首页

毕业论文

首页 毕业论文 问题

生信毕业论文好写吗

发布时间:

生信毕业论文好写吗

生信分析论文写法如下:

这次我们来讲解的这边文献是 2019-10-12 发表的 OTT 杂志上的一篇生信加少量实验验证的文章。实话实说,目前对于生信最最最基本的,如果没有实验验证还是不好发文章的。所以一般都会加一些实验验证的。

这个文章的主要流程是个这样的:这里我们就基于文童的材料方法来说一下具体的内容:公共数据获取:当中关于公共数据获取部分提到了这些东西。使用了 GEO 数据库来进行候选数据筛选。

这 GEO 里面找到了三个芯片,其中描述了这三个芯片的平台。差异表达分析:作者使用了 GEO2R 来进行数据的筛选。富集分析:接着作者对差异表达的基因进行了富集分析,其中包括 GO 分析和 KEGG 分析。

作者使用的富集分析的软件是 DAVID,这个软件我们也吐槽过说,更新不及时,是很好用,所以推荐是 WebSestalt 富集分析软件,或者 clusterprofiler。蛋白相互作用分析:5TCGA 数据库验证再往下作者做的其实是 TCGA 的数据库验证,但是在材料方法里面没写。我们可以在结果当中具体的过程。

对于肿瘤研究,现在如果只是用 GEO 数据集分析,不用 TCGA 再看一下的话,都觉得不好意思,所以一般的肿瘤研究可能都会用到 TCGA 的验证的。其目的也就类似于多加了一个数据集来增加结果准确性。但是对于 TCGA 有些肿瘤正常样本很少。分析的结果可能偏差更大。文章使用的 GEPIA 的数据库。这个数据库对于查询 TCGA 表达结果还是很好用的,简单上手。

核心基因甲基化相关分析:在核心基因选择之后,利用了 TCGA 的甲基化数据MEXPRESS 来查看基因的田基化水平有没有变化。由于版本的更新。现在的这个数据库的  版本的结果会比之前的更加详细一些。

论文都是被逼出来的,如果不愿意写原创,就去改一篇文章。

是真的,但是会有老师一遍又一遍的指导你的,不用太担心。

毕业论文难度非常的大,因为毕业论文的要求非常的多。对于很多的毕业生来说非常的发愁。经常要修改很多遍。

生信毕业论文好写吗贴吧

看自己能力和平时积累了。不是特别难。

方法:

1、论题要大小适中。题目不要太大,尽量"小题大做"。

2、注意研究角度要有新意。进行科学研究,就是找问题,没有新问题就谈不上研究,更谈不到创新,论文也就没有写作的价值,因此,确定研究方向只有从新的角度去研究、研究以前没有人研究过的问题,或者是研究过探讨过但说法不一的问题去分析论证,才会得出与众不同的结论,才会见出新意。

3、要知己知彼。在选题中,要了解本专业本领域中已有的科研成果,了解别人已经解决了什么问题,还存在什么问题;是否有争论,争论的焦点是什么;那些方面的研究较薄弱,那些方面的研究尚待开拓等等。只有知己知彼才能避免重复和雷同。

二、根据论题,拟定论文提纲

根据论文题目,充分、大量的搜集查找资料。可以通过图书馆各类藏书和情报机构电脑文件检索,国际互联网络的远程登陆、查询、浏览或阅读大量文献资料来获取论文素材。还可以进行实地调查,可通过开会、访谈、观察、统计、论证、实验学习等方法来获取资料。

收集资料主要注意三种:1、与论题直接相关的原始材料;2、他人对该论题或相关论题的研究成果材料;3、与论题有关的社会、文化、语言、历史背景等方面的材料。

收集资料既要有历史材料,也要有现实的材料;既要有正面材料,也要有反面的材料;既要有面上的材料,也要有点上的材料;只有全面地拥有材料,才有可能产生正确而富有创见的观点,展开深刻而周密的论述。

