不算,那些搞数学建模的都会找导师修改。。。
(1)联系工作实际选题要结合我国行政管理实践(特别是自身工作实际),提倡选择应用性较强的课题,特别鼓励结合当前社会实践亟待解决的实际问题进行研究。建议立足于本地甚至是本单位的工作进行选题。选题时可以考虑选些与自己工作有关的论题,将理论与实践紧密结合起来,使自己的实践工作经验上升为理论,或者以自己通过大学学习所掌握到的理论去分析和解决一些引起实际工作问题。(2)选题适当所谓选题要适当,就是指如何掌握好论题的广度与深度。选题要适当包括有两层意思:一是题目的大小要适当。题目的大小,也就是论题涉及内容的广度。确定题目的大小,要根据自己的写作能力而定。如果题目过大,为了论证好选题,需要组织的内容多,重点不易把握,论述难以深入,加上写作时间有限,最后会因力不胜任,难以完成,导致中途流产或者失败。相反,题目太小了,轻而易举,不费功夫,这样又往往反映不出学员通过几年大学阶段学习所掌握的知识水平,也失去从中锻炼和提高写作能力的机会,同时由于题目较小,难以展开论述,在字数上很难达到规定字数要求。此外,论文题目过小也不利于论文写作,结果为了凑字数,结尾部分东拼西凑,结构十分混乱。二题目的难易程度要适当。题目的难易程度,也就是论题涉及的深度。确定题目的难易,也要根据自己的写作能力而定,量力而为。题目难度过大,学员除了知识结构、时间和精力的限制外,资料搜集方面也有局限。这样,就会带来一些意想不到的困难,致使论文写了一半就写不下去了,中途要求另选题目。所以,在这个问题上的正确态度应该是:既不要脱离实际,好高骛远,去选一些自己不可能写好的论题;又不能贪图轻便,降低要求,去写一些随手可得的论题。(3)选题要新意所谓要有新意,就是要从自己已经掌握的理论知识出发,在研究前人研究成果的基础上,善于发现新问题,敢于提出前人没有提出过的,或者虽已提出来,但尚未得到定论或者未完全解决的问题。只要自己的论文观点正确鲜明,材料真实充分,论证深刻有力,也可能填补我国理论界对某些方面研究的空白,或者对以前有关学说的不足进行补充、深化和修正。这样,也就使论文具有新意,具有独创性。
用建模论文代替毕业论文不好。数据都是来自现实实际的,通过严谨的调查得出来的。所以需要做一部分的修改和完善才可以。
是,很大。数学建模论文可以修改为学术论文进行发表吗?答案当然肯定的。但是,如何将数学建模论文修改为学术论文却是一个更为重要的环节。作为一篇学术论文,结构非常重要,但是想要一个完整清晰的结构,必须先有一个完整清晰的主题,而在把数学建模论文修改为学术论文的时候,主题的指向经常容易被复杂的数学所遮盖,导致主题不明确。对于数学建模的参赛论文而言,主题基本别无选择,就是对赛题的解决方案。。
数学建模论文写作方法
随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,分享数学建模论文写作方法技巧,快来看看吧!
一、问题重述
主要是对需要解决的问题用自己的语言对问题的重要特征或者重点进行描述,言简而意赅,这个就看你自己的文笔功底了。
二、 模型假设
对你将要建立的模型进行理想假设,比如说将一些可能对结果影响不显著,但考虑起来需要很多时间的的问题理想化。
三、符号说明
将你要建立的模型中的一些参量用符号代替表示。点状符号:以符号个体表达一定意义对象整体;线状符号:一般采用颜色、纹理、空间布局来表达一定的意义;面妆符号:用来表达呈面状分布于一定范围的现象。
四、模型建立
这个是介绍你模型建立的原理和步骤,以及最终的模型结果,一般是一个评价函数,也可以是另外的形式,不过一定要给出一个能解决问题的大的方法
五、问题一、二、三(视具体的需要回答问题的个数而定,最好分条回答)
利用你上面建立的模型,对题目提出的问题进行求解,这个部分需要你通过程序来实现,最后给出这个问题的结果,如果是满不满意这样的问题,需要给出明确回答满意或不满意,如果是一个量的结果,就需要把通过你的模型以及代码得到的准确结果进行阐述。
六、模型改进
解决完上面题目提出的问题之后,可以对你的模型不足的地方再提出来,并提出改进的方案,以完善整个模型。
七、参考文献
最后将你的参考文献写上,包括你在网上查的的资料,以及别人的论文或者书籍等等。
如果最后需要你一并交上程序代码的话,还需要一个附录,里面包括程序代码,或者如果你上面的问题的结果太长的话(比如要给出几百个点的坐标这样的),可以将这些结果也放在这一块。
不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。 以前在论文发表向导网看到一个编辑介绍数学建模论文写作的具体方法和步奏,感觉很不错,摘录下来与大家一起分享。
(一)摘要
摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意。摘要又称概要,内容提要。摘要是以提供文献内容梗概为目的,不加评论 和补充解释,简明、确切地记述文献重要内容的短文。其基本要素包括研究目的、方法、结果和结论。具体地讲就是研究工作的主要对象和范围,采用的手段和方 法,得出的结果和重要的结论,有时也包括具有情报价值的其它重要的信息。摘要应具有独立性和自明性,并且拥有与文献同等量的主要信息,即不阅读全文,就能 获得必要的信息。对一篇完整的论文都要求写随文摘要,摘要的主要功能有以下几点。
1、让读者尽快了解论文的主要内容,以补充题名的不足。现代科技文献信息浩如烟海,读者检索到论文题名后是否会阅读全文,主要就是通过阅读摘要来判断,所以,摘要担负着吸引读者和将文章的主要内容介绍给读者的任务。
2、为科技情报文献检索数据库的建设和维护提供方便。论文发表后,文摘杂志或各种数据库对摘要可以不作修改或稍作修改而直接利用,从而避免他人编写摘要可能产生的误解、欠缺甚至错误。
(二)问题提出和假设的合理性
模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣。所以,我们应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本 质的变量,并简化它们的关系。这部分内容就应该在论文的“问题的假设”部分中体现。由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分 内容时要注意以下几方面:
1、论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解。
2、所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考。
3、假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发作出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类推得到。对于后者我们应指出参考文献的相关内容。
(三)模型的建立
在作出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形 式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程。上下文之间我们切忌逻辑推理过程中跃度过大,影响论文的 说服力,需要推理和论证的地方,应该有推导的'过程而且应该力求严谨;引用现成定理时,要先验证满足定理的条件。论文中用到的各种数学符号,必须在第一次出 现时加以说明。总之,我们要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据。
(四)模型的计算与分析
把实际问题归结为一定的数学问题后,我们就要求解或进行分析。在数值求解时,我们应对计算方法有所说明,并给出所使用软件的名称或者给出计算 程序(通常以附录形式给出)。我们还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。基于计算结果,我们可以用由分析方法得到一些对实 践有所帮助的结论。
有些模型(例如非线性微分方程)需要作稳定性或其他定性分析。这时我们应该指出所依据的数学理论,并在推理或计算的基础上得出明确的结论。
在模型建立和分析的过程中,带有普遍意义的结论我们可以用清晰的定理或命题的形式陈述出来。结论使用时要注意的问题,我们可以用助记的形式列出。对于定理和命题,我们必须写清结论成立的条件。
(五)模型的讨论
对所作的数学模型,我们可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化,或可以根据实际情况,改变文章一开始所作的某些假 设,指出由此数学模型的变化。我们还可以用不同的数值方法进行计算,并比较所得的结果。有时我们不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。
通常,我们应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。
我以为不用改,,保证那几个方面有就可以了,比如,标题,摘要,关键字,文献,,,以及,完整的内容
数学建模论文可以修改为学术论文进行发表吗?答案当然肯定的。但是,如何将数学建模论文修改为学术论文却是一个更为重要的环节。学术论文不同于数学建模论文,在修改过程中如何对应不同的板块以及需要注意哪些问题呢?早发表网就这些问题为大家做了解答,希望能对大家有所帮助。我们都知道,作为一篇学术论文,结构非常重要,但是想要一个完整清晰的结构,必须先有一个完整清晰的主题,而在把数学建模论文修改为学术论文的时候,主题的指向经常容易被复杂的数学所遮盖,导致主题不明确。对于数学建模的参赛论文而言,主题基本别无选择,就是对赛题的解决方案。关于论文的组织结构,大部分论文要从介绍问题开始讲起,这就是“引言”,其实也就是数学建模论文里的“问题重述”环节。接下来是论文的正文内容部分,开始正式内容的时候也要关注文章的条理和可读性,论文的树形结构一定要清晰,每段内容的目的必须分明。为了使论文有较宽的适应面,要用相对比较通俗的语言把问题准确地讲出来,在没有必要的情况下,切记堆砌罕见专有名词。关于数学建模论文修改为学术论文后的发表问题,一般情况下,只要论文质量合格,经过审核都是可以发表的,发表的流程也和普通论文发表流程一样。
数学建模论文范文--利用数学建模解数学应用题数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。 2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。 学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程: 现实原型问题 数学模型 数学抽象 简化原则 演算推理 现实原型问题的解 数学模型的解 反映性原则 返回解释 列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。 3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。 高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。 例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。 时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145 分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。 通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。 四、培养学生的其他能力,完善数学建模思想。 由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想: (1)理解实际问题的能力; (2)洞察能力,即关于抓住系统要点的能力; (3)抽象分析问题的能力; (4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力; (5)运用数学知识的能力; (6)通过实际加以检验的能力。 只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。 例2:解方程组 x+y+z=1 (1) x2+y2+z2=1/3 (2) x3+y3+z3=1/9 (3) 分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。 方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根 t3-t2+1/3t-1/27=0 (4) 函数模型: 由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3) 平面解析模型 方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。 总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。
