大学、浙江工业大学、浙江省农业科学院、中国林业科学研究院和中粮集团等单位的专家学者分别介绍了生物质原料植物的选育、生物质原料的收储运物流供应体系、生物质原料的梯级利用、生物质液体燃料的制取技术、生物柴油的生产实践及其副产物综合利用和生产生物柴油的反应器技术等方面的研究进展。会议期间,闵恩泽院士等人应邀参加了浙江工业大学化学工程与工艺专业建设暨生物质化学工程专业方向建设研讨会。闵恩泽院士指出,迈入21世纪以来,针对日趋严峻的能源危机和环境危机,国家高度重视能源替代战略的发展和部署,新能源代替传统能源、优势能源代替稀缺能源、可再生资源代替非可再生资源是大势所趋;因此,化学工程与工艺专业根据国家发展需求调整学科设置、进一步促进交叉学科的发展也势在必行。闵恩泽院士认为,在降低能耗和保护环境的时代背景下,生物质能源和生物质化工的产业发展为生物质化学工程人才提供了广阔的发展空间,生物质化学工程(专业)方向的建设思路符合当今化工产业的发展趋势。近距离接触学术泰斗,聆听专业领域的前沿进展,极大地激发了学生们的学习兴趣。通过组织高水平学术会议,浙江工业大学营造了培养生物质化学工程人才的良好氛围。
(二)理论与实验课程体系
根据人才培养目标定位,浙江工业大学将生物质化学工程(专业)模块的主干学科确定为化学工程与技术,针对生物质资源加工利用过程的特点,对化工原理、化学反应工程、化工热力学、化学工艺学、化工设计、分离工程和化工过程分析与合成等主干课程的教学内容进行了梳理。此外,增设了生物质化学与工艺学和生物质工程两门专业课程。生物质化学与工艺学重点讲授糖类、淀粉、油脂、纤维素、木质素、甲壳素、蛋白质、氨基酸等生物质的结构、性质、用途,以及加工转化为化工产品的生产工艺。生物质工程从原料工程学、转化过程工程学和产品工程学等角度出发,为学生讲授生物质资源转化利用过程中的工程原理、工程技术和生产实例。化学工程与工艺国家特色专业综合实验室在中央与地方共建高等学校共建专项资金的资助下,为生物质化学工程(专业)方向增设了酯交换法制备生物柴油和生物质热解制备生物原油两个实验,并在积极筹备开设生物柴油品质测定、淀粉基两性天然高分子改性絮凝剂的制备和易降解型纤维素-聚乙烯复合材料的制备等实验。
(三)实习、实践和毕业环节
生物质化学工程模块依托化学工程省级重点学科和生物质能源工程研究中心建设,师资力量雄厚,拥有专职教师14人。其中,正高职称5人,副高职称7人,11人具有博士学位,7人具有海外 留学 经历。生物质化学工程模块教师的科研成果成功实现产业转化,与企业建立了良好的合作关系。生物质化学工程模块不断加强产学研合作,与宁波杰森绿色能源科技有限公司、温州中科新能源科技有限公司等企业签订了共建大学生创新实践基地的合作协议,设立了企业专项奖助学金,拓展了实习实践 渠道 ;还依托化工过程模拟基地,引入计算机模拟实习、沙盘模拟等方式,丰富了生产实习环节的教学手段。同时,生物质化学工程模块修订完善生产实习教学大纲和教学计划,根据实习厂和仿真软件编写实习手册,强化对实习的质量监控与反馈,建立科学合理的考评体系;增加“内培外引”师资的力量,加快实习指导师资队伍建设;从实习方式、实习内容、考核办法和师资队伍等多个角度出发,确保生产实习教学质量的全面提高,强化学生的工程意识和实践能力,培养学生的创新意识和创新能力。生物质化学工程模块教师承担了国家自然科学基金、浙江省自然科学基金、浙江省科技厅重大招标项目、浙江省科技计划项目和企业委托开发项目数十项。从这些科研和工程开发项目中选取的毕业环节课题,更加贴近科学研究、工程设计或工业生产的实际情况,能够全面检验学生所学的理论知识及其综合运用能力,全方位增强学生结合工程实际,发现问题、分析问题和解决问题的能力,为学生步入工作岗位打下良好基础。依托实践教学平台,从“产品工程”的理念出发,选取若干个恰当的产品,串联实验、课程设计、实习、毕业环节和课外科技活动等教学内容,帮助学生理顺知识体系,建立起绿色化学和节能环保的基本理念。以生物柴油为例,核心反应是酯交换反应,可以采用水力空化等技术强化反应过程;产物需要采用精馏方法分离,生产废水需要采用电渗析等方法加以分离;生产过程中还涉及流体流动和传热等问题;生物柴油这一产品可以将多个实验内容组合成一个有机整体,有效降低实验原料的消耗。教学可以选取其中部分内容作为单元设备设计进行,可以将生物柴油生产车间作为化工设计的教学内容,可以选取部分内容作为学科课外科技项目或毕业环节的研究内容,还可以将生物柴油生产作为创业大赛的竞赛内容。学生可以到生物柴油生产企业进行实习,将工艺革新、过程强化和产品工程融为一体,并通过实验室规模与工业化规模的对比,强化工程意识。
氯乙烯的合成:HCL—→HCL缓冲罐—→HCL预冷器+乙炔沙封—→混合器—→石墨冷却器—→多孔过滤器—→预热器—→转化器→除汞器—→冷却器—→水洗组合塔—→碱洗塔—→汽水分离器—→机前冷却器—→单压机—→机后冷却器—→全凝器——→水分离器—→低塔加料槽—→低沸塔—→高沸塔—→成品冷却器—→单体贮槽。包括将乙炔和氯化氢混合后,进入装有氯化汞催化剂的反应器进行反应,在反应中放出的热量被管外的循环冷却剂带走,反应后粗氯乙烯气体经除汞器依次进入水洗塔及碱洗塔,洗去气体中的氯化氢及二氧化碳,碱洗后气体通过干燥塔进行压缩、全凝、液化,得到的液体氯乙烯通过低沸塔及高沸塔除去高沸物和低沸物,得到的精氯乙烯送入储罐。
