论文中这种图怎么画,用什么软件?? 你百度visio,是微软的软件,可以画你这种图,很多教材都是用这个软件画的;还可以网上搜别人做好的库,导进去更方便.这是我随手画的一个,你看效果可以的话,悬赏给我吧 请教大家写论文都用什么画图软件啊 是画论文里的滤波器结构分解图,我做的多层结构的滤波器 请问写毕业论文怎么作图?在Word中可以画图吗?还是必须要用什么软件? 普通的毕业流程图,用Microsoft Office Visio,我的毕业设计论文用的Microsoft Office Visio 2003,更多怎么画、论文插图教程直接在附件,因为图太多了、字数太多了,就不举例了。 写论文用什么软件画图 一般可用excel,专业点的可用origin与Matlab软件,都很不错!你可以试试!科研论文制图用什么软件 origin用的比较多吧 毕业论文用什么软件画图 普通的毕业流程图,用Microsoft Office Visio,我的毕业设计论文用的Microsoft Office Visio 2003,更多怎么画、论文插图教程直接在附件,因为图太多了、字数太多了,就不举例了。 毕业论文中常用的画图工具有哪些? 毕业论文中常用的画图工具有Windows画图、MSVISIO、还有Photoshop等, 请问论文里面的图要用什么软件画 auto cad 或者各学科的专业的画图工具 硕士论文用什么软件画座标图比较好 您好,我来为您解答: 一般的图表用Excel、origin 做较多。我都是用matlab的。 其它的像maple,mathcad数学软件都行。再就是一些专门用于论文画图的小软件,可以到verycd上搜索下,很多的。 如果我的回答没能帮助您,请继续追问。 毕业论文用什么画图软件画一般的图 求财务管理的毕业论文题目有大纲最好泰州哪有大学毕业论文范文毕业论文展示设计会计毕业论文不会写有谁能给点提示有关债务重组的毕业论文人民大学商学院自考本科毕业论文的字体与大要求画出来既美观又规范的。再加一条:比较好使用的答:我做的财务分析的论文,就是用的word插入图表就行,因为你要让老师点击图表时看到数据库。截图下来的图表是不能在论文中使用的
统计图在医学论文中常见的格式统计表是用表格的形式,通过分析指标来表达研究对象的特征、内部构成及各项目分组之间的相互关系。在科技报告或论文中除一些简单的数据必需用文字说明外,其余大部分的统计数据都要用统计表的形式表示。因此,统计表制作的合理与否,直接关系到统计分析的质量与效果。1、统计表的基本格式一张完整的统计表由4部分组成,即标题、标目、线条、数字,必要时可加备注。其制表的原则是重点突出、简单明了、层次清楚。重点突出是指突出所要表示研究事物的主要特征及相互关系;简单明了是指统计表的结构要简单,使人一目了然,不能包罗万象;层次清楚是指内容及标目要安排合理、数据准确。若表格编排不合理将不能充分揭示事物之间的内在规律及联系,也不便于理解和阅读。2、标题应简明扼要地说明表的主要内容,一般放在表的正上方。当某一统计表在同一研究报告中出现时,标题可不包括时间和地点;如果引用在其他文章中,则应包括时间和地点。如论文中只有一张表时,可写成附表,否则要注明表序。3、标目用以说明表内数字含义部分称为标目,分为横标目和纵标目。横标目位于表的左侧,代表被研究事物的主要标志,即主语部分,用以说明同一横行数字的意义;纵标目位于表的右上方,用来说明事物的统计指标,即谓语部分,说明同一列数字的意义。标目的正确安排可使读者自左向右顺利阅读,即从表的左侧横标目开始阅读到纵标目结束,可以读出一个完整的句子。
可以。毕业论文的条形图把条形统计图以图片的形式插入到论文中,毕业论文的条形图插入方法:1、打开word软件,点击图片工具选项。2、点击导入图片选项。3、在弹出对话框中点击添加,选择选择插入的图片文件。4、接着设置每行图片个数。5、最后设置图片大小和导入单元格位置,最后点击确定,毕业论文的条形图即可插入。
【 摘要 】随着科学技术的进步,现代化技术逐渐融入住宅建筑中,BIM技术就是其中一种,其在住宅建筑设计中的应用既优化了住宅建筑的设计方案,又让住宅建筑的建筑设计更加合理、更加节能。论文主要对BIM技术在住宅建筑设计中的应用进行分析,并提出了相应的发展建议。
【 关键词 】BIM技术;住宅建筑;设计
1引言
BIM技术在住宅建筑设计中的应用,能发挥它独有的优势,从而缩短设计时间,提高住宅建筑的设计质量与居住舒适度,并推动住宅建筑的快速发展。随着人们对生活要求的不断提高,为满足人们的要求,在住宅建筑的设计中融入了BIM技术,该技术能将人们对居住的要求进行统计和融合,从而更好地设计出适合广大人民群众居住的住宅建筑[1]。
2BIM技术的定义及优点
定义
BIM技术就是在建筑工程中通过计算机,利用建筑工程的相关数据以及数字防震技术,对建筑设计进行优化和改良,目的是更好地设计出适合居住和生活的建筑。通过BIM技术对建筑进行模拟,建立模型,能降低建筑在施工过程中的风险,提高建筑的设计和施工质量,缩短建筑工程的工期[2]。BIM技术能对建筑的施工过程进行模拟,具有协调性、优化性以及模拟性等特点,因此,在住宅建筑的建设过程中采用BIM技术能有效地改善住宅建筑在设计中的不足之处,提高住宅建筑在施工过程以及建成投入使用之后的安全性。
技术在住宅建筑设计过程中的应用的优点
随着科学技术和经济的发展,人们对生活的要求已经从“解决温饱”改为“精致生活”。在选择住宅时,选择依据已经从以前“能遮风避雨”改为现在的“舒适、典雅”。为了满足人们的要求,BIM技术被广泛应用于建设过程中,主要有以下优点:(1)能通过相关数据,建立数学模型,并通过计算机技术将模型可视化,让设计人员直观地进行观察,了解设计中的不足之处,进而对设计方案进行修正和优化,提高住宅建筑的舒适度。同时,还可以根据业主的不同要求,进行相应的设计,如通风管道、房屋朝向等。(2)通过BIM技术的应用,能提前对建筑的最终质量进行实时的评估,并根据评估结果进行优化。而且,在对BIM模型进行评估的内容当中,包括对住宅建筑的施工过程以及建设成果进行安全评估,有利于缩短评估时间。(3)减轻了绘图人员的工作压力,通过BIM技术能直接将住宅建筑的设计图展现出来,从而减少了人工绘图中容易出现的失误。并且,对于各种施工段的安排,管理人员也可以通过对BIM模型的分析得出相应的结论。
3BIM技术在住宅建筑设计中的具体运用
技术运用于结构设计
计算机最大的特点是能快速、准确地进行复杂的运算,并将计算结果以多种形式表示出来。应对住宅建筑的诸多要求,BIM技术可以利用计算机技术将计算结果以数学模型的形式展现出来,并且住宅建筑的设计人员可以根据BIM技术的这一功能,将住宅建筑的内部结构数据,用模型展现出来。这样,不仅缩短了设计人员在设计时要不断测试、不断计算的时间,而且数字模型的整体性和完整性也为设计人员提供了更直观、更准确的设计结果。同时,可以通过模型对住宅建筑的结构进行分析和总结,快速找出结构设计中的不足之处。另外,通过计算机庞大的数据库,BIM技术能根据设计人员的要求,对已经存在的结构进行分析和改进,在满足设计人员要求的前提下,自动修改设计图、自动出图并修改文档。因此,利用BIM技术对住宅建筑的结构进行设计,能有效地防止因为设计人员考虑不周导致建筑结构存在问题,并提高设计人员的工作效率。
技术在节能、环保设计中的应用