论数学建模在经济学中的应用【摘 要】当代西方经济认为,经济学的基本方法是分析经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论进行决策和预测。【关键词】经济学 数学模型 应用在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统(根据厂家各种资源、产品工艺流程、生产成本及客户需求等数据进行数学经济建模)与客户进行商业谈判。一、数学经济模型及其重要性数学经济模型可以按变量的性质分成两类,即概率型和确定型。概率型的模型处理具有随机性情况的模型,确定型的模型则能基于一定的假设和法则,精确地对一种特定情况的结果做出判断。由于数学分支很多,加之相互交叉渗透,又派生出许多分支,所以一个给定的经济问题有时能用一种以上的数学方法去对它进行描述和解释。具体建立什么类型的模型,既要视问题而定,又要因人而异。要看自己比较熟悉精通哪门学科,充分发挥自己的特长。数学并不能直接处理经济领域的客观情况。为了能用数学解决经济领域中的问题,就必须建立数学模型。数学建模是为了解决经济领域中的问题而作的一个抽象的、简化的结构的数学刻划。或者说,数学经济建模就是为了经济目的,用字母、数字及其他数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构的刻划。而现代世界发展史证实其经济发展速度与数学经济建模的密切关系。数学经济建模促进经济学的发展;带来了现实的生产效率。在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统与客户进行商业谈判。二、构建经济数学模型的一般步骤1.了解熟悉实际问题,以及与问题有关的背景知识。2.通过假设把所要研究的实际问题简化、抽象,明确模型中诸多的影响因素,用数量和参数来表示这些因素。运用数学知识和技巧来描述问题中变量参数之问的关系。一般情况下用数学表达式来表示,构架出一个初步的数学模型。然后,再通过不断地调整假设使建立的模型尽可能地接近实际,从而得到比较满意的结论。3.使用已知数据,观测数据或者实际问题的有关背景知识对所建模型中的参数给出估计值。4.运行所得到的模型。把模型的结果与实际观测进行分析比较。如果模型结果与实际情况基本一致,表明模型是符合实际问题的。我们可以将它用于对实际问题进一步的分析或者预测;如果模型的结果与实际观测不一致,不能将所得的模型应用于所研究的实际问题。此时需要回头检查模型的组建是否有问题。问题的假使是否恰当,是否忽略了不应该忽略的因素或者还保留着不应该保留的因素。并对模型进行必要的调整修正。重复前面的建模过程,直到建立出一个经检验符合实际问题的模型为止。一个较好的数学模型是从实际中得来,又能够应用到实际问题中去的。三、应用实例商品提价问题的数学模型:1.问题商场经营者即要考虑商品的销售额、销售量。同时也要考虑如何在短期内获得最大利润。这个问题与商场经营的商品的定价有直接关系。定价低、销售量大、但利润小;定价高、利润大但销售量减少。下面研究在销售总收入有限制的情况下.商品的最高定价问题。2.实例分析某商场销售某种商品单价25元。每年可销售3万件。设该商品每件提价1元。销售量减少万件。要使总销售收入不少于75万元。求该商品的最高提价。解:设最高提价为X元。提价后的商品单价为(25+x)元提价后的销售量为(30000-1000X/1)件则(25+x)(30000-1000X/1)≥750000(25+x)(30-x)≥750[摘要]本文从数学与经济学的关系出发,介绍了数学经济模型及其重要性,讨论了经济数学模型建立的一般步骤,分析了数学在经济学中应用的局限性,这对在研充经济学时有很好的借鉴作用。即提价最高不能超过5元。四、数学在经济学中应用的局限性经济学不是数学,重要的是经济思想。数学只是一种分析工具数学作为工具和方法必须在经济理论的合理框架中才能真正发挥其应有作用,而不能将之替代经济学,在经济思想和理论的研究过程中,如果本末倒置,过度地依靠数学,不加限制地“数学化很可能阉割经济学的本质,以至损害经济思想,甚至会导致我们走入幻想,误入歧途。因为:1.经济学不是数学概念和模型的简单汇集。不是去开拓数学前沿而是借助它来分析、解析经济现象,数学只是一种应用工具。经济学作为社会科学的分支学科,它是人类活动中有关经济现象和经济行为的理论。而人类活动受道德的、历史的、社会的、文化的、制度诸因素的影响,不可能像自然界一样是完全可以通过数学公式推导出来。把经济学变为系列抽象假定、复杂公式的科学。实际上忽视了经济学作为一门社会科学的特性,失去经济学作为社会科学的人文性和真正的科学性。2.经济理论的发展要从自身独有的研究视角出发,去研究、分析现实经济活动内在的本质和规律。经济学中运用的任何数学方法,离不开一定的假设条件,它不是无条件地适用于任何场所,而是有条件适用于特定的领域在实际生活中社会的历史的心理的等非制度因素很可能被忽视而漏掉。这将会导致理论指导现实的失败。3.数学计量分析方法只是执行经济理论方法的工具之一,而不是惟一的工具。经济学过分对数学的依赖会导致经济研究的资源误置和经济研究向度的单一化,从而不利于经济学的发展。4.数学经济建模应用非常广泛,为决策者提供参考依据并对许多部门的具体工作进行指导,如节省开支,降低成本,提高利润等。尤其是对未来可以预测和估计,对促进科学技术和经济的蓬勃发展起了很大的推动作用。但目前尚没有一个具有普遍意义的建模方法和技巧。这既是我们今后应该努力发展的方向,又是我们不可推卸的责任。因此,我们要以自己的辛勤劳动,多实践、多体会,使数学经济建模为我国经济腾飞作出应有的贡献。参考文献:[1]孙红伟.商场经营管理中的几个数学模型分析[J].商场现代化,2006,(8).