[摘要]从国内外聚氯乙烯生产现状、聚氯乙烯生产的装置类型、聚氯乙烯清洁文明生产等方面分析了聚氯乙烯的生产,聚氯乙烯生产的乙烯原料路线占有较大比例。[关键词]聚氯乙烯 氯乙烯 乙炔聚氯乙烯(PVC)是通用型热塑性树脂,以氯乙烯(VC或VCM)为单体,在一定温度和压力下进行聚合而得。PVC外观为一种白色的无定形粉末,密度。工业生产可通过悬浮法、乳液法、本体法和溶液法以及衍生发展的微悬浮法等方法而实现聚合,生产方法不同得到的树脂颗粒大小不同。一般悬浮法PVC树脂颗粒大小为60~150um,本体法PVC树脂颗粒大小为30~80um,乳液法PVC树脂颗粒大小为1-50um,微悬浮法PVC树脂颗粒大小为20~80um。1聚氯乙烯的用途PVC具有较好的机械性能、抗化学腐蚀性能和难燃性,广泛应用于工业、农业、建筑以及人们的日常生活之中。以PVC树脂为基料和增塑剂、填料、稳定剂、着色剂、改性剂等多种助剂混合后经塑化、成型加工而成的聚氯乙烯塑料应用相当广泛。通用型悬浮法聚氯乙烯树脂可以加工成硬制品和软制品,硬聚氯乙烯具有强度高、质量轻、耐磨性能好等特点,软聚氯乙烯具有坚韧柔软、耐挠曲、有弹性、耐寒性高等特点。本体法聚氯乙烯树脂的应用领域与悬浮法PVC基本相同,由于生产过程不含有分散剂,制作透明片材的优点较为突出。国外PVC一般以硬制品为主,我国一直以软制品为主,经过近几年的发展,硬制品的应用比例逐年提高,也逐步向以硬制品为主的方向发展。石油化工的迅速发展给氯乙烯工业带来很大的影响,1955年~1958年,把电石乙炔为原料的工艺路线转为以乙烯为原料的工艺路线,采用固定床反应器建成一套氧氯化法生产氯乙烯工业装置;1964年公司也建立了一套氧氯化法流化床工业装置,由于氧氯化法较其他方法生产氯乙烯经济合理,因此,世界上从70年代初期新建工厂,均是以乙烯原料的氧氯化法为基础,同时采取措施对老厂进行技术改造。迄今,乙烯平衡氧氯化生产工艺仍是已工业化的、生产氯乙烯单体最先进的技术。在世界范围内,93%的聚氯乙烯树脂都采用平衡氧氯化法生产的氯乙烯单体经聚合而成;该法具有反应器能力大、生产效率高、生产成本低、单体杂质含量少和可连续操作等特点。国外估算表明:使用平衡氧氯化法生产氯乙烯单体的生产价格比乙炔法降低约,而且三废污染少,能源消耗低。
1.乙烷与氯气取代。2.乙烯与氯气加成,再与氯气取代。
乙烯氧氯化制氯乙烯氯乙烯是最重要的单体之一,主要用于生产聚氯乙烯。就产量而言,在乙烯系列高聚物中聚氯乙烯仅次于聚乙烯居第2位。氯乙烯也能与1-1-二氯乙烯、醋酸乙烯、丙烯酸甲酯、丁二烯和丙烯腈等共聚。此外,氯乙烯还用作冷冻剂。 1. 氯乙烯生产方法评述在氯乙烯生产历史上,曾出现过以下4种生产方法。(1)乙炔法 这是20世纪50年代前氯乙烯的主要生产方法,中国至今还有一些化工企业仍采用本法生产氯乙烯。 乙炔转化率97%~98%,氯乙烯产率80%~95%,主要的副产物是1-1-二氯乙烷,它是由氯乙烯与过量的氯化氢经加成反应生成的。反应中为保证催化剂HgCl2不被乙炔还原成低价汞盐Hg2Cl2或金属汞,氯化氢是过量的,过量以不超过15%为宜。乙炔法技术成熟,反应条件缓和,设备简单,副产物少,产率高。因为用氯化氢作原料,适合在以氯化氢为副产物的企业(例如电化厂)组织生产。本法的主要缺点是乙炔价贵,催化剂含汞有毒,不仅损害工人身体健康,还会污染环境。 (2)乙烯法 这是20世纪50年代后发展起来的生产方法。乙烯与氯经加成反应生成二氯乙烷:二氯乙烷再在500~550摄氏度下热裂解或在~145摄氏度下经碱分解制得氯乙烯: 乙烯已能由石油烃热裂解大量制造出来,价格比乙炔便宜,催化剂毒害比氯化汞小得多。但氯的利用率只有50%,另一半氯以氯化氢的形式从热裂解气中分离出来后,由于含有有机杂质,色泽和纯度都达不到国家标准,它的销售和利用问题就成为工厂必须解决的技术经济问题,虽然也可用空气或氧把氯化氢氧化成氯气重新使用,但设备费和操作费均较高,导致氯乙烯生产成本提高。(3)联合法 是上述两法的改良。目的是用乙炔来消耗乙烯法副产的氯化氢。本法等于在工厂中并行建立两套生产氯乙烯的装置,基建投资和操作费用会明显增加,有一半烃进料是价格较贵的乙炔,致使生产总成本上升,乙炔法的引入仍会带来汞的污染问题。因此,本法也不甚理想。(4)氧氯化法 这是1个仅用乙烯做原料,又能将副产氯化氢消耗掉的好方法。现已成为世界上生产氯乙烯的主要方法。乙烯转化率约95%,二氯乙烷产率超过90%。还可副产高压蒸气供本工艺有关设备利用或用作发电。由于在设备设计和工厂生产中始终需考虑氯化氢的平衡问题,不让氯化氢多余或短缺,故这一方法又称为乙烯平衡法。很显然,这一方法原料价廉易得、生产成本低、对环境友好。但仍存在设备多、工艺路线长等缺点,需要进一步改进。2. 氧氯化法工艺原理1928年德国拉希格(Raschig)公司首先开发成功气相氧氯化法,用来由苯制备氯苯:这是烃类取代氯化中最早应用的氧氯化法。随后又开发成功液相氧氯化法,转化率和选择性都有很大提高。由于由氯苯制造苯酚的工艺路线在20世纪30年代后逐步被异丙苯自氧化法取代,该法没能得到进一步发展。用该法生产氯苯的工厂也已很少。氧氯化法在低级烷烃的取代氯化以及乙烯经氯解生成三氯乙烯和全氯乙烯中也有应用,但生产规模都不甚大。