首页

毕业论文

首页 毕业论文 问题

毕业论文有调查问卷信效度

发布时间:

毕业论文有调查问卷信效度

益派调查网可以免费发布调查问卷,可以免费使用样本。调查问卷包含的题型多种多样,开放题、矩阵题什么的都能做,基本满足论文中设计的数据调查及分析。

信度效度检验在问卷调查的过程中是必须要做的。

信度效度检验在问卷调查的过程中是必须要做的,因为问卷调查往往只是整个项目的一个环节,在正确项目的目标下,一定会另有调查的可信度,有效分析来支持调查结果,这样我们的问卷调查才有可信度,结果也能趋于正确数据。

信度指测验结果的一致性、稳定性及可靠性,一般多以内部一致性来加以表示该测验信度的高低。信度系数愈高即表示该测验的结果愈一致、稳定与可靠。

系统误差对信度没什么影响,因为系统误差总是以相同的方式影响测量值的,因此不会造成不一致性。反之,随机误差可能导致不致性,从而降低信度。信度可以定义为随机误差R影响测量值的程度。如果R=0,就认为测量是完全可信的,信度最高。

一般如果是含有量表的问卷都需要做信效度分析。非量表问卷可以使用文字形式进行描述,无论是什么类型的问卷,都应该在论文中进行表述以证明数据质量可信可靠。

如果是自编量表,一般需要进行预测试,就是在小范围发放问卷,进行信效度分析,对信效度较低的题项进行修改或删除,便于研究者对初测问卷进行一定调整以形成最终版本。当然,正式研究还是要做信效度分析。

效度与信度是优良测量工具所必备的两项主要条件。效度与信度之间存在的关系,可以用一句话来概括:信度是效度的必要条件而非充分条件。

信度是效度的必要条件,就是说,一个指标要有效度就必须有信度,不可信就不可能正确。但是,信度不是效度的充分条件,即是说,有了信度,不一定有效度。

严格来说!不是所有问卷都适合做信效度分析,信效度分析主要针对【量表】类问卷,而如果只是调查一些客观现实(如年龄、性别、职业、车辆、工资等)以【显变量】为主的问卷,是不适合做信效度分析的!判断一些变量之间是否适合做信效度检验,应该关注这么几点:

(1)潜变量:直接无法观测到的变量,主要反映人的认知和主观意愿等。

(2)可测:可以被测量的变量,一般是有序或等距的变量,而不是像地点这样的分类变量。

(3)变量之间等距等尺度:例如均采用5点或7点评分法获得的测量数据。

论文信度效度怎么分析介绍如下:

要看做的内容是什么,如果你的问卷中的四个维度同质性很高,那么我们通常只报告整体的Cronbach's Alpha系数。比如一份语言测试(单一能力测验),那么就不需要报告每个部分的Cronbach's Alpha了。

但是如果不是,比如是人格测验,那么通常是要报告每个分测验和总的Cronbach's Alpha。不过你放心,一般这个信度指标和题目数量有关,也就是说题目越多,信度就越高。所以总体的指标一定不会低于单个分测验的。

另外,测验当然要做效度分析了。既然你的问卷结构已经确定,建议你做验证性因素分析,可以用结构方程模型做,具体工具推荐AMOS。

信效度分析:

统计学分析中经常会采用问卷调查的方法来获取分析数据,为了保证统计设计质量,往往需要检测调查问卷的质量,也就是通过问卷测量得到的,反映调查对象客观现象的统计数据的准确性。一个好的调查问卷设计不仅可以保证在多次重复使用下得到可靠的数据结果,即准确性。