随着我国环境污染的加剧,绿色居住环境已成为当前人们对住宅的基本要求。当前很多住宅建筑的设计都会融入绿色理念,这不仅要求住宅建筑在施工时做到减少灰尘的排放、减少噪声污染等问题,还要保证使用绿色环保的建筑材料进行施工[3]。据统计,我国的既有建筑中有超过400亿m2的建筑存在高耗能现象,随着能源的减少,如何减少建筑的耗能是每个建筑设计人员必须要考虑的问题。而通过BIM技术能利用数学模型模拟各种情况下住宅建筑的耗能情况,从而为设计人员对建筑的能耗分析提供便利。例如,采光。很多建筑都是因为在设计时,没有充分考虑建筑周围环境的变化,导致很多建筑随着周围环境的变化,采光效果越来越弱,使很多住户即使在有太阳的情况下,都需要开灯进行照明,不仅影响了人们居住的舒适度,而且使建筑耗能过多。而采用BIM技术,可以对建筑的能耗情况进行模拟,从而有效地减少因为建筑周围环境的改变而导致住宅建筑在节能、环保方面出现大的变化。而且BIM技术可以根据设计人员的要求,提供最环保的建筑材料供设计者参考,从而提高住宅建筑的环保性、绿色性和节能性[4]。
技术运用于建筑需求设计运用
BIM技术时,设计者需要对现场环境进行分析,并记录相关数据,然后将这些数据导入BIM模型中。在应用BIM技术的过程中,BIM模型的建立是最关键的一个环节,在实际的设计过程中,需要考虑住宅建筑各方面的需求,如现场的基础环境状况、施工条件、业主的要求等,都属于设计者需要考虑的内容,并且一旦出现了与这些内容不相吻合的因素,需要迅速加以调整,并对BIM模型进行相应的纠正,使BIM模型设计与最终的.工程开展有着较高的一致性,从而提高工程效率。
4BIM技术在住宅建筑设计中的应用前景
随着科技的进步,计算机的功能越来越强大,与此同时,人们的文化观念也在持续增长,对居住环境的舒适度的要求也越来越高,不再仅仅重视基础的安全稳定,还需要具有良好的绿色环保性能。而传统的设计理念已经不能满足现在人们的居住要求,出现了很多纰漏,因而需要对传统的设计方式以及设计理念进行创新,积极采用BIM技术进行全新的设计。在住宅建筑设计中,采用BIM技术能更好地设计出符合当前人们居住要求的住宅建筑,并且舒适度和安全性能较高,有较高的灵活性,可以根据客户的不同要求进行调整,进而设计出更合理的住宅建筑[5]。因此,BIM技术在住宅建筑设计中的应用前景是非常光明的。
5结语
综上所述,BIM技术依靠计算机的强大功能,能在住宅建筑设计时及时发现设计中的不足之处,并进行优化和改进,从而推动住宅建筑的发展,因此,该技术有广阔的应用前景。
【 参考文献 】
【1】刘艳霞.BIM技术在某项目设计施工一体化中的应用[J].河南建材,2017(5):86-87.
【2】崔海雨.BIM技术在大型公共建筑中过程控制探讨[J].江西建材,2017(19):31+35.
【3】杨佳.运用BIM软件完成绿色建筑设计[J].工程质量,2016,31(2):55-59.
【4】孙进平.计算机辅助设计的现状与发展[J].海淀走读大学学报,2015(4):82-86.
【5】邱奎宁.BIM技术在中国建筑领域的应用前景分析[J].建筑科学,2013(2):57-58.
无论是施工还是建筑设计,都是需要BIM技术的,真正可以应用到项目上的BIM软件,比如品茗BIM施工策划软件,就类似于建筑工程项目的大数据,BIM模型设计好了,所有数据是可以应用于施工环节的
个人建议可以参考
但我们要知道,Bim并非是一个行业,而是一件趁手的工具,真正起决定性作用的还是人,能够用这项技术达到什么样的目的和水平。我国的建筑业普遍污染耗能较高,但是所获取的利润却偏低,这意味着整体的建筑行业从业人员需要花费巨大的时间,然而整体的薪资水平却并不在行业前列。Bim作为建筑领域的新技术,在这些年来一直都受到国家和社会的普遍推广应用。很多大企业都已经建立了自己的相关bim团队,bim技术的发展趋势不可小觑!!!土木工程转行做bim也能得心应手,因为它们本身就是有联系的。当从事土木工程方向的人去学习应用bim,在技术掌握和实操把控上会更加精准,学习的效率也会更高。而且Bim技术前景广,发展空间大,整体行业趋势都在朝好的方向所发展,从事土木工程的你,现在开始学习掌握bim,可以在未来面试时多一份加分项。当你学会bim技术以后再从土木工程转行,本身求职就多了一份选择。其次,bim业内专业人才数量急缺,整体的工资待遇水平要远远高于传统的建筑业,一般相同的面试,会技术和不会技术的差别非常大,更别提有证和无证的区别了。如果你是企业HR,同样的两个人才,一个资质平平,另一个对bim技术非常熟练,那么你会选择哪一个入职呢?答案是显而易见的。
可以。毕业论文的条形图把条形统计图以图片的形式插入到论文中,毕业论文的条形图插入方法:1、打开word软件,点击图片工具选项。2、点击导入图片选项。3、在弹出对话框中点击添加,选择选择插入的图片文件。4、接着设置每行图片个数。5、最后设置图片大小和导入单元格位置,最后点击确定,毕业论文的条形图即可插入。
时代金融摘 要:关键词:一、 引言一个国家的国民经济有很多因素构成, 省区经济则是我国国民经济的重要组成部分, 很多研究文献都认为中国的省区经济是宏观经济的一个相对独立的研究对象, 因此, 选取省区经济数据进行区域经济的研究, 无疑将是未来几年的研究趋势。而省区经济对我国国民经济的影响, 已从背后走到了台前, 发展较快的省区对我国国民经济的快速增长起到了很大的作用, 而发展相对较慢的省区, 其原因与解决方法也值得我们研究。本文选取华中大省湖北省进行研究, 具有一定的指导和现实意义。湖北省 2006 年 GDP 为 7497 亿元, 人均 GDP13130 元, 达到中等发达国家水平。从省域经济来说, 湖北省是一个较发达的经济实体。另一方面, 湖北省优势的地理位置和众多的人口使之对于我国整体经济的运行起到不可忽视的作用, 对于湖北省 GDP的研究和预测也就从一个侧面反映我国国民经济的走势和未来。尽管湖北省以其重要位置和经济实力在我国国民经济中占据一席之地, 但仍不可避免的面临着建国以来一再的经济波动,从最初的强大势力到如今的挣扎期, 湖北省的经济面临着发展困境。近年来, 湖北省的经济状况一再呈现再次快速发展的趋势, 但是这个趋势能够保持多久却是我们需要考虑的问题。本文选择了时间序列分析的方法进行湖北省区域经济发展的预测。时间序列预测是通过对预测目标自身时间序列的处理来研究其变化趋势的。即通过时间序列的历史数据揭示现象随时间变化的规律, 将这种规律延伸到未来, 从而对该现象的未来作出预测。二、 基本模型、 数据选择以及实证方法( 一) 基本模型ARMA 模型是一种常用的随机时序模型, 由博克斯, 詹金斯创立, 是一种精度较高的时序短期预测方法, 其基本思想是: 某些时间序列是依赖于时间 t 的一组随机变量, 构成该时序的单个序列值虽然具有不确定性, 但整个序列的变化却具有一定的规律性, 可以用相应的数学模型近似描述。通过对该数学模型的分析,能够更本质的认识时间序列的结构与特征, 达到最小方差意义下的最优预测。现实社会中, 我们常常运用 ARMA模型对经济体进行预测和研究, 得到较为满意的效果。但 ARMA模型只适用于平稳的时间序列, 对于如 GDP 等非平稳的时间序列而言, ARMA模型存在一定的缺陷, 因此我们引入一般情况下的 ARMA模型 ( ARIMA模型) 进行实证研究。事实上, ARIMA模型的实质就是差分运算与 ARMA模型的组合。 