当今时代,随着科学技术不断发展,计算机已成为处理信息的主要工具之一。掌握计算机的基础知识和基本操作技能是科学发展和走向未来信息化时代的需要。下面是我为大家整理的关于计算机论文,供大家参考。
关于计算机论文 范文 一:计算机 网络技术 中人工智能的应用
摘要:本文主首先针对现在计算机网路当中存在的普遍的问题进行了简要的介绍,然后结合了现在人工智能的特点以及优势,对现在人工智能在现在人们要求计算机为自己提供更加的智能化、人性化的服务工作,并且现在的计算机网络技术当中广泛存在的问题,尤其是在计算机网络安全方面存在的问题,也在强调着现在人工智能在计算机网络技术发展当中的重要的地位。
关键词:人工智能;计算机网络技术;应用
一、计算机网络技术存在的问题
随着计算机技术的不断的发展,现在不论是在我们的日常的生活当中还是在我们的工作当中,计算机网络技术的应用都是十分的广泛的,人们对于计算机网络技术的引用越来越广泛也就意味着现在人们对于计算机网络安全方面的问题采取了更多的关注,也就是说在现在计算机网络的监视以及网络控制已经成为了现在人们都比较关注的两个方面,人们都认为计算机网络管理系统应该具有着这两个方面的问题。但是由于我们想在计算机网络安全管理系统当中更好的实现网络监视以及网络控制这两个方面的功能,我们就必须要对网络当中的信息进行及时的获取以及处理,但是现在我们通过网络来进行信息的传递的时候经常性的会出现不连续或者是不规则的情况,并且在计算机网络技术发展的早起,人们只是能够使用计算机来对数据进行一个简单的处理,不能够通过计算机来对数据的真实性来进行一定的分析以及判断,同时更加不能够实现在海量的网络信息当中对有效的信息来进行迅速的筛选的目的,,除此之外就是现在的计算机网络用户的信息安全网路安全管理也是应该为其提供更加完善的保障的,现在的计算机软件的开发速度是非常迅猛的,同时计算机网络犯罪也是十分的猖獗的,如果说计算机的网络安全系统自身没有足够的灵敏性以及足够迅速的反应速度的话,完全不能够应付现在计算机网络当中频发的侵犯用户信息安全等各种违法的网络犯罪活动。想要更好的实现计算机网络安全管理,我们就必须要建立一套完整的,并且有着灵敏反应速度的智能化管理系统,这一套智能化的管理系统能够自动的对数据来进行手机并且对故障及时的做出诊断依据分析,并且及时的进行处理,恢复计算机网络系统的正常的运行。
二、人工智能技术的特点以及优势
我们在对人工智能进行使用的过程当中,能够有效的通过人工只能来对一些不确定性的信息进行处理,并且我们能够通过人工智能来对整个的系统当中的局部的状态或者是全局的状态来进行进行料及而并且对其变化进行跟踪,能够自己及时的来对系统当中的信息来进行适当的处理,并且我们还能够及时的将用户需要的信息及时的提供给用户。除了这些能力之外,我们能够利用人工智能来进行写作,也就是说现在的人工智能的自身是有着非常良好的写作能力的,能够通过人工智能自身来对已经得到的各种的信息以及资源来进行处理,并且能够实现将这些信息在不同的用户之间来进行相互的穿束以及共享,再就是现在我们将人工智能应用到计算机网络智能方面,主要就是为了能够更好的使现在我国的计算机网络系统能够有着足够的学习能力以及更好的推理能力,我们在对网络进行管理的过程当中采用人工智能的话不仅仅能够提高对于信息的处理的销量,而且还能够凭着人工智能的记忆能力将信息进行储存,通过对这些信息的储存,人工智能能够自动的利用这些已经储存的信息来构建一个完善的信息库,然后在这个信息库的基础之上,在对信息进行一个信息的 总结 以及结束,然后通过总结以及解释的这个过程形成一个高级的信息,然后将这个高级信息提供给网络给网络管理者。所以说我们在进行计算机网络管理的过程当中采用人工智能进行管理的话,计算机网络的管理人员其实也就是相当于雇佣了一个非常的聪明并且任劳任怨的秘书,这个秘书不仅仅说能够对自己的指令进行无条件的服从,并且这个秘书还能够根据管理者的意愿来灵活的对自己将要进行完成的任务来进行一个创新,自动的来寻求一个更加快捷并且有效的 方法 来进行任务的完成,这样就能够不断的提高现在我国网络信息管理的效率。
三、人工智能在计算机网络技术当中的应用
(一)人工智能在计算机网络安全管理当中的应用
第一个方面就是一个智能型的反垃圾邮件系统,我们能够在现在的计算机网络当中通过这么一个系统来对现在的客户的邮箱来进行一个十分有效的安全保护,所谓的智能型的反垃圾邮件系统就是利用人工智能技术来开发的一个系统,通过这个系统我们能够对用户的来及邮件来进行防护,并且我们在对电子邮件来进行监测以及防护的过程当中,这一个系统是不会对我们的用户来产生任何的信息安全的威胁的,并且我们还能够自动的形成一个来及邮件的分类信息,并且及时的将这个信息传递给客户,然后客户就能够根据这一个分类信息来对邮箱当中的垃圾邮件来进行处理了。第二个方面,智能防火墙技术。人工智能防火墙系统与现在我们正在使用的众多的防火墙系统是有着很大的区别的,这种防火墙系统能够利用自身的人工智能的优势来对需要处理的各种的数据进行自动的收集以及处理,能够十分有效的提高信息处理的速度以及效率,从而能够更好的提高防火墙发现现在的计算机网络当中的各种危害行为的能力,能够更好的组织各种病毒在现在我国的计算机网络系统当中的传播。第三个方面,入侵监测技术。入侵计策是计算机网络安全管理当中的首要环节,也是其中最为关键的一个环节,是整个的计算机防火墙系统的核心部分。
(二)人工智能在网络管理以及系统评价当中的应用
我们现在在对人工智能技术进行应用的过程当中不仅仅可以应用他的人工智能,还可以对现在人工智能当中的专家知识库来进行应用。专家系统其实就是一个职能化的计算机系统,这个系统就是将某一个领域当中的专家的知识以及 经验 进行了总结以及归纳,将这些知识以及经验变成有效的资源来输入系统当中,对系统处理这个领域的问题来提供帮助。
四、结束语
综上所述,随着现在计算机技术以及网络信息技术的不断发展,人工智能技术开始出现并且进入到了人们的生活当中,本文主要就是介绍而现在计算机网络当中存在的问题,以及现在人工智能技术在现在的计算机网络技术当中的应用情况。
参考文献:
[1]张彬.探讨人工智能在计算机网络技术中的应用[J].软件,2012,11:265-266.
[2]马越.探讨人工智能在计算机网络技术中的应用[J].计算机光盘软件与应用,2014,22:43-44.
关于计算机论文范文二:电子商务中计算机网络安全技术研究
【摘要】随着社会的飞速发展,计算机网络也在逐渐向着各个领域渗透和发展,尤其对于具有代表性的电子商务产业来说,时刻与计算机网络的应用紧密相连,然而随着网络环境变得愈加复杂,网络安全技术则成为了大家共同关注的话题,只有将网络安全技术合理的在电子商务中进行利用,才能促使整个网络环境不受破坏,由此电子商务产业也会得到更加平稳快速的发展.
【关键词】计算机网络;安全技术;电子技术;应用
前言
在电子商务产业不断开拓与探索的进程中,计算机网络安全技术的应用在其中起着至关重要的作用,只有对网络环境进行一个系统的、全面的、科学的管理,才能构建一个可靠的网络防护屏障,进而使得电子商务产业的网络系统得到有效地保护和发展。
1电子商务中的计算机网络安全技术
在电子商务交易中,自然少不了计算机网络的支持与运用,与此同时,在极为复杂的网络环境下,电子商务的网络运行系统在交易中就存在着很多潜在的威胁,只有对电子商务中的计算机网络安全技术有一定的了解和掌握,才能更加有助于网络安全技术在电子商务中的应用。电子商务网络安全分为两大部分,分别是计算机网络安全和商务交易安全。计算机网络安全指的是计算机系统内部网络环境的安全性能,主要包括计算机网络设备安全、计算机网络 系统安全 等几个重要组织的安全性,其主要是以计算机网络自身的安全性为目标;商务安全则是以传统商务网络为中心,从Internet在电子商务中应用中的安全问题展开研究,在计算机网络安全的基础上,进而保障电子商务交易的顺利进行,同时又实现了电子商务的保密性、完整性等特征。
2电子商务网络存在的安全问题
根据对电子商务的了解,其发展以及交易主要是通过计算机网络实现的,那么这其中就存在着很多的安全问题,尤其是在电子商务这个极其多元化的网络环境下,必定会在网络系统中埋下诸多安全隐患。
(1)病毒入侵
对于整个电子商务网络系统而言,最具有威胁性的就是病毒。由于其工作性质的限制,所以与外环境的接触机率较大,在信息资源处于半封闭半公开的状态下,很容易给病毒带来可乘之机,一旦病毒侵入整个网络系统,计算机中的所有功能以及大量数据将会遭受巨大破坏,病毒的繁殖和复制能力非常迅速,在短时间内,就可以造成整个网络系统瘫痪,互联网资源自动被侵蚀,最终导致电子商务网络环境崩溃的重大后果。
(2)信息盗用
当网络环境在实现资源传输或者共享的过程中,如果没有对信息采取加密等保护手段进行信息维护的话,那么传输的信息就会以明文的方式展现给大家,一些不法分子利用这一疏漏,可能会在数据经过的路线上对信息进行拦截或者提取,之后通过研究得出有价值的资源,严重的情况下,可以泄露个人信息、账户、密码等重要信息,对个人和企业带来难以估量的损失。
(3)信息篡改
在电子商务进行交易的过程中,交易双方必须要保证个人信息真实有效,并且提供完整的个人资料,这样双方利益都会受到良好的保护,以免权益遭受侵害。如果在交易过程中,不慎将个人信息泄露,不法分子就会对信息进行掌握,在盗取用户资料后,通过技术手段会对信息进行解除、修改,致使信息不真实,之后不法分子会将信息重新放置到传输地点,从而导致决策者判断失误,最终造成重大的经济损失。
3计算机网络安全技术在电子商务中的应用
为了保证电子商务产业能够正常的发展和运作,同时也为了电子商务网络环境得到改善和提高,就要采取一些必要的手段或者是方式方法对整个网络环境实施有效的管理,促使安全隐患在网络安全技术的控制下得以缓解和消除。
(1)安装防火墙
使用计算的人都知道,计算机保护系统中通常都要设立防火墙对干扰因素进行拦截或者是清除,防火墙同样也适用于电子商务网络安全系统的建立和保护。由于防火墙具有很强的识别能力和区域划分能力,所以不仅可以为电子商务网路系统提供有力保障,而且通过对数据的有效侦察、过滤、筛选,可以使得整个互联网交易过程更加安全可靠。很多大型企业使用的都是独立的网络系统,利用防火墙就必须与独立的外部网络系统相连接,同时要求网络服务的集中统一性,因此在实现信息传输的过程中就对企业网络实行了保护。
(2)个人身份认证
个人身份认证就是指在进行信息交易或者提取时,为了保证交易中参数或者数据的真实性和完整性,对于交易的个人实行的一种检测手段,通过身份对比、验证,对持有信息人进行核实,防止不法分子对用户资料进行盗取、修改甚至是伪造。目前,最常用的身份认证方式有指纹识别、人体扫描识别等,这些识别方法主要是利用个人特征,通过系统数据对比的方法进行身份验证的,具有很高的识别性以及可操作性。电子商务交易采用这种身份认证的方式,可以大大增强信息的安全性,而且有利于网络系统对于信息的保存和提取,在某种程度上推动了电子商务网络市场的发展与开拓。
4结束语
通过本文的叙述,显而易见,电子商务与计算机网络系统之间是密不可分的,然而由于电子商务系统运行的特殊性,所以很容易遭到安全问题的威胁,只有将计算机网络安全技术在电子商务中进行合理的安排与应用,才能保证电子商务网络系统不受侵害,更好的为国有经济发展发挥出应有的作用。
参考文献
[1]梁文陶.计算机技术应用与电子商务发展研究[J].太原城市职业技术学院学报,2013(08).
[2]沈国祥.计算机安全技术在电子商务中的应用[J].计算机光盘软件与应用,2012(15).
[3]贾雅娟.计算机安全技术在电子商务中的应用探讨[J].长春理工大学学报,2011(03).
关于计算机论文相关 文章 :
1. 关于计算机的论文
2. 有关于计算机的论文
3. 关于计算机技术的论文
4. 关于计算机等级考试论文
5. 与计算机有关的毕业论文
6. 关于计算机的小论文
要计算机毕业设计,先到这里来看一下范文吧,
有一个诚梦计算机毕业设计,他们主要就是做这一类的,可以考虑下。
我还是建议你自己看看汉斯的(计算机科学与应用)期刊上的文献吧,别人给现成的论文估计是不大可能
人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。以下是我精心整理的有关人工智能论文的相关资料,希望对你有帮助!
浅谈逻辑学与人工智能
人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。
1 人工智能学科的诞生
12世纪末13世纪初,西班牙罗门·卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与N 形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机) ,创立了自动机理论。这些都为1945年匈牙利冯·诺依曼提出存储程序的思想和建立通用电子数字计算机的冯·诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机ENIAC做出了开拓性的贡献。
以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。
现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。
2 逻辑学的发展
逻辑学的大体分类
逻辑学是一门研究思维形式及思维规律的科学。 从17世纪德国数学家、哲学家莱布尼兹(G. LEibniz)提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。
泛逻辑的基本原理
当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。
泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。
3 逻辑学在人工智能学科的研究方面的应用
逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。
经典逻辑的应用
人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(LT)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(GPS),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。
非经典逻辑的应用
(1)不确定性的推理研究
人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型, 1978年查德提出的可能性模型, 1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。
归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。
(2)不完全信息的推理研究
常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的NML非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。
此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。
4 人工智能——当代逻辑发展的动力
现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。
5 结语
人工智能的产生与发展和逻辑学的发展密不可分。
一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。
智能计算机迄今未有公认的定义。在工具书中的解释为能存储大量信息和知识,会推理(包括演绎与归纳),具有学习功能,是现代计算技术、通信技术、人工智能和仿生学的有机结合,供知识处理用的一种工具。下面是我为大家整理的关于智能计算机的论文,希望大家喜欢!