毕业论文问卷调查信效度

论文写作中,导师常常告诉我们,调研要有信效度检验,那么信度、效度是什么?怎么分析信效度呢? 信度是指测量的可信程度。 我们来看一个比较理想的状态。当我们用一个测量工具,对我们需要测量的对象测量了很多次后,得到的结果都是一样的。这时我们可以说这个测量工具是可以信赖的。 但是现实中,由于随机误差的影响,不可能达到这种状态。 那么我们怎么评估我们的测量工具是可以信赖的呢? 我们可以计算我们用自己的测量工具得到的结果与理想状态的差距。如果差距越小,那么我们的测量工具就越可靠。 这个差距就是信度。 信度有不同的指标,我们只要明白什么时候用什么指标来检验信度就可以了。剩下的计算,统计软件可以帮我们完成,我们只要选择我们需要的计算公式进行计算,就能得出我们想要的结果。 效度则是考察我们使用的测量工具是否能有效度量我们要测量的变量。  较为公认的说法是,效度分为三种:内容效度、校标效度和构念效度。 内容效度指问题的撰写是否能准确反映测量的初衷。 校标效度指测量工具与某个公认的标准的关系是否紧密。(研究目的是测量是否能较为准确地进行预测。) 构念效度指测量工具能测量出的结果和理论预测或理论结论之间的关系是否紧密相关。(研究目的是验证理论用于测量的有效性。)那么文献中经常看到的表面效度,聚合效度,区别效度呢? 表面效度:题项的表述是否明确、清晰、规范。(一般依据专家的意见来检验,具有主观性,不够牢靠。) 构念效度包含区分效度,聚合效度。当测量对象包含较为复杂的相互关系时,需要细化分析了。 区别效度:一个测量中,不同项目得到的测量结果能够得到区分。 聚合效度:测量一个特征的项目中,项目中不同题项应该指向同一相同特征。 那我们具体要怎么做呢? 和信度一样,我们只要了解在什么情况下用什么指标检验效度就好,剩下的计算软件会帮我们完成。在写文章时,我们只要依据自己的问卷或量表,选择合适的信度、效度检验指标,利用软件计算出结果,就可以验证问卷或量表设计是否可信、有效了。

一般要大于说明问卷调查质量比较良好。效度的特征:1、效度具有相对性:任何测验的效度是对一定的目标来说的,或者说测验只有用于与测验目标一致的目的和场合才会有效。所以,在评价测验的效度时,必须考虑效度测验的目的与功能。2、效度具有连续性:测验效度通常用相关系数表示,它只有程度上的不同,而没有“全有”或“全无”的区别。效度是针对测验结果的。

毕业论文调查问卷信度

做满意度调查问卷的信度、效度分析可以用SPSS。问卷调查建议选择问卷星,问卷星通过制定详细周密的在线问卷,要求被调查者据此进行回答以收集资料,支持微信、邮件和短信等方式收集数据,数据回收后可以进行分类统计、交叉分析,并且可以导出到Word、Excel、SPSS等。提高问卷调查的信度在设计问卷的时候,需要对问题本身做到逻辑严密、易懂,确保不同的人看到它不会产生不一样的理解,导致结果偏差;提高效度必须做到核心的问题不漏,可有可无的问题不留,无关的问题不设,每一道题目,都是会对主要的研究目的分析有帮助的。想要了解更多关于调查问卷的问题,推荐咨询问卷星 问卷星调查系统支持多种题型,可以设置跳转、关联和引用逻辑。支持微信、邮件和短信等方式收集数据,数据回收后可以进行分类统计、交叉分析,并且可以导出到Word、Excel、SPSS等;同时拥有49种题型,应有尽有;同时单选、多选、矩阵、排序、量表、比重、表格、文件上传等多种题型,让你的调查问卷一目了然!

信度可以把它理解为可靠度、一致性、稳定性。用于测量样本回答结果是否可靠,即样本有没有真实作答量表类题项。比如说,在对同一对象进行测量,多次测量结果都很接近,就会认为这个结果是可信的,真实的,也就是信度高。如果每次测量的结果都有很大的差异,则说明信度较低。衡量信度的方法有很多种,常用的信度系数包括:克隆巴赫α系数和折半系数,可在spssau中进行分析。效度分析,简单来说就是问卷设计的有效性、准确程度,用于测量题项设计是否合理。效度又可分为内容效度、结构效度和效标效度。内容效度,通常是以文字来说明问卷的有效性。如通过参考文献,或者权威来源说明问卷的权威性和有效性。还有就是通过对问卷前测并结合结果进行题项的修正等工作来充分说明问卷的有效性。结构效度,指测量题项与测量维度之间的对应关系。测量方法有两种,一种是探索性因子分析,另外一种是验证性因子分析。其中,探索性因子分析是当前使用最为广泛的结构效度测量方法,SPSSAU提供此两种分析方法。效标效度,如果以前有一份权威且标准的量表数据,现在依旧使用该量表进行研究,并且收集回来一份数据。以前权威标准数据作为标准,当前数据与前一份数据之间进行相关分析,如果说相关系数值较高,则说明效标效度良好。但在实际分析中,效标效度很少使用。