数学是知识的工具,亦是 其它 知识工具的泉源。所有研究顺序和度量的科学均和数学有关,数学建模是培养学生运用数学工具解决实际问题的最好表现。下文是我为大家搜集整理的关于2017年全国大学生数学建模竞赛优秀论文的内容,欢迎大家阅读参考!
浅析数学建模课程改革及其 教学 方法
论文关键词:数学课程;数学建模;课程设置;课程改革
论文摘要:数学建模教学和竞赛的开展,是培养学生创新能力的重要途径。对数学建模竞赛中出现的问题进行分析,找出问题产生的根源与必修课和专业课设置不合理有关,应对高校数学课程的设置、教学方式等进行改革,并提出具体改革建议。
1. 前言
数学建模,从宏观上讲是人们借助数学改造自然、征服自然的过程,从微观上讲是把数学作为一种工具并应用它解决实际问题的教学活动方式。数学建模 教育 本身是一种素质教育,数学建模的教学与竞赛是实施素质教育的有效途径,它既增强了学生的数学应用意识,又提高了学生运用数学知识和计算机技术分析和解决问题的能力。因而加强数学建模教育,培养学生的数学应用意识与能力已成为我国高校数学建模课程改革的重要目标之一。虽然目前我国许多高校在数学建模方面取得了一些成绩,但大学生们在竞赛中也暴露出了许多问题,引发出对传统的课程设置和教学方法的思考。
2. 数学建模的现状和所存在问题与原因分析
建模竞赛的现状
根据竞赛时间(九月中下旬),我国大部分高校每年一般在七月中旬便开始组织学生的报名培训工作。培训内容分为两个部分:首先集中讲解一些基础知识,主要包括常微分方程、概率与数理统计、运筹学、数学实验、建模基础等课程;然后进行建模的模拟训练,以往届国内外普通组和大专组的部分竞赛题为选题,让学生自愿结组,在规定时间内完成,并自愿为同学讲解各自的解题思路和方法。
参赛学生首先要参加培训,他们一般是先关注校园网上的通知,再到各院系自愿报名而组成,经培训后选拔出参赛队员。事实上,一般参赛的学生并没有选拔的过程,基本上是学生在培训阶段就自动减员,所剩人数就是参赛人数。几年来,参加培训、竞赛的学生构成基本类似。报名学生数量不多,而且他们大多是来看看是怎么回事,听了一、两次课就不见踪影或自动退出。
数学建模课程的教学内容是以问题为中心,块状编排;开设数学建模课程的时间较短,缺乏应有的教学 经验 来借鉴,大多数教师都是采用模型的机械讲解。至于问题的形成背景,建模过程中可能用到的多种数学思想和方法很少顾及,更谈不上让学生在课堂进行讨论、交流与合作,使得学生难以掌握数学建模的思想和方法。
所存在的问题及原因分析
由以上可以看出,我国大部分高校在建模的工作中存在着一定的问题。第一,没有把数学建模工作纳入日常的教学工作中,临时抱佛脚,突击应对,学生对数学建模兴趣不浓,积极性不高。第二,参加培训竞赛的学生专业比较单一,数学建模活动没有全面展开,这虽然与宣传的力度有关,更主要是缺少必要的教学环节。第三,高年级学生参赛的较少,获奖的比例却较大。特别是大四年级的学生,由于他们面临 毕业 ,就业压力、 考研 压力很大,尽管他们有较深厚的数学基础,却无心顾及竞赛;低年级学生参加培训竞赛的人数较多,积极性很高,但却不出成绩。这表明数学建模与知识的掌握、积累密切相关,是理论与实际应用相结合、知识整合与释放相结合的过程,低年级课程设置不合理,一些相关课程开设太晚。第四,不少人认为应该把课程的重点放在具有复杂背景的实际问题的解决上,持这种观点的人主要是忽视了数学教育专业的特点和培养目标。我们认为,数学教育专业数学建模课程重点应放在树立信念、培养意识和能力上。
另外,数学建模课程开设及教材使用也存在诸多不足之处。据了解,绝大部分高校数学教育专业教学建模课程照搬理工类专业数学建模教材,这些教材主要存在以下问题:第一,教材主要涵盖大量难度较大的现成的数学模型,而这些模型应用了大量的非数学领域的知识和方法,要理解这些问题,对于数学教育专业的学生来说缺乏应有的基础,学习起来只能依靠模仿和机械记忆;第二,教材主要是采用以问题为主线的块状编排体系,重点是问题的罗列,过分突出问题解决。照搬这类教材给数学教育专业数学建模教学带来了较大的负面影响,学生接受难,教师驾驭难。更重要的是难以落实数学教育专业数学建模课程应使学生树立“数学具有广泛应用性”的信念,培养学生数学应用的意识和能力,使学生掌握一套数学建模方法等目标,难以适应高等学校数学教育改革的需要。
综上所述,我们认为,解决数学教育专业开设数学建模课程工作中所出现的问题是课程建设与改革的重中之重,建构符合数学教育专业实际和特色的教材以及形成一套与数学教育专业特点相适应的、科学的教学方法是当务之急。
3. 以数学建模活动为载体开展数学建模教学的途径与方法
目前,开展数学建模教学的途径与方法很多,其中比较常用且很奏效的途径和方法就是以数学建模活动为载体开展数学建模教学,其途径和方法可以描述如下:
精心设计教学案例,开展案例教学法
所谓案例教学法就是在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模示例,介绍建模的思想方法。课堂上的活动一部分是老师讲授,另一部分是让学生进行课堂讨论,即由学生发言,提出对问题的理解和所建立的数学模型的认识,并提出新的数学模型,对其求解、分析、讨论,进行比较检验。实施案例教学要把握好以下环节:
(1)教学案例的选取。要使案例教学达到最佳效果,最重要的就是选好教学案例。选取案例时应该遵循以下的原则:①代表性。案例避免涉及过多的专业知识,又要考虑到科学的发展,学科之间的联系,同时可以拓宽学生的知识面。②原始性。来自广播电视、报刊的信息,政府机关、企事业单位的 报告 、计划、统计资料等等,都是数学建模问题原始资料的重要来源;也可以引导学生亲自到一线调查研究,注意积累课题资料。③趣味性。在具体选取案例时,应该选择既有趣味性又能充分体现数学建模思想的案例,如人口问题、七桥问题、人狼羊过河问题、三级火箭发射卫星问题、森林灭火问题等等。从培养兴趣入手,让学生逐步体会到建模的思想方法和建模的重要性。④创新性。编制建模例题时,必须考虑培养学生的创新精神和创造能力。为此,应注重一题多模或多题一模、统计图表等例题的编拟,密切关注现代科学技术的发展,使学生创新和高新技术密切结合,融入当代科学发展的主流。