关于智能计算机的论文篇一
《计算机在人工智能中的应用研究》
摘要:近年来,随着信息技术以及计算机技术的不断发展,人工智能在计算机中的应用也随之加深,其被广泛应用于计算机的各个领域。本文针对计算机在人工智能中的应用进行研究,阐述了人工智能的理论概念,分析当前其应用于人工智能所存在的问题,并介绍人工智能在部分领域中的应用。
关键词:计算机;人工智能;应用研究
一、前言
人工智能又称机器智能,来自于1956年的Dartmouth学会,在这学会上人们最初提出了“人工智能”这一词。人工智能作为一门综合性的学科,其是在计算机科学、信息论、心理学、神经生理学以及语言学等多种学科的互相渗透下发展而成。在计算机的应用系统方面,人工智能是专门研究如何制造智能系统或智能机器来模仿人类进行智能活动的能力,从而延伸人们的科学化智能。人工智能是一门富有挑战性的科学,从事这项工作的人必须懂得计算机知识、心理学与哲学。人工智能是处于思维科学的技术应用层次,是其应用分支之一。数学常被认为是多种学科的基础科学,数学也进入语言及思维领域,人工智能学科须借用数学工具。数学在标准逻辑及模糊数学等范围发挥作用,其进入人工智能学科,两者将互相促进且快速发展。
二、人工智能应用于计算机中存在的问题
(一)计算机语言理解的弱点。当前,计算机尚未能确切的理解语言的复杂性。然而,正处于初步研制阶段的计算机语言翻译器,对于算法上的规范句子,已能显示出极高的造句能力及理解能力。但其在理解句子意思上,尚未获得明显成就。我们所获取的信息多来自于上下文的关系以及自身掌握的知识。人们在日常生活中的个人见解、社会见解以及文化见解给句子附加的意义带来很大影响。
(二)模式识别的疑惑。采用计算机进行研究及开展模式识别,在一定程度上虽取得良好效果,有些已作为产品进行实际应用,但其理论以及方法和人的感官识别机制决然不同。人的形象思维能力以及识别手段,即使是计算机中最先进的识别系统也无法达到。此外,在现实社会中,生活作为一项结构宽松的任务,普通的家畜均能轻易对付,但机器却无法做到,这并不意味着其永久不会,而是暂时的。
三、人工智能在部分领域中的应用
伴随着AI技术的快速发展,当今时代的各种信息技术发展均与人工智能技术密切相关,这意味着人工智能已广泛应用于计算机的各个领域,以下是笔者对于人工智能应用于计算机的部分领域进行阐述。具体情况如下。
(一)人工智能进行符号计算。科学计算作为计算机的一种重要用途,可分为两大类别。第一是纯数值的计算,如求函数值。其次是符号的计算,亦称代数运算,是一种智能的快速的计算,处理的内容均为符号。符号可代表实数、整数、复数以及有理数,或者代表集合、函数以及多项式等。随着人工智能的不断发展以及计算机的逐渐普及,多种功能的计算机代数系统软件相继出现,如Maple或Mathematic。由于这些软件均用C语言写成,因此,其可在多数的计算机上使用。
(二)人工智能用于模式识别。模式识别即计算机通过数学的技术方法对模式的判读及自动处理进行研究。计算机模式识别的实现,是研发智能机器的突破点,其使人类深度的认识自身智能。其识别特点为准确、快速以及高效。计算机的模式识别过程相似于人类的学习过程,如语音识别。语音识别即为使计算机听懂人说
的话而进行自动翻译,如七国 语言的口语自动翻译系统。该系统的实现使人们出国时在购买机票、预定旅馆及兑换外币等方面,只需通过国际互联网及电话 网络,即可用电话或手机与“老外”进行对话。
(三)人工智能 计算机网络安全中的 应用。当前,在计算机的网络安全 管理中常见的技术主要有入侵检测技术以及防火墙技术。防火墙作为计算机网络安全的设备之一,其在计算机的网络安全管理方面发挥重要作用。以往的防火墙尚未有检 测加密Web流量的功能,原因在于其未能见到加密的SSL流中的数据,无法快速的获取SSL流中的数据且未能对其进行解密。因而,以往的防火墙无法有效的阻止应用程序的攻击。此外,一般的应用程序进行加密后,可轻易的躲避以往防火墙的检测。因此,由于以往的防火墙无法对应用数据流进行完整的监控,使其难以预防新型攻击。新型的防火墙是通过利用 统计、概率以及决策的智能方法以识别数据,达到访问受到权限的目地。然而此方法大多数是从人工智能的学科中采取,因此,被命名为“智能防火墙”。
(四)人工智能应用于计算机网络系统的故障诊断。人工神经网络作为一种信息处理系统,是通过人类的认知过程以及模拟人脑的 组织结构而成。1943年时,人工神经网络首次被人提出并得到快速 发展,其成为了人工智能技术的另一个分支。人工神经网络通过自身的优点,如联想记忆、自适应以及并列分布处理等,在智能故障诊断中受到广泛关注,并且发挥极大的潜力,为智能故障诊断的探索开辟新的道路。人工神经网络的诊断方法异于专家系统的诊断方法,其通过现场众多的标准样本进行学习及训练,加强调整人工神经网络中的阀值与连接权,使从中获取的知识隐藏分布于整个网络,以达到人工神经网络的模式记忆目的。因此,人工神经网络具备较强的知识捕捉能力,能有效处理异常数据,弥补专家系统方法的缺陷。
四、结束语
总而言之,人工智能作为计算机技术的潮流,其研究的理论及发现决定了计算机技术的发展前景。现今,多数人工智能的研究成果已渗入到人们的日常生活。因此,我们应加强人工智能技术的研究及开发,只有对其应用于各领域中存在的问题进行全面分析,并对此采取相应措施,使其顺利发展。人工智能技术的发展将给人们的生活、学习以及 工作带来极大的影响。
参考文献:
[1]杨英.智能型计算机辅助教学系统的实现与研究[J].电脑知识与技术,2009,9
[2]毛毅.人工智能研究 热点及其发展方向[J].技术与市场,2008,3
[3]李德毅.网络时代人工智能研究与发展[J].智能系统学报,2009,1
[4]陈步英,冯红.人工智能的应用研究[J].邢台 职业技术学院学报,2008,1
关于智能计算机的论文篇二
《基于智能计算的计算机网络可靠性分析》
摘 要:当今社会是一个信息化社会,网络化应用已经遍及生产、生活、科研等各个领域,计算机网络化已经成为一种趋势,计算机网络的可靠性研究也越来越得到计算机业界的广泛重视。本文主要论述了智能粒度计算分割理论方法,采用动态数组分层实现计算机网络系统最小路集运算,阐述了计算机网络系统可靠性分析的手段。
关键词:智能算法;计算机网络;可靠性分析
1 影响计算机网络可靠性的因素
用户设备。用户设备是提供给用户使用的终端设备,其功能是否可靠深刻影响着用户的使用感受,而且还会对计算机网络的可靠性产生重要影响。确保用户终端在使用过程中的可靠性是计算机网络运行过程中日常维护的重要组成部分,用户终端的交互能力越高,其网络就越可靠。
传输交换设备。传输设备包括了传输线路和传输设备,在实践中,如果是由于传输线路原因造成的计算机网络故障,一般是比较难以发觉的,有时候为了找出这一故障原因所在,所需要耗费的工作量是比较大的。所以,在安装传输设备的时候要采用标准化的通信线路和布线系统,而且要充分考虑到冗余和容错能力,以最大程度保障网络的可靠性。在条件允许的情况下,最好采用双成线布线方式,以便在出现故障的时候可以切换网络线路。
网络管理。在一些比较大型的网络设备结构中,所使用的网络产品和设备都是不同的生产厂商生产的,规模比较大,结构也相对比较复杂。提高计算机网络的可靠性,可以保证信息传输具备完整性、降低信息丢失的发生率、减少故障及误码的发生率。提高计算机网络的可靠性需要采用先进的网络管理技术对运行中的网络参数进行实时采集,并排除存在的故障。
网络拓扑结构。网络拓扑结构是指采用传输介质将各种设备相互连接布局起来,主要体现在网络设备间在物理上的相互连接。计算机网络拓扑结构关系到整个网络的规划结构,是关系到计算机网络可靠性的重要决定因素之一。网络拓扑结构的性能主要受到网络技术、网络规模、用户分布和传输介质等因素的影响。随着人们对网络性能要求的提高,现在计算机网络拓扑结构需要满足更多的要求,比如容错直径、宽直径、限制连通度、限制容错直径等等。这些参数更加能够精确的衡量计算机网络的可靠性和容错性,以实现计算机网络规划的科学性和可靠性。
2 基于智能计算的网络可靠性分析
基于智能计算的网络可靠性概念。计算机网络系统的组成部分包括了节点和连接节点的弧,节点又可以分为输入节点(只有输出弧但没有节点属于输入弧的)、输出节点(只有输入弧而没有输出弧的节点)和中间节点(非输入、输出节点);网络又可以分为有向网络(全部都是由有向弧组成的网络)、无向网络(全部由无向弧组成的网络)以及混合网络(包含了有向弧和无向弧)。在一些结构比较复杂的网络系统中,为了能够准确分析系统的可靠性,一般会用网络图来表示。在分析网络可靠性的时候,我们通常会做这样的简化:系统或弧只存在正常和故障两种状态;无向弧不同方向都有相同的可靠度;任何一条弧发生故障都不会影响到其他弧的正常使用。
网络系统最小路集的节点遍历法。求网络系统最小路集的方法一般有以下三种方法:其一,邻接矩阵又叫联络矩阵法,其原理就是对一个矩阵进行乘法和多次乘法运算,这种方法比较适合节点不多的网络进行手算操作,但在节点数非常多的时候就不太适合了,因为那样运算量会很大,对计算机的容量要求也很高,运算时间也很长,不太适合这种方法;其二,布尔行列式法,该种方法类似于求矩阵行列式,这种方法比较容易理解,操作简便,可以用手工处理,但是在节点比较多的网络中的应用就比较繁琐;其三,节点遍历法以其条理清晰、能够求解多节点数的复杂网络而被广泛使用,但是该方法判断条件较多,在考虑欠周全的时候容易出现差错。求网络系统最小路集的基本方法是:从输入节点I开始逐个点遍历,一直到输出点L,直到找到所有的最小路集为止,在这个过程中需要作出以下几个判断:判断当前节点是否有跟之前的节点重复;判断是否有找到最小路集;判断是否已经完成所有最小路集的寻找。
基于智能粒度计算分割的计算机网络系统最小路集运算。粒是论域上的一簇点,而这些点往往难以被区别、接近,或者是跟某种功能结合在一起,而粒计算是盖住许多具体领域的问题求解方法的一把大伞,具体表现为区间分析、分治法、粗糙集理论。基于智能粒度计算改进节点遍历法的计算机网络系统最小路集运算方法一般作如下操作:首先是将传统网络系统最小路集节点遍历计算方法中的二维数组用一维表示出来,容易表示为n-1,这是因为n节点的网络系统最小路集的最大路长小于或等于n-1,即是启用一维动态数组,从输入节点到输出节点,逐个节点遍历,并将结果存放在一维数组中,当找到最小路集之后,就可以将结果写入到硬盘的文件中,再继续寻找下一个最小路集,找到后写入硬盘文件,依次类推下去直到找到所有的最小路集,释放一维动态数组;其次,将融入到运算中的数组以动态的方式参与到运算中去,完成运算功能后就立即释放掉,这样就可以节省内存空间,提高整体的运算速度;再者,根据节点表示的最小路集文件,将其转变成用弧表示的最小路集,并储存起来以便于后续的相关计算;最后,利用智能粒度计算分割对象理论方法,采用动态数组分层实现,从而实现对计算机网络系统的可靠性分析。
3 计算机网络可靠性的实现
计算机网络层次、体系结构设计。可靠的计算机网络除了要配套先进的网络设备,且其网络层次结构和体系结构也要具备先进性,科学合理的网络层次和体系结构设计可以将网络设备的性能充分的发挥出来。网络层次设计就是要将分布式的网络服务随着网络吞吐量的增多而搭建起规模化的高速网络分层设计模型。网络的模块化层次设计可以随着日后网络节点的增加,网络容量不断的增大,以加大确定性,方便日常的操作性。
计算机网络的容错能力实现。容错性设计的指导原则是“并行主干、双网络中心”,其具体设计为:其一,将用户终端设备和服务器同时连接到计算机网络中心,一般需要通过并行计算机网络和冗余计算机网络中心的方法来实行;其二,将广域网范围内的数据链路和路由器相互连接起来,以确保任何一数据链路的故障不会对局部网络用户产生影响;其三,尽量使用热插热拔功能的网络设备,这样不但可以使得组网方式灵活,还可以在不切断电源的情况下及时更换故障模块,从而提高计算机网络长时间工作的能力;最后,采用多处理器和特别设计的具有容错能力的系统来操作网络管理软件实现容错的目的。
采用冗余措施。提高计算机网络系统的容错性是提高计算机网络可靠性的最有效方法,计算机网络的容错性设计就是寻找常见的故障,这可以通过冗余措施来加强,以最大限度缩短故障的持续时间,避免计算机网络出现数据丢失、出错、甚至瘫痪现象,比如冗余用户到计算机网络中心的数据链路。
4 结束语
研究计算机网络系统的可靠性对解决问题有着重要的意义,所以研究其可靠性是很有必要的,但从理论方法上看还需要进一步深入探讨。随着计算机网络系统的应用遍及各个角落,其可靠性分析已经越来越备受业界的关注。网络可靠性分析的手段要本着理论服务于实践的宗旨,将可靠性分析理论应用到实际生产中,使计算机网络的建设更加的科学、合理。
参考文献:
[1]刘君.计算机网络可靠性优化设计问题的研究[J].中国科技信息,2011(18):29.
[2]邓志平.浅谈计算机网络可靠性优化设计[J].科技广场,2010(10):52.
[3]高飞.基于网络状态之间关系的网络可靠性分析[J].通信网络,2012(25):19.
据我所知,人工智能可以做家务。譬如扫地机器人,可以自动将地清扫干净,不需我们动丝毫。我们可以用这些零碎的时间干更多的事。
有人说,人类做的事情人工智能都可以做到,我觉得不然。我每日伴着晨曦出门上学,都会在门口的早餐店买早点,空气中夹杂着湿润的淡淡白雾,一股浓郁的清香钻入鼻腔,新鲜的包子出炉了。老阿姨笑着把早餐递给我,触及她温热的双手时,心中涌出一股暖意。这与人工智能截然不同。
而且计算机本就有人类产出,本就是没有情感的死物,它不会像人类有复杂的心绪,充盈的精神世界。假如,让一个人与人工智能同处月下,人工智能或许只能回答实时的温度与天气情况,而人类或许回因自身的遭遇而由衷地感叹月凉如水,明月几多愁。
但是现在,许多人活着跟机器人越发相像。他们都过着千篇一律的生活,对身边的一切都异常冷漠,失去了价值观与同情心,成为生活的傀儡。他们会在看到别人的悲惨后冷笑;会对别人的缺陷冷嘲热讽;会对别人的乞求熟视无睹……每当我遇见这些毫无情感的机器人时,我总会思考萦怀为什么会有如此可悲的人出现?
我认为的生活,虽有一点黑白,但不乏姿彩;虽有喧闹和烦忧,却时有银铃般的欢笑;虽会有挫折与艰辛,但也有克服苦难,战胜挑战后真正的快乐……这些丰富的情感,它们是否能感受到呢?