有了充分的材料,还要进行整理分析比较,"去粗取精,去伪存真"对资料进行推敲、筛选,留下最能反映本质、最有说服力的材料,同时提炼和形成自己的观点也就是论点,明确拟定论文提纲。

形成论点时应注意:

1、论点要鲜明,不能含糊其词,同时论点又要辩证,不能走极端;

2、论点要科学正确,不与常理和事实相背离;

3、论点要准确,不要夸大其词,防止偏颇。

拟定论文提纲可以是简单提纲,也可以是详细提纲。简单提纲只是概括地提示论文的要点;详细提纲则是把论文的主要论点和展开部分较详细的列出来,这样写作时就能更顺利完成。

提纲可以采用标题式、提要式和图表式三种,一般标题式较为常用,用简洁的标题形式把论文各部分的内容要点概括出来,同时这些标题可直接作为论文中各部分的小标题。

不好写呗 不能从网上当 论文答辩之前老师们会分析你的毕业论文 好像是有一个什么工具 只要把你的论文弄进去就会有哪些是从网上当的 而且还有出处 所以才要你在最后写参考文献啊

当你了解整体的框架后,其实写毕业论文是不难的,只是需要花费一些时间来思考,再加上反复的论文查重与修改,毕业论文基本都是围绕大学所学的知识来写的,只要按照论题写,而且导师还会给你修改意见的,不难的。

主要看你所在的学校重不重视,你们的专业是什么科目。一般来说,重点大学都比较的注意,二本次之。工科专业最难,要进行设计,理科次之,有些实践应用就好了。文科就比较简单了,复制粘贴就好了。

生信毕业论文好写吗高中

如果好好学,或者不好好学但有见识有觉悟,非常简单,非常的简单,特别是硕士论文,博士论文比较有难度。至于本科的毕业论文,那基本就是混日子的简单写写就行了。1、硕士论文,目标要明确,工具资源得齐备,思路的清晰,细节不会可以用工具,然后写大纲给老师把关。如果方向也没有,大纲也没有,让导师给。2、坚决不能抄袭,相似度30%延迟毕业,50%取消学位,信用记录负面;3、要善于站在巨人的肩膀上,国内的论文少用,多用国外的,谷歌学术和谷歌搜索是一个不错的工具,谷歌商店发布的谷歌白领助手可以帮助你打开这些工具,free。4、论文的核心在于价值,不在于表面文字华丽词藻功夫,当然有了核心的学术价值,在配送华丽词藻更合适。

写论文因人而异,一篇毕业论文的诞生,不仅需要掌握自己领域的技巧,还需要将知识、逻辑思维和写作技巧结合在一起,最后还要修改论文。目前,大多数学校论文的方向仅限于图书知识。没有实践能力,就很难理解这一点的深层含义,也就不可能把理论运用到实践中去,有些学生撰写仓促,导致出现许多的问题。 在平时和课堂做研究的时候不做笔记不收集素材,的确现在的大学生在大学生活中除了吃饭,睡觉和打游戏,都在浪费大学的学习时间。当然你没有一点写作技巧。毕业前,你才想起你还有些毕业论文,你就知道麻烦来了,花很短的时间去阅读各种写作材料和写作技巧,然后急急忙忙的开始写论文,格式要求等等一切都是未知的,导致你最后写出来的论文根本不符合逻辑。所以通过对论文的撰写和复习,学生不仅可以看到论文的不足之处,而且可以使学校和研究生招生单位更好地了解每个学生的专业水平和工作态度。

写毕业论文当然很难每一个课题,都需要你不停的反复推敲,还需要进行实地调研,了解他的现状,知道他问题存在的原因如何去下手,我们怎么样去改观,重点还需要文字的组合,毕竟论文是我们四年,甚至一五年所有知识的一个汇总,他是一个学科。

写毕业论文还是比较难的,首先必须要是原创,因为要经过查重,其次要按一定的格式,不按要求的格式也是通过不了的,所以不能复制粘贴,最好是自己做过的事情,这样学起来就没那么麻烦了,这也有内容可写