氧氯化法在工业上最成功的应用就是由乙烯和氯化氢生产二氯乙烷,它为氧氯化法在其他氯化领域中的应用展现了良好前景。(1)化学反应 由乙烯用氧氯化法生产氯乙烯包括乙烯氯化、乙烯氧氯化和二氯乙烷裂解3个工序。在这里仅讨论乙烯氧氯化部分。 氧氯化的主反应为:氧氯化的主要副反应有3种。①乙烯的深度氧化C2H4+2O2→2CO+2H2O C2H4+3O2→2CO2+2H2O ②生成副产物 -三氯乙烷和氯乙烷此外,尚有少量的各种饱和或不饱和的一氯或多氯衍生物生成,例如三氯甲烷、四氯化碳、氯乙烯、1,1,1-三氯乙烷、顺式1,2-二氯乙烯等,但总量不多,仅为1,2-二氯乙烷生成量的1%。 (3)反应机理 关于乙烯氧氯化反应的机理尽管在国内、外已作了许多研究工作,但至今仍未有定论,主要有以下两种机理: ①氧化还原机理日本学者藤堂、官内健等认为,氧氯化反应中,通过氯化铜的价态变化向作用物乙烯输送氯。反应分以下三步进行:C2H4+2CuCl2→C2H4Cl2+Cu2Cl2 Cu2Cl2+1/2O2→CuCl2·CuO CuCl2·CuO+2HCl→2CuCl2+H2O 第1步是吸附的乙烯与氯化铜反应生成二氯乙烷并使氯化铜还原为氯化亚铜。该步是反应的控制步骤;第2步是氯化亚铜被氧化为氯化铜和氧化铜的络物;第3步是络合物与氯化氢作用,分解为氯化铜和水。提出此机理的依据是a)乙烯单独通过氯化铜催化剂时有二氯乙烷和氯化亚铜生成;(b)将空气或氧气通过被还原的氯化亚铜时可将其全部转变为氯化铜;(c)乙烯浓度对反应速度影响最大。 因此,让乙烯转变为二氯乙烷的氯化剂不是氯,而是氯化铜,后者是通过氧化还原机理将氯不断输送给乙烯的。 ②乙烯氧化机理根据氧氯化反应速度随乙烯和氧的分压增大而加快,而与氯化氢的分压无关的事实,美国学者提出如下机理: 式中a表示催化剂表面的吸附中心;HCl(a),O(a),C2H4(a)表示HCl,O和C2H4的吸附态物种;反应的控制步骤是吸附态乙烯和吸附态氧的反应。氧氯化早期研究中还有人提出,氯化氢在氯化铜催化下氧化生成氯气,再由氯气与乙烯反应生成二氯乙烷的反应机理。 (3)反应动力学 根据上述反应机理,在氯化铜为催化剂时由实验测得的动力学方法为:式中:pc,ph,po分别表示乙烯、氯化氢和氧的分压。由上列2个动力学方法可以看出,乙烯的分压对反应速度的影响最大,通过提高乙烯的分压可有效地提高1,2-二氯乙烷的生成速度。相比之下,氯化氢分压的变化对反应速度的影响则小得多。氧的分压超过一定值后,对反应速度没有影响,在较低值时,氧分压的变化对反应速度的影响也是比较明显的。这2个动力学方程式与前述的2种反应机理基本上是吻合的。 (4)催化剂 早期的研究表明,金属氯化物可用作氧氯化催化剂,其中以氯化铜的活性为最高,工业上普遍采用的是负载在γAl2O3、硅酸铝上的氯化铜催化剂。催化剂上铜的含量对反应转化率和选择性都有影响,铜含量增加,转化率提高,但深度氧化生成CO2的量增加,经实验确定,铜含量5%~6%即可。此时,氯化氢转化率可接近100%,生成的CO2量不多。这种单组分催化剂虽有良好的选择性,但氯化铜易挥发,反应温度愈高,氯化铜的挥发流失量愈大,催化剂活性下降愈快,寿命愈短。为了阻止或减少氯化铜催化剂活性组分的流失,在催化剂中添加了第2组分氯化钾,变成双组分催化剂。虽然反应活性有所降低,但催化剂的热稳定性却有明显提高。这很可能是氯化钾与氯化铜形成了不易挥发的复盐或低熔混合物,因而防止了氯化铜的流失。为了提高双组分催化剂的活性,在催化剂中加入稀土金属氯化物,如氯化铈、氯化镧等,既提高了催化活性,又提高了催化剂的寿命,催化剂也就由双组分变为多组分。 图5-2-01 温度对反应速度影响 图5-2-02温度对选择性的影响(以氯计) 图5-2-03温度对乙烯燃烧反应影响 氧氯化反应器有固定床和流化床2种,采用固定床时,将已成型的γAl2O3载体用浸渍法将活性组分浸渍上去,经干燥和通空气活化,即可投入使用。对流化床催化剂,用γAl2O3微球浸渍活性组分。亦可将硅铝酸溶胶与活性组分混合后加入胶凝剂,用喷雾干燥法成型制备流化床微球催化剂。 (5)工艺条件的选择①反应温度在铜含量为12%(w)的CuCl2/γAl2O3催化剂上研究了反应温度与反应速度、选择性和乙烯燃烧反应的影响,结果如图5-2-01、图5-2-02和图5-2-03所示。由图5-2-01可见,开始阶段反应速度随温度的升高而迅速上升,到250摄氏度后逐渐减慢,到300摄氏度后开始下降。因此,反应温度不是愈高愈好,而是有一个适宜范围。由图5-2-02可见,反应选择性在温度上升的开始阶段,也随温度的升高而上升,在250摄氏度左右达到最大值后逐渐下降,这说明,就选择性而言,也有一个适宜范围。图5-2-03示出的是乙烯深度氧化副反应与反应温度的关系。图上曲线表明,270摄氏度前,随反应温度的升高,乙烯深度氧化副反应的速度增长还比较缓慢,270摄氏度后,乙烯深度氧化速度则快速增长。从催化剂的使用角度来看,随着反应温度的升高,催化剂活性组分CuCl2因挥发流失的量增加,催化剂失活的速度加快,使用寿命缩短。从操作安全角度来看,由于乙烯氧氯化是强放热反应,反应热可达251 kJ/mol,反应温度过高,主、副反应,特别是乙烯深度氧化副反应释放出的热量增加,若不能及时从反应系统中移走,由于系统热量的积累,会促使反应温度进一步升高。