测试信度(test reliability)也叫测试的可靠性,指的是测试结果是否稳定可靠。也就是说,测试的成绩是不是反映了受试者的实际语言水平。例如,如果同一套测试在对同一测试对象(即受试者本身没有变化)进行的数次测试中,受试者的分数忽高忽低的话,则说明该测试缺乏信度。测试的信度与测试的效度有着密切的关系。一般说来,只有信度较高的测试才能有较高的效度,但效度较高不能保证信度也一定较高。测试的信度主要涉及到试题本身的可靠性和评分的可靠性这两个方面。试题本身是否可靠主要取决于试题的范围、数量、试题的区分度等因素;评分是否可靠则要看评分标准是否客观和准确。 测试的信度通常用一种相关系数(即两个数之间的比例关系)来表示,相关系数越大,信度则越高。当系数为时,说明测试的可靠性达到最高程度;而系数是时,则测试的可靠性降到最低程度。在一般情况下,系数不会高到,也不会降到,而是在两者之间。对信度指数的要求因测试类别的不同而不同,人们通常对标准化测试的信度系数要求在以上,例如“托福”的信度大致为,而课堂测试的信度系数则以之间为可接受性系数。测试信度的计算方法有很多种,以下仅介绍三种易于操作的方法: 1)重测法(the retesting method)。用同一套试卷在两个不同时间内来测试同一批受试者,这样便获得两组分数,然后计算出两组分数的相关系数。当然,在两次测试中,学生第二次的测试成绩理应比第一次的要高,因为在第二次测试时学生已经有了进步而且临场经验也更丰富了。但是若该试题是比较可靠的,每个学生在两次测试中的排名次序应该是基本不变的。 2)交替形式法(the alternative method)。对同一批受试者使用试题类型完全相同,难易程度相当,但具体题目不同的两套对等试卷先后进行两次测试,然后计算出两次得分的相关系数。 3)对半法(the split-half method)。测试只进行一次,但将整份试卷的题目按单、双数分成两组来分别计分,算出两组分数的相关系数,然后再用Spearman-Brown的公式计算整份试卷的信度系数。具体计算步骤是:将两组分数的相关系数乘以2,再除以1加两组分数的相关系数。 测试效度(test validity)亦称测试的有效性,指一套测试对应该测试的内容所测的程度。也就是说,一套测试是否达到了它预定的目的以及是否测量了它要测量的内容。例如:“Is photography an art orscience?Discuss.”这种题目以摄影的知识为前提和主要内容,用来考语言能力,就不具有效性。又如用听写来测量学生的听觉能力,其效度也是不理想的,因为书面记录有声语言不仅涉及学生的听觉能力,而且还与他们的书写速度、拼写能力、语法知识、记忆能力和对全文的理解能力等有关。 测试的效度一般可分为以下几类: 1)表面效度(face validity)。指测试应达到的卷面标准,即一套测试题从表面看来是否是合适的。例如,若一次阅读理解力的测试包括许多受试者没有学过的方言词汇,则可认为这次测试缺乏表面效度。表面效度是测试出受试者正常水平的一种保证因素。 2)内容效度(content validity)。指一套测试题是否测试了应该测试的内容或者说所测试的内容是否反映了测试的要求,即测试的代表性和覆盖面的程度。例如,如果某一套发音技能测试题仅仅考查发音所必须具备的某些技能,如只考单一音素的发音,而不考查重读、语调或音素在词语中的发音,那么,该测试的内容效度就很低。 3)编制效度(construct validity)。指一套测试题的诸项目对编制该测试所依据的理论的各个基本方面的反映程度。例如,以结构主义语言理论为基础,认为系统的语言习惯是通过句型而获得的,那么,强调词汇和语法环境的测试题目就失去了编制效度。 4)经验效度(empirical validity)。经验效度是一种衡量测试有效性的量度,通过把一次测试与一个或多个标准尺度相对照而得出。经验效度可分为两种:一是共时效度(concurrent validity),即将一次测试的结果同另一次时间相近的有效测试的结果相比较,或同教师的鉴定相比较而得出的系数;二是预测效度(predictive validity),即将一次测试的结果同后来的语言能力相比较,或是同教师后来对学生的鉴定相比较而得出的系数。 一般来说,对某次测试的效度进行检验时,除了要根据教学大纲的要求和观念有效性的理论对试卷的内容进行考查以外,还须采用计算相关系数的定量方法,即计算出本次试卷与另一份已被确定能正确反映受试者水平的试卷之间的相关系数。系数高则有效性大。课堂测试的效度应在之间,规模较大的测试其效度应在以上。