是这个时代生产出这些机器人,也是他们把自己改变成机器人。人际关系的日渐淡薄,亲人间的疏远,朋友间的虚情都在提醒着我,让我不要成为这种人。
我向往的生活是邻里间的相互问好,而非漠视;是与陌生人之间的一个微笑,而非向下的唇角;是与亲人间的拥抱,而非礼貌性的点头……
希望我向往的生活是我以后的生活,人与人之间充满爱与温情。也希望机器人越来越少,能有欢笑与泪水,泪水虽咸,亦是真情…… 【篇二】
然而,与之相反却是正在使用它们的人们,在享受它们带来的乐趣和方便时,他们的思维
正在缓慢地流逝着。人工智能正一步步地吞噬着人们的思考方式以及能力,让人类步入失去价值观和同情心的危险地步,同时让其后果变得极其严重。
电子产品的人工智能化固然能够推进我们社会的发展,方便了我们的生活,科普了我们的知识,发达了我们的商业,加强了我们的军事,这是一个极好的现象。但是当我看到人与人在交流时失去了温度,只是刻意地去做出应答;无情地一个“不”,一个否定词带来的无限杀伤力;甚是在人们真正需要帮助时,不经过大脑思考直接忽视等等,都能给我们重重一击。这是冷漠无情,毫无温情所言,失去了价值观和同情心的一幕幕。人们只会拿着人工智能不停地滑动、点击、长按,一个个动作变得机械化,眼神始终在光源处停滞,慢慢地人们就不会关注身边的点点滴滴,它们的思维也就变得机器化,思考的方式和机器一样只会按程序套路来,僵硬的思维变得普遍化,现象变得广泛,那种人与人明明相识却擦肩而过,明明可以互帮互助却冷眼相待,让我感到心底里的难受,无奈。
就如同苹果公司总裁库克认为的一样:“我不担心人工能会让计算机像人类一样思考,我更担心人类像计算机一样思考,失去了价值观和同情心罔顾后果。”我们应该理性的思考,人与人之间多一点儿关心、关注,不要让这个社会失去色彩,失去温暖,失去它本该有的温馨和谐,不要让我们丢失了正确的价值观和人们本该拥有的同情心。我们不应该受人工智能的影响和控制,发自内心的去同情他人,面对事物的价值观要正确,我想这个世界会朝着更美好的方向发展。
人工智能应该和人类携手构建更美好的环境。 【篇三】
我们之所以被称之为“人”,是因为我们有自己的思考,我们能遵守基本的道德,法则,我们具有其它动物少有的一些品质。
从小,爸爸妈妈就告诉我们,要做一个正直,善良,富有同情心的人,也的确,小时候,我们拥有敢于背着人群说真话的勇气;我们有为了真理与他人争得面红耳赤的认真与执着;我有一双纯真的眼睛和善良的内心,去发现并帮助有需要的人。后来,我们变得更小心,更谨慎,也更易受伤,在所有事物面前,都选择权衡利弊,像计算机一样的思考:走那一步,更有力?我们每天八小时通勤,为各种“我想要的”熬红了眼睛,在计算了利弊后,我们变得冷漠麻木,不再有同情心,也不再乐于助人。何时,我们忘记了父母的话语,忘记了那些为人最简单的品德?
《黑客帝国》,一步一有些久远的电影。电影里,大部分人都被插上了管子,他们躺在那里,任凭母体控制他们的意识,但感受到的也尽是美好,没有了现实中的痛苦。现实中,他们可能穿得破破烂烂,困窘不堪,可幻想里,他们得到了一切现实生活中自己没有的——因为你想要什么,幻想中就有什么。有一个人拒绝了这样的看似美好的梦,主角尼奥,剧中的反派一再逼迫诱惑他:吃下蓝色药丸,一切都将是美好的。他最终选择了红色药丸,即使吃下后,他要承受现实中一切的苦难,但他不愿想躺在那的人一样,失去了自我的基本思考,失去了价值观的判断,就如把那恶心的黏稠物当作美味佳肴——因为母体告诉他们,这是块牛排,美味而多汁。
他在现实中痛苦挣扎,但相比那些被管子“饲养”的人,他还可以骄傲的说:我还是个真正的人。
记得当时我听到李世石被人工智能打败的消息,并没有太过震惊,毕竟人类发明计算机的初衷,便是让它来代替我们做一些我们无法达及的事情。但这并不代表它一定会超越人类,说到底,人工智能一直都是人类思考的结晶,他没有人的同情,也没有我们的价值观,冷酷的“思考”和计算让我每每看过一些关于人工智能的科幻电影后,总有些后怕。
人类永远不应像计算机那样的思考,我您愿多走些弯路,多吃些亏,也不要在精确计算的道路上,摒弃为人的价值观与同情心,将善良的品质束之高阁,冷漠麻木地走下去……
先讲个故事给你们听:
从前,哦不,应该是在未来,一个全面科技化的未来,有一个小男孩。
他叫大卫,11岁,体重27公斤,身高1米37,头发棕色。
他的爱是真实的,但存在是虚假的。
那是因为他只是一个机器男孩,一个会“爱”的机器人,是一个失去孩子的父母的慰藉,这爱的程序一旦启动了就不会停止,任凭时间流逝,任凭世代变迁……
索非亚夫妇的孩子患了绝症,他被冷冻起来直到科技足够发达救他。所以他们自愿参与了大卫的实验计划,人们也需要通过他们证实他是否真的可以爱人。
当索非亚,这个美丽却被而儿子的病折磨的痛苦不堪的母亲,亲手启动了大卫的程序时,他缓缓地睁开眼睛,如同出生的婴孩一般,似乎一切都那么陌生,却又那么清楚地明白这面前的一切:是了,这就是我以后要爱一生一世的人了。当大卫轻轻地张开双臂,拥住索非亚,一句:“妈妈,我爱你。”着实让索非亚感动了。
索非亚看着他,照顾着他,似乎找到了儿子的影子;却又疏远他,惧怕他。她觉得他的爱只是程序,她想爱,又怕爱。大卫却享受着这每一分每一秒,对他而言,母亲就是这个世界的全部了。我们是人类,有着选择的权力,也有权决定爱不爱爱我们的东西。或许有点残忍,但这是个道德问题,在创世纪的时候,神不也创造亚当来爱他吗?
但后来世界就变了,索非亚的儿子奇迹般的痊愈了,抉择的时刻就到了,索非亚最终决定放弃大卫,却又不想让他被销毁,在他们一次的野餐中,把他留在了荒野。因为内心深处,抛开一切压力,或许,她爱他……
大卫固执地认为这是因为他不是一个真的男孩,于是踏上了寻找蓝仙女的路途。记得小木偶皮诺曹吗?就是蓝仙女让他变成小男孩的。他不知道那是一个童话,心中只有一个信念。越过千山万水,终于在海底找到几百年前被人遗弃的蓝仙女的雕塑,他在潜水艇里望着她,一遍一遍的说着自己的愿望,直到时间一点一滴的流逝,不知不觉,大海被冰雪覆盖,几千几万年就这样过去了……
最后,高速发达的机器人完成了他的愿望,他们可以让他的妈妈复活,但是只有一天,有一天她可以全心全意爱他,足够了。在度过了这珍贵的一天后,他躺在不会醒来妈妈身边沉沉睡去,希望永远不要再醒来……
这个故事的名字就叫做,人工智能。虽然说这只是个科幻故事,但故事的主旨却不容忽视:我们人类不断的进步,不断的向前走,是否走的太快了.在科技的进步中我们是否忽略了某些事物,我们不断的求新,求快,求进步,求超越.到头来反而忘了人性,信任忘了......爱!!有如故事中,凝真电子的老板,为了抚慰自己的丧子之痛以及在未来的高科技事业中争得一片天,创造了了一个,会[爱]的机器人-----大卫.他踏过千里土壤走过千年时空为的,只是一份爱.而它只是个在人类眼中有如草芥的______机器人,这种进步,真的,是我们要的吗?
但是换个角度,我们也该庆幸自己是人类,因为到后来出现的高速发达的机器人,强调,他羡慕人类拥有灵魂以及对百万种生存意义。我觉得这和一句俗谚:“人为万物之灵”,有异曲同工之处。除了这是一种人类沙文主义作祟外,试想:若是高等机器人高等智慧,何必去羡慕,他们口中的“原始”人类?而就因为机器人永远不可能有灵魂,不可能懂得爱,所以才有“羡慕”一词出现。
所以,请人们在科技飞速发展的时候,不要忽略身边的一切,或者可能失去的东西只能靠机器来填补。从人工智慧看起,记住,科技无论再怎么发达,创造它们的始终是人类,一切科技,一切可能,以人为本,以爱为本。 【篇二】
1977年英国世界上的互联网公司的经理预料,将来任何人都不会在自己的家里拥有一台属于自己的计算机。计算机不会被大多数人使用,然而在日新月异发展的现代化社会里不是用电脑这几乎是不可能的,高楼大厦里职员们正使用计算机记录完成上级布置的任务;漫画家打好画稿在用计算机进行扫描、上色;学校里每一间教室都放置一台,老师则利用计算机为学生讲解课文;打印店里一台台计算机正忙碌的工作着。然而那位经理怎么也想不到将近半个世纪的今天计算机已经在我们的生活中起着不可代替的作用,也从原来笨重的以至于塞满一整个房间的机器到如今教科书厚的液晶。
展望未来。
未来,一个抽象的代名词——触摸不到,感受不到。每个人都有美好的畅想,我畅想畅想着城市美好的未来。城市的美好,必然少不了那一片霓虹灯。繁华的夜景,热闹的人市。那繁荣景象的背后又是什么呢?是一片黑暗吗?不,至少有盏明灯。是那些流浪者的家吗?不,至少有间草屋。光明固然美好,黑暗也将会被无数明灯所点亮。我畅想,畅想城市那份恬静。
当人们迎着朝阳开始一天的工作时,他们的心情是平静而喜悦的。此时,自行车已成“古董”,人们只能在博物馆才能见到。在宽阔、现代化的立交桥上,一辆辆高级轿车来回穿梭。在居民小区里,物业管理是机器人,二十四小时服务。工作的地方没有了原来的狭隘,不再只是人手一台电脑埋头工作,而是两三个人一个办公室,摄像头、监视器什么的都不在有,人们诚实守信、勤勤恳恳。工厂是机器人工作的岗位。
我们把美好的梦想层层堆砌,让高瞻远瞩的目光投向时代的前沿,审视昨天,展望未来,沿着金光大道,一步一步靠近我们心中向往的地方。让我们畅想美好的明天,走向美好的未来!
其实幸福。很难!当黑暗笼罩住了城市,永远没有那一角:有人在打架斗殴。难道这就是美好城市?现在这份重任落下来了,在每个人的肩上,还有我们——新时代的中学生,更落在了我们的笔尖,我们要用笔去描绘未来的城市,画出她最可爱的一面、美丽的一面。我们的校园里,纸屑很珍贵,因为它从不露面。微笑很普通,因为它洋溢在每个人的脸上。城市的美好如同筑房子——第一层是文明,第二层是平安,第三层是繁华,第四层是快乐。只有不停地建造,才能盖上它的屋顶——美好。让我们共同携起手来,建造这幢“美好”的城市! 【篇三】
据我所知,人工智能可以做家务。譬如扫地机器人,可以自动将地清扫干净,不需我们动丝毫。我们可以用这些零碎的时间干更多的事。
有人说,人类做的事情人工智能都可以做到,我觉得不然。我每日伴着晨曦出门上学,都会在门口的早餐店买早点,空气中夹杂着湿润的淡淡白雾,一股浓郁的清香钻入鼻腔,新鲜的包子出炉了。老阿姨笑着把早餐递给我,触及她温热的双手时,心中涌出一股暖意。这与人工智能截然不同。
而且计算机本就有人类产出,本就是没有情感的死物,它不会像人类有复杂的心绪,充盈的精神世界。假如,让一个人与人工智能同处月下,人工智能或许只能回答实时的温度与天气情况,而人类或许回因自身的遭遇而由衷地感叹月凉如水,明月几多愁。
但是现在,许多人活着跟机器人越发相像。他们都过着千篇一律的生活,对身边的一切都异常冷漠,失去了价值观与同情心,成为生活的傀儡。他们会在看到别人的悲惨后冷笑;会对别人的缺陷冷嘲热讽;会对别人的乞求熟视无睹……每当我遇见这些毫无情感的机器人时,我总会思考萦怀为什么会有如此可悲的人出现?
我认为的生活,虽有一点黑白,但不乏姿彩;虽有喧闹和烦忧,却时有银铃般的欢笑;虽会有挫折与艰辛,但也有克服苦难,战胜挑战后真正的快乐……这些丰富的情感,它们是否能感受到呢?
是这个时代生产出这些机器人,也是他们把自己改变成机器人。人际关系的日渐淡薄,亲人间的疏远,朋友间的虚情都在提醒着我,让我不要成为这种人。
我向往的生活是邻里间的相互问好,而非漠视;是与陌生人之间的一个微笑,而非向下的唇角;是与亲人间的拥抱,而非礼貌性的点头……
希望我向往的生活是我以后的生活,人与人之间充满爱与温情。也希望机器人越来越少,能有欢笑与泪水,泪水虽咸,亦是真情……
据我所知,人工智能可以做家务。譬如扫地机器人,可以自动将地清扫干净,不需我们动丝毫。我们可以用这些零碎的时间干更多的事。
有人说,人类做的事情人工智能都可以做到,我觉得不然。我每日伴着晨曦出门上学,都会在门口的早餐店买早点,空气中夹杂着湿润的淡淡白雾,一股浓郁的清香钻入鼻腔,新鲜的包子出炉了。老阿姨笑着把早餐递给我,触及她温热的双手时,心中涌出一股暖意。这与人工智能截然不同。
而且计算机本就有人类产出,本就是没有情感的死物,它不会像人类有复杂的心绪,充盈的精神世界。假如,让一个人与人工智能同处月下,人工智能或许只能回答实时的温度与天气情况,而人类或许回因自身的遭遇而由衷地感叹月凉如水,明月几多愁。
但是现在,许多人活着跟机器人越发相像。他们都过着千篇一律的生活,对身边的一切都异常冷漠,失去了价值观与同情心,成为生活的傀儡。他们会在看到别人的悲惨后冷笑;会对别人的缺陷冷嘲热讽;会对别人的乞求熟视无睹……每当我遇见这些毫无情感的机器人时,我总会思考萦怀为什么会有如此可悲的人出现?
我认为的生活,虽有一点黑白,但不乏姿彩;虽有喧闹和烦忧,却时有银铃般的欢笑;虽会有挫折与艰辛,但也有克服苦难,战胜挑战后真正的快乐……这些丰富的情感,它们是否能感受到呢?
是这个时代生产出这些机器人,也是他们把自己改变成机器人。人际关系的日渐淡薄,亲人间的疏远,朋友间的虚情都在提醒着我,让我不要成为这种人。
我向往的生活是邻里间的相互问好,而非漠视;是与陌生人之间的一个微笑,而非向下的唇角;是与亲人间的拥抱,而非礼貌性的点头……
希望我向往的生活是我以后的生活,人与人之间充满爱与温情。也希望机器人越来越少,能有欢笑与泪水,泪水虽咸,亦是真情…… 【篇二】
然而,与之相反却是正在使用它们的人们,在享受它们带来的乐趣和方便时,他们的思维
正在缓慢地流逝着。人工智能正一步步地吞噬着人们的思考方式以及能力,让人类步入失去价值观和同情心的危险地步,同时让其后果变得极其严重。
电子产品的人工智能化固然能够推进我们社会的发展,方便了我们的生活,科普了我们的知识,发达了我们的商业,加强了我们的军事,这是一个极好的现象。但是当我看到人与人在交流时失去了温度,只是刻意地去做出应答;无情地一个“不”,一个否定词带来的无限杀伤力;甚是在人们真正需要帮助时,不经过大脑思考直接忽视等等,都能给我们重重一击。这是冷漠无情,毫无温情所言,失去了价值观和同情心的一幕幕。人们只会拿着人工智能不停地滑动、点击、长按,一个个动作变得机械化,眼神始终在光源处停滞,慢慢地人们就不会关注身边的点点滴滴,它们的思维也就变得机器化,思考的方式和机器一样只会按程序套路来,僵硬的思维变得普遍化,现象变得广泛,那种人与人明明相识却擦肩而过,明明可以互帮互助却冷眼相待,让我感到心底里的难受,无奈。
就如同苹果公司总裁库克认为的一样:“我不担心人工能会让计算机像人类一样思考,我更担心人类像计算机一样思考,失去了价值观和同情心罔顾后果。”我们应该理性的思考,人与人之间多一点儿关心、关注,不要让这个社会失去色彩,失去温暖,失去它本该有的温馨和谐,不要让我们丢失了正确的价值观和人们本该拥有的同情心。我们不应该受人工智能的影响和控制,发自内心的去同情他人,面对事物的价值观要正确,我想这个世界会朝着更美好的方向发展。
人工智能应该和人类携手构建更美好的环境。 【篇三】
我们之所以被称之为“人”,是因为我们有自己的思考,我们能遵守基本的道德,法则,我们具有其它动物少有的一些品质。
从小,爸爸妈妈就告诉我们,要做一个正直,善良,富有同情心的人,也的确,小时候,我们拥有敢于背着人群说真话的勇气;我们有为了真理与他人争得面红耳赤的认真与执着;我有一双纯真的眼睛和善良的内心,去发现并帮助有需要的人。后来,我们变得更小心,更谨慎,也更易受伤,在所有事物面前,都选择权衡利弊,像计算机一样的思考:走那一步,更有力?我们每天八小时通勤,为各种“我想要的”熬红了眼睛,在计算了利弊后,我们变得冷漠麻木,不再有同情心,也不再乐于助人。何时,我们忘记了父母的话语,忘记了那些为人最简单的品德?