如此恶性循环,导致发生爆炸或燃烧事故。因此,在满足反应活性和选择性的前提下,反应温度应当愈低愈好。具体的反应温度由选用的催化剂决定,对CuCl2KCl/γAl2O3催化剂而言,流化床使用的温度为205~235摄氏度,固定床为230~290摄氏度。②反应压力高压对氧氯化法的反应速度和选择性有不利影响,但在实际的操作温度下,在以下,压力对反应速度和选择性几乎没有什么影响。因此,选用常压或低压操作均可。考虑到加压可提高设备利用率及对后续的吸收和分离操作有利,工业上一般都采用在低压下操作。③配料比乙烯、氯化氢和空气之比必须保证使乙烯过量3%~5%。氧也应稍微过量以保证催化剂氧化还原过程的正常进行,但氯化氢不能过量,因为过量的氯化氢会吸附在催化剂表面使催化剂颗粒胀大,视密度减小。如果采用流化床反应器,由于催化剂颗粒胀大会使床层急剧升高,甚至还会发生节涌现象。乙烯不能过量太多,否则会使乙烯深度氧化反应加剧,尾气中CO和CO2增多,反应选择性下降,氧过量太多,也会促使乙烯深度氧化反应的加剧。在原料配比中还要求原料气的组成在爆炸极限范围外,以保证安全生产。工业上采用的配比为:乙烯:氯化氢:氧=1:2:(mol比)。④原料气纯度采用的空气只需经过滤、洗涤和干燥,除去少量固体杂质和SO2、H2S及水分后即能应用;氯化氢气体由二氯乙烷裂解工序来,常含有乙炔.为此,氯化氢气体与氢气混合后先在一个加氢反应器中脱炔,然后才能进入氧氯化反应器;原料乙烯中的乙炔、丙烯和C4烯烃的含量必须严格控制,因它们比乙烯活泼,也会发生氧氯化反应,生成四氯乙烯、三氯乙烯、1,2-二氯丙烷等多氯化物,给产品的提纯增加难度。同时它们也更容易发生深度氧化反应,释放出的热量会促使反应温度的上升,给反应带来不利影响。一般要求原料乙烯中乙烯含量在(m)以上。表5-2-02示出的是中国氯乙烯用原料乙烯的规格。 表5-2-02中国氯乙烯用原料乙烯的规格组分 指标 组分 指标 C2H4 CH4+C2H6 C2H2 500 ppm 10 ppm C2S S(按H2S计) H2O 100 ppm 5 ppm 15 ppm ⑤停留时间停留时间对HCl转化率有影响。实验表明,停留时间达10 s时,氯化氢的转化率才能接近100%,但停留时间过长,转化率会稍微下降,这是因为1,2-二氯乙烷裂解产生氯化氢和氯乙烯之故。停留时间过长不仅使设备生产能力下降,而且副反应也会加剧,导致副产物增多,反应选择性下降。 图5-2-04 PPG化学工业公司氧氯化法生产氯乙烯的工艺流程 1.直接氯化反应器;2.气液分离器;3.氧氯化反应器;4.分离器;5.脱轻馏分塔;6.脱重馏分塔;7.裂解炉;8.急冷塔;9.氯化氢回收塔;10.氯乙烯精馏塔 3. 平衡型氯乙烯生产工艺流程 图5-2-04所示为PPG化学工业公司氧氯化法生产氯乙烯的工艺流程,由于二氯乙烷热裂解产生的氯化氢全部在氧氯化反应中消耗掉,故又称为平衡型氯乙烯生产工艺流程。流程由三大工艺组成:乙烯液相加成氯化生成1,2-二氯乙烷;乙烯气相氧氯化生成1,2-二氯乙烷;1,2-二氯乙烷热裂解生成氯乙烯。乙烯液相加成氯化的反应条件为:反应温度50摄氏度左右,催化剂为FeCl3,它在氯化液中的浓度维持在250~300 ppm(~),乙烯与氯气的摩尔比为:1,即乙烯是过量的。 乙烯气相氧氯化的反应条件为:反应温度225~290摄氏度,压力为,采用CuCl2/γAl2CO3或改良的CuCl2-KCl/γAl2O3为催化剂,催化剂中铜含量在5%~6%(折算成CuCl2为11%~13%),乙烯:氯化氢:氧=1:2:(mol比)。 由加成氯化和氧氯化生成的粗二氯乙烷进入脱轻组分塔和脱重组分塔。轻组分中含有微量氯化氢气体,需经洗涤后方可利用。重组分中含有较多的二氯乙烷,需经减压蒸馏回收二氯乙烷后作进一步处理。所得二氯乙烷纯度很高,可达99%左右。进入热裂解炉,操作条件为:温度430~530摄氏度,压力,催化剂为浮石或活性炭。反应转化率可达50%~60%,氯乙烯选择性为95%,热裂解产物在氯化氢分馏塔蒸出纯度达的氯化氢,内含炔烃,若有必要,还须经加氢脱炔后才能用作氧氯化原料;在氯乙烯分馏塔中,塔顶馏出纯度为的成品氯乙烯、塔釜二氯乙烷内含有热裂解生成的重组分,送二氯乙烷精制工序处理。 本流程中采用氧气而不是空气作氧化剂,优点是:反应后多余的乙烯经冷却、冷凝和分离后仍可回氧氯化反应器循环使用,乙烯利用率比空气作氧化剂时高;空气作氧化剂时尾气中乙烯浓度低,仅为1%左右。用焚烧法处理时需消耗燃料,用氧气作氧化剂时,排出的尾气数量很小,但其中乙烯浓度高,用焚烧法处理不需外加燃料;由于配置的原料气中不含氮气,乙烯在原料气中的浓度提高,有利于提高反应速度和提高催化剂的生产能力,反应器也可做得小一些,从而节省设备制造费用;氧气作氧化剂时由于尾气数量少,不需用溶剂吸收、深冷的办法来回收尾气中少量二氯乙烷,简化了流程,减少了设备投资费用;对固定床反应器而言,氧气作氧化剂时,热点不明显,因而1,2-二氯乙烷的选择性高,氯化氢的转化率亦高,而空气作氧化剂时则相反。表5-2-03列出了两者的比较结果。 表5-2-03固定床乙烯氧氯化结果比较 乙烯转化为各物料的选择性,% 空气氧氯化法 氧气氧氯化法 1,2-二氯乙烷 氯乙烷 CO+CO2 1,1,2-三氯乙烷 其他氯衍生物 HCl的转化率,% 现在,有不少大型化工企业都建有空气分离装置,氧气的供应已不存在问题,这为氧气作氧化剂的乙烯氧氯法提供了发展良机。