本文讨论的求和自回归移动平均模型, 简记为 ARIMA ( p, d, q) 模型,是美国统计学家 和 enkins 于 1970 年首次提出, 广泛应用于各类时间序列数据分析, 是一种预测精度相当高的短期预测方法。建立 ARIMA ( p, d, q) 模型计算复杂, 须借助计算机完成。本文介绍 ARIMA ( p, d, q) 模型的建立方法, 并利用Eviews 软件建立湖北省 GDP 变化的 ARIMA ( p, d, q) 预测模型。( 二) 数据选择1.本文所有 GDP 数据来自于由中华人民共和国统计局汇编,中国统计出版社出版的 《新中国五十五年统计数据汇编》 。2.本文的所有数据处理均使用 软件进行。( 三) 实证方法ARMA模型及 ARIMA模型都是在平稳时间序列基础上建立的, 因此时间序列的平稳性是建模的重要前提。任何非平稳时间序列只要通过适当阶数的差分运算或者是对数差分运算就可以实现平稳, 因此可以对差分后或对数差分后的序列进行 ARMA( p, q) 拟合。ARIMA ( p, d, q) 模型的具体建模步骤如下:1.平稳性检验。一般通过时间序列的散点图或折线图对序列进行初步的平稳性判断, 并采用 ADF 单位根检验来精确判断该序列的平稳性。对非平稳的时间序列, 如果存在一定的增长或下降趋势等,则需要对数据取对数或进行差分处理, 然后判断经处理后序列的平稳性。重复以上过程, 直至成为平稳序列。此时差分的次数即为ARIMA ( p, d, q) 模型中的阶数 d。为了保证信息的准确, 应注意避免过度差分。对平稳序列还需要进行纯随机性检验 ( 白噪声检验) 。白噪声序列没有分析的必要, 对于平稳的非白噪声序列则可以进行ARMA ( p, q) 模型的拟合。白噪声检验通常使用 Q 统计量对序列进行卡方检验, 可以以直观的方法直接观测得到结论。拟合。首先计算时间序列样本的自相关系数和偏自相关系的值, 根据自相关系数和偏自相关系数的性质估计自相关阶数 p 和移动平均阶数 q 的值。一般而言, 由于样本的随机性, 样本的相关系数不会呈现出理论截尾的完美情况, 本应截尾的相关系数仍会呈现出小值振荡的情况。又由于平稳时间序列通常都具有短期相性, 随着延迟阶数的增大, 相关系数都会衰减至零值附近作小值波动。根据 Barlett 和 Quenouille 的证明, 样本相关系数近似服从正态分布。一个正态分布的随机变量在任意方向上超出 2σ 的概率约为 。因此可通过自相关和偏自相关估计值序列的直方图来大致判断在 5%的显著水平下模型的自相关系数和偏自相关系数不为零的个数, 进而大致判断序列应选择的具体模型形式。同时对模型中的 p 和 q 两个参数进行多种组合选择, 从 ARMA ( p,q) 模型中选择一个拟和最好的曲线作为最后的方程结果。一般利用 AIC 准则和 SC 准则评判拟合模型的相对优劣。3.模型检验。模型检验主要是检验模型对原时间序列的拟和效果, 检验整个模型对信息的提取是否充分, 即检验残差序列是否为白噪声序列。如果拟合模型通不过检验, 即残差序列不是为白噪声序列, 那么要重新选择模型进行拟合。如残差序列是白噪声序列, 就认为拟合模型是有效的。模型的有效性检验仍然是使谭诗璟ARIMA 模型在湖北省GDP 预测中的应用—— —时间序列分析在中国区域经济增长中的实证分析本文介绍求和自回归移动平均模型 ARIMA ( p, d, q) 的建模方法及 Eviews 实现。广泛求证和搜集从 1952 年到 2006 年以来湖北省 GDP 的相关数据, 运用统计学和计量经济学原理, 从时间序列的定义出发, 结合统计软件 EVIEWS 运用 ARMA建模方法, 将 ARIMA模型应用于湖北省历年 GDP 数据的分析与预测, 得到较为满意的结果。湖北省 区域经济学 ARIMA 时间序列 GDP 预测理论探讨262008/01 总第 360 期图四 取对数后自相关与偏自相关图图三 二阶差分后自相关与偏自相关图用上述 Q 统计量对残差序列进行卡方检验。4.模型预测。根据检验和比较的结果, 使用 Eviews 软件中的forecas t 功能对模型进行预测, 得到原时间序列的将来走势。 对比预测值与实际值, 同样可以以直观的方式得到模型的准确性。三、 实证结果分析GDP 受经济基础、 人口增长、 资源、 科技、 环境等诸多因素的影响, 这些因素之间又有着错综复杂的关系, 运用结构性的因果模型分析和预测 GDP 往往比较困难。我们将历年的 GDP 作为时间序列, 得出其变化规律, 建立预测模型。本文对 1952 至 2006 年的 55 个年度国内生产总值数据进行了分析, 为了对模型的正确性进行一定程度的检验, 现用前 50 个数据参与建模, 并用后五年的数据检验拟合效果。最后进行 2007年与 2008 年的预测。( 一) 数据的平稳化分析与处理1.差分。利用 EViews 软件对原 GDP 序列进行一阶差分得到图二:对该序列采用包含常数项和趋势项的模型进行 ADF 单位根检验。结果如下:由于该序列依然非平稳性, 因此需要再次进行差分, 得到如图三所式的折线图。根据一阶差分时所得 AIC 最小值, 确定滞后阶数为 1。然后对二阶差分进行 ADF 检验:结果表明二阶差分后的序列具有平稳性, 因此 ARIMA ( p, d,q) 的差分阶数 d=2。二阶差分后的自相关与偏自相关图如下:2.对数。利用 EViews 软件, 对原数据取对数:对已经形成的对数序列进行一阶差分, 然后进行 ADF 检验:由上表可见, 现在的对数一阶差分序列是平稳的, 由 AIC 和SC 的最小值可以确定此时的滞后阶数为 2。 因为是进行了一阶差分, 因此认为 ARIMA ( p, d, q) 中 d=1。( 二) ARMA ( p, q) 模型的建立ARMA ( p, q) 模型的识别与定阶可以通过样本的自相关与偏自相关函数的观察获得。图一 1952- 2001 湖北省 GDP 序列图表 1 一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC 备注0 - - - - 非平稳1 - - - - - - - - - - - - - - - - 表 2 二阶差分的 ADF 检验Lag Length t- Statistic 1% level 5% level 10% level1 (Fixed) - - - - 表 3 对数一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC SC 备注0 - - - - - - 平稳 1 - - - - - - - - - - - - - - - - - - 图五 对数后一阶差分自相关与偏自相关图理论探讨27时代金融摘 要:关键词:使用 EViews 软件对 AR, MA的取值进行实现, 比较三种情况下方程的 AIC 值和 SC 值:表 4ARMA模型的比较由表 4 可知, 最优情况本应该在 AR ( 1) , MA ( 1) 时取得, 但AR, MA都取 1 时无法实现平稳, 舍去。对于后面两种情况进行比较, 而 P=1 时 AIC 与 SC 值都比较小, 在该种情况下方程如下:综上所述选用 ARIMA ( 1, 1, 0) 模型。( 三) 模型的检验对模型的 Q 统计量进行白噪声检验, 得出残差序列相互独立的概率很大, 故不能拒绝序列相互独立的原假设, 检验通过。