《黑客帝国》,一步一有些久远的电影。电影里,大部分人都被插上了管子,他们躺在那里,任凭母体控制他们的意识,但感受到的也尽是美好,没有了现实中的痛苦。现实中,他们可能穿得破破烂烂,困窘不堪,可幻想里,他们得到了一切现实生活中自己没有的——因为你想要什么,幻想中就有什么。有一个人拒绝了这样的看似美好的梦,主角尼奥,剧中的反派一再逼迫诱惑他:吃下蓝色药丸,一切都将是美好的。他最终选择了红色药丸,即使吃下后,他要承受现实中一切的苦难,但他不愿想躺在那的人一样,失去了自我的基本思考,失去了价值观的判断,就如把那恶心的黏稠物当作美味佳肴——因为母体告诉他们,这是块牛排,美味而多汁。
他在现实中痛苦挣扎,但相比那些被管子“饲养”的人,他还可以骄傲的说:我还是个真正的人。
记得当时我听到李世石被人工智能打败的消息,并没有太过震惊,毕竟人类发明计算机的初衷,便是让它来代替我们做一些我们无法达及的事情。但这并不代表它一定会超越人类,说到底,人工智能一直都是人类思考的结晶,他没有人的同情,也没有我们的价值观,冷酷的“思考”和计算让我每每看过一些关于人工智能的科幻电影后,总有些后怕。
人类永远不应像计算机那样的思考,我您愿多走些弯路,多吃些亏,也不要在精确计算的道路上,摒弃为人的价值观与同情心,将善良的品质束之高阁,冷漠麻木地走下去……
人工智能成为作文的素材,那么关于人工智能与人类的议论文有哪些呢?下面是我为你整理的关于人工智能与人类的议论文,供大家阅览!
人类思维与人工智能
摘要:人工智能就其本质而言,是对人的思维的信息过程的模拟。对于人的思维模拟可以从两条道路进行,一是结构模拟,仿照人脑的结构机制,制造出“类人脑”的机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟。现代电子计算机的产生便是对人脑思维功能的模拟,是对人脑思维的信息过程的模拟。人工智能不是人的智能,更不会超过人的智能。 关键词:人工智能 人类思维 发展
20世纪40年代以来,随着现代控制论、信息论和思维科学的发展,出现了运用机械和电子的装量模拟人工脑思维活动的电脑,即电子计算机或人工智能。几十年来,人工智能迅速发展,已经更换了四代,即电子管计算机、半导体计算机、集成电路计算机和超大规模集成电路计算机。目前,正处于第二次计算机革命和第五代计算机的历史转折时期。
人工智能的诞生发展,有着极其重要的哲学意义。这主要表现在两个方面:第一、人工智能及其发展有力地证明了辩证唯物主义的正确性。一方面,它打破了精神活动的神秘性,人脑思维活动之所以可以模拟,就在于它有其一定的物理机制和运动规律,证实了意识来源于物质的唯物主义原理;另一方面,人工智能及其发展进一步丰富了意识能动性原理。第二、人工智能强化了思维形式、思维功能过程在意识活动中的作用,提出了哲学和科学研究的新方向、新问题,如思维形式的相对独立性及其与思维内容的复杂关系、智能机与人类的关系等。
在人工智能的研究中,伴随着思维模拟的巨大成就,出现了所谓的乐观派和悲观派。二者的错误是一致的:看不到人工智能与人类智能,“机器思维”与人类思维的本质区别:
首先,人工智能只是对人的部分意识活动、思维活动的模拟。通常人工智能模拟人脑的思维过程可分为五个相应的部分:用机器的输入器模拟人的眼、耳、鼻、舌、皮肤等感官、接受外界的信息;用机器的存储器模拟人脑对信息的记忆功能,把已接收的信息积累起来,以供随时使用;用机器的运算机模拟人脑对信息加工、分析、处理的过程;用机器的控制器模拟人脑的调节、指挥作用,以调节各方面信息,指挥各项指令正常进行;用机器的输出模拟人的效应器官,用以输出信息。但由于人脑的极端复杂性,人工智能智能模拟人脑的部分功能。其次,人工智能没有社会性。人类意识是社会的产物,具有社会性。人在行动时要考虑
到由此引起的这样或那样的效果,人工智能只执行特定的指令,并不探求任务本身的社会意义,不会考虑到社会后果。再次,人工智能不具有人类思维的心理素质。人类意识是物质世界长期发展的产物,是人类在生理基础上的心理过程,是由人类的情感、直觉、想象、猜测等心理活动所构成的精神世界。机器思维是人们利用电子管、晶体管、集成电路等电气元件和线路所组成的机械的、物理的装置,并用软件方法等模拟人的思维活动,机器思维不是人类的精神活动,而是纯属无意识的机械的物理的过程。 一、人工智能的本质 人工智能是相对于人的智能而言的。正是由于意识是一种特殊的物质运动形式,所以根据控制论理论,运用功能模拟的方法,制造电脑模拟人脑的部分功能,把人的部分智能活动机械化,叫人工智能。人工智能的本质是对人思维的信息过程的模拟,是人的智能的物化。尽管人工智能可以模拟人脑的某些活动,甚至在某些方面超过人脑的功能,但人工智能不会成为人类智能而取代人的意识。
二、人类思维
意识是人脑的机能,但人类意识一经产生,其发展并不或并不完全依赖于人脑的自然进化。事实上,人类在探索和认识自身意识活动的本质和特性的基础上,已经通过人工的手段大大地拓展了意识活动的领域、延伸和放大了自身的意识结构。这突出地表现在人工智能的产生和发展上。
人工智能就其本质而言,是对人的思维的信息过程的模拟,即结构模拟与功能模拟。这种模拟反过来对人的意识结构产生了重要的影响,形成了人——机互补的新的放大的意识结构。可以说,人工智能机就是人脑的扩大。人工智能不仅能帮助人完成一部分意识活动,而且在某些方面还大大地优越于人脑,如快速准确的计算能力、超大海量的记忆能力等。同时,人工智能机还能代替人完成许多操作性工作,特别是在人无法直接到达的宇宙、深海、高温有毒等环境条件下代替人进行某些探测活动。如果说电脑作为对人脑的模拟离不开人脑,那么今天人脑在很大程度上也依赖于电脑。因此,人工智能的发展已形成了人——机互补系统,大大地扩展了人的意识结构。
三、人工智能与人类思维的本质区别
人工智能是思维模拟,并非人的思维本身,决不能把“机器思维”和人脑思维等同起来,认为它可以超过人脑思维是没有根据的。(1)人工智能是无意识的机械的、物理的过程。人的智能主要是生理的和心理的过程。
(2)人工智能没有社会性。人类智慧具有社会性。
(3)人工智能没有人类意识特有的能动性和创造能力。人类思维则主动提出新的问题,进行发明创造。
(4)电脑可以代替甚至超过人类的部分思维能力,但它同人脑相比,局部超出,整体不及。智能机器是人类意识的物化,它的产生和发展,既依赖于人类科学技术的发展水平,又必须以人类意识对于自身的认识为前提。因此,从总体上说;人工智能不能超过人类智慧的界限。关于电脑能够思维,甚至会超过人的思维,电脑、机器人将来统治人类的观点是完全没有根据的。
四、人工智能产生和发展的哲学意义
(1)人工智能的产生和发展,有力地证明了意识是人脑的机能、物质的属性,证明马克思主义关于意识本质的观点的正确性。
(2)人工智能的产生和发展深化了我们对意识相对独立性和能动性的认识。机器思维即人工智能表明,思维形式在思维活动中对于思维内容具有相对独立性,它可从人脑中分化出来,物化为机械的、物理的运动形式,部分地代替人的思维活动。
(3)随着科学技术的发展,人工智能将向更高水平发展,反过来推动科学技术、生产力和人类智慧向更高水平发展,对人类社会进步将起着巨大的推动作用。
结论:人工智能没有人类意识所特有的能动创造性。人脑的思维活动是一种能动的创造性活动,它能不断地提出新问题,发现新事物,并通过实践创造出属于人的新世界。人工智能只能按照人事先为它设计好的程序来运行,机械的模拟人的意识活动,却毫不理解这一活动,更不会提出新的问题来。
总之,人工智能可以代替甚至超过人脑的部分思维能力。但是,人工智能绝不会取代、超越人的意识。人类意识与人工智能有着本质的区别,二者是创造与被创造、支配与被支配、操纵与被操纵的关系。
人工智能与人类智能
“人机对弈”实验
人工智能主要研究如何使用机器来模拟和实现人类的智能行为。
美国科学家艾什比认为,要制造一个综合能力的机器脑,在原则上没有什么问题,所需要的只是时间和技术进步。他强调,这种脑一旦制造出来,决不只是简单的机械执行和模仿,它还能够自己学习,发展自己的智慧。
还有一位科学家维纳认为,机器确实能制造得比其制造者更聪明。
他们都遵循了强人工智能观点:计算机不仅使智力工具,事实上具有恰当程序的计算机就可以等同于人类的智力。人工智能的发展是没有限度的。
有一个著名的人机对弈实验:从20世纪90年代初期开始,美国IBM公司安排了一系列计算机挑战国际象棋世界冠军卡斯帕罗夫的活动,卡斯帕罗夫一直没有输过。1997年5月11日,卡斯帕罗夫同IBM公司的超级计算机“深蓝”之间的又一场对抗赛落下帷幕,卡斯帕罗夫第一次以比负于“深蓝”。在总共6盘的比赛里,卡斯帕罗夫的成绩是1胜、3和、2负。这场“人机大战”的结果轰动了世界,它在世界范围引发人们讨论人工智能能否超过人类智能的问题。这个实验也是强人工智能的重要试验之一。
计算机是没有意识的
但我认为,计算机只不过是一个强有力的智力工具,人工智能的发展是有限度的,它可以不断接近人类智能,而永远不可能超过人类智能。
就拿这个实验来说,其实真正的比赛是在卡斯帕罗夫与深蓝设计小组中的程序员和工程师之间进行的。在某一个领域它很厉害,但是,它不会学习如何下棋,也不会从它下过的棋中吸取经验。计算机能够完成和表现出某种智能行为,仅仅是因为它执行了人们实现编制好的操作规则,就是说,是人类智能决定了机器智能。
不仅如此,机器是连意识都没有的,更别谈其智能超过人类智能的了。
首先,世界是物质的,意识是物质的反映,意识是物质发展到一定程度才产生发展起来的,意识是特殊物质(人脑)运动的产物和活动表现,意识是人类在适应世界和改造世界时所进行的信息处理过程及其产物和表现。只有活着的、具有生物结构的生物才能有意识,因此,一台人造的、非生物的机器是不能有意识的。
其次,人工智能是无意识的机械的物理的过程,不具备由世界观、人生观、情感、意志、兴趣、爱好等心理活动所构成的主观世界,而人类智能则是在人脑生理活动基础上产生的心理活动,能使人形成一个主观世界。
第三,辩证唯物主义在坚持物质决定意识,意识依赖于物质的同时,又承认意识对物质有能动作用。意识的能动作用是人的意识特有的积极反映世界与改造世界的能力和活动。主要表现在:意识是能动的,具有目的性和计划性。人是根据一定的目的、要求去确定反映什么、不反映什么、怎样反映,表现出主体的选择性。而人工智能在解决问题时,决不会意识到这是什么问题,它有什么意义,会带来什么后果,它是没有自觉性的。
第四,电脑必须接受人脑的指令,按预定的程序进行工作,它不能输出未经输入的任何东西,所谓结论只不过是输入程序和输入数据的逻辑结果。而人脑功能不仅采取感觉、直觉、表象等形式,反映事物的外部现象,而且能够运用概念、判断、推理等形式对感性材料进行加工制作,选择建构,从而使感性认识上升到理性认识,把握事物的本质和规律,在反映规律的基础上,提出新概念,做出新判断,既有对当前的反映,又有对过去的追溯和对未来的预测,可以超越特定时空的限制,具有丰富的想象力和创造性。
第五,人工智能是机器进化的结果,没有社会性。人作为社会的存在物,人脑功能是适应着社会生活的需要而产生和发展的。况且,生物必须经历一个生长过程,并花费很长的一段学习时间才能逐渐地获得意识,机器是没有生活历史的,所以它不可能有意识。不能说,“深蓝”因为有正确的程序就被称之为有意识的。
但同时,机器智能虽是有限的,也永远不可能超过人类智能;但是,机器智能向人类智能的接近却是无限度的,机器智能可以无限逼近人类智能。
从可知论的观点来看,人类的认识能力是没有界限的。人们对客观世界的认识是不断深入的,信息科技的发展是无止境的,人类完全可能造出信息处理能力越来越强大的、在某些方面超过人脑信息处理能力的及其,完全可能造出具有自学习和自适应能力、有高度智能的机器,完全可能做到人与计算机直接沟通信息、直接用意识操纵机器。否则,就是承认世界上有不能够被认识、不可知的领域。
从逻辑上讲,只要不是人为地进行限制和控制,随着人工信息处理机器的科技进步,也应当可以制造出能够将自我与他物区别开来和主动适应环境的机器,即具有自我意识、主体意识的机器,在理论上对此是不应当有什么怀疑的。
但是,机器具有自我意识的问题,不仅仅是一个科学和技术的问题,而且是一个认识论和伦理学的问题。因为自我意识的产生和发展,是在与他物的关系中建立和发展起来的。人要解决这个问题,必然要先解决人和机器的主体客体关系问题。也就是说,机器能否具有主体性,是掌握和控制在人的手中的。所以,只要人把计算机系统(机器)当作客体来认识和实践,计算机的智能就始终不会超过人的智能,更谈不到统治人类了。
猜你喜欢:
1. 对于人工智能战胜人类的作文
2. 对于人工智能的看法英语作文
3. 人工智能对人类的影响作文
4. 人工智能怎样影响人类的英语作文
5. 有关人工智能利弊的英语作文
6. 人工智能的影响高中英语作文
7. 人工智能的利弊高中英语作文
8. 以人工智能为材料的议论文
人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。以下是我精心整理的人工智能的利与弊论文的相关资料,希望对你有帮助!