氧气氧氯化法的消耗定额(以生产1 t二氯乙烷为基准)为:乙烯(100%)287 kg,氯化氢(100%)742 kg,氧气(100%)177 kg。图5-2-05所示为氧氯化法生产氯乙烯的物料平衡图。图5-2-05 平衡型的氯乙烯生产组织形式* 图中的数字是各种物料的实际重量比例数 4. 氧氯化反应器 不论是空气氧氯化还是氧气氧氯化,都可采用固定床或流化床反应器。(1)固定床氧氯化反应器 图5-2-06流化床乙烯氧氯化反应器构造示意图1.乙烯和HCl入口;2.空气入口;3.板式分布器;4.管式反应器;5.催气剂入口;6.反应器外壳; 7.冷却管组;8.加压热水入口;9、11、12.旋风分离器;10.反应气出口;13.人孔;14.高压水蒸气出口 这种反应器结构与普通的固定床反应器基本相同,内置多根列管,管内填充颗粒状催化剂,原料气自上而下流经催化剂层进行催化反应。管间用加压热水作载体,副产一定数量的中压水蒸气。固定床反应管存在热点,局部温度过高使反应选择性下降,活性组分流失加快,催化剂使用寿命缩短,为使床层温度分布比较均匀,热点温度降低,工业上常采用三台固定床反应器串联:氧化剂空气或氧气按一定比例分别通入三台反应器。这样每台反应器的物料中氧的浓度较低,使反应不致太剧烈,也可减少因深度氧化生成的CO和CO2的量,而且也保证了混合气中氧的浓度在可燃范围以外,有利安全操作。 (2)流化床氧氯化反应器 流化床反应器反应温度均匀,不存在热点,且可通过自控装置控制进料速度,使反应器温度控制在适宜范围内。因此对提高反应选择性有较大好处。反应产生的热量可用内设的热交换器及时移走。流化床氧氯化反应器的构造示意于图5-2-06。空气(或氧气)从底部进入,经多喷嘴板式分布器均匀地将空气(或氧气)分布在整个截面上。在板式分布器的上方设有C2H4和HCl混合气体的进口管,此管连接有与空气分布器具有相同数量喷嘴的分布器,而且其喷嘴恰好插入空气分布器的喷嘴内。这样就能使两股进料气体在进入催化床层之前在喷嘴内混合均匀。在反应段内设置了一定数量的直立冷却管组、管内通入加压热水,籍水的汽化以移出反应热,并副产中压蒸气。在反应器上部设置三组三级旋风分离器,用以回收反应气夹带的催化剂。催化剂的磨损量每天约为,需补充的催化剂自气体分布器上部用压缩空气送入反应段。 由于氧氯化有水产生(乙烯深度氧化也有水产生),如反应器的一些部位保温不好,温度过低,当达到露点温度时,水就会凝结出来,溶入氯化氢气体生成盐酸,将使设备遭受严重腐蚀。因此反应器的保温相当重要。另外,若催化剂表面粘附氧化铁时,氧化铁会转化为氯化铁,它能催化乙烯的加成氯化反应,生成副产物氯乙烷(CH3CH2Cl)。因此,催化剂的贮存和输送设备及管路不能用铁质材料。
这个好解决,你可以问我的 下面有联系方式
石油化工的范畴 以石油及天然气生产的化学品品种极多、范围极广。石油化工原料主要为来自石油炼制过程产生的各种石油馏分和炼厂气,以及油田气、天然气等。石油馏分(主要是轻质油)通过烃类裂解、裂解气分离可制取乙烯、丙烯、丁二烯等烯烃和苯、甲苯、二甲苯等芳烃,芳烃亦可来自石油轻馏分的催化重整。石油轻馏分和天然气经蒸汽转化、重油经部分氧化可制取合成气,进而生产合成氨、合成甲醇等。从烯烃出发,可生产各种醇、酮、醛、酸类及环氧化合物等。随着科学技术的发展,上述烯烃、芳烃经加工可生产包括合成树脂、合成橡胶、合成纤维等高分子产品及一系列制品,如表面活性剂等精细化学品,因此石油化工的范畴已扩大到高分子化工和精细化工的大部分领域。石油化工生产,一般与石油炼制或天然气加工结合,相互提供原料、副产品或半成品,以提高经济效益(见石油化工联合企业)。编辑本段石油化工的作用1.石油化工是能源的主要供应者 石油化工,主要指石油炼制生产的汽油、煤油、柴油、重油以及天然气是当前主要能源的主要供应 石油者。我国1995年生产了燃料油为8千万吨。目前,全世界石油和天然气消费量约占总能耗量60%;我国因煤炭使用量大,石油的消费量不到20%。石油化工提供的能源主要作汽车、拖拉机、飞机、轮船、锅炉的燃料,少量用作民用燃料。能源是制约我国国民经济发展的一个因素,石油化工约消耗总能源的,应不断降低能源消费量。2.石油化工是材料工业的支柱之一 金属、无机非金属材料和高分子合成材料,被称为三大材料。全世界石油化工提供的高分子合成材料目前产量约亿吨,1996年,我国已超过800万吨。除合成材料外,石油化工还提供了绝大多数的有机化工原料,在属于化工领域的范畴内,除化学矿物提供的化工产品外,石油化工生产的原料,在各个部门大显身手。3.石油化工促进了农业的发展 农业是我国国民经济的基础产业。石化工业提供的氮肥占化肥总量的80%,农用塑料薄膜的推广使用,加上农药的合理使用以及大量农业机械所需各类燃料,形成了石化工业支援农业的主力军。4.各工业部门离不开石化产品 现代交通工业的发展与燃料供应息息相关,可以毫不夸张地说,没有燃料, 就没有现代交通工业。金属加工、各类机械毫无例外需要各类润滑材料及其它配套材料,消耗了大量石化产品。全世界润滑油脂产量约2千万吨,我国约180万吨。建材工业是石化产品的新领域,如塑料关材、门窗、铺地材料、涂料被称为化学建材。