模型均值及自相关系数的估计都通过显著性检验, 模型通过残差自相关检验, 可以用来预测。( 四) 模型的预测我们使用时间序列分析的方法对湖北省地方生产总值的年度数据序列建立自回归预测模型, 并利用模型对 2002 到 2006 年的数值进行预测和对照:表 5 ARIMA ( 1, 1, 0) 预测值与实际值的比较由上表可见, 该模型在短期内预测比较准确, 平均绝对误差为 , 但随着预测期的延长, 预测误差可能会出现逐渐增大的情况。下面, 我们对湖北省 2007 年与 2008 年的地方总产值进行预测:在 ARIMA模型的预测中, 湖北省的地方生产将保持增长的势头, 但 2008 年的增长率不如 2007 年, 这一点值得注意。GDP毕竟与很多因素有关, 虽然我们一致认为, 作为我国首次主办奥运的一年, 2008 将是中国经济的高涨期, 但是是否所有的地方产值都将受到奥运的好的影响呢? 也许在 2008 年全国的 GDP 也许确实将有大幅度的提高, 但这有很大一部分是奥运赛场所在地带来的经济效应, 而不是所有地方都能够享有的。正如 GDP 数据显示, 1998 年尽管全国经济依然保持了一个比较好的态势, 但湖北省的经济却因洪水遭受不小的损失。作为一个大省, 湖北省理应对自身的发展承担起更多的责任。总的来说, ARIMA模型从定量的角度反映了一定的问题, 做出了较为精确的预测, 尽管不能完全代表现实, 我们仍能以ARIMA模型为基础, 对将来的发展作出预先解决方案, 进一步提高经济发展, 减少不必要的损失。四、结语时间序列预测法是一种重要的预测方法, 其模型比较简单,对资料的要求比较单一, 在实际中有着广泛的适用性。在应用中,应根据所要解决的问题及问题的特点等方面来综合考虑并选择相对最优的模型。在实际运用中, 由于 GDP 的特殊性, ARIMA模型以自身的特点成为了 GDP 预测上佳选择, 但是预测只是估计量, 真正精确的还是真实值, 当然, ARIMA 模型作为一般情况下的 ARMA 模型, 运用了差分、取对数等等计算方法, 最终得到进行预测的时间序列, 无论是在预测上, 还是在数量经济上, 都是不小的进步, 也为将来的发展做出了很大的贡献。我们通过对湖北省地方总产值的实证分析, 拟合 ARIMA( 1, 1, 0) 模型, 并运用该模型对湖北省的经济进行了小规模的预测,得到了较为满意的拟和结果, 但湖北省 2007 年与 2008 年经济预测中出现的增长率下降的问题值得思考, 究竟是什么原因造成了这样的结果, 同时我们也需要到 2008 年再次进行比较, 以此来再次确定 ARIMA ( 1, 1, 0) 模型在湖北省地方总产值预测中所起到的作用。参考文献:【1】易丹辉 数据分析与 EViews应用 中国统计出版社【2】 Philip Hans Frances 商业和经济预测中的时间序列模型 中国人民大学出版社【3】新中国五十五年统计资料汇编 中国统计出版社【4】赵蕾 陈美英 ARIMA 模型在福建省 GDP 预测中的应用 科技和产业( 2007) 01- 0045- 04【5】 张卫国 以 ARIMA 模型估计 2003 年山东 GDP 增长速度 东岳论丛( 2004) 01- 0079- 03【6】刘盛佳 湖北省区域经济发展分析 华中师范大学学报 ( 2003) 03-0405- 06【7】王丽娜 肖冬荣 基于 ARMA 模型的经济非平稳时间序列的预测分析武汉理工大学学报 2004 年 2 月【8】陈昀 贺远琼 外商直接投资对武汉区域经济的影响分析 科技进步与对策 ( 2006) 03- 0092- 02( 作者单位: 武汉大学经济与管理学院金融工程)AR(1)MA(1) AR(1) MA(1) 备注AIC - - - 最优为 AR(1)MA(1)SC - - - Coefficient Std. Error t- Statistic (1) squared - Mean dependent var R- squared - . dependent var . of regression Akaike info criterion - resid Schwarz criterion - likelihood Durbin-Watson stat AR Roots .59年份 实际值 预测值 相对误差(%) 平均误差(%)2002 - - - - - 年度 GDP 值 增长率(%) — 表 6 ARIMA ( 1, 1, 0) 对湖北省经济的预测一、模糊数学分析方法对企业经营 ( 偿债) 能力评价的适用性影响企业经营 ( 偿债) 和盈利能力的因素或指标很多; 在分析判断时, 对事物的评价 ( 或评估) 常常会涉及多个因素或多个指标。这时就要求根据多丛因素对事物作出综合评价, 而不能只从朱晓琳 曹 娜用应用模糊数学中的隶属度评价企业经营(偿债)能力问题影响企业经营能力的许多因素都具有模糊性, 难以对其确定一个精确量值; 为了使企业经营 ( 偿债) 能力评价能够得到客观合理的结果, 有必要根据一些模糊因素来改进其评价方法, 本文根据模糊数学中隶属度的方法尝试对企业经营 ( 偿债) 能力做出一种有效的评价。隶属度及函数 选取指标构建模型 经营能力评价应用理论探讨28
***统计方法的应用
统计图在医学论文中常见的格式统计表是用表格的形式,通过分析指标来表达研究对象的特征、内部构成及各项目分组之间的相互关系。在科技报告或论文中除一些简单的数据必需用文字说明外,其余大部分的统计数据都要用统计表的形式表示。因此,统计表制作的合理与否,直接关系到统计分析的质量与效果。1、统计表的基本格式一张完整的统计表由4部分组成,即标题、标目、线条、数字,必要时可加备注。其制表的原则是重点突出、简单明了、层次清楚。重点突出是指突出所要表示研究事物的主要特征及相互关系;简单明了是指统计表的结构要简单,使人一目了然,不能包罗万象;层次清楚是指内容及标目要安排合理、数据准确。若表格编排不合理将不能充分揭示事物之间的内在规律及联系,也不便于理解和阅读。2、标题应简明扼要地说明表的主要内容,一般放在表的正上方。当某一统计表在同一研究报告中出现时,标题可不包括时间和地点;如果引用在其他文章中,则应包括时间和地点。如论文中只有一张表时,可写成附表,否则要注明表序。3、标目用以说明表内数字含义部分称为标目,分为横标目和纵标目。横标目位于表的左侧,代表被研究事物的主要标志,即主语部分,用以说明同一横行数字的意义;纵标目位于表的右上方,用来说明事物的统计指标,即谓语部分,说明同一列数字的意义。标目的正确安排可使读者自左向右顺利阅读,即从表的左侧横标目开始阅读到纵标目结束,可以读出一个完整的句子。
统计学毕业论文选题
毕业论文的题目是开始写作的关键,先选好题,再下笔。下面是我整理的统计学毕业论文选题,希望大家喜欢。
统计学毕业论文选题
1、具有预测能力的呼叫中心系统的设计与实现
2、PVAR模型在研究经济增长与能源消费关系中的应用
3、基于有限元的深基坑组合型围护结构可靠度分析
4、一些带有偏序结构的完全码
5、Stein方法在复合泊松分布近似中的应用
6、各类分布产生的背景
7、保险金融中的计数过程的若干渐近性
8、高中概率教学的现状、问题及对策研究
9、随机变量序列的极限定理
10、Cayley树上非对称马氏链及任意相依随机变量序列强极限定理的若干研究
11、一类混合随机序列的概率极限定理