毕业论文能写生信吗

不能。计算机系的硕士毕业论文必须与本专业相关,也就是毕业论文必须是计算机类的,虽然生信与计算机有交叉部分,但是生信不是计算机系,因此计算机系的硕士毕业论文写生信不能毕业。计算机专业是指计算机硬件与软件相结合、面向系统、更偏向应用的宽口径专业。

生物信息学推荐系统设计关键词:推荐系统;生物信息学推荐系统(RecommenderSystem)[1]是个性化信息服务的主要技术之一,它实现的是“信息找人,按需服务”;通过对用户信息需要、兴趣爱好和访问历史等的收集分析,建立用户模型,并将用户模型应用于网上信息的过滤和排序,从而为用户提供感兴趣的资源和信息。生物信息学(Bioinformatics)[2,3]是由生物学、应用数学和计算机科学相互交叉所形成的一门新型学科;其实质是利用信息科学的方法和技术来解决生物学问题。20世纪末生物信息学迅速发展,在信息的数量和质量上都极大地丰富了生物科学的数据资源,而数据资源的急剧膨胀需要寻求一种科学而有力的工具来组织它们,基于生物信息学的二次数据库[4]能比较好地规范生物数据的分类与组织,但是用户无法从大量的生物数据中寻求自己感兴趣的部分(著名的生物信息学网站NCBI(美国国立生物技术信息中心),仅仅是小孢子虫(Microsporidia)的DNA序列就达3399种),因此在生物二次数据库上建立个性化推荐系统,能使用户快速找到自己感兴趣的生物信息。特别是在当前生物信息数据量急剧增长的情况下,生物信息学推荐系统将发挥强大的优势。1推荐系统的工作流程应用在不同领域的推荐系统,其体系结构也不完全相同。一般而言,推荐系统的工作流程[5]如图1所示。(1)信息获取。推荐系统工作的基础是用户信息。用户信息包括用户输入的关键词、项目的有关属性、用户对项目的文本评价或等级评价及用户的行为特征等,所有这些信息均可以作为形成推荐的依据。信息获取有两种类型[6],即显式获取(Explicit)和隐式获取(Implicit),由于用户的很多行为都能暗示用户的喜好,因此隐式获取信息的准确性比显式高一些。(2)信息处理。信息获取阶段所获得的用户信息,一般根据推荐技术的不同对信息进行相应的处理。用户信息的存储格式中用得最多的是基于数值的矩阵格式,最常用的是用m×n维的用户—项目矩阵R来表示,矩阵中的每个元素Rij=第i个用户对第j个项目的评价,可以当做数值处理,矩阵R被称为用户—项目矩阵。(3)个性化推荐。根据形成推荐的方法的不同可以分为三种,即基于规则的系统、基于内容过滤的系统和协同过滤系统。基于规则的推荐系统和基于内容过滤的推荐系统均只能为用户推荐过去喜欢的项目和相似的项目,并不能推荐用户潜在感兴趣的项目。而协同过滤系统能推荐出用户近邻所喜欢的项目,通过用户与近邻之间的“交流”,发现用户潜在的兴趣。因此本文所用的算法是基于协同过滤的推荐算法。(4)推荐结果。显示的任务是把推荐算法生成的推荐显示给用户,完成对用户的推荐。目前最常用的推荐可视化方法是Top-N列表[7],按照从大到小顺序把推荐分值最高的N个事物或者最权威的N条评价以列表的形式显示给用户。2生物信息学推荐系统的设计综合各种推荐技术的性能与优缺点,本文构造的生物信息学推荐系统的总体结构如图2所示。生物信息学推荐系统实现的主要功能是在用户登录生物信息学网站时,所留下的登录信息通过网站传递到推荐算法部分;推荐算法根据该用户的用户名从数据库提取出推荐列表,并返回到网站的用户界面;用户访问的记录返回到数据库,系统定时调用推荐算法,对数据库中用户访问信息的数据进行分析计算,形成推荐列表。本系统采用基于近邻的协同过滤推荐算法,其结构可以进一步细化为如图3所示。算法分为邻居形成和推荐形成两大部分,两部分可以独立进行。这是该推荐系统有别于其他系统的优势之一。