轻工、纺织工业是石化产品的传统用户,新材料、新工艺、新产品的开发与推广,无不有石化产品的身影。当前,高速发展的电子工业以及诸多的高新技术产业,对石化产品, 尤其是以石化产品为原料生产的精细化工产品提出了新要求,这对发展石化工业是个巨大的促进。5.石化工业的建设和发展离不开各行的支持 石油化工国内外的石化企业都是集中建设一批生产装置,形成大型石化工业区。在区内,炼油装置为“龙头”,为石化装置提供裂解原料,如轻油、柴油,并生产石化产品;裂解装置生产乙烯、丙烯、苯、二甲苯等石化基本原料;根据需求建设以上述原料为主生产合成材料和有机原料的系列生产装置,其产品、原料有一定比例关系。如要求年产30万吨乙烯,粗略计算,约需裂解原料120万吨, 对应炼油厂加工能力约250万吨,可配套生产合成材料和基本有机原料80 ~ 90万吨。由此可见, 建设石化工业区要投入大量资金,厂区选址适当,不但要保证原料和产品的运输,而且要有充分的电力、水供应及其他配套的基础工程设施。各生产装置需要大量标准、定性的机械、设备、仪表、管道和非定型专用设备。 制造机械设备涉及材料品种多,要求各异,有些重点设备高速超过50米,单件重几百吨;有的要求耐热1000°C,有的要求耐冷 - 150°C。有些关键设备需在国际市场采购。所有这些都需要冶金、电力、机械、仪表、建筑、环保各行业支持。 石化行业是个技术密集型产业。生产方法和生产工艺的确定,关键设备的选型、选用、制造等一系列技术,都要求由专有或独特的技术标准所规定, 如从国外引进,要支付专利或技术诀窍使用费。因此,只有加强基础学科,尤其是有机化学、高分子化学、催化、化学工程、电子计算机、自动化等方面的研究工作,加强相关专业技术人员的培养,使之掌握和采用先进科研成果,再配合相关的工程技术,石化工业才有可能不断发展,登上新台阶。编辑本段石油化工的发展 石油化工的发展与石油炼制工业、以煤为基本原料生产化工产品和三大合成材料的发展有关。石油炼制起 石油炼制源于19 世纪20年代。20世纪20年代汽车工业飞速发展,带动了汽油生产。为扩大汽油产量,以生产汽油为目的热裂化工艺开发成功,随后,40年代催化裂化工艺开发成功,加上其他加工工艺的开发,形成了现代石油炼制工艺。为了利用石油炼制副产品的气体,1920年开始以丙烯生产异丙醇,这被认为是第一个石油化工产品。20世纪50年代,在裂化技术基础上开发了以制取乙烯为主要目的的烃类水蒸汽高温裂解 简称裂解)技术,裂解工艺的发展为发展石油化工提供了大量原料。同时,一些原来以煤为基本原料(通过电石、煤焦油)生产的产品陆续改由石油为基本原料,如氯乙烯等。在20世纪30年代,高分子合成材料大量问世。按工业生产时间排序为:1931年为氯丁橡胶和聚氯乙烯,1933年为高压法聚乙烯,1935年为丁腈橡胶和聚苯乙烯,1937年为丁苯橡胶,1939年为尼龙66。第二次世界大战后石油化工技术继续快速发展,1950年开发了腈纶, 1953年开发了涤纶,1957年开发了聚丙烯。编辑本段石油化工高速发展的原因是 有大量廉价的原料供应(50 ~ 60年代,原油每吨约15美元);有可靠的、有发展潜力的生产技术;产品应用广泛,开拓了新的应用领域。原料、技术、应用三个因素的综合,实现了由煤化工向石油化工的转换,完成了化学工业发展史上的一次飞跃。 20世纪70年代以后,原油价格上涨(1996年每吨约170美元),石油化工发展速度下降,新工艺开发趋缓, 并向着采用新技术,节能,优化生产操作,综合利用原料,向下游产品延伸等方向发展。一些发展中国家大力建立石化工业,使发达国家所占比重下降。1996年,全世界原油加工能力为38亿吨,生产化工产品用油约占总量的10%。编辑本段石油化工在国民经济中的地位石油化工是近代发达国家的重要基干工业 由石油和天然气出发,生产出一系列中间体、塑料、合成纤维、合成橡胶、合成洗涤剂、溶剂、涂料、农药、染料、医药等与国计民生密切相关的重要产品。80年代,在工业发达国家中,化学工业的产值,一般占国民生产总值 6%~7%,占工业总产值7%~10%;而石油化工产品销售额约占全部化工产品的45%,其比例是很大的。 石油化工2石油化工是能源的主要供应者 石油炼制生产的汽油、煤油、柴油、重油以及天然气是当前主要能源的主要供应者。我国1995年生产了燃料油为8千万吨。目前,全世界石油和天然气消费量约占总能耗量60%;我国因煤炭使用量大,石油的消费量不到20%。石油化工提供的能源主要作汽车、拖拉机、飞机、轮船、锅炉的燃料,少量用作民用燃料。能源是制约我国国民经济发展的一个因素,石油化工约消耗总能源的,应不断降低能源消费量。石油化工是材料工业的支柱之一 金属、无机非金属材料和高分子合成材料,被称为三大材料。全世界石油化工提供的高分子合成材料目前产量约亿吨,1996年,我国已超过800万吨。除合成材料外,石油化工还提供了绝大多数的有机化工原料,在属于化工领域的范畴内,除化学矿物提供的化工产品外,石油化工生产的原料,在各个部门大显身手。石油化工促进了农业的发展 农业是我国国民经济的基础产业。石化工业提供的氮肥占化肥总量的80%,农用塑料薄膜的推广使用,加上农药的合理使用以及大量农业机械所需各类燃料,形成了石化工业支援农业的主力军。 石油化工可创造较高经济效益。