12、保证齿轮质量的结构和工艺措施研究
13、道路施工机群资源配置和计划调度沥青混凝土路面机械化施工系统状态分析与技术经济评价研究
14、高速公路服务区合理规模与布局研究
15、基于图像区域统计特征的隐写分析技术研究
16、统计收敛的测度理论
17、关于φ-混合随机变量序列的矩完全收敛性的研究
18、混合相依随机变量序列极限理论的若干结果
19、两两NQD列的一些收敛性质
20、电力市场环境下的电能质量评估研究
21、本科概率论试验课程设计初探
22、基于随机模拟试验的稳健优化设计方法研究
23、随机变量序列部分和乘积的几乎处处中心极限定理
24、AQSI序列的强极限定理
25、几类相依混合随机变量列的大数律和L~r收敛性
26、现代经济计量学建立简史
27、任意随机变量序列的相关定理
28、新建电气化铁路电能质量影响预测研究
29、鞅差与相依随机变量序列部分和精确渐近性
30、ND序列若干收敛性质的研究
31、证券组合投资决策的均匀试验设计优化研究
32、相依随机变量序列部分和收敛速度
33、行为两两NQD随机变量阵列加权和的收敛性
34、数值计算的统计确认研究与初步应用
35、基于证据理论的足球比赛结果预测方法
36、城市工业用地集约利用评价与潜力挖掘
37、节理化岩体边坡稳定性研究
38、随机变分不等式及其应用
39、基于模糊综合评价的靶场实时光测数据质量评估
40、基于路径的加权地域通信网可靠性研究
41、LNQD样本近邻估计的大样本性质
42、20CrMoH齿轮弯曲疲劳强度研究
43、我国股票市场与宏观经济之间的协整分析
44、一类Copula函数及其相关问题研究
45、乐透型彩票N选M中奖号码的概率分析
46、协整理论在汽车发动机系统故障诊断中的应用
47、2010年上海世博会会展中断风险分析和保险建议
48、贝儿康有限公司激励设计研究
49、云模型在系统可靠性中的应用研究
50、离散更新模型破产概率及赤字的上下界估计
51、输电线微风振动与疲劳寿命
52、电器产品模糊可靠性分析中模糊可靠度的研究
53、变分不等式及变分包含解的存在性与算法
54、隧道测量误差控制方案的'研究
55、塔式起重机臂架可靠性分析软件开发
56、分布式认证跳表及其在P2P分布式存储系统中的应用
57、房地产行业企业所得税纳税评估实证研究
58、天然气管道断裂事故分析
59、粗集理论及其在数据预处理过程中的应用
60、集装箱码头后方堆场荷载统计分析和概率模型
61、多工序制造过程计算机辅助误差诊断控制系统
62、实(复)值统计型测度的表示理论及其它在统计收敛上的应用
63、应用统计教育部重点实验室程序库建设
64、基于个体的捕食系统模型
65、相依样本下移动平均过程的矩完全收敛
66、基坑变形监测分析及单撑—排桩墙支护结构抗倾覆可靠度研究
67、基于综合的交通冲突技术的城市道路交叉口安全评价方法研究
68、暗挖地铁车站下穿对既有结构安全性影响分析
69、随机变量阵列的强收敛性
70、基于随机有限元的疲劳断裂可靠性研究
71、高中数学教学概率统计部分浅析
72、敏感问题二阶段抽样调查的统计方法及应用
73、三大重要分布及其性质的进一步研究
74、随机变量的统计收敛性及统计收敛在数据处理方面的应用
75、多变量密度函数小波估计的一致中心极限定理
76、混合Copula构造及相关性应用
77、数学职前教师对正态分布的理解水平的研究
78、煤矿事故系统脆性模型的建立与仿真
79、基于贝叶斯网络的客户信用风险评估及系统设计
80、河北北方学院学生成绩关联分析及预测
81、房地产项目现金流管理研究
82、高压电磁感应信号的采集及处理算法的研究
83、基于神经网络的逆变电源可靠性研究
84、跳频序列的局部随机性与线性复杂度分析
85、金川二矿区中段平面运输系统数据分析与模拟模型研究
86、房地产投资风险定量评价与规避策略研究
87、审计统计抽样技术方法研究与设计运行
88、几种概率统计滤波法在重磁数据处理中的研究及应用
89、模糊随机变量序列的极限定理
90、数据挖掘的若干新方法及其在我国证券市场中应用
91、城市道路交通流特征参数研究
92、辽宁红沿河核电厂可能最大风暴潮的估算
93、潜油电泵轴的可靠性分析与设计
94、起重机金属结构极限状态法设计研究
95、相依随机变量极限理论的若干结果
96、局部次高斯随机序列的强极限定理
97、基于自然风险度量的农业保险定价及其财政补贴研究
98、NA和(ρ|~)混合序列的某些收敛性质
99、可交换随机变量序列的极限理论
100、一类相依重尾随机序列的强极限定理及其应用
统计学选问题关键所在的
这个建议你 查十篇左右的文献 看看以前发表的毕业论文都是怎么写的 然后还可以跟上一级打听下 或者跟指导你毕业的老师咨询下 找到一个研究样本之后 再想怎么做 论文题目不急
时代金融摘 要:关键词:一、 引言一个国家的国民经济有很多因素构成, 省区经济则是我国国民经济的重要组成部分, 很多研究文献都认为中国的省区经济是宏观经济的一个相对独立的研究对象, 因此, 选取省区经济数据进行区域经济的研究, 无疑将是未来几年的研究趋势。而省区经济对我国国民经济的影响, 已从背后走到了台前, 发展较快的省区对我国国民经济的快速增长起到了很大的作用, 而发展相对较慢的省区, 其原因与解决方法也值得我们研究。本文选取华中大省湖北省进行研究, 具有一定的指导和现实意义。湖北省 2006 年 GDP 为 7497 亿元, 人均 GDP13130 元, 达到中等发达国家水平。从省域经济来说, 湖北省是一个较发达的经济实体。另一方面, 湖北省优势的地理位置和众多的人口使之对于我国整体经济的运行起到不可忽视的作用, 对于湖北省 GDP的研究和预测也就从一个侧面反映我国国民经济的走势和未来。尽管湖北省以其重要位置和经济实力在我国国民经济中占据一席之地, 但仍不可避免的面临着建国以来一再的经济波动,从最初的强大势力到如今的挣扎期, 湖北省的经济面临着发展困境。近年来, 湖北省的经济状况一再呈现再次快速发展的趋势, 但是这个趋势能够保持多久却是我们需要考虑的问题。本文选择了时间序列分析的方法进行湖北省区域经济发展的预测。时间序列预测是通过对预测目标自身时间序列的处理来研究其变化趋势的。即通过时间序列的历史数据揭示现象随时间变化的规律, 将这种规律延伸到未来, 从而对该现象的未来作出预测。二、 基本模型、 数据选择以及实证方法( 一) 基本模型ARMA 模型是一种常用的随机时序模型, 由博克斯, 詹金斯创立, 是一种精度较高的时序短期预测方法, 其基本思想是: 某些时间序列是依赖于时间 t 的一组随机变量, 构成该时序的单个序列值虽然具有不确定性, 但整个序列的变化却具有一定的规律性, 可以用相应的数学模型近似描述。通过对该数学模型的分析,能够更本质的认识时间序列的结构与特征, 达到最小方差意义下的最优预测。现实社会中, 我们常常运用 ARMA模型对经济体进行预测和研究, 得到较为满意的效果。但 ARMA模型只适用于平稳的时间序列, 对于如 GDP 等非平稳的时间序列而言, ARMA模型存在一定的缺陷, 因此我们引入一般情况下的 ARMA模型 ( ARIMA模型) 进行实证研究。事实上, ARIMA模型的实质就是差分运算与 ARMA模型的组合。 本文讨论的求和自回归移动平均模型, 简记为 ARIMA ( p, d, q) 模型,是美国统计学家 和 enkins 于 1970 年首次提出, 广泛应用于各类时间序列数据分析, 是一种预测精度相当高的短期预测方法。