(2)案例的课堂教学。教师在讲授具体的建模案例时,应注重两个方面。第一个方面要从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,如何通过合理的假设和简化分析建立优化的数学模型。还要强调如何用求解结果去解释实际现象,检验模型。这种方法既突出了教学的重点,又给学生留下了进一步思考的空间。例如讲授传染病模型时,不同的假设会导致建立不同的模型,只有从实际出发,不断地修正才能使之成为一个成功的模型。除此,还可以给学生提供一些改进的方向,让学生自己课外独立探索和钻研。另外一个方面是教师的讲授必须和学生的讨论相结合。在教师先讲清楚案例的背景、关键的因素、所运用的数学工具等情况下,运用怎样的数学知识和数学思想、建立怎样的数学模型可以让学生各抒己见,进行讨论式教学。这样一方面可以避免教师的“满堂灌”,另一方面可以活跃课堂气氛,提高学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的。
把好课后建模实践训练关,巩固和深化课堂教学
为了巩固和深化课堂教学的内容,使学生进一步地提高建模能力,建模实践训练也是数学建模教学的重要环节。主要有以下的形式:一是布置课后训练题。第一种类型的训练题可以是用课堂上讲过的数学建模方法建模或者是对课上某个问题做进一步的讨论,这是为了达到巩固课堂教学的目的。
另一种类型是为了达到深化课堂教学的目的,在学完有关数学知识单元后,布置该单元知识的训练题,在特定的时间内,让学生在数学建模实验室进行建模强化训练。对每次的训练题要完整地完成,从提出问题、分析问题、建立模型、求解模型到模型的分析、检验、推广的全过程,并在规定时间内完成一篇思路清晰、条理有序的数学论文。通过此过程的强化训练,使学生的认模、建模、用模的能力得到充分地锻炼和提高。每次训练题做完后第一个环节就是教师对训练论文认真批阅审定,对论文中出现的问题及时提出指正意见;第二个环节是组织全班成员对训练论文进行专题讨论,让同学们讲述论文构思、建模思想与方法。通过整体交流,让大家互 相学 习、取长补短,达到共同提高的目的。二是系统讲授数学软件,并让学生上机实习。随着计算机技术的发展,一些高性能的、应用性强的数学软件应运而生,如Matlab、Mathematica、Mapple、SAS、Lindo、Lingo等。有了这些数学软件的出现,教材中复杂的数据计算和处理不再是难题。教师在系统讲授这些数学软件的具体使用技能后,让学生亲自上机操作,掌握这些软件在实际数学运算的应用。例如,如何利用软件进行求导、求积分、求极限等运算;如何利用软件解方程、方程组,解线性规划;如何利用数学软件研究函数变化规律,画出曲线、曲面的图形等等。
不断提高数学教师自身的水平来促进数学建模教学
在数学建模教学中,教师是关键。教师水平的高低直接决定着数学建模教学能否达到预期的培养学生能力的目的。讲授数学建模教学的教师不仅要求具备较高的专业水平,还必须具备丰富的实践经验和很强的解决实际问题的能力。因此,为了提高教师的水平,一方面可以多派教师走出去进行专业培训学习和学术交流,比如多参加各种学术会议、到名校去做访问学者等等。另一方面可以多请着名的专家教授走进来做建模学术报告,使师生增长知识,拓宽视野,了解科学发展前沿的新趋势、新动态。另外,数学教师还必须更新教育理念,不断积累和更新专业知识,其中包括较宽广的人文和科学素养。数学教师只有不断创新,努力提高自身素质,才能适应新的形势,符合时代发展的要求。
总之,数学建模内容具有实用价值,数学建模课程授课可以生动有趣,数学建模可能有知识创新的产品和成果。特别是促进相关数学课程的教学,应该在学生学习了相关课程后或者学习相关课程中开设数学建模,至少应该在现有教学内容中安排一定的数学实验。
参考文献:
[1]李大潜.中国大学生数学建模竞赛[M].北京:高等教育出版社,1998.
[2]安淑华.中国数学教育改革的几点思考[J].数学教育学报,2004.
[3]黄泰安.数学教师的数学观和数学教育观[J].数学教育学报,2004.
[4]王茂之.数学建模培训课程体系设计探讨[J].数学教育学报,2005.
论数学建模思想教学
1在线性代数教学中融入数学建模思想的意义
激发学生的学习兴趣,培养学生的创新能力
教育的本质是让学生在掌握知识的同时可以学以致用。但是目前的线性代数教学重理论轻应用,学生上课觉得索然无味,主动学习的积极性差,创新性就更无从谈起。如果教师能够将数学建模的思想和方法融入到线性代数的日常教学中,不仅可以激发学生学习线性代数的兴趣,而且可以调动学生使用线性代数的知识解决实际问题的积极性,使学生认识到线性代数的真正价值,从而改变线性代数无用的观念,同时还可以培养学生的创新能力。
提高线性代数课程的吸引力,增加学生的受益面
数学建模是培养学生运用数学工具解决实际问题的最好表现。若在线性代数的教学中渗透数学建模的思想和方法,除了能够激发学生学习线性代数的兴趣,使学生了解到看似枯燥的定义、定理并非无源之水,而是具有现实背景和实际用途的,这可以大大改善线性代数课堂乏味沉闷的现状,从而提高线性代数课程的吸引力。由数学建模的教学现状可以看到学生的受益面很小,然而任何高校的理工类、经管类专业都会开设高等数学、线性代数以及概率统计这3门公共数学必修课,若能在线性代数、高等数学及概率统计等公共数学必修课的教学中渗透数学建模的思想和方法,学生的受益面将会大大增加。
促进线性代数任课教师的自我提升
要想将数学建模的思想和方法融入线性代数课程中,就要求线性代数任课教师不仅要具有良好的理论知识讲授技能,更需要具备利用线性代数知识解决实际问题的能力,这就迫使线性代数任课教师要不断学习新知识和新技术,促进自身知识的不断更新,进而达到提高教学和科研能力的效果。