1.信度是指一份问卷的可靠性,即回答者对问卷内容的真实性和可靠性的一种估计,也称可靠性。信度是问卷研究的一项重要质量指标。 2.效度是指一份问卷能够测量所要测量的变量的程度,即问卷的测量功效,也就是问卷实际上测量了所要测量的东西的程度。效度是问卷研究的一项重要质量指标。 3.效度和信度的区别与联系信度与效度的区别信度与信度的区别信度是一种测量工具的可靠性,而效度则是一种测量工具测量的有效程度。效度是信度的基础和前提,没有效度,信度的结论是无法得出的。信度是效度的基础和前提,没有信度,效度的结论是无法得出的。效度是信度的基础和前提,没有效度,信度的结论是无法得出的。信度是信度的基础和前提,没有信度。

毕业论文调查问卷效度分析

(一)信度分析 本研究得出整体问卷与各构面之Cronbach's α值分别为及服务补救整体品质构面为,而其各构念分别为沟通()授权()解释()补偿()回馈()有形性();满意反应构面为;行为意向构面为,由此可知各构面的信度都在以上,符合Nunally(1978)及Wortzel(1979)有关具高信度之判断准则(Cronbach's α值大於),此显示本研究量表中的问项均具有高程度的内部一致性,因此在信度上仍具可信. (二)效度分析 1.内容效度 问卷之发展乃由文献探讨整理出相关问项后,再透过问卷调查,将问卷以传真,邮寄或e-mail方式与专家,学者讨论问卷中各问项之适当性,再对他们所提出的意见,修正问卷之内容,即形成本研究之最后的正式问卷.因此,本研究认为经过此一严谨的程序所发展之问卷应以具有相当程度的内容效度.

对调查问卷数据分析的灵魂拷问,就在于调查问卷可不可靠、有没有效。

调查问卷分为量表题和非量表题。调查问卷数据分析要看有没有量表题,如果有量表题,首先需要进行信度分析和效度分析。非量表题不能进行信度分析和效度分析。

目录

1 量表题和非量表题2 信度分析和效度分析3 常用的信度分析--Cronbach's a 数学原理4 案例:用SPSS进行信度分析5 案例:用SPSS进行效度分析6 总结

1 量表题和非量表题

01 所谓量表题就是测试受访者的态度或者看法的题目。通常使用李克特量表来测度,根据答项数量可分为四级量表,五级量表,七级量和九级量表。比如五级量表可以分为:非常不满意,比较不满意,中立,满意和非常满意五个选项,通常赋予分值1,2,3,4,5。

量表题在心理学、管理学、社会学、经济学等社会科学领域应用广泛,并且有很多分析方法适用于量表题项,比如因子分析,相关分析,回归分析,方差分析,T 检验等,中介作用或者调节作用分析也适用于量表题项。

02 非量表题,常见的有单选题、多选题和问答题。

2 信度分析和效度分析

01 信度分析(Reliability Analysis)在于研究数据是否真实可靠, 又称“可靠性分析”,通俗地讲研究样本是否真实回答问题,测试受访者是否好好答题,具体来说就是用问卷对调研对象进行重复测量时,所得结果的一致性程度。

通常情况下信度分析均只能针对量表题进行分析。

02 效度分析(Validity Analysis) 在于研究题项是否有效的表达研究变量或者维度的概念信息, 通俗地讲研究题项设计是否合适,即测试调查者是否科学设计问题,或者题项表示某个变量是否合适。

03 信度和效度的关系是:效度高,信度一定高。信度高,效度不一定高。

形象的比喻是:

一位大学生测身高,连续5次的身高都不一样,这个叫没信度,即结果不可靠不能重复。如果大学生测量5次的身高,都是80CM,有信度,但是没有效度,因为没有测量到真实的身高。换一个身高仪,每次都显示160CM,去爱康国宾体检身高也是160CM,这个就是有信度也有效度。

04 预测试 (Pretest)

为了确保问卷质量,初步设计问卷之后,收集小量样本(通常在100之内)进行信度分析或效度分析,以便发现题项存在的问题,并且对问卷进行修正处理,得到正式问卷,然后进行正式调研。