建立 ARIMA ( p, d, q) 模型计算复杂, 须借助计算机完成。本文介绍 ARIMA ( p, d, q) 模型的建立方法, 并利用Eviews 软件建立湖北省 GDP 变化的 ARIMA ( p, d, q) 预测模型。( 二) 数据选择1.本文所有 GDP 数据来自于由中华人民共和国统计局汇编,中国统计出版社出版的 《新中国五十五年统计数据汇编》 。2.本文的所有数据处理均使用 软件进行。( 三) 实证方法ARMA模型及 ARIMA模型都是在平稳时间序列基础上建立的, 因此时间序列的平稳性是建模的重要前提。任何非平稳时间序列只要通过适当阶数的差分运算或者是对数差分运算就可以实现平稳, 因此可以对差分后或对数差分后的序列进行 ARMA( p, q) 拟合。ARIMA ( p, d, q) 模型的具体建模步骤如下:1.平稳性检验。一般通过时间序列的散点图或折线图对序列进行初步的平稳性判断, 并采用 ADF 单位根检验来精确判断该序列的平稳性。对非平稳的时间序列, 如果存在一定的增长或下降趋势等,则需要对数据取对数或进行差分处理, 然后判断经处理后序列的平稳性。重复以上过程, 直至成为平稳序列。此时差分的次数即为ARIMA ( p, d, q) 模型中的阶数 d。为了保证信息的准确, 应注意避免过度差分。对平稳序列还需要进行纯随机性检验 ( 白噪声检验) 。白噪声序列没有分析的必要, 对于平稳的非白噪声序列则可以进行ARMA ( p, q) 模型的拟合。白噪声检验通常使用 Q 统计量对序列进行卡方检验, 可以以直观的方法直接观测得到结论。拟合。首先计算时间序列样本的自相关系数和偏自相关系的值, 根据自相关系数和偏自相关系数的性质估计自相关阶数 p 和移动平均阶数 q 的值。一般而言, 由于样本的随机性, 样本的相关系数不会呈现出理论截尾的完美情况, 本应截尾的相关系数仍会呈现出小值振荡的情况。又由于平稳时间序列通常都具有短期相性, 随着延迟阶数的增大, 相关系数都会衰减至零值附近作小值波动。根据 Barlett 和 Quenouille 的证明, 样本相关系数近似服从正态分布。一个正态分布的随机变量在任意方向上超出 2σ 的概率约为 。因此可通过自相关和偏自相关估计值序列的直方图来大致判断在 5%的显著水平下模型的自相关系数和偏自相关系数不为零的个数, 进而大致判断序列应选择的具体模型形式。同时对模型中的 p 和 q 两个参数进行多种组合选择, 从 ARMA ( p,q) 模型中选择一个拟和最好的曲线作为最后的方程结果。一般利用 AIC 准则和 SC 准则评判拟合模型的相对优劣。3.模型检验。模型检验主要是检验模型对原时间序列的拟和效果, 检验整个模型对信息的提取是否充分, 即检验残差序列是否为白噪声序列。如果拟合模型通不过检验, 即残差序列不是为白噪声序列, 那么要重新选择模型进行拟合。如残差序列是白噪声序列, 就认为拟合模型是有效的。模型的有效性检验仍然是使谭诗璟ARIMA 模型在湖北省GDP 预测中的应用—— —时间序列分析在中国区域经济增长中的实证分析本文介绍求和自回归移动平均模型 ARIMA ( p, d, q) 的建模方法及 Eviews 实现。广泛求证和搜集从 1952 年到 2006 年以来湖北省 GDP 的相关数据, 运用统计学和计量经济学原理, 从时间序列的定义出发, 结合统计软件 EVIEWS 运用 ARMA建模方法, 将 ARIMA模型应用于湖北省历年 GDP 数据的分析与预测, 得到较为满意的结果。湖北省 区域经济学 ARIMA 时间序列 GDP 预测理论探讨262008/01 总第 360 期图四 取对数后自相关与偏自相关图图三 二阶差分后自相关与偏自相关图用上述 Q 统计量对残差序列进行卡方检验。4.模型预测。根据检验和比较的结果, 使用 Eviews 软件中的forecas t 功能对模型进行预测, 得到原时间序列的将来走势。 对比预测值与实际值, 同样可以以直观的方式得到模型的准确性。三、 实证结果分析GDP 受经济基础、 人口增长、 资源、 科技、 环境等诸多因素的影响, 这些因素之间又有着错综复杂的关系, 运用结构性的因果模型分析和预测 GDP 往往比较困难。我们将历年的 GDP 作为时间序列, 得出其变化规律, 建立预测模型。本文对 1952 至 2006 年的 55 个年度国内生产总值数据进行了分析, 为了对模型的正确性进行一定程度的检验, 现用前 50 个数据参与建模, 并用后五年的数据检验拟合效果。最后进行 2007年与 2008 年的预测。( 一) 数据的平稳化分析与处理1.差分。利用 EViews 软件对原 GDP 序列进行一阶差分得到图二:对该序列采用包含常数项和趋势项的模型进行 ADF 单位根检验。结果如下:由于该序列依然非平稳性, 因此需要再次进行差分, 得到如图三所式的折线图。根据一阶差分时所得 AIC 最小值, 确定滞后阶数为 1。然后对二阶差分进行 ADF 检验:结果表明二阶差分后的序列具有平稳性, 因此 ARIMA ( p, d,q) 的差分阶数 d=2。二阶差分后的自相关与偏自相关图如下:2.对数。利用 EViews 软件, 对原数据取对数:对已经形成的对数序列进行一阶差分, 然后进行 ADF 检验:由上表可见, 现在的对数一阶差分序列是平稳的, 由 AIC 和SC 的最小值可以确定此时的滞后阶数为 2。 因为是进行了一阶差分, 因此认为 ARIMA ( p, d, q) 中 d=1。( 二) ARMA ( p, q) 模型的建立ARMA ( p, q) 模型的识别与定阶可以通过样本的自相关与偏自相关函数的观察获得。图一 1952- 2001 湖北省 GDP 序列图表 1 一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC 备注0 - - - - 非平稳1 - - - - - - - - - - - - - - - - 表 2 二阶差分的 ADF 检验Lag Length t- Statistic 1% level 5% level 10% level1 (Fixed) - - - - 表 3 对数一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC SC 备注0 - - - - - - 平稳 1 - - - - - - - - - - - - - - - - - - 图五 对数后一阶差分自相关与偏自相关图理论探讨27时代金融摘 要:关键词:使用 EViews 软件对 AR, MA的取值进行实现, 比较三种情况下方程的 AIC 值和 SC 值:表 4ARMA模型的比较由表 4 可知, 最优情况本应该在 AR ( 1) , MA ( 1) 时取得, 但AR, MA都取 1 时无法实现平稳, 舍去。对于后面两种情况进行比较, 而 P=1 时 AIC 与 SC 值都比较小, 在该种情况下方程如下:综上所述选用 ARIMA ( 1, 1, 0) 模型。( 三) 模型的检验对模型的 Q 统计量进行白噪声检验, 得出残差序列相互独立的概率很大, 故不能拒绝序列相互独立的原假设, 检验通过。模型均值及自相关系数的估计都通过显著性检验, 模型通过残差自相关检验, 可以用来预测。