由于信息获取后的用户—项目矩阵维数较大,使得系统的可扩展性降低。本系统采用SVD矩阵降维方法,减少用户—项目矩阵的维数,在计算用户相似度时大大降低了运算的次数,提高了推荐算法的效率。(1)信息获取。用户对项目的评价是基于用户对某一个项目(为表示简单,以下提及的项目均指网站上的生物物种)的点击次数来衡量的。当一个用户注册并填写好个人情况以后,系统会自动为该用户创建一个“信息矩阵”,该矩阵保存了所有项目的ID号以及相应的用户评价,保存的格式为:S+编号+用户评价,S用于标记项目,每个项目编号及其评价都以“S”相隔开;编号是唯一的,占5位;用户评价是用户点击该项目的次数,规定其范围是0~100,系统设定当增加到100时不再变化。这样做可防止形成矩阵时矩阵评价相差值过大而使推荐结果不准确。(2)信息处理。信息处理是将所有用户的信息矩阵转换为用户—项目矩阵,使用户信息矩阵数值化,假设系统中有M个用户和N个项目,信息处理的目的就是创建一个M×N的矩阵R,R[I][J]代表用户I对项目J的评价。(3)矩阵处理。协同过滤技术的用户—项目矩阵的数据表述方法所带来的稀疏性严重制约了推荐效果,而且在系统较大的情况下,它既不能精确地产生推荐集,又忽视了数据之间潜在的关系,发现不了用户潜在的兴趣,而且庞大的矩阵增加了计算的复杂度,因此有必要对该矩阵的表述方式做优化,进行矩阵处理。维数简化是一种较好的方法,本文提出的算法应用单值分解(SingularValueDecomposition,SVD)技术[8],对用户—项目矩阵进行维数简化。(4)相似度计算。得到降维以后的用户矩阵US,就可以寻找每个用户的近邻。近邻的确定是通过两个用户的相似度来度量的。本文采用Pearson相关度因子[9]求相似度。(5)计算用户邻居。该方法有两种[10],即基于中心的邻居(Center-BasedNeighbor)和集合邻居(AggregateNeighbor)。本系统采用了第一种方法,直接找出与用户相似度最高的前N个用户作为邻居,邻居个数N由系统设定,比如规定N=5。(6)推荐形成。推荐形成的前提是把当前用户的邻居ID号及其与当前用户的相似度保存到数据库中,而在前面的工作中已找出各用户的邻居以及与用户的相似度,推荐形成部分只需要对当前登录用户进行计算。推荐策略是:对当前用户已经访问过的项目不再进行推荐,推荐的范围是用户没有访问的项目,其目的是推荐用户潜在感兴趣的项目;考虑到系统的项目比较多,用户交互项目的数量很大,所以只筛选出推荐度最大的N个项目,形成Top-N推荐集,设定N=5。3生物信息学推荐系统的实现生物信息学推荐系统的实现可以用图4来表示。数据库部分主要存储用户信息和项目信息,用SQLServer2000实现。数据访问层实现了与用户交互必需的存储过程以及触发器,也使用SQLServer2000,主要完成以下功能:初始化新用户信息矩阵;插入新项目时更新所有用户的信息矩阵;用户点击项目时更新该用户对项目的评价;删除项目时更新所有用户的信息矩阵。用户访问层主要涉及网页与用户的交互和调用数据访问层的存储过程,在这里不做详细的介绍。推荐算法完成整个个性化推荐的任务,用Java实现。(1)数据连接类DataCon。该类完成与SQLServer2000数据库的连接,在连接之前必须要下载三个与SQLServer连接相关的包,即、和。(2)数据操作类DataControl。该类负责推荐算法与数据库的数据交换,静态成员Con调用()获得数据库连接,然后对数据库进行各种操作。把所有方法编写成静态,便于推荐算法中不创建对象就可以直接调用。(3)RecmmendSource与CurrentUserNeighbor。