预测试的目的:发现问题,调整题项。

3 常用的信度分析-- 克隆巴赫系数(Cronbach's coefficient alpha)

克隆巴赫系数是最常用的信度测量方法

克隆巴赫(1916—2001),美国心理学家、教育学家。他创建了一套常用的衡量心理或教育测验可靠性的方法——“克隆巴赫系数”(Cronbach's coefficient alpha),并在此基础上建立了一个用于确定测量误差的统计模型。

信度系数 又称 内部一致性系数,克隆巴赫系数,Cronbach a 系数,a(Alpha)系数,

项删除后的克隆巴赫系数:删除某题项后的信度系数,常用于预测试

校正的项总计相关性:题项之间的相关关系,常用于预测试,大于则题项之间的相关度比较高

4 案例:用SPSS进行信度分析

可以根据Cronbach a 系数的计算公式进行计算,也可以用SPSS软件进行计算。

(1)如果每个问题在各个学科上呈现的方差较小,方差之和也较小根据Cronbach's a 公式计算,样本方差之和/总体方差更接近于0,a值接近于1则测试结果表明教学方式比较相似,回答可信。则表明问卷Q1-Q4 比较好的表达了教学方式相似性的测度。(2)如果每个问题在各个学科上呈现的方差较大,则方差之和也较大根据Cronbach's a 公式计算,样本方差之和/总体方差更接近于1,a值接近于0则教学方式比较不同,问卷数据不可靠(要不是问卷设计有问题,要不回答者不认真做答)。则表明问卷Q1-Q4 的回答不符合教学方式相似性的测度。需要调整题项(出卷者需要了解的),或者重新请受试者回答。

在论文写作中,导师常常告诉我们,调研要有信效度检验,那么信度、效度是什么?怎么分析信效度呢? 信度是指测量的可信程度。 我们来看一个比较理想的状态。当我们用一个测量工具,对我们需要测量的对象测量了很多次后,得到的结果都是一样的。这时我们可以说这个测量工具是可以信赖的。 但是现实中,由于随机误差的影响,不可能达到这种状态。 那么我们怎么评估我们的测量工具是可以信赖的呢? 我们可以计算我们用自己的测量工具得到的结果与理想状态的差距。如果差距越小,那么我们的测量工具就越可靠。 这个差距就是信度。 信度有不同的指标,我们只要明白什么时候用什么指标来检验信度就可以了。剩下的计算,统计软件可以帮我们完成,我们只要选择我们需要的计算公式进行计算,就能得出我们想要的结果。 效度则是考察我们使用的测量工具是否能有效度量我们要测量的变量。  较为公认的说法是,效度分为三种:内容效度、校标效度和构念效度。 内容效度指问题的撰写是否能准确反映测量的初衷。 校标效度指测量工具与某个公认的标准的关系是否紧密。(研究目的是测量是否能较为准确地进行预测。) 构念效度指测量工具能测量出的结果和理论预测或理论结论之间的关系是否紧密相关。(研究目的是验证理论用于测量的有效性。)那么文献中经常看到的表面效度,聚合效度,区别效度呢? 表面效度:题项的表述是否明确、清晰、规范。(一般依据专家的意见来检验,具有主观性,不够牢靠。) 构念效度包含区分效度,聚合效度。当测量对象包含较为复杂的相互关系时,需要细化分析了。 区别效度:一个测量中,不同项目得到的测量结果能够得到区分。 聚合效度:测量一个特征的项目中,项目中不同题项应该指向同一相同特征。 那我们具体要怎么做呢? 和信度一样,我们只要了解在什么情况下用什么指标检验效度就好,剩下的计算软件会帮我们完成。在写文章时,我们只要依据自己的问卷或量表,选择合适的信度、效度检验指标,利用软件计算出结果,就可以验证问卷或量表设计是否可信、有效了。

毕业论文问卷信度和效度

在社会调查中,人们常常利用含多个项目的量表来测量人们的意见、态度、看法或观念等比较抽象的东西。这就产生了一个问题:所测的数值是否可靠、准确?是否具有适用性?社会测量的信度与效度就是人们对测量的质量进行评估的两个指标。