摘要:自1956年人工智能诞生起,几十年的发展让其有了许多的进步,并广泛用于机器视觉,专家系统,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学等各大领域,并且与人类生活联系越来越紧密。在安全性没有得到确切认证的情况下广泛发展人工智能是否是可行的做法,人工智能是否会战胜人类智能,现在还存在广泛的争论。本文从人工智能的概况,应用领域与人类生活的联系等方面讨论,联系有关理论,认为人工智能的发展需要在人类智能可控的范围内进行。
关键字:人工智能 超越 人类智能 退化
一.人工智能的概况
(一)人工智能的概念
人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
(二)人工智能的兴起
1956年,被认为是人工智能之父的John McCarthy组织了一次学会,将许多对机器智能感兴趣的专家学者聚集在一起进行了一 个月的讨论。他请他们到 Vermont参加 " Dartmouth人工智能夏季研究会"。从那时起,这个领域被命名为 "人工智能"。1976年Newell 和Simon提出了物理符号系统假设,认为物理符号系统是表现智能行为必要和充分的条件。 Minsky从心理学的研究出发,提出了框架知识表示方法。到80年代,Minsky认为人的智能,根本不存在统一的理论。以McCarthy和Nilsson等为代表,主张用逻辑来研究人工智能,即用形式化的方法描述客观世界。逻辑学派在人工智能研究中,强调的是概念化知识表示、模型论语义、演绎推理等。 McCarthy主张任何事物都可以用统一的逻辑框架来表示,在常识推理中以非单调逻辑为中心。传统的人工智能研究思路是“自上而下”式的,它的目标是让机器模仿人,认为人脑的思维活动可以通过一些公式和规则
来定义,因此希望通过把人类的思维方式翻译成程序语言输入机器,来使机器有朝一日产生像人类一样的思维能力。这一理论指导了早期人工智能的研究。
(三)人工智能的发展状况
1956年,Samuel研制了跳棋程序,它在1959年击败了Samuel本人
1959年美籍华人学者、洛克菲勒大学教授王浩 自动定理证明
1976年 “四色定理”的证明
1977年,曾是赫伯特·西蒙的研究生、斯坦福大学青年学者费根鲍姆
(),在第五届国际人工智能大会上提出了”知识工程”的概念 1976年美国斯坦福大学肖特列夫开发医学专家系统MYCIN
80年代,AI 被引入了市场,并显示出实用价值
1997年 “深蓝”
2011年9月,在印度古瓦哈蒂举行的电脑科技展上,一个“聪明机器(Cleverbot)”成功骗过近800名观众,使他们难以分辨对话出自真人还是电脑软件。当日参加聊天试验的30名志愿者被安排进行4分钟在线文字聊天,聊天的对象可能是“聪明机器人”,也可能是一个真人。他们的对话内容展示在一个
大屏幕上,1334名普通观众观看对话内容后进行投票。结果,超过的观众 把人与“聪明机器人”的对话误认成人与人之间的对话“聪明机器人”的发明 者、英国人罗洛·卡彭特很高兴地告诉记者:“骗过一半以上观众,你可以说聪明机器人算是通过了"图灵测试"
二.人们对人工智能的依靠
(一)人工智能主要应用领域
目前人工智能主要的应用领域在机器视觉(指纹识别,人脸识别,视网膜识别,虹膜识别,掌纹识别),专家系统,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学,语言和图像理解,遗传编程等。
(二)人们生活与人工智能的密切关系
从智能手机、自动驾驶汽车到医疗机器人,人工智能革命已经到来。人工智能让互联网搜索更加灵敏;将文本从一种语言翻译成另一种语言;在拥挤的交通
中推荐最畅通的线路;帮助识别信用卡诈骗„„虽然很多时候我们甚至没有意识到它的存在,但我们的生活却因它悄悄改变。
在美国硅谷,尼古拉斯·亚宁早上起来准备去上班,到公司需要40分钟车程。这位在Google工作的技术员走向他的Lexus汽车。汽车即将驶上加州拥挤的高速路,此时他的“司机”———汽车开始掌控大局。亚宁的这辆车是Google正在实验的自动驾驶汽车,安装有复杂的人工智能技术,使得他可以放松地坐在驾驶座上充当乘客。
在马萨诸塞州贝德福特的iRobot公司,一名参观者看着5英尺高的机器人爱娃小心翼翼地行走在大厅里,躲避着周围的障碍物———包括人类。今年年底它将开始自己的第一份真正工作———远程医疗助手,让数千英里之外的专家通过安装在它“头”上的视频屏幕给医院的病人看病。当医生准备看望下一位病人时,他只需点击电脑地图上的新位置。爱娃根据地图找到并赶往下一个病房,它还会自己乘坐电梯。
在华盛顿普尔曼,华盛顿州立大学的研究者们正在给“智能”房间安装上感应器,使之能够根据需要自动调节房间的光线,监控住户的一切活动,包括他们每天睡眠多少小时,锻炼多少分钟。听上去有点像是被监禁,但事实上,倡导者们认为这样的技术就像一个富有爱心的保姆:智能房屋可以帮助老年人,尤其是有身体或智力障碍的老人过上独立的生活。
从今年夏天在火星登陆的好奇号太空探测器,到仪表盘能够与人对话的汽车,再到智能手机,人工智能正在改变我们的生活———有时候以一种显而易见的方式,更多的时候,我们甚至没有意识到它的存在。人工智能让互联网搜索更加灵敏;将文本从一种语言翻译成另一种语言;在拥挤的交通中推荐最畅通的线路;帮助识别信用卡诈骗;告诉驾驶员什么时候越过了道路中央的分道线。
甚至连烤面包机也即将加入人工智能革命。你可以将一个面包放进去,用智能手机拍张照片,手机将把所有需要的信息传送给烤面包机,指导它如何将面包烤得恰到好处。
从某个方便说,人工智能几乎无处不在,从控制数码相机的光圈和快门速度的智能感应器,到干衣机中的温度和湿度探测器,再到汽车中的自动泊车功能。更复杂的应用还在源源不断地走出实验室。
三.人工智能的弊端
(一)关于人工智能超越人类智能的假说
人工智能只可以作为人类智能的补充,但是人工智能的发展速度远远超过人类智能的发展速度,即根据进化论来说人工智能的进化速度比人类智能进化得快许多。由于人工智能起步较低,故现在和人类智能有一定差距,但其表现出了在局部超越了人类智能的现状,让人有理由相信人工智能超越人类智能只是时间上的问题。
人工智能超越人类智能论据有:一是达尔文进化论;二是类比人类的创造性即由于人类智能的不断探索欲会把自己独有创造赋予人工智能,这会导致人工智能战胜人类智能;三是“量变质变定律”人工智能不断的在某些领域超越人类智能,最终将在质上战胜人类智能。
其代表人物有四川大学社科系教授王黔玲从世界观角度提出的“人工智能将超越人类智能”的论断。华东师范大学哲学系教授郦全民认为在好奇心的驱使下,在不前进就会落后的“象棋皇后”效应的作用下,人类不会停止对比自己先进的更高的智能系统的探索。而进化法则又不可违背,将使得进化之链朝着超越人类的方向发展。因此地球上出现超越人类的高智能物种是进化的必然。代维也大胆预测“人工智能将在不远的将来战胜人类智能,但会有自己的存在方式,不会对人类构成威胁”。约翰·麦卡锡——人工智能之父认为“没有理由相信我们不能写出一个能使电脑像人一样思考的公式。”斯蒂芬·霍金 说过“在我看来,如果非常复杂的化学分子可以在人体内活动并使人类产生智慧的话,那么太阳复杂的电子电路也可以使计算机以智能化的方式采取行动。”德国班贝克大学心理学教授德尔纳认为“有灵魂的机器是存在的。”
(二)人类退化的假说
从智能手机、自动驾驶汽车到医疗机器人,人工智能革命已经到来。人工智能让互联网搜索更加灵敏;将文本从一种语言翻译成另一种语言;在拥挤的交通中
第5 / 6页
推荐最畅通的线路;帮助识别信用卡诈骗等。虽然很多时候我们甚至没有意识到它的存在,但我们的生活却因它悄悄改变。人们总是趋向于安逸的生活,人工智能的出现满足了人们许多的需求,这会导致人们满足于享受当前的生活而忘记许多自己的本能。根据达尔文的进化学说,那些我们不在经常使用的本能会在生物的繁衍中逐渐的退化消失。人工智能化的发展,我们的衣食住行都可以有简单的解决方法,并且也越来越为人们所依赖。就像过去几千年我们没有电话手机,一样可以有自己的通讯方式,可是现在手机发展不过几十年,就没有几个人能离得开手机了。试想一下日益进入我们生活中的人工智能,等你习惯后还能离得开吗。如果有了人工智能,你什么都不用自己动手,那经过生物衍变,人类的未来还能剩下什么呢。经过退化衍变的人类还有什么能力呢。
四.结语
现阶段人工智能在专家系统,智能搜索,定理证明,博弈,自动程序设计,智能控制,机器人学等方面都有许多的应用,并且范围越来越广,虽然看似都是促进科学发展的,但是我们得注意其使用的度,就像克隆的应用一样,具有双面性的东西在发展时都应该慎重考虑。人工智能智能作为一种工具被人类智能限定在一定的范围里发展,才能在保证其安全的条件下最大程度的为人类发挥作用。 参考文献:
【1】史忠植. 高级人工智能(第二版). 科学出版社, 2006.
【2】玛格丽特·博登,人工智能哲学,上海译文出版社2001-11-01
【3】 Russell S., Peter Norvig,人工智能——一种现代方法(第二版)北京:人民邮电出版社, 2004 【4】史忠植. 智能主体及其应用.科学出版社,2000.
【5】 叶世伟, 史忠植 译. 神经网络原理(Simon Haykin: Neural Networks) . 机械工业出版社,2004.
【6】蔡自兴,徐光佑,人工智能及其应用(第三版). 北京:清华大学出版社,2003年
【7】卢格尔,人工智能,机械工业出版社,2009-03-01
【8】CarolynAbate,人工智能改变生活,南方都市报,2012-09-30
【9】门泽尔,机器人的未来,上海辞书出版社,2002年
【10】钱学森,关于思维科学,上海人民出版社,1986
【11】钱铁云,人工智能是否可以超越人类智能?,科学社会与辩证法,2004
【12】代维,人工智能VS人类智能。20年后谁称雄,青年探索,2002
【13】姜长阳,人类正在退化,自然辨证法研究,2000年11期
只要谈及科技对人类的意义,有一个词语出语率颇高――“双刃剑”。即科技在给人们带来便捷、舒适和高质量生活的同时,也不可避免地会带来诸多弊端。在这种种弊端中,有看得见的,如环境污染;而更多的则是看不见的,如科技对文化的冲击。
有关科技的利与弊,近年来舆论界一直争论不休,莫衷一是。这一现象也直接反映在了高考语文试题中――连续几年的高考作文都涉及到这一话题,且有逐年增多的趋势。
据统计,在近几年高考作文中讨论最多的话题是“科技对文化(尤其是传统文化)的冲击”――即科技会不会对文化构成冲击?又会构成什么样的冲击?如2012年高考湖北卷作文题就提供了这样一则材料:
语文课堂上,老师在讲到杜甫《春望》“烽火连三月,家书抵万金”时,不无感慨地说:“可惜啊,我们现在已经很难见到家书了,书信这种形式恐怕要消失了。”学生甲:“没有啊,我上大学的表哥就经常给我写信,我觉得这种交流方式是不可替代的。”学生乙:“信息技术这么发达,打电话、发短信、写邮件更便捷,谁还用笔写信啊?”学生丙:“即使不用笔写信,也不能说明书信消失了,只不过是书信的形式变了。”学生丁:“要是这样说的话,改变的又何止是书信?社会发展了,科技进步了,很多东西都在悄然改变。”……
诚然,电话、短信、邮件在带给我们方便、快捷的同时,也消减了我们生活中的诗意。可是我们不妨思量一下,“云中谁寄锦书来”或许能带给我们诗意和遐想,可在“烽火连三月”的情况下,恐怕还是一条快捷的短信更让人放心。因此,我们要充分考虑到两者的得失,对如何处理好科技与文化的关系作出深刻的反思:是为了保存传统的美好而抱残守缺,还是为了方便快捷就抛弃传统?是在传统的树干上嫁接上时尚的枝条,还是在崭新的文化中打上旧补丁?笔者想:应该思考这类问题的绝不仅仅是我们的中学生,更有我们的决策者、我们的专家,甚至我们每一个普普通通的公民。反思永远强于抱怨,只有总结反思,才能使我们的下一步走得更好,走得更稳健,从而一步步接近我们理想中的伊甸园。
与此一脉相承的是2014年高考广东卷的作文题。所不同的是广东卷的材料放弃了书信与手机,取而代之的是黑白胶片与数码技术:
黑白胶片的时代,照片很少,只记录下人生的几个瞬间,在家人一次次的翻看中,它能唤起许多永不褪色的记忆。但照片渐渐泛黄,日益模糊。数码技术的时代,照片很多,记录着日常生活的点点滴滴,可以随时上传到网络与人分享。它从不泛黄,永不模糊,但在快速浏览与频繁更新中,值得珍惜的“点滴”也可能被稀释。
黑白胶片与数码技术就像尺素与短信、马车与高铁、书法与“键谈”、远足与网游、品茗与快餐,品评它们又岂是一个“利”字或“弊”字可以概括的?这当中,掺和有科技的因素,有文化的因素,有传统的因素,有心理习惯的因素……其实,人们最希望拥有的是现代科技的便捷加上传统文化的醇香,而这恰如鱼与熊掌,兼而得之实在不易。
高考作文涉及到的又一方面的话题是“科技对传统审美观念的冲击”。如2014年高考辽宁卷作文题提供了这样一则材料:
夜晚,祖孙二人倚窗远眺。“瞧万家灯火,大街通明,霓虹闪耀,真美!”男孩说,“要是没有电,没有现代科技,没有高楼林立,上哪儿看去?”老人颔首,又沉思摇头:“可惜满天繁星没有了。沧海桑田,转眼之间啊!当年那些祖先,山洞边点燃篝火,看月亮初升,星汉灿烂,他们欣赏的也许才是美景。”
读罢这则材料,笔者觉得:如果“当年那些祖先”能够“穿越”回来,即便他们依然认为篝火、明月、星汉是大自然中最美丽的景观,但他们还乐意栖居在山洞里燃着篝火欣赏那满天繁星吗?现代科技早已潜入到了人们的灵魂深处,纵然我们会偶尔生出几许怀旧的情愫,那不过是我们在内心珍存的原始记忆陨落时的惆怅,纵然我们心向往之,也未必愿意返璞归真。在现代社会中,像陶渊明、梭罗这些真正倾心于自然的隐者已经很难寻觅了。
高考作文所涉及的有关科技的材料,还触及到了近乎于“科幻”的话题。如2014年高考天津卷的作文材料,讲的是一则带有几分科幻色彩的故事,揭示了现代科技给人带来的“荒诞感”:
也许将来有这么一天,我们发明了一种智慧芯片,有了它,任何人都能古今中外无一不知,天文地理无所不晓。比如说,你在心里默念一声“物理”,人类有史以来有关物理的一切公式、定律便纷纷浮现出来,比老师讲的还多,比书本印的还全。你逛秦淮河时,脱口一句“旧时王谢堂前燕”,旁边卖雪糕的老大娘就接茬说“飞入寻常百姓家”,还慈祥地告诉你,这首诗的作者是刘禹锡,这时一个金发碧眼的外国小女孩抢着说,诗名《乌衣巷》,出自《全唐诗》365卷4117页……这将是怎样的情形啊!