以美国为例,以50亿美元的石油、天然气原料,可生产100亿美元的烯烃、苯等基础石油化学品,进一步加工得240亿美元的有机中间产品(包括聚合物),最后转化为400亿美元的最终产品。当然,原料加工深度越深,产品越精细,一般来说成本也相应增加。编辑本段世界石油化工 1970年,美国石油化学工业产品,已有约3000种。资本主义国家所建生产厂已约1000个。国际上常用乙烯和几种重要产品的产量来衡量石油化工发展水平。乙烯的生产,大多采用烃类高温裂解方法。一套典型乙烯装置,年产乙烯一般为300~450kt,并联产丙烯、丁二烯、苯、甲苯、二甲苯等。乙烯及联产品收率因裂解原料而异。目前,这类装置已是石油化工联合企业的核心。 70年代以前,世界石油化工的生产基地主要分布在美国、日本及欧洲等国。1973年后世界原油价格不断上涨,1983年以来又趋下跌,价格大起大落,使石油化工企业者对原料稳定、持久供应产生忧虑。发达国家改革生产结构,调整设备开工率,以适应新的经济形势。发展中国家尤其是产油国近年则在大力发展石油化工。80年代,世界乙烯生产能力的分布已发生变化,亚非拉等发展中国家所占比例有所提高。如将东欧国家的乙烯生产能力计算在内,则这些新兴石油化工生产地区的乙烯生产能力,约占世界乙烯总生产能力的四分之一。 1958年,世界乙烯生产能力达到49Mt(不包括社会主义国家),其中新增乙烯生产能力约,约1/3建在非洲和中东地区,1/3建在拉美和东欧;传统石油化工生产地区,只新增生产能力800kt,且今后五年内,计划也很少新建乙烯装置,主要是进行现有装置的技术改造。编辑本段中国石油化工 起始于50年代,70年代以后发展较快,建立了一系列大型石油化工厂及一批大型氮肥厂等,乙烯及三大合成材料有了较大增长。 中国石油化工行业占工业经济总量的20%,因而对国民经济非常重要。石油化工行业包括石油石化和化工两个大部分,这两大部分在2006年都保持了较快地增长。如果把这两个部分作为一个整体来看,2006年石油化工累计实现的利润达到了4345亿,增长达到了,增量达到了658亿元,在整个规模以上工业新增利润中占到17%左右。 石油化工32007年前三季度全行业实现现价工业总产值38211亿元,同比增长。重点跟踪的65种大宗石油和化工产品中,产量较2006年同期增长的有62种,占,其中增幅在10%以上的有47种,占,天然气、电石、纯苯、甲醇、轮胎外胎等产品产量呈较快增长态势。 原油及加工制品平稳增长。2007年前三季度,全国原油生产较为平缓,天然气产量则增长较快。2007年1~9月累计生产原油万吨,同比增长;天然气累计产量为亿立方米,同比增长。原油加工量万吨,同比增长。汽、煤、柴油产量继续保持稳定增长,累计生产汽油万吨,同比增长;生产煤油867万吨,同比增长;生产柴油万吨,同比增长。 农化产品生产供应正常。由于农业生产的季节性特征,农用化学品生产也呈现比较强的季节性。化肥(折纯)2007年1~9月累计产量为万吨,同比增长,其中氮肥万吨,同比增长。2007年前三季度,农药原药累计产量为万吨,同比增长,杀虫剂、除草剂产量增幅分别为和,农药产品结构进一步改善,杀虫剂占农药的比例已下降到。 展望 以石油和天然气原料为基础的石油化学工业,虽然在70年代经历两次价格上涨的冲击,但由于石油化工已建立起整套技术体系,产品应用已深入国防、国民经济和人民生活各领域,市场需要尤其在发展中国家,正在迅速扩大,所以今后石油化工仍将得到继续发展。80年代,世界石油化工所耗石油量仅为世界原油总产量的%,所耗天然气为天然气总产量10%,更由于从石油和天然气生产化工品可取得很大的经济效益,故石油化工的发展有着良好的前景。为了适应近年原料价格波动,石油化工企业正在采取多种措施。例如,生产乙烯的原料多样化,使烃类裂解装置具有适应多种原料的灵活性;石油化工和炼油的整体化结合更为密切,以便于利用各种原料;工艺技术的改进和新催化剂的采用,提高产品收率,降低生产过程的能耗及原料消耗;调整产品结构,发展精细化工,开发具有特殊性能、技术密集型新产品、新材料,以提高经济效益,并对石油化工生产环境污染进行防治等。编辑本段石油化工专业 石油化工专业是伴随着中国的石油化工的发展同时产生的化工学习专业课程,目的是培养石油化工人才,石油化工专业技术专业人才,一般各大理工科院校都设有此专业,该专业主要课程涉及:计算机应用、英语、有机化学、物理化学、化工分析、 化工原理、石油加工工程系、化工节能、化工设备、化工安全与环保、精细化工,质量管理。 就业方向:石油、化工、医药、食品等企业生产操作与管理。 ☆工业分析与检验专业: 主要课程:计算机应用、英语、有机化学、无机化学、化工分析、电化学分析、光学分析 、常规仪器分析、化工安全与环保。 就业方向:石油加工、石油化工、精细化工、医药、食品企业和环保部门从事化验分析操作与管理。编辑本段现代以石油化工为基础的三大合成材料 塑料、合成橡胶、合成纤维