这两个类作为FCRecommand类的内部类,RecmmendSource用于保存当前用户的推荐列表,包括推荐项目号和推荐度;CurrentUserNeighbor用于保存邻居信息,包括邻居ID号、相似度及其访问信息。(4)协同过滤推荐算法FCRecommand。该类实现了整个推荐算法,主要分为邻居形成方法FCArithmetic和推荐形成方法GenerateRecommend。下面给出方法FCArithmetic的关键代码:Matrixuser_item=();//获取用户—项目矩阵user_item=(user_item);//调用SVD降维方法Vectorc_uservector=newVector();//当前用户向量Vectoro_uservector=newVector();//其他用户向量Vectorc_user_correlate_vector=newVector();//当前用户与其他用户之间相似度向量for(inti=0;ifor(intj=0;((i,j));//1.获得当前用户向量for(intk=0;();for(intl=0;((k,l));//2.获得其他用户的向量//3.计算当前用户与其他用户的相似度usercorrelativity=(c_uservector,o_uservector);(usercorrelativity);}//4.根据当前用户与其他用户的相似度,计算其邻居(i,c_user_correlate_vector);}根据邻居形成方法FCArithmetic,可以得到每个用户的邻居。作为测试用例,图6显示用户Jack与系统中一部分用户的相似度,可以看出它与自己的相似度必定最高;并且它与用户Sugx访问了相同的项目,它们之间的相似度也为1,具有极高的相似度。4结束语在传统推荐系统的基础上,结合当前生物信息学网站的特点,提出一个基于生物信息平台的推荐系统,解决了传统生物信息网站平台信息迷茫的缺点,为用户推荐其感兴趣物种的DNA或蛋白质序列。优点在于协同过滤的推荐算法能发现用户潜在的兴趣,能促进生物学家之间的交流;推荐算法的邻居形成与推荐形成两部分可以单独运行,减少了系统的开销。进一步的工作是分析生物数据的特点及生物数据之间的关系,增加用户和项目数量,更好地发挥推荐系统的优势。参考文献:[1]PAULR,[J].CommunicationsoftheACM,1997,40(3):56-58.[2]陈新.生物信息学简介[EB/OL].(2001)..[3]林毅申,林丕源.基于WebServices的生物信息解决方案[J].计算机应用研究,2005,22(6):157-158,164.[4]邢仲璟,林丕源,林毅申.基于Bioperl的生物二次数据库建立及应用[J].计算机系统应用,2004(11):58-60.

最好先阅读几篇相应文章和相今似的论文,比如你的课题是油菜,你可以搜有关其他物种如小麦的。根据论文写作步骤制定实验计划。要练习使用一些常用软件,如NCBI,GenBank,在用时最好先下载安装有道词典,因为是英文网站,不容易懂,专业名词也太多!不要怕,万事开头难!好好准备,入了门就好了!

最好是多收集点生物信息方面的资料,题目可以写生物信息的发展历程,等等

毕业论文写信息披露好写吗

创业板上市公司会计信息披露你好,这个课题的你要求是多少字i的啊。

去中国知网之类的的地方查一下相关的文章多不多,研究到什么程度了要是文章非常非常多的话,查重就不太容易过了,要看你手头案例和观点够不够新颖要是文章不多就说明这个很值得写,而且没人写的出来,这时候就看你自己有没有这个水平了

不好写。上市公司的社会责任信息披露是一个广泛而复杂的主题,它涉及到多个领域,包括环境保护、社会公益、劳工权益等,了解和研究这些方面需要对不同的行业、法规和标准有深入的了解。

相关百科

热门百科

首页
发表服务