不知道是否真的有那么一天,不知道这样的情形是否真的会出现,也不知道这样的情形出现究竟是喜是悲。
平心而论,科技带给我们的永远是利大于弊,否则我们绝不会视之为“第一生产力”,也不会有那么多仁人志士为科技献身,为科技发展不遗余力了。我们现在要探究的是在发展科技的同时怎样将它的负面效应降到最低,乃至使之成为促进文化传承与发展的助力;而不是因噎废食,视科技为文化的宿敌,甚至视若洪水猛兽――而承担这一重任的主力,将会是今天走上考场的一代青年。从这一意义上看,让他们先写这样的文章真的很有价值。想必“科技”这一话题在随后的高考作文中仍会有一定的地位。
社会发展的历史就是技术进步的历史。社会发展为人工智能提供了良好的外部环境,同时人工智能促进社会发展。以下是我精心整理的人工智能领域论文的相关资料,希望对你有帮助!人工智能领域论文篇一 人工智能研究领域及其社会影响 [提要] 社会发展的历史就是技术进步的历史。社会发展为人工智能提供了良好的外部环境,同时人工智能促进社会发展。本文在介绍人工智能基本含义的基础上,概述人工智能的研究和应用领域,并且从不同的角度阐述人工智能的发展对于社会的深刻影响。 关键词:人工智能;研究领域;社会影响;专家系统 随着网络技术和通讯技术的发展,人工智能以它强大的渗透力走进了社会生活的各个领域,极大地改变了社会面貌,深刻地改变了人们的思想和行为。探讨人工智能对人类进步的影响,对促进人工智能发展和对人类的进步有着重要意义。 一、人工智能的含义 人工智能也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造出智能机器或智能系统来模拟人类智能活动的能力,以延伸人类智能的科学。 人工智能领域的研究是从1956年正式开始的。这一年,在达特茅斯大学召开的会议上正式使用了“人工智能”(AI)这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语音理解、博弈、自动程序设计、专家系统、学习以及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统。例如,能够求解微分方程、设计分析集成电路、合成人类自然语音,进行情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我们的生活。我们熟知的IBM的“深蓝”在棋盘上击败了国际象棋大师卡斯帕罗夫就是比较突出的例子。 当然,人工智能的发展也并不是一帆风顺的,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷。但是,随着硬件和软件的发展,计算机的运算能力在以指数级增长。同时,网络技术蓬勃兴起,确保计算机已经具备了足够的条件来运行一些要求更高的AI软件,而且,现在的AI具备了更多的现实应用的基础。1990年以来,人工智能研究又出现了新的高潮。一方面是因为在人工智能理论方面有了新的进展,一方面也是因为计算机硬件突飞猛进的发展。随着计算机速度的不断提高、存储容量的不断扩大、价格的不断降低以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。 人工智能在发展过程中形成了几个学派,最主要的两个学派是符号主义和联接主义。符号主义,又称为逻辑广义、心理学派或计算机学派。其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理,代表人物是纽厄尔和西蒙。大量传统的人工智能研究是在这个学派的思想推动下进行的。联接主义认为人工智能源于仿生学,特别是人脑模型的研究。它的代表性成果是1943年由生理学家麦卡洛克和数学逻辑学家皮茨创立的脑模型,即MP模型,开创电子装置模仿人脑结构和功能的新途径。在这个学派中,有著名的模式识别理论。20世纪八十年代末神经网络迅速崛起,在声音识别、图像处理等方面取得很大成功。 二、人工智能研究和应用的领域 (一)模式识别。计算机硬件的迅速发展,计算机应用领域的不断开拓,急切地要求计算机能更有效地感知诸如声音、文字、图像、温度、震动等人类赖以发展自身、改造环境所运用的信息资料。但目前计算机却无法直接感知它们,键盘、鼠标等外部设备,对于这样五花八门的外部世界显得无能为力,即使是电视摄像机和话筒等,由于识别技术不高,计算机并未真正知道所采录的究竟是什么信息,计算机对外部世界感知能力的低下,成为开拓计算机应用的狭窄瓶颈。于是,着眼于拓宽计算机的应用领域,提高其感知外部信息能力的学科——模式识别得到了迅速发展。 (二)自然语言理解与机器翻译系统。语言处理是人工智能最早期的研究领域之一。人们之间用语言互通信息是一件非常简单的事情,而建立一个能够生成和“理解”哪怕是只言片语的计算机系统却是非常困难的。因为传递某一点的“思维结构”需要庞大的与该思维结构相关的公共思维结构,犹如一个人一样,需要有上下文知识并能根据这些知识进行推理。自然语言理解最重要的成果是机器翻译。现在,机器翻译真正推向市场还面临两大问题:一是准确性。由于科技文献和文学作品有许多专业术语,所以需要专家来进行译前处理和译后校正工作;二是翻译速度问题。翻译需要有庞大的字库系统,有效快速搜索是需解决的问题之一,如何减少翻译前的处理和翻译后的校正工作时间也是需解决的问题。 (三)自动程序设计。对自动程序设计的研究不仅可以促进半自动软件开发系统的发展,而且也使通过修正自身代码进行学习的人工智能系统得到发展。程序理论方面的有关研究工作,对人工智能的所有研究工作都是很重要的。我们所指的自动程序设计是某种“超级编译程序”,或者能够对程序要实现什么目标进行非常高级描述的程序,并能够由这个程序产生出所需要的新程序。这种高级描述可能是采用形式语言的一条精辟语句,也可能是一种松散的描述,这就要求在系统和用户之间进一步对话澄清语言的模糊,自动程序设计研究的重大贡献之一是作为问题求解策略的调整概念。 (四)专家系统。专家系统是一个具有专门知识的智能计算机程序系统,它应用人工智能技术,根据某个领域一个或多个专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,解决该领域需要由专家才能解决的问题,专家系统一般由数据库和推理机构成。近年来,在专家系统的研究中已经出现了应用人工智能技术解决实际问题的成功范例。如“故障诊断系统”,这种系统设计了一个计算机界面,可以进行人—机“对话”,用户与专家系统进行咨询对话就像用户与具有这方面知识与经验的专家对话一样,解释和回答用户的问题。此外,还有情报检索系统、数据分析系统和结构优化设计系统等。 发展专家系统的关键是如何表达和运用专家知识即构筑数据库,如何将那些来自人类专家的并已经被证明了的对解决有关问题有帮助的典型事例符号化后输入计算机。专家系统与过去的一些计算机系统不同,它是以符号处理为主的计算机程序系统,一般没有算法解,经常要在一些不完全、不精确、不确定的信息基础上做出结论。 (五)智能机器人。智能机器人是人工智能研究的另一个重要领域,其中包括对操作机器人装置程序的研究。至今,尽管已经建立了一些比较复杂的机器人系统,工业上也运行着成千上万台机器人,但这都是一些按预先编好程序执行某些重复作业的简单装置,大多数机器人只能“干”不能“看”,不具备“智慧”。如何摄取并处理视觉信息,研制能进行图像声音识别并进行拟人推理的机器人是人工智能的又一个十分活跃的领域。人工智能的研究促进了机器人研究和机器人学的发展;另一方面,智能机器人研究又促进了许多人工智能思想的发展。智能机器人的研究和应用体现出广泛的学科交叉,涉及众多课题。机器人已在各种工业、农业、商业、旅游业、空中和海洋以及国防等领域获得越来越普遍的应用。 (六)智能控制。人工智能的发展促进自动控制向智能控制发展。智能控制是一类无需人的干预就能独立地驱动智能机器实现其目标的自动控制。它是自动控制的最新发展阶段,也是用计算机模拟人类智能的一个重要研究领域。智能控制是同时具有以知识表示的非数学广义世界模型和数学公式模型表示的混合控制过程,往往是含有复杂性、不完全性、模糊性或不确定性以及不存在已知算法的非数学过程,并以知识进行推理来引导求解过程。 三、人工智能对人类社会的影响 随着计算机技术的快速发展和广泛应用,人工智能的思想和技术对人类的影响与日俱增,人工智能的发展将会对人类社会产生深远的影响,并将深入到人类社会的各个方面。 (一)人工智能的发展改变了人类的社会面貌 1、财富迅速增加。从财富的数量看,由于计算机、控制论和自动化技术的发展,正在迅速提高自动化的程度。同样数量的劳动力在同样的劳动时间里可以生产比过去多几十倍、几百倍的产品。从财富的质量看,由于计算机的推广应用,新兴产业以前所未闻的速度和前所未有的规模发展起来。 2、人际联系日益紧密。现在,任何社会制度的国家,由于人工智能的发展,生产社会化程度日益提高,使人际联系频度提高,距离缩短,Internet把整个世界联为一个整体。在这种条件下,生产国际化、贸易国际化、金融国际化、教育国际化、政治国际化和信息国际化,人们之间的往来将更加紧密。 3、信息快速增加和更新。人工智能发展为人们储存和处理信息提供了方便。一方面人们利用计算机每天输入大量的信息,使信息以几何级数增加;另一方面使信息更新加速,人们利用计算机大量输入、生成和输出的信息,使储存在载体上的信息加速折旧,人们不断期待正在传输中的最新信息,为满足这种需要,越来越多的人进一步搜集和输入新的信息。 (二)人工智能的发展,改变了社会的结构。人们一方面希望人工智能和智能机器能够代替人类从事各种劳动,一方面又担心它们的发展会引起新的社会问题。实际上,近十多年来,社会结构正在发生一种静悄悄的变化。人—机器的社会结构,终将为人—智能机器—机器的社会结构所取代。智能机器人就是智能机器之一。从发展角度看,从医院里看病的“医生”、护理病人的“护士”、旅馆、饭店和商店的服务员、办公室的“秘书”、指挥交通的“警察”,到家庭的“勤杂工”和“保姆”等,将均由机器人担任。因此,人们将不得不学会与有智能的机器和睦相处,并适应这种变化了的社会结构。 由于人工智能能够代替人类进行各种脑力劳动,例如用专家系统代替管理人员或医生进行决策、诊断或治疗病人的疾病。所以,将会使一部分人不得不改变他们的工种,甚至造成失业。人工智能在科技和工程中的应用,会使一些人失去介入信息处理活动(如规划、诊断、理解和决策等)的机会,甚至不得不改变自己的工作方式。 (三)人工智能的发展,提高了社会的经济效益。人工智能系统已创造出了可观的经济效益,专家系统就是一个典型的例子。随着计算机价格的继续下降,人工智能技术必将得到进一步推广,产生更大的经济利益。成功的专家系统能为它的建造者、拥有者和用户带来明显的经济效益。用比较经济的方法执行任务而不需要有经验的专家,可以极大地减少劳务开支和培养费用。由于软件易于复制,所以专家系统能够广泛传播专家知识和经验,推广应用数量有限的和昂贵的专业人员的知识。 如果保护得当,软件能被长期和完整地保持;因此,人类专家的经验能够得以延续。不受人类专家寿命的限制,这又是一笔巨大的财富。各领域专业人员(如医生)难以同时保持最新的实际建议(如治疗方案和方法),而专家系统却能迅速地更新和保存这类建议,使终端用户(如病人)从中受益。 (四)人工智能的发展,改变了人类思维方式。人工智能是人类理性活动的产物,它延长了人的思维活动,有利于人们正确思维,有利于人们应用正确的思维方法。人工智能的运行遵循客观规律,因此要求人们在应用和开发中采取务实的态度,来不得半点虚假,用头脑思考,来不得半点感情用事。人工智能的发展与推广应用,将影响到人类的思维方式和传统观念,并使它们发生改变。例如,传统知识一般印在书本、报纸或杂志上,因而是固定不变的,而人工智能系统的知识库的知识却是可以不断修改、扩充和更新的。又如,一旦专家系统用户开始相信系统(智能机器)的判断和决定,那么他们就可能不愿多动脑筋,变得懒惰,并失去对许多问题及其求解任务的责任感和敏感性。那些过分依赖计算器的学生,他们的主动思维能力和计算能力也会明显地下降,并增加误解。在设计和研制智能系统时,应考虑到上述问题,尽量鼓励用户在问题求解中的主动性,让他们的智力积极参与问题求解过程。 (五)人工智能的发展,改变了人们的生活方式。随着人工智能的发展步伐,人类活动方式发生了突变。网络化加强了人们的横向联系。网络技术的迅速发展,使人们的联系方式发生了变化。就主从联系讲,以往主要靠从上到下的“金字塔管理”,现在突出了“网络管理”。就平等联系讲,以往由距离决定联系频度,现在可以超越时空,由利益决定联系频度。 人工智能应用主要遵循内涵深入和外延拓展两方面。首先,内涵深入表现在模拟的发展,结构模拟较多地受技术限制,功能模拟主要靠开发软件。现在全世界每年有几十万个成熟软件推向市场,而无论是商务的还是娱乐的,都改变了人们单调的工作和生活模式;其次,外延拓展主要是人工智能与其他技术结合,光子、超导和激光计算机是人工智能发展的新出路。在社会广阔领域中,人工智能借助机电光声技术,为社会提供了电子排版系统、电视节目编辑器、复印机、学习机、家庭影院、音乐喷泉、B超检查、CT检查和机器人,给人们生活带来了一片新气象。
Artificial Intelligence (AI) is the intelligence of machines and the branch of computer science which aims to create it. Textbooks define the field as "the study and design of intelligent agents,"[1] where an intelligent agent is a system that perceives its environment and takes actions which maximize its chances of success.[2] John McCarthy, who coined the term in 1956,[3] defines it as "the science and engineering of making intelligent machines."[4]The field was founded on the claim that a central property of human beings, intelligence—the sapience of Homo sapiens—can be so precisely described that it can be simulated by a machine.[5] This raises philosophical issues about the nature of the mind and limits of scientific hubris, issues which have been addressed by myth, fiction and philosophy since antiquity.[6] Artificial intelligence has been the subject of breathtaking optimism,[7] has suffered stunning setbacks[8] and, today, has become an essential part of the technology industry, providing the heavy lifting for many of the most difficult problems in computer science.[9]AI research is highly technical and specialized, deeply divided into subfields that often fail to communicate with each other.[10] Subfields have grown up around particular institutions, the work of individual researchers, the solution of specific problems, longstanding differences of opinion about how AI should be done and the application of widely differing tools. The central problems of AI include such traits as reasoning, knowledge, planning, learning, communication, perception and the ability to move and manipulate objects.[11] General intelligence (or "strong AI") is still a long-term goal of (some) research.[12]Thinking machines and artificial beings appear in Greek myths, such as Talos of Crete, the golden robots of Hephaestus and Pygmalion's Galatea.[13] Human likenesses believed to have intelligence were built in every major civilization: animated statues were worshipped in Egypt and Greece[14] and humanoid automatons were built by Yan Shi,[15] Hero of Alexandria,[16] Al-Jazari[17] and Wolfgang von Kempelen.[18] It was also widely believed that artificial beings had been created by Jābir ibn Hayyān,[19] Judah Loew[20] and Paracelsus.[21] By the 19th and 20th centuries, artificial beings had become a common feature in fiction, as in Mary Shelley's Frankenstein or Karel Čapek's . (Rossum's Universal Robots).[22] Pamela McCorduck argues that all of these are examples of an ancient urge, as she describes it, "to forge the gods".[6] Stories of these creatures and their fates discuss many of the same hopes, fears and ethical concerns that are presented by artificial problem of simulating (or creating) intelligence has been broken down into a number of specific sub-problems. These consist of particular traits or capabilities that researchers would like an intelligent system to display. The traits described below have received the most attention.[11][edit] Deduction, reasoning, problem solvingEarly AI researchers developed algorithms that imitated the step-by-step reasoning that human beings use when they solve puzzles, play board games or make logical deductions.[39] By the late 80s and 90s, AI research had also developed highly successful methods for dealing with uncertain or incomplete information, employing concepts from probability and economics.