( 四) 模型的预测我们使用时间序列分析的方法对湖北省地方生产总值的年度数据序列建立自回归预测模型, 并利用模型对 2002 到 2006 年的数值进行预测和对照:表 5 ARIMA ( 1, 1, 0) 预测值与实际值的比较由上表可见, 该模型在短期内预测比较准确, 平均绝对误差为 , 但随着预测期的延长, 预测误差可能会出现逐渐增大的情况。下面, 我们对湖北省 2007 年与 2008 年的地方总产值进行预测:在 ARIMA模型的预测中, 湖北省的地方生产将保持增长的势头, 但 2008 年的增长率不如 2007 年, 这一点值得注意。GDP毕竟与很多因素有关, 虽然我们一致认为, 作为我国首次主办奥运的一年, 2008 将是中国经济的高涨期, 但是是否所有的地方产值都将受到奥运的好的影响呢? 也许在 2008 年全国的 GDP 也许确实将有大幅度的提高, 但这有很大一部分是奥运赛场所在地带来的经济效应, 而不是所有地方都能够享有的。正如 GDP 数据显示, 1998 年尽管全国经济依然保持了一个比较好的态势, 但湖北省的经济却因洪水遭受不小的损失。作为一个大省, 湖北省理应对自身的发展承担起更多的责任。总的来说, ARIMA模型从定量的角度反映了一定的问题, 做出了较为精确的预测, 尽管不能完全代表现实, 我们仍能以ARIMA模型为基础, 对将来的发展作出预先解决方案, 进一步提高经济发展, 减少不必要的损失。四、结语时间序列预测法是一种重要的预测方法, 其模型比较简单,对资料的要求比较单一, 在实际中有着广泛的适用性。在应用中,应根据所要解决的问题及问题的特点等方面来综合考虑并选择相对最优的模型。在实际运用中, 由于 GDP 的特殊性, ARIMA模型以自身的特点成为了 GDP 预测上佳选择, 但是预测只是估计量, 真正精确的还是真实值, 当然, ARIMA 模型作为一般情况下的 ARMA 模型, 运用了差分、取对数等等计算方法, 最终得到进行预测的时间序列, 无论是在预测上, 还是在数量经济上, 都是不小的进步, 也为将来的发展做出了很大的贡献。我们通过对湖北省地方总产值的实证分析, 拟合 ARIMA( 1, 1, 0) 模型, 并运用该模型对湖北省的经济进行了小规模的预测,得到了较为满意的拟和结果, 但湖北省 2007 年与 2008 年经济预测中出现的增长率下降的问题值得思考, 究竟是什么原因造成了这样的结果, 同时我们也需要到 2008 年再次进行比较, 以此来再次确定 ARIMA ( 1, 1, 0) 模型在湖北省地方总产值预测中所起到的作用。参考文献:【1】易丹辉 数据分析与 EViews应用 中国统计出版社【2】 Philip Hans Frances 商业和经济预测中的时间序列模型 中国人民大学出版社【3】新中国五十五年统计资料汇编 中国统计出版社【4】赵蕾 陈美英 ARIMA 模型在福建省 GDP 预测中的应用 科技和产业( 2007) 01- 0045- 04【5】 张卫国 以 ARIMA 模型估计 2003 年山东 GDP 增长速度 东岳论丛( 2004) 01- 0079- 03【6】刘盛佳 湖北省区域经济发展分析 华中师范大学学报 ( 2003) 03-0405- 06【7】王丽娜 肖冬荣 基于 ARMA 模型的经济非平稳时间序列的预测分析武汉理工大学学报 2004 年 2 月【8】陈昀 贺远琼 外商直接投资对武汉区域经济的影响分析 科技进步与对策 ( 2006) 03- 0092- 02( 作者单位: 武汉大学经济与管理学院金融工程)AR(1)MA(1) AR(1) MA(1) 备注AIC - - - 最优为 AR(1)MA(1)SC - - - Coefficient Std. Error t- Statistic (1) squared - Mean dependent var R- squared - . dependent var . of regression Akaike info criterion - resid Schwarz criterion - likelihood Durbin-Watson stat AR Roots .59年份 实际值 预测值 相对误差(%) 平均误差(%)2002 - - - - - 年度 GDP 值 增长率(%) — 表 6 ARIMA ( 1, 1, 0) 对湖北省经济的预测一、模糊数学分析方法对企业经营 ( 偿债) 能力评价的适用性影响企业经营 ( 偿债) 和盈利能力的因素或指标很多; 在分析判断时, 对事物的评价 ( 或评估) 常常会涉及多个因素或多个指标。这时就要求根据多丛因素对事物作出综合评价, 而不能只从朱晓琳 曹 娜用应用模糊数学中的隶属度评价企业经营(偿债)能力问题影响企业经营能力的许多因素都具有模糊性, 难以对其确定一个精确量值; 为了使企业经营 ( 偿债) 能力评价能够得到客观合理的结果, 有必要根据一些模糊因素来改进其评价方法, 本文根据模糊数学中隶属度的方法尝试对企业经营 ( 偿债) 能力做出一种有效的评价。隶属度及函数 选取指标构建模型 经营能力评价应用理论探讨28
网站查询。论文里的图表和数据统计图是学生所写论文里重要的信息参考依据,具有证明解释问题的作用。毕业论文里的图表和数据统计图是通过网站搜索毕业论文找到并下载。
常用的统计图有扇形统计图,折线统计图,和条形统计图,分别的画图步骤如下:
1、扇形统计图,扇形统计图一般用在百分比比较明确的数据中,可以清楚的看到占比率。
2、折线统计图,折线统计图一般用在变化规律上,可以清楚的看到数据变化规律。
3、条形统计图,条形统计图一般用在数值对比中,可以看到每条数据的高低大小。
基本类型(1)条图:又称直条图,表示独立指标在不同阶段的情况,有两维或多维,图例位于右上方。(2)百分条图和圆图:描述百分比(构成比)的大小,用颜色或各种图形将不同比例表达出来。(3)线图:用线条的升降表示事物的发展变化趋势,主要用于计量资料,描述两个变量间关系。(4)半对数线图:纵轴用对数尺度,描述一组连续性资料的变化速度及趋势。(5)直方图:描述计量资料的频数分布。(6)散点图:描述两种现象的相关关系。(7)统计地图:描述某种现象的地域分布。条形图用一个单位长度(如1厘米)表示一定的数量,根据数量的多少,画成长短相应成比例的直条,并按一定顺序排列起来,这样的统计图,称为条形统计图。条形统计图可以清楚地表明各种数量的多少。条形图是统计图资料分析中最常用的图形。按照排列方式的不同,可分为纵式条形图和横式条形图;按照分析作用的不同,可分为条形比较图和条形结构图。条形统计图的特点:(1)能够使人们一眼看出各个数据的大小。(2)易于比较数据之间的差别。(3)能清楚的表示出数量的多少。扇形图以一个圆的面积表示事物的总体,以扇形面积表示占总体的百分数的统计图,叫作扇形统计图。也叫作百分数比较图。扇形统计图可以比较清楚地反映出部分与部分、部分与整体之间的数量关系。扇形统计图的特点:(1)用扇形的面积表示部分在总体中所占的百分比。(2)易于显示每组数据相对于总数的大小。折线图折线统计图以折线的上升或下降来表示统计数量的增减变化的统计图,叫作折线统计图。与条形统计图比较,折线统计图不仅可以表示数量的多少,而且可以反映同一事物在不同时间里的发展变化的情况。折线图在生活中运用的非常普遍,虽然它不直接给出精确的数据,但只要掌握了一定的技巧,熟练运用“坐标法”也可以很快地确定某个具体的数据。