索尔维制碱法与侯氏制碱法(也叫做氨碱法与联碱法) 无水碳酸钠,俗名纯碱、苏打。它是玻璃、造纸、肥皂、洗涤剂、纺织、制革等工业的重要原料,还常用作硬水的软化剂,也用于制造钠的化合物。它的工业制法主要有氨碱法和联合制碱法两种。 一、氨碱法(又称索尔维法) 它是比利时工程师苏尔维(1838~1922)于1892年发明的纯碱制法。他以食盐(氯化钠)、石灰石(经煅烧生成生石灰和二氧化碳)、氨气为原料来制取纯碱。先使氨气通入饱和食盐水中而成氨盐水,再通入二氧化碳生成溶解度较小的碳酸氢钠沉淀和氯化铵溶液。其化学反应原理是:NaCl+NH3+H2O+CO2=NaHCO3↓+NH4Cl 将经过滤、洗涤得到的NaHCO3微小晶体,再加热煅烧制得纯碱产品。2NaHCO3=Na2CO3+H2O+CO2↑放出的二氧化碳气体可回收循环使用。含有氯化铵的滤液与石灰乳[Ca(OH)2]混合加热,所放出的氨气可回收循环使用。CaO+H2O=Ca(OH)2,2NH4Cl+Ca(OH)2=CaCl2+2NH3↑+2H2O其工业生产的简单流程如图所示。 氨碱法的优点是:原料(食盐和石灰石)便宜;产品纯碱的纯度高;副产品氨和二氧化碳都可以回收循环使用;制造步骤简单,适合于大规模生产。但氨碱法也有许多缺点:首先是两种原料的成分里都只利用了一半——食盐成分里的钠离子(Na+)和石灰石成分里的碳酸根离子(CO32-)结合成了碳酸钠,可是食盐的另一成分氯离子(Cl-)和石灰石的另一成分钙离子(Ca2+)却结合成了没有多大用途的氯化钙(CaCl2),因此如何处理氯化钙成为一个很大的负担。氨碱法的最大缺点还在于原料食盐的利用率只有72%~74%,其余的食盐都随着氯化钙溶液作为废液被抛弃了,这是一个很大的损失。 二、联合制碱法(又称侯氏制碱法) 它是我国化学工程专家侯德榜(1890~1974)于1943年创立的。是将氨碱法和合成氨法两种工艺联合起来,同时生产纯碱和氯化铵两种产品的方法。原料是食盐、氨和二氧化碳——合成氨厂用水煤气制取氢气时的废气。其化学反应原理是:C+H2O=CO+H2 CO+H2O=CO2+H2 联合制碱法包括两个过程:第一个过程与氨碱法相同,将氨通入饱和食盐水而成氨盐水,再通入二氧化碳生成碳酸氢钠沉淀,经过滤、洗涤得NaHCO3微小晶体,再煅烧制得纯碱产品,其滤液是含有氯化铵和氯化钠的溶液。第二个过程是从含有氯化铵和氯化钠的滤液中结晶沉淀出氯化铵晶体。由于氯化铵在常温下的溶解度比氯化钠要大,低温时的溶解度则比氯化钠小,而且氯化铵在氯化钠的浓溶液里的溶解度要比在水里的溶解度小得多。所以在低温条件下,向滤液中加入细粉状的氯化钠,并通入氨气,可以使氯化铵单独结晶沉淀析出,经过滤、洗涤和干燥即得氯化铵产品。此时滤出氯化铵沉淀后所得的滤液,已基本上被氯化钠饱和,可回收循环使用。其工业生产的简单流程如图所示。 联合制碱法与氨碱法比较,其最大的优点是使食盐的利用率提高到96%以上,应用同量的食盐比氨碱法生产更多的纯碱。另外它综合利用了氨厂的二氧化碳和碱厂的氯离子,同时,生产出两种可贵的产品——纯碱和氯化铵。将氨厂的废气二氧化碳,转变为碱厂的主要原料来制取纯碱,这样就节省了碱厂里用于制取二氧化碳的庞大的石灰窑;将碱厂的无用的成分氯离子(Cl-)来代替价格较高的硫酸固定氨厂里的氨,制取氮肥氯化铵。从而不再生成没有多大用处,又难于处理的氯化钙,减少了对环境的污染,并且大大降低了纯碱和氮肥的成本,充分体现了大规模联合生产的优越性。
纯碱是最重要的基础化工原料之一,被称为“化工之母”,其产量和消费量通常被作为衡量一个国家工业发展水平的标志之一。本文从目前我国纯碱企业的发展现状着手,分析纯碱企业的存在问题,并对纯碱企业的发展提出一些建议,仅供参考。1纯碱工业的基本概况近年来,与中国经济在全球经济中呈现出一枝独秀一样,中国纯碱也在全球纯碱中发挥起越来越重要的作用,产能和需求的强劲增长,使全球纯碱产能和需求分别突破徘徊多年的45Mt和35Mt,到2003年底,世界纯碱的总产能约为,实际产量可达,而且在未来的几年间,世界纯碱的产能和需求仍…
工业制烧碱:氯碱工业--电解饱和食盐水,方程式:2NaCl+2H2O==2NaOH+Cl2+H2 (条件:电解) 制纯碱(Na2CO3):侯氏制碱法向饱和食盐水里通二氧化碳和氨气 CaCO3==CaO+CO2(制CO2) N2+3H2==2NH3(工业合成氨) NaCL+NH3+CO2+H2O==NaHCO3+NH4CL(制纯碱的关键步走) 2NaHCO3==Na2CO3+H2O+CO2(得到纯碱)
以食盐(氯化钠)、石灰石(经煅烧生成生石灰和二氧化碳)、氨气为原料来制取纯碱。先使氨气通入饱和食盐水中而成氨盐水,再通入二氧化碳生成溶解度较小的碳酸氢钠沉淀和氯化铵溶液。其化学反应原理是:NaCl+NH3+H2O+CO2=NaHCO3↓+NH4Cl 将经过滤、洗涤得到的NaHCO3微小晶体,再加热煅烧制得纯碱产品。2NaHCO3=Na2CO3+H2O+CO2↑放出的二氧化碳气体可回收循环使用。含有氯化铵的滤液与石灰乳[Ca(OH)2]混合加热,所放出的氨气可回收循环使用。
氨碱法的优点是:原料(食盐和石灰石)便宜;产品纯碱的纯度高;副产品氨和二氧化碳都可以回收循环使用;制造步骤简单,适合于大规模生产。但氨碱法也有许多缺点:首先是两种原料的成分里都只利用了一半——食盐成分里的钠离子(Na+)和石灰石成分里的碳酸根离子(CO32-)结合成了碳酸钠,可是食盐的另一成分氯离子(Cl-)和石灰石的另一成分钙离子(Ca2+)却结合成了没有多大用途的氯化钙(CaCl2),因此如何处理氯化钙成为一个很大的负担。氨碱法的最大缺点还在于原料食盐的利用率只有72%~74%,其余的食盐都随着氯化钙溶液作为废液被抛弃了,这是一个很大的损失。