[40]For difficult problems, most of these algorithms can require enormous computational resources — most experience a "combinatorial explosion": the amount of memory or computer time required becomes astronomical when the problem goes beyond a certain size. The search for more efficient problem solving algorithms is a high priority for AI research.[41]Human beings solve most of their problems using fast, intuitive judgments rather than the conscious, step-by-step deduction that early AI research was able to model.[42] AI has made some progress at imitating this kind of "sub-symbolic" problem solving: embodied approaches emphasize the importance of sensorimotor skills to higher reasoning; neural net research attempts to simulate the structures inside human and animal brains that gives rise to this intelligenceMain articles: Strong AI and AI-completeMost researchers hope that their work will eventually be incorporated into a machine with general intelligence (known as strong AI), combining all the skills above and exceeding human abilities at most or all of them.[12] A few believe that anthropomorphic features like artificial consciousness or an artificial brain may be required for such a project.[74]Many of the problems above are considered AI-complete: to solve one problem, you must solve them all. For example, even a straightforward, specific task like machine translation requires that the machine follow the author's argument (reason), know what is being talked about (knowledge), and faithfully reproduce the author's intention (social intelligence). Machine translation, therefore, is believed to be AI-complete: it may require strong AI to be done as well as humans can do it.[75][edit] ApproachesThere is no established unifying theory or paradigm that guides AI research. Researchers disagree about many issues.[76] A few of the most long standing questions that have remained unanswered are these: should artificial intelligence simulate natural intelligence, by studying psychology or neurology? Or is human biology as irrelevant to AI research as bird biology is to aeronautical engineering?[77] Can intelligent behavior be described using simple, elegant principles (such as logic or optimization)? Or does it necessarily require solving a large number of completely unrelated problems?[78] Can intelligence be reproduced using high-level symbols, similar to words and ideas? Or does it require "sub-symbolic" processing?[79][edit] Cybernetics and brain simulationMain articles: Cybernetics and Computational neuroscience There is no consensus on how closely the brain should be the 1940s and 1950s, a number of researchers explored the connection between neurology, information theory, and cybernetics. Some of them built machines that used electronic networks to exhibit rudimentary intelligence, such as W. Grey Walter's turtles and the Johns Hopkins Beast. Many of these researchers gathered for meetings of the Teleological Society at Princeton University and the Ratio Club in England.[24] By 1960, this approach was largely abandoned, although elements of it would be revived in the can one determine if an agent is intelligent? In 1950, Alan Turing proposed a general procedure to test the intelligence of an agent now known as the Turing test. This procedure allows almost all the major problems of artificial intelligence to be tested. However, it is a very difficult challenge and at present all agents intelligence can also be evaluated on specific problems such as small problems in chemistry, hand-writing recognition and game-playing. Such tests have been termed subject matter expert Turing tests. Smaller problems provide more achievable goals and there are an ever-increasing number of positive broad classes of outcome for an AI test are:Optimal: it is not possible to perform better Strong super-human: performs better than all humans Super-human: performs better than most humans Sub-human: performs worse than most humans For example, performance at draughts is optimal,[143] performance at chess is super-human and nearing strong super-human,[144] and performance at many everyday tasks performed by humans is quite different approach is based on measuring machine intelligence through tests which are developed from mathematical definitions of intelligence. Examples of this kind of tests start in the late nineties devising intelligence tests using notions from Kolmogorov Complexity and compression [145] [146]. Similar definitions of machine intelligence have been put forward by Marcus Hutter in his book Universal Artificial Intelligence (Springer 2005), which was further developed by Legg and Hutter [147]. Mathematical definitions have, as one advantage, that they could be applied to nonhuman intelligences and in the absence of human is a common topic in both science fiction and in projections about the future of technology and society. The existence of an artificial intelligence that rivals human intelligence raises difficult ethical issues and the potential power of the technology inspires both hopes and Shelley's Frankenstein,[160] considers a key issue in the ethics of artificial intelligence: if a machine can be created that has intelligence, could it also feel? If it can feel, does it have the same rights as a human being? The idea also appears in modern science fiction: the film Artificial Intelligence: . considers a machine in the form of a small boy which has been given the ability to feel human emotions, including, tragically, the capacity to suffer. This issue, now known as "robot rights", is currently being considered by, for example, California's Institute for the Future,[161] although many critics believe that the discussion is premature.[162]Another issue explored by both science fiction writers and futurists is the impact of artificial intelligence on society. In fiction, AI has appeared as a servant (R2D2 in Star Wars), a law enforcer (. "Knight Rider"), a comrade (Lt. Commander Data in Star Trek), a conqueror (The Matrix), a dictator (With Folded Hands), an exterminator (Terminator, Battlestar Galactica), an extension to human abilities (Ghost in the Shell) and the saviour of the human race (R. Daneel Olivaw in the Foundation Series). Academic sources have considered such consequences as: a decreased demand for human labor,[163] the enhancement of human ability or experience,[164] and a need for redefinition of human identity and basic values.[165]Several futurists argue that artificial intelligence will transcend the limits of progress and fundamentally transform humanity. Ray Kurzweil has used Moore's law (which describes the relentless exponential improvement in digital technology with uncanny accuracy) to calculate that desktop computers will have the same processing power as human brains by the year 2029, and that by 2045 artificial intelligence will reach a point where it is able to improve itself at a rate that far exceeds anything conceivable in the past, a scenario that science fiction writer Vernor Vinge named the "technological singularity".[164] Edward Fredkin argues that "artificial intelligence is the next stage in evolution,"[166] an idea first proposed by Samuel Butler's "Darwin among the Machines" (1863), and expanded upon by George Dyson in his book of the same name in 1998. Several futurists and science fiction writers have predicted that human beings and machines will merge in the future into cyborgs that are more capable and powerful than either. This idea, called transhumanism, which has roots in Aldous Huxley and Robert Ettinger, is now associated with robot designer Hans Moravec, cyberneticist Kevin Warwick and inventor Ray Kurzweil.[164] Transhumanism has been illustrated in fiction as well, for example in the manga Ghost in the Shell and the science fiction series Dune. Pamela McCorduck writes that these scenarios are expressions of the ancient human desire to, as she calls it, "forge the gods."[6]
第一:研究过程的连续性和科学性,一定要把握住这些专业特征 。第二:数据支撑 ,一定要注重数据的来源渠道合理且具有一定的权威性。 第三:注重新技术的阐述,很多专业对于新技术还是非常敏感的 。