2在线性代数教学中融入数学建模
思想的途径虽然线性代数课程本身的内容多,课时不够,但我们将数学建模的思想融入线性代数课程中,并不是用“数学建模”课的内容抢占线性代数课程的课时,在此,笔者仅从下面2个方面着手将建模的思想逐步渗透到线性代数的教学中。
在线性代数的概念中融入数学建模的思想
从广义上说,线性代数教材中的行列式、矩阵、矩阵乘法、向量、线性方程组等复杂抽象的概念都来源于实际。因此在讲授这些概念时可以恰当选取一些生动的实例来吸引学生的注意力,同时将概念模型自然地建立起来,使学生充分感受到实际问题向数学的转化。例如矩阵是线性代数中的一个重要概念,在引入矩阵的概念时,可以从一个简单的投入产出问题出发,将这个问题中的数据用矩形表来表示,这种简化思想即是建模抽象化思想的很好体现,而这样的矩形表就称为矩阵。
在线性代数的课外作业中融入数学建模的思想
课外作业是对课堂教学内容的消化和巩固,然而目前线性代数的教材以及相关参考书中的习题都没有涉及到线性代数中定义、定理在实际中的应用问题,为了弥补这一点,我们可以在习题中补充一些线性代数建模问题,具体的做法如下。1)在学完1~2个单元后,针对所学的内容开展1次大型作业,学生可以3人一组通过合作的方式来完成该作业(即完成1篇小论文)。学生在完成作业的过程中,不仅可以加强和巩固线性代数的课堂教学内容,还可以提高自学能力和论文写作能力以及培养他们的团队合作精神。同时通过完成大型作业可以使学生尽早地接触科研方法,这与目前鼓励大学生进行科研创新的宗旨是一致的。2)在所有学生的大型作业完成之后,可以组织学生讲解完成作业的思路以及遇到的问题,而教师则针对不同的 文章 做出相应的点评并指出改进的方向。这种学生讲教师听的换位教学模式不仅可以督促学生更好地完成作业,还可以提高学生的语言表达能力以及促进师生的关系,从而大大提高了教学效果。
3在线性代数教学中融入数学建模
思想的案例案例1:投入产出问题[4]。某地有一座煤矿,一个发电厂和一条铁路。经成本核算,每生产价值1元钱的煤需消耗元的电;为了把这1元钱的煤运出去需花费元的运费;每生产1元的电需元的煤作燃料;为了运行电厂的辅助设备需消耗元的电,还需要花费元的运费;作为铁路局,每提供1元运费的运输需消耗元的煤,辅助设备要消耗元的电。现该煤矿接到外地6万元煤的订货,电厂有10万元电的外地需求,问:煤矿和电厂各生产多少才能满足需求?模型假设:假设不考虑价格变动等其他因素。
4结束语
在线性代数教学中融入数学建模思想,培养学生的建模能力,是符合当代人才培养要求的,是可行的。同时也要认识到数学类主干课程的原有体系是经过多年历史积累和考验的产物,若没有充分的根据不宜轻易彻底变动[6]。因此数学建模思想的融入要采用渐进的方式,尽量与已有的教学内容进行有机的结合。实践证明,通过在线性代数教学中融入数学建模思想,不仅激发了学生的学习兴趣,培养了学生的创新能力,还可以促进教师进行自我提升。但如何在线性代数教学中很好地融入数学建模思想目前还处于探索阶段,仍需要广大数学教师的共同努力。
数学建模论文范文--利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。 加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。请采纳。
无忧在线有很多数学建模论文,你去搜一下就行
数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进. 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法. (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法. (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用. (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式. (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型. (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.① 离散系统仿真--有一组状态变量.② 连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型 取决于是否考虑时间因素引起的变化.线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。
如何撰写数学建模论文
当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文。撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的。事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题。
首先要明确撰写论文的目的。数学建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员(竞赛时的阅卷人员)读了之后,相信模型假设的合理性,理解在建立模型过程中所用数学方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。当然,一篇好的论文是以作者所建立的数学模型的科学性为前提的。其次,要注意论文的条理性。
下面就论文的各部分应当注意的地方具体地来做一些分析。
(一) 问题提出和假设的合理性
在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题。历届数学建模竞赛的试题可以看作是情景说明的范例。