益派调查网可以免费发布调查问卷,可以免费使用样本。调查问卷包含的题型多种多样,开放题、矩阵题什么的都能做,基本满足论文中设计的数据调查及分析。

问卷调查法是教育研究中广泛采用的一种调查方法,为了保证问卷具有较高的可靠性和有效性,在形成正式问卷之前,应当对问卷进行试测,并对试测结果进行信度和效度分析,根据分析结果筛选问卷题项,调整问卷架构,从而提升问卷的信度和效度。说了这么多,我们先对一些调研小白解释一下,什么是信度和效度?信度:可靠性、一致性或稳定性。比如说,在对同一对象进行测量,多次测量结果都很接近,我们就认为这个结果是可信的,也就是信度高。如果每次测量的结果都有很大的差异,则说明信度较低。效度:正确性程度,效度越高表示测量结果越能显示出所要测量对象的真正特征。他们两的差别在于信度度量的是问卷测量结果是否一致的可靠程度,而不涉及结果是否正确的问题;效度则针对问卷测量的目的,重点考察测量结果的有效性。对于量表来说,效度是首要条件,而信度是效度的必要条件。也就是说有效的问卷必定是可信的问卷,但可信的问卷未必是有效的问卷。了解了定义后,我们来聊一聊检测调查问卷信效度的方法。信度分析(可靠性分析)1. 重测信度法用同样的问卷对同一被测间隔一定时间的重复测试,也可称作测试——再测方法,计算两次测试结果的相关系数。很显然这是稳定系数,即跨时间的一致性。重测信度法适用于事实性的问卷,也可用于不易受环境影响的态度、意见式问卷。由于重测信度需要对同一样本试测两次,而被测容易受到各种事件、活动的影响,所以间隔时间需要适当。较常用者为间隔二星期或一个月。2. 复本信度法 复本信度法是让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。复本信度属于等值系数。复本信度法要求两个复本除表述模式不同外,在内容、格式、难度和对应题项的提问方向等方面要完全一致,而在实际调查中,很难使调查问卷达到这种要求,因此采用这种方法者较少。3. 折半信度法 折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。这种方法一般不适用于事实式问卷,常用于态度、意见式问卷的信度分析。进行折半信度分析时,如果量表中含有反意题项,应先将反意题项的得分作逆向处理,以确保各题项得分方向的一致性,然后将全部题项按奇偶或前后分为尽可能相等的两半,计算二者的相关系数,最后求出整个量表的信度系数。4. α信度系数法 Cronbachα信度系数是目前最常用的信度系数,其公式为︰α=(n/n-1)*(1-(∑Si2)/ST2)其中,n为量表中题项的总数,Si2为第i题得分的题内方差,ST2为全部题项总得分的方差。从公式中可以看出,α系数评价的是量表中各题项得分间的一致性,属于内在一致性系数。这种方法适用于态度、意见式问卷(量表)的信度分析。效度分析1. 单项与总和相关效度分析 也称为内容效度或逻辑效度,指的是测量的内容与测量目标之间是否适合,也可以说是指测量所选择的项目是否“看起来”符合测量的目的和要求。主要依据调查设计人员的主观判断。这种方法用于测量量表的内容效度。内容效度又称表面效度或逻辑效度,它是指所设计的题项能否代表所要测量的内容或主题。对内容效度常采用逻辑分析与统计分析相结合的方法进行评价。2. 准则效度分析 准则效度又称为效标效度或预测效度。准则效度分析是根据已经得到确定的某种理论,选择一种指标或测量工具作为准则,分析问卷题项与准则的联系,若二者相关显著,或者问卷题项对准则的不同取值、特性表现出显著差异,则为有效的题项。评价准则效度的方法是相关分析或差异显著性检验。在调查问卷的效度分析中,选择一个合适的准则往往十分困难,使这种方法的应用受到一定限制。3. 结构效度分析 结构效度是为了说明从量表所获得的结果与设计该量表时所假定的理论之间的符合程度。研究者在设计量表时,通常会事先假定一定的量表结构(n个维度),这种结构是否与测量的数据相符合(是否确定存在上述几个维度),需要进行验证。为了提升调查问卷的质量,进而提升整个研究的价值,问卷的信度和效度分析绝非赘疣蛇足,而是研究过程中必不可少的重要环节。

信度是一份问卷的可信性的程度,就是指多次测量得到结果是否是大体一致的,而不是每次结果出入都很大!效度是指这份问卷是否真实的测量了它要测量的东西。

相关百科

热门百科

首页
发表服务