在现代生活中,计算机的应用为我们的日常生活提供了便利,计算机应用技术水平的提升是促进社会进步的重要保障。下面是我给大家推荐的计算机应用技术3000字 毕业 论文,希望能对大家有所帮助!计算机应用技术3000字毕业论文篇一:《计算机应用与技术探讨》 [关键词]随着我国科技水平的日益提升,计算机应用技术得到的迅猛发展,在各个行业中均已广泛应用。计算机应用为我们的日常生活提供了许多便利,需要提升具计算机应用技术的安全保护意识。计算机应用技术水平的提升是促进社会进步的重要保障。 文章 首先介绍了计算机应用技术的概况,分别对计算机应用技术的用途和发展现状进行讨论,再次讨论了计算机应用技术的未来发展趋势。从而详细的论述了我国计算机应用技术的发展情况。 [摘 要]计算机应用 发展现状 发展趋势 当今社会,计算机应用涉及到了数据处理、家庭和办公自动化、远程信息控制和信息系统构建等多中领域,分别需要不同的技术支撑和技术应用范围。而如何有效的掌握知识,促进能力,拓展创新,是推广和使用信息技术的必由之路。 从计算机的发展历程看,也是知识和技术应用不断推陈出新和过程,随着多媒体技术和信息高速公路技术的出现使用,计算机的功能更大的被发掘出来,甚至在某些方面取代了人工,成为重要的角色。 一、全面掌握应用知识,提高应用技术能力 所有计算机技术的应用是以掌握相关的知识为前提的,这种知识可以使理论的,也可以是操作的,可以集中学习,也可以边学边做。在当前计算机的应用领域,关乎到日常工作和生活的有很多,像计算机教学、平面设计、软件开发与应用、信息工程师和系统管理等,除了要求掌握基本通用的知识外,专业方面的知识也甚为关键。 每个计算机工作的技术应用人员,需全面系统的掌握计算机知识应用的理论体系,以完整夯实的基础带动应用能力的发展,遵照社会需求,确定自己的发展方向和目标,反复巩固基本的应用知识,反复操练应用技能,将理论和实践相结合。 知识的掌握和能力的运用,在实际工作中,会面临到很多新的情况,这就需要能融会贯通,随机应变,通过知识的变式和创新,能力的在发展去解决工作中的问题,计算机知识和能力的变通性和替代性很强,没有单一的要求,需要计算机应用操作人员触类旁通。 二、以重点为核心,以多元化发展为方向 计算机的应用技术的分工日渐细密,而且各个工种是相互配合和合作的形势展开,每个人只需重点掌握一项计算机技术的应用就可大有作为,成为自己的关键,每个人根据自己的情况当确立重点,在不同的工作领域确定不同的自我应用技术。 以重点为核心,以多元化发展为方向,计算机技术应用的重点性和全面性是相辅相成,不可分割的,因为计算机技术本身都存在有本质的和密切的联系,不存在单一技术领域,都是知识某一部分的合成,像在平面设计方面,同时运用到了“办公自动化、网页制作和PS”等基本知识,您只懂得平面的创意或设计是远远不够的,必须有相关的技术支持,这样才能达到目的。 应用型和技术型是互相统一的,要理论知识和技术并重,重点突出和全面发展兼具,这样才会有效的发挥出个人应用技术的效能。 三、有效拓展能力,推动应用创新 在当前计算机 教育 中,应用人才的培养与学术研究和市场需求存在一定矛盾,从某种程度上说,只重视理论而忽视技术能力和创新实践的培养,这样的应用仅仅停留在知识应用的表层,无法深入到技术能力深处,无法推动应用创新。 在实际工作中,遇到实践操作和技术应用的问题,往往不能有效迅速的解决,这就是确乏 经验 的表现,经验是学不到的,是在实际应用工作中感悟到的,是个人的自我思考和体会。 在知识学习和运用的同时,必须辅之以计算机的实践操作,感受能力的体现,不断 总结 经验,提高应用技术的熟练度,方能化繁为简,形成真正的能力,这是从现实中磨砺出来的。在能力提高的同时,通过完善理论体系和能力体系,完全会有自己独特的创新和感悟,来解决日常生活中遇到的主要问题。而知识和能力应用的嵌入式和混合式发展,要求计算机从业者有着全面的知识底子和互通的理论融合。针对某一问题的解决,做到多样化和多重性,以求可以找到更好的解决问题的 措施 ,而且能起到熟练技能和选择优化的效果。 四、计算机技术 计算机技术的内容非常广泛,可粗分为计算机系统技术、计算机器件技术、计算机部件技术和计算机组装技术等几个方面。计算机技术包括:运算 方法 的基本原理与运算器设计、指令系统、中央处理器(CPU)设计、流水线原理及其在CPu设计中的应用、存储体系、总线与输入输出。计算机作为一个完整系统所运用的技术。主要有系统结构技术、系统管理技术、系统维护技术和系统应用技术等。计算机领域中所运用的技术方法和技术手段。计算机技术具有明显的综合特性,它与电子工程、应用物理、机械工程、现代通信技术和数学等紧密结合,发展很快。 第一台通用电子计算机ENIAC就是以当时雷达脉冲技术、核物理电子计数技术、通信技术等为基础的。电子技术,特别是微电子技术的发展,对计算机技术产生重大影响,二者相互渗透,密切结合。应用物理方面的成就,为计算机技术的发展提供了条件:真空电子技术、磁记录技术、光学和激光技术、超导技术、光导纤维技术、热敏和光敏技术等,均在计算机中得到广泛应用。机械工程技术,尤其是精密机械及其工艺和计量技术,是计算机外部设备的技术支柱。随着计算机技术和通信技术各自的进步,以及社会对于将计算机结成网络以实现资源共享的要求日益增长,计算机技术与通信技术也已紧密地结合起来,将成为社会的强大物质技术基础。离散数学、算法论、语言理论、控制论、信息论、自动机论等,为计算机技术的发展提供了重要的理论基础。计算机技术在许多学科和工业技术的基础上产生和发展,又在几乎所有科学技术和国民经济领域中得到广泛应用。 1.系统结构技术 它的作用是使计算机系统获得良好的解题效率和合理的性能价格比。电子器件的进步,微程序设计和固体工程技术的进步,虚拟存储器技术以及 操作系统 和程序语言等方面的发展,均对计算机系统结构技术产生重大影响。它已成为计算机硬件、固件、软件紧密结合,并涉及电气工程、微电子工程和计算机科学理论等多学科的技术。 2.系统管理技术 计算机系统管理自动化是由操作系统实现的。操作系统的基本目的在于最有效地利用计算机的软件、硬件资源,以提高机器的吞吐能力、解题时效,便利操作使用,改善系统的可靠性,降低算题费用等。 3.系统维护技术 计算机系统实现自动维护和诊断的技术。实施维护诊断自动化的主要软件为功能检查程序和自动诊断程序。功能检查程序针对计算机系统各种部件各自的全部微观功能,以严格的数据图形或动作重试进行考查测试并比较其结果的正误,确定部件工作是否正常。 4.系统应用技术 计算机系统的应用十分广泛。程序设计自动化和软件工程技术是与应用有普遍关系的两个方面。程序设计自动化,即用计算机自动设计程序,是使计算机得以推广的必要条件。早期的计算机靠人工以机器指令编写程序,费时费力,容易出错,阅读和调试修改均十分困难。 综上所述,在计算机的应用和技术操作过程当中,首先要夯实基础,以此培养能力,提高技能,达到知识和能力的融会贯通和综合应用,从而提高素质,然后以计算机主干核心知识构造自己的应用体系,确定目标,将计算机的多功能化融会到日常生活当中,有效解决各种为题,打造更广阔的发展前景。 参考文献 [1] 侯晓璐.浅析计算机应用的发展现状和趋势[J].科技创新与应用.2012(27). [2] 冯丽萍,张华.浅谈计算机技术发展与应用[J].现代农业.2012(08). [3] 马忠锋.计算机应用的现状与计算机的发展趋势[J].黑龙江科技信息. 2011(07). [4] 蒋天宏.计算机技术发展迅速的原因分析[J].科技创新导报.2008(34) 计算机应用技术3000字毕业论文篇二:《初探计算机应用与技术》 [摘 要]随着计算机应用技术和操作的普及,我们的生活越来越离不开计算机的辅助作用,成为日常工作中的重要一部分,成为我们必备的基本技能,如何最大限度的发挥计算机技术在工作中的重大作用,要求我们能有效的去灵活运用和操作,熟练的掌握基本的知识而后应用技术,为以后的熟练工作打下基础。 [关键词]计算机应用 技术 当今社会,计算机应用涉及到了数据处理、家庭和办公自动化、远程信息控制和信息系统构建等多中领域,分别需要不同的技术支撑和技术应用范围。而如何有效的掌握知识,促进能力,拓展创新,是推广和使用信息技术的必由之路。 从计算机的发展历程看,也是知识和技术应用不断推陈出新和过程,随着多媒体技术和信息高速公路技术的出现使用,计算机的功能更大的被发掘出来,甚至在某些方面取代了人工,成为重要的角色。 一、全面掌握应用知识,提高应用技术能力 所有计算机技术的应用是以掌握相关的知识为前提的,这种知识可以使理论的,也可以是操作的,可以集中学习,也可以边学边做。在当前计算机的应用领域,关乎到日常工作和生活的有很多,像计算机教学、平面设计、软件开发与应用、信息工程师和系统管理等,除了要求掌握基本通用的知识外,专业方面的知识也甚为关键。 每个计算机工作的技术应用人员,需全面系统的掌握计算机知识应用的理论体系,以完整夯实的基础带动应用能力的发展,遵照社会需求,确定自己的发展方向和目标,反复巩固基本的应用知识,反复操练应用技能,将理论和实践相结合。 知识的掌握和能力的运用,在实际工作中,会面临到很多新的情况,这就需要能融会贯通,随机应变,通过知识的变式和创新,能力的在发展去解决工作中的问题,计算机知识和能力的变通性和替代性很强,没有单一的要求,需要计算机应用操作人员触类旁通。 二、以重点为核心,以多元化发展为方向 计算机的应用技术的分工日渐细密,而且各个工种是相互配合和合作的形势展开,每个人只需重点掌握一项计算机技术的应用就可大有作为,成为自己的关键,每个人根据自己的情况当确立重点,在不同的工作领域确定不同的自我应用技术。 以重点为核心,以多元化发展为方向,计算机技术应用的重点性和全面性是相辅相成,不可分割的,因为计算机技术本身都存在有本质的和密切的联系,不存在单一技术领域,都是知识某一部分的合成,像在平面设计方面,同时运用到了“办公自动化、网页制作和PS”等基本知识,您只懂得平面的创意或设计是远远不够的,必须有相关的技术支持,这样才能达到目的。 应用型和技术型是互相统一的,要理论知识和技术并重,重点突出和全面发展兼具,这样才会有效的发挥出个人应用技术的效能。 三、有效拓展能力,推动应用创新 在当前计算机教育中,应用人才的培养与学术研究和市场需求存在一定矛盾,从某种程度上说,只重视理论而忽视技术能力和创新实践的培养,这样的应用仅仅停留在知识应用的表层,无法深入到技术能力深处,无法推动应用创新。 在实际工作中,遇到实践操作和技术应用的问题,往往不能有效迅速的解决,这就是确乏经验的表现,经验是学不到的,是在实际应用工作中感悟到的,是个人的自我思考和体会。 在知识学习和运用的同时,必须辅之以计算机的实践操作,感受能力的体现,不断总结经验,提高应用技术的熟练度,方能化繁为简,形成真正的能力,这是从现实中磨砺出来的。在能力提高的同时,通过完善理论体系和能力体系,完全会有自己独特的创新和感悟,来解决日常生活中遇到的主要问题。而知识和能力应用的嵌入式和混合式发展,要求计算机从业者有着全面的知识底子和互通的理论融合。针对某一问题的解决,做到多样化和多重性,以求可以找到更好的解决问题的措施,而且能起到熟练技能和选择优化的效果。 四、计算机技术 计算机技术的内容非常广泛,可粗分为计算机系统技术、计算机器件技术、计算机部件技术和计算机组装技术等几个方面。计算机技术包括:运算方法的基本原理与运算器设计、指令系统、中央处理器(CPU)设计、流水线原理及其在CPu设计中的应用、存储体系、总线与输入输出。计算机作为一个完整系统所运用的技术。主要有系统结构技术、系统管理技术、系统维护技术和系统应用技术等。计算机领域中所运用的技术方法和技术手段。计算机技术具有明显的综合特性,它与电子工程、应用物理、机械工程、现代通信技术和数学等紧密结合,发展很快。 第一台通用电子计算机ENIAC就是以当时雷达脉冲技术、核物理电子计数技术、通信技术等为基础的。电子技术,特别是微电子技术的发展,对计算机技术产生重大影响,二者相互渗透,密切结合。应用物理方面的成就,为计算机技术的发展提供了条件:真空电子技术、磁记录技术、光学和激光技术、超导技术、光导纤维技术、热敏和光敏技术等,均在计算机中得到广泛应用。机械工程技术,尤其是精密机械及其工艺和计量技术,是计算机外部设备的技术支柱。随着计算机技术和通信技术各自的进步,以及社会对于将计算机结成网络以实现资源共享的要求日益增长,计算机技术与通信技术也已紧密地结合起来,将成为社会的强大物质技术基础。离散数学、算法论、语言理论、控制论、信息论、自动机论等,为计算机技术的发展提供了重要的理论基础。计算机技术在许多学科和工业技术的基础上产生和发展,又在几乎所有科学技术和国民经济领域中得到广泛应用。 1.系统结构技术 它的作用是使计算机系统获得良好的解题效率和合理的性能价格比。电子器件的进步,微程序设计和固体工程技术的进步,虚拟存储器技术以及操作系统和程序语言等方面的发展,均对计算机系统结构技术产生重大影响。它已成为计算机硬件、固件、软件紧密结合,并涉及电气工程、微电子工程和计算机科学理论等多学科的技术。 2.系统管理技术 计算机系统管理自动化是由操作系统实现的。操作系统的基本目的在于最有效地利用计算机的软件、硬件资源,以提高机器的吞吐能力、解题时效,便利操作使用,改善系统的可靠性,降低算题费用等。 3.系统维护技术 计算机系统实现自动维护和诊断的技术。实施维护诊断自动化的主要软件为功能检查程序和自动诊断程序。功能检查程序针对计算机系统各种部件各自的全部微观功能,以严格的数据图形或动作重试进行考查测试并比较其结果的正误,确定部件工作是否正常。 4.系统应用技术 计算机系统的应用十分广泛。程序设计自动化和软件工程技术是与应用有普遍关系的两个方面。程序设计自动化,即用计算机自动设计程序,是使计算机得以推广的必要条件。早期的计算机靠人工以机器指令编写程序,费时费力,容易出错,阅读和调试修改均十分困难。 综上所述,在计算机的应用和技术操作过程当中,首先要夯实基础,以此培养能力,提高技能,达到知识和能力的融会贯通和综合应用,从而提高素质,然后以计算机主干核心知识构造自己的应用体系,确定目标,将计算机的多功能化融会到日常生活当中,有效解决各种为题,打造更广阔的发展前景。 参考文献 [1] 孙晓风.网络改变生活――突飞猛进的计算机网络[M].上海交通大学出版社,2004,7 [2] 李辉.信息处理技术与工具[M].清华大学出版社,2005,8 [3] 计算机专业知识教材编写组.计算机专业知识核心[M].人民出版社,2011,1 [4] 计算机应用教程[M].上海交通大学出版社,2001,1 [5] 计算机应用基础编写组.计算机应用基础[M].南京大学出版社,2010,7 计算机应用技术3000字毕业论文篇三:《试谈计算机应用技术的发展》 摘 要:本文则主要针对计算机应用技术的简要概述、计算机应用技术的发展历史和现状以及未来的发展趋势进行简要的分析和探索,分析我国目前计算机应用技术的发展状况。 关键词:计算机应用技术;发展历史;发展状况;发展趋势 计算机应用技术的发展对于人们的生活和工作具有很重要的意义,人们对于计算机的依赖程度也越来越高了。这要势必对于计算机应用技术的发展提出了更高的要求,只有不断的改革和更新才能不断地满足社会发展的需要,对计算机应用技术的发展提出了更高的要求。只有这样才能符合可持续发展的发展观念,为企业的发展提供持续不断的高科技原动力。 1 计算机应用技术的概念 计算机应用技术是计算机科学与技术中对经济的发展和社会进步影响最为广泛、最为直接的一门技术和学科。所谓的计算机应用技术就是指计算机能够应用于社会各个行业中和各个领域的理论、方法和技术等,它是一门比较系统的边缘性学科,是计算机专业的学生学习的很重要的一门专业知识。计算机应用技术不单单知识研究着计算机的专业知识,它在应用方面还综合了其他很多的知识,是计算机学科和其他学科的有效结合,也是转向其他专业领域的重要载体。计算机的应用的分类可以大体的分为数值计算领域和非数值计算领域,各有各的特点,对于其他行业的科学技术的发展和进步有很重要的作用。 2 计算机应用技术的发展历史 计算机应用技术在我国最早是在19世纪40年代中期出现的,在我国的主要应用还只是应用于国防武器的生产和研究方面,并没有真真正正的应用于人民的日常和现实生活之中,处于这个阶段的计算机主要还是数值领域的计算机应用。到了20世纪50年代之后,计算机应用技术开始向非数值领域的阶段发展,应用面也开始逐步扩大,逐步由军事领域向企业信息管理、工商业事务处理以及相关的数据处理等方面发展。 随着技术的不断进步和发展,计算机应用技术开始被广泛的应用到社会经济等更多的领域,这大约是发生在20世纪70年代之后,计算机应用技术在现在的阶段已经很广泛的应用于服务行业、农业以及 文化 教育等行业,也开始进入到了普通人们的生活,进入到了千家万户。与此同时,信息网络也开始在全球的范围内广泛流行,人们将计算机应用技术和网络的技术有效的结合,使得计算机应用技术开始在网络方面的发展有所建树,大大的促进了计算机应用技术的发展,同时也加快了信息化社会的发展。 3 计算机应用技术的现状 计算机应用技术的广泛应用 计算机应用技术目前为止已经进入到了我国的各行各业,而且其应用技术广泛,涉及面也比较广。除此之外,应用涉及的领域也有所扩大,不单单是数据处理的领域,还设计了数值计算、过程检测与控制和近几年刚刚兴起的人工智能所涉及的领域。 数据处理是现阶段计算机应用最为广泛的一个领域,主要应用是对相关的数据资料的应用和处理,比如加工处理、操作和管理等,使用计算机既方便又快捷,提高了工作的效率。在近几年,各个公司也已经逐步的建立起自己的信息管理系统,有效地对相关的信息进行管理、处理和储存。数值计算也是一个计算机应用技术较为广泛的领域,因为计算机具有运算速度快、精度高、判断能力强等特点,产生了很多的学科,例如生物控制、计算物理、计算化学等学科。过程检测和控制,主要利用计算机的自动控制的能力,对生产中的某些信号进行自动的检测,并且自行的录入到计算机系统并同时进行有效的分析和相关的处理,同时加快了自动化的生产效率。人工智能,是将计算机模拟人类的大脑,主要是人类的思维活动和判断能力等,使得计算机的适应能力和逻辑推理能力等更加强大了。 计算机应用技术的主要作用和存在的相关问题 计算机应用技术的发展对于社会的主要作用主要表现在对于社会关系的发展和社会关系的发展扮演者很重要的角色。计算机应用技术在社会中的广泛应用,使得人与人之间的交往不在受到时间和地域的影响,解决了很多由于信息不畅而导致的各种不方便的问题。在短短的几秒钟之内,人们就可以将自己想要表达的信息表达出去,大大的增加的社会的交往,使得人与人之间的关系更加密切,有助于社会人际关系的和谐发展和社会交往。除此之外,还促进了社会的信息化的发展,随着计算机应用技术的范围越来越广泛,复杂的信息等可以被储存到电脑之中,更多的信息可以被广泛的共享和使用,这为社会的信息化发展提供了基本的条件。 但是随着计算机应用技术在社会应用的范围越来越广泛,随着也出现了很多的问题。因为我国的计算机应用技术发展历史较短,发展水平相对比较低下,与发达国家相比,我国的上网的企业和上网的家庭用户的数量远远不如西方的发达国家,计算机应用技术的普及程度和应用程度等与西方的国家存在着很大的差距。还有,我国的对于信息化的发展投入力度还不够,进而限制了计算机应用技术的发展,无法满足计算机应用技术在相关的技术方面的要求。西方发达国家的信息化水平比较高,对于信息的研发力度较大,所以计算机的应用技术相对来说就比较发达。所以我国的有关的科技发展速度和改革更新的速度等都有待进一步的加强,其相关的 政策法规 等也需要进一步的改善。 4 计算机应用技术的未来发展趋势 计算机应用技术为了以后能够充分的符合当今社会的发展需求,要充分的摸清以后计算机技术的发展趋势,使得计算机应用技术能够更好的为当今的社会等服务,朝着微型化、智能化和巨型化的方向发展。 当今的计算机应用技术的发展已经不仅仅应用于一些较大的电器,已经应用到了家用电器和一些比较微型的小型设备之中了,另外还有一些将处于工业控制的核心部位等,使得有些小型的电器步入智能化的步伐之中。除此之外,还有些掌上电脑、iPad等电器之中,受到更广大欢迎。智能化是当今计算机技术的发展一个新的发展阶段,其主要的模仿人们的“听、说、读、写、想”等过程,使得某些电器具有人类的思维模式和逻辑判断的能力。巨型化的发展趋势,与微型化的计算机并不矛盾。这里的巨型化指的并不是计算机的体积,而是计算机的运算速度快速、精度更高,同时能够储存更多的信息,性能更强。目前我国正在研究性能比较强大的计算机应用系统,其运算速度能够达到每秒钟几百亿次,正在朝着巨型化的方向发展。 5 结束语 通过以上的分析,我们对计算机应用技术的发展概述,发展现状和目前存在的主要问题进行了简要的分析,同时还对计算机应用技术的发展趋势等有了比较详细的介绍分析和探讨。计算机应用技术对于人们的学习生活等发挥了越来越重要的作用,同时对企业的发挥有了更明显的作用。计算机应用技术等大大的加快了我国信息化的发展进程,我国以后计算机应用技术必然有更广阔的发展空间,对我国的经济发展等也有更大的促进作用。 参考文献: [1]侯晓璐.浅析计算机应用的发展现状和趋势[J].科技创新与应用,2012(27). [2]冯丽萍,张华.浅谈计算机技术发展与应用[J].现代农业,2012(08). [3]马忠锋.计算机应用的现状与计算机的发展趋势[J].黑龙江科技信息,2011(07).
美术专业毕业论文写人工智能可以。可以从以下方面展开研究:1、人工智能在美术领域的应用现状:可以通过文献综述、案例分析等方式,了解当前人工智能在美术领域的应用现状,并深入分析其优缺点和存在的问题。2、人工智能对美术创作的影响:可以通过案例分析、实验研究等方式,探讨人工智能技术在美术创作中的应用,以及对传统美术创作方式和审美观念的影响。3、人工智能在艺术品鉴定中的应用:可以研究如何使用人工智能技术进行艺术品鉴定,探究其准确性、可行性以及对艺术品鉴定领域的影响等。
财务管理专家系统是财务管理知识、经验和技 能的程序系统,用来求解财务领域内的各种问题。 具体地说,财务管理专家系统主要用来代替财务 管理专家作复杂财务管理过程描述、诊断、分析、 验证,作为结合技术、理念和财务管理环境而作出 最终决策的依据。财务管理专家系统的思路是把复杂财务问题 分解成一些比较容易的子问题,再通过搜索和问 题归结实现求解。 智能财务管理的专家系统是智能化的专家系 统,智能财务管理的专家系统按财务管理内容可 分为筹资管理专家系统(含资金管理)、投资管理专 家系统、营运管理专家系统(含风险管理、危机管 理)和分配管理专家系统。上述每个系统又可嵌入 财务规划与预测子系统、财务决策子系统、财务预 算子系统、财务控制子系统和财务分析子系统。 通过系统的整合,使财务管理专家系统的功能 发挥得淋漓尽致,财务预测更准确,财务决策更科 学,财务预算将更贴近实际,财务控制更到位,财 务分析更透彻,财务管理更全面,即时全面管理轻松在握。 在上述智能化的财务规划与预测系统、财务决 策系统、财务预算系统、财务控制系统和财务分析 系统中,财务决策系统处于中心地位,其他系统对财务决策系统起到支持作用,我们把它们集成起 来统称智能财务决策支持系统。 医疗分类信息 运用智能财务决策支持系统,可以开展内部 控制评估、资产配置评估,通过分析投资时间、贸易活动、套期保值策略可优化投资方案,等等。智能机器人超越人类的划时代发明为 AI 技术 的发展描绘了宏远的蓝图,AI 技术在财务管理中 的应用已日渐成熟。相信在不久的将来,智能机器 人财务管理将大行其道,依靠智能财务管理专家 系统,必将大大提高财务管理的效率、效果和效 益,即时化、人性化和智能化必将成为未来财务管理专家系统的主要特征。到那时,智能财务管理专 家—容貌逼真的人型直立智能机器人将任劳任 怨地帮助人们打理纷繁复杂的财务管理事务,而 财务管理人员则从风云变幻的商业环境中脱身出 来。从财务主体发展战略的高度,遵循以人为本的 理念,开展财务科学管理,促使财务主体可持续发 展,实现利益相关者价值组合最大化。