对情景的说明,不可能也不必要提供问题的每个细节。由此而来建立数学模型还是不够的,还要补充一些假设,模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣。所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。这部分内容就应该在论文的“问题的假设”部分中体现。由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面:
(1)论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解。
(2)所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考。
(3)假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发做出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类 推得到。对于后者应指出参考文献的相关内容。
(二) 模型的建立
在做出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨;引用现成定理时,要先验证满足定理的条件。论文中用到的各种数学符号,必须在第一次出现时加以说明。总之,要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据。
(三)模型的计算与分析
把实际问题归结为一定的数学问题后,就要求解或进行分析。在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序(通常以附录形式给出)。还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论。
有些模型(例如非线性微分方程)需要作稳定性或其他定性分析。这时应该指出所依据的数学理论,并在推理或计算的基础上得出明确的结论。
在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的`形式陈述出来。结论使用时要注意的问题,可以用助记的形式列出。定理和命题必须写清结论成立的条件。
(四) 模型的讨论
对所作的数学模型,可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化。或可以根据实际情况,改变文章一开始所作的某些假设,指出由此数学模型的变化。还可以用不同的数值方法进行计算,并比较所得的结果。有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。
通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。
除正文外,论文和竞赛答卷都要求写出摘要。我们不要忽视摘要的写作。因为它会给读者和评卷人第一印象。摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意。
语言是构成论文的基本元素。数学建模论文的语言与其他科学论文的语言一样,要求达意、干练。不要把一句句子写得太长,使人不甚卒读。语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句。在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态。
最后,论文的书写和附图也都很重要。附图中的图形应有明确的说明,字迹力求端正。
数学建模论文基本格式摘要 (200-300字,包括模型的主要特点、建模方法和主要结果。)关键词(求解问题、使用的方法中的重要术语) 内容较多时最好有个目录1。问题重述 2。问题分析3。模型假设与约定4。符号说明及名词定义5。模型建立与求解 ①补充假设条件,明确概念,引进参数; ②模型形式(可有多个形式的模型);6。进一步讨论(参数的变化、假设改变对模型的影响)7。模型检验 (使用数据计算结果,进行分析与检验)8。模型优缺点(改进方向,推广新思想)9。参考文献及参考书籍和网站10。附录 (计算程序,框图;各种求解演算过程,计算中间结果;各种图形、表格。)小经验:1。随时记下自己的假设。有时候在很合理的假设下开始了下一步的工作,就应该顺手把这个假设给记下 来,否则到了最后可能会忘掉,而且这也会让我们的解答更加严谨。2。随时记录自己的想法,而且不留余地的完全的表达自己的思想。3。要有自己的特色,闪光点。如何撰写数学建模论文当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文。撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的。事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题。首先要明确撰写论文的目的。数学建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员(竞赛时的阅卷人员)读了之后,相信模型假设的合理性,理解在建立模型过程中所用数学方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。当然,一篇好的论文是以作者所建立的数学模型的科学性为前提的。其次,要注意论文的条理性。下面就论文的各部分应当注意的地方具体地来做一些分析。(一) 问题提出和假设的合理性在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题。历届数学建模竞赛的试题可以看作是情景说明的范例。对情景的说明,不可能也不必要提供问题的每个细节。由此而来建立数学模型还是不够的,还要补充一些假设,模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣。所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。这部分内容就应该在论文的“问题的假设”部分中体现。由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面:(1)论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解。(2)所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考。(3)假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发做出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类 推得到。对于后者应指出参考文献的相关内容。 (二) 模型的建立在做出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨;引用现成定理时,要先验证满足定理的条件。论文中用到的各种数学符号,必须在第一次出现时加以说明。总之,要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据。 (三)模型的计算与分析把实际问题归结为一定的数学问题后,就要求解或进行分析。在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序(通常以附录形式给出)。还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论。有些模型(例如非线性微分方程)需要作稳定性或其他定性分析。这时应该指出所依据的数学理论,并在推理或计算的基础上得出明确的结论。在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来。结论使用时要注意的问题,可以用助记的形式列出。定理和命题必须写清结论成立的条件。(四) 模型的讨论对所作的数学模型,可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化。或可以根据实际情况,改变文章一开始所作的某些假设,指出由此数学模型的变化。还可以用不同的数值方法进行计算,并比较所得的结果。有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。除正文外,论文和竞赛答卷都要求写出摘要。我们不要忽视摘要的写作。因为它会给读者和评卷人第一印象。摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意。语言是构成论文的基本元素。数学建模论文的语言与其他科学论文的语言一样,要求达意、干练。不要把一句句子写得太长,使人不甚卒读。语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句。在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态。最后,论文的书写和附图也都很重要。附图中的图形应有明确的说明,字迹力求端正。
摘要:随着全球经济的发展,计算机的迅速发展,利用计算机去解决数学问题再用数学去解决实际问题显得尤为重要,而数学建模就是利用计算机与数学解决实际问题。本文从四个方面论述了现代数学应用中数学建模的重要性,详细阐述了数学建模在生活中的应用和怎样在学校教育中开展数学建模的教学这两个问题。通过对四个方面即概念、重要性、应用、养数学建模的能力的深刻论述得出结论,数学建模是架于数学理论和生活实际之间的一个桥梁,让人们看到了数学建模的价值,体会到数学建模的教学在现代教育中的重要地位和作用。关键词:数学建模;综合素质;教学;数学应用(一)数学建模的概念数学建模非常广泛、简单,它一直与生活、学习息息相关。例如,在学习中学数学的课程时,根据应用题的已知量列出的数学等式就是最简单的数学模型,对方程进行求解的过程就是在进行简单的数学建模。数学建模就是应用数学模型来解决各种实际问题的方法。也就是通过对实际问题的抽象、简化、确定变量和参数、并应用某些“规律”建立变量,参数间的确定性的数学问题(也可称为一个数学模型)求解数学问题,解释验证所得到的解,从而确定能否应用于解决实际问题的多次循环,不断深化结果。它是用数学方法解决各种实际问题的桥梁。(二)数学建模的思想内涵
数学建模论文一般包括哪几部分分析如下:
1、模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
2、模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
3、模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。
4、模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。模型分析:对所得的结果进行数学上的分析。
5、模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。模型应用:应用方式因问题的性质和建模的目的而异。
扩展资料:
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段。
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态、内在机制的描述,也包括预测、试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只研究数学,而不关心数学在实际中的应用的数学家)变成物理学家、生物学家、经济学家甚至心理学家等等的过程。
无忧在线有很多数学建模论文,你去搜一下就行