折线统计图的特点:(1)能够显示数据的变化趋势,反映事物的变化情况。网状图网状统计图的特点是:母代表的意义,在具体的答题过程中就可以脱离字母,较简便找出答案。统计图的意义:表示现象间的对比关系;揭露总体结构;检查计划的执行情况;揭示现象间的依存关系,反映总体单位的分配情况;说明现象在空间上的分布情况。茎叶统计图茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。茎叶图有三列数:左边的一列数统计数,它是上(或下)向中心累积的值,中心的数(带括号)表示最多数组的个数;中间的一列表示茎,也就是变化不大的位数;右边的是数组中的变化位,它是按照一定的间隔将数组中的每个变化的数一一列出来,象一条枝上抽出的叶子一样,所以人们形象地叫它茎叶图。茎叶图是一个与直方图相类似的特殊工具,但又与直方图不同,茎叶图保留原始资料的资讯,直方图则失去原始资料的讯息。将茎叶图茎和叶逆时针方向旋转90度,实际上就是一个直方图,可以从中统计出次数,计算出各数据段的频率或百分比。从而可以看出分布是否与正态分布或单峰偏态分布逼近。茎叶图在质量管理上用途与直方图差不多,但它通常是作为更细致的分析阶段使用。由于它是用数字组成直方图,所以在做的时候比直方图时,通常我们常使用专业的软件进行绘制。茎叶图的特征1、用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示。2、茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观、清晰。统计图的意义:表示现象间的对比关系;揭露总体结构;检查计划的执行情况;揭示现象间的依存关系,反映总体单位的分配情况;说明现象在空间上的分布情况。网状统计图的特点是这类统计图中只有一些字母,字母所代表的意义都在题外,在答题前必弄清这些字母代表的意义,在具体的答题过程中就可以脱离字母,较简便地得出答案。统计表是由纵横交叉线条所绘制的表格来表现统计资料的一种形式.根据《中国小学教学百科全书》介绍,它是用原始数据制成的一种表格.为了实际需要,人们常常要把工农业生产、科学技术和日常工作中所得到的相互关联的数据,按照一定的要求进行整理、归类,并按照一定的顺序把数据排列起来,制成表格,这种表格叫做统计表.它的作用是:①用数量说明研究对象之间的相互关系.②用数量把研究对象之间的变化规律显著地表示出来.③用数量把研究对象之间的差别显著地表示出来.这样便于人们用来分析问题和研究问题.统计表的形式繁简不一,通常按项目的多少,分为单式统计表和复式统计表两种.只对某一个项目的数据进行统计的表格,叫做单式统计表,也叫做简单统计表.统计项目在两个或两个以上的统计表格,叫做复式统计表.统计表的内容一般都包括总标题、横标题、纵标题、数字资料、单位、制表日期.总标题是指表的名称,它要能简单扼要地反映出表的主要内容,横标题是指每一横行内数据的意义;纵标题是指每一纵栏内数据的意义;数字资料是指各空格内按要求填写的数字;单位是指表格里数据的计量单位.在数据单位相同时,一般把单位放在表格的左上角.如果各项目的数据单位不同时,可放在表格里注明.制表日期放在表的右上角,表明制表的时间.各种统计表都应有“备考”或“附注”栏,以便必要时填入不属于表内各项的事实或说明.直方图直方图(Histogram)又称柱状图、质量分布图。是一种统计报告图,由一系列高度不等的纵向条纹或线段表示数据分布的情况。 一般用横轴表示数据类型,纵轴表示分布情况。直方图法的涵义在质量管理中,如何预测并监控产品质量状况?如何对质量波动进行分析?直方图就是一目了然地把这些问题图表化处理的工具。它通过对收集到的貌似无序的数据进行处理,来反映产品质量的分布情况,判断和预测产品质量及不合格率。直方图又称质量分布图,柱状图,它是表示资料变化情况的一种主要工具。用直方图可以的资料,解析出规则性,比较直观地看出产品质量特性的分布状态,对於资分布状况一目了然,便於判断其总体质量分布情况。在制作直方图时,牵涉学的概念,首先要对资料进行分组,因此如何合理分组是其中的关键问题。按组距相等的原则进行的两个关键数位是分组数和组距。是一种几何形图表,它是根据从生产过程中收集来的质量数据分布情况,画成以组距为底边、以频数为高度的一系列连接起来的直方型矩形图,如图所示。作直方图的目的就是通过观察图的形状,判断生产过程是否稳定,预测生产过程的质量。具体来说,作直方图的目的有:①判断一批已加工完毕的产品;②验证工序的稳定性;③为计算工序能力搜集有关数据。直方图将数据根据差异进行分类,特点是明察秋毫地掌握差异。直方图的绘制方法①集中和记录数据,求出其最大值和最小值。数据的数量应在100个以上,在数量不多的情况下,至少也应在50个以上。我们把分成组的个数称为组数,每一个组的两个端点的差称为组距。②将数据分成若干组,并做好记号。分组的数量在6-20之间较为适宜。③计算组距的宽度。用组数去除最大值和最小值之差,求出组距的宽度。④计算各组的界限位。各组的界限位可以从第一组开始依次计算,第一组的下界为最小值减去最小测定单位的一半,第一组的上界为其下界值加上组距。第二组的下界限位为第一组的上界限值,第二组的下界限值加上组距,就是第二组的上界限位,依此类推。⑤统计各组数据出现频数,作频数分布表。⑥作直方图。以组距为底长,以频数为高,作各组的矩形图。
常用的统计图主要有圆饼图、条形图、直方图和折线图四种。不同层次的变量其统计图的制作也不相同。一般情况下,定类变量用圆饼图或条形图;定序变量用条形图;定距变量用直方图或曲线图。
(1)圆饼图。
圆饼图又称饼状图、圆形图等,它可以显示一个整体怎样分成几个部分。要画圆饼图,先要画个圆,圆代表总体100%,圆里面的扇形就代表各个部分,各扇形的圆心角和各部分的大小成比例,用圆心角360°乘以各个部分的百分比就得到了这个部分的扇形度数。
圆饼图的好处是让人们看到:所有部分合起来的确是全体。但是圆饼图只能用来比较一个整体的各个部分,不能用来比较并不属于同一个整体的数量。
(2)条形图。
条形图又称矩形图,是最常用的图形。
它是以宽度相等、长度不等的长条图的用途比圆饼图要广泛得多。圆饼图只能用来比较一个整体的各个部分;条形图既可以比较一个整体,又可以用来比较不属于同一个整体的数量。
(3)直方图。
直方图看上去和条形图类似,实际上它与条形图不同,它的宽度是有意义的。一般而言,直方图是以长条的面积表示频次或相对频次;而条形图的高度表示的是频次密度或相对频次密表示不同的统计数字,如表示频数或百分比的多少。它既可以是水平的,也可以是垂直的(垂直的又叫柱形图),可以用来显示事物的大小、内部结构或动态变动等情况。
不难看出,条形度,其宽度为组距。
直方图条形与条形之间没有空隙,除非有一组是空的,此时它对应的条形高度是零。
直方图仅适用于定距变量,常用来表示数量变量的分布,如学生高考分数、家庭收入等。因为这些变量的可能值太多,如果把比较接近的值归为一组,画出的直方图就会清楚一些。我们用下面一个例子来说明如何画直方图。
(4)折线图(曲线图)
曲线图又称折线图,它是通过上下变化的线段来反映所研究现象随时间变化的过程和发展趋势的图形。如果一个图中只含有一条曲线,人们把这种图形称为单式曲线图;如果一个图中含有两条以上的曲线,人们则称其为复式曲线图。
许多变量都是隔一段时间测量一次。比如,人们也许会度量成长中儿童的身高,或者每个月的月底记录某只股票的股价。