本科毕业论文中使用回归模型进行分析时,如果改正/负的情况存在,仍然需要说明这些情况的出现原因,以及对结果产生的影响。改正/负的出现可能是样本偏倚或其他问题导致的,应该通过统计分析方法予以探测和处理。在写作中,也应明确说明这些改正/负,并在结论中提出对其的分析和结论,以展现自己的专业素养和学术操守。最后发表的论文会被专业人士评审,如果存在这些问题没有得到妥善处理,可能会降低论文评价。因此,建议仔细审查数据和分析结果,避免改正/负对分析结果的歪曲影响。
回归分析研究的主要问题是:(1)确定Y与X间的定量关系表达式,这种表达式称为回归方程;(2)对求得的回归方程的可信度进行检验;(3)判断自变量X对因变量Y有无影响;(4)利用所求得的回归方程进行预测和控制。回归分析的主要内容为: ①从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。 ②对这些关系式的可信程度进行检验。 ③在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。 ④利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。在回归分析中,把变量分为两类。一类是因变量,它们通常是实际问题中所关心的一类指标,通常用Y表示;而影响因变量取值的的另一类变量称为自变量,用X来表示。
回归分析是一种非常常用的统计分析方法,可以用来研究自变量和因变量之间的关系。下面是一般回归分析的步骤:
1.明确研究对象和问题:需要确认要研究的自变量和因变量,并明确研究的目的。
2.收集数据:需要搜集并整理数据,确保数据的质量和一致性。
3.数据描述和探索:对数据进行初步探索,包括描述性统计、散点图等分析方法,了解数据的分布情况。
4.模型建立:根据研究问题选取合适的模型,比如线性回归模型(简单线性回归和多元线性回归)等,利用计算机软件进行模型拟合和检验。
5.模型诊断:对模型进行诊断,验证模型是否符合回归分析的基本假设,如无自相关性、正态性、同方差性等。
6.结果解释和分析:根据分析结果,解释模型中每个自变量对因变量的影响,同时探讨可能的解释和实际意义。
7.
结论和应用:根据分析结果,得出结论或建议,并应用到实际问题中。同时,需要对结论及应用进行审慎的评估和解释, 以提高回归分析的可靠性和可行性。
需要注意的是,回归分析的具体步骤可能因为不同的问题而有所变化,但基本的思路是相似的。同时,回归分析本身也有很多变体和扩展,可以根据具体的问题选择合适的方法或者工具。
多因素方差分析菜单选择:分析 -> 一般线性模型 -> 单变量将研究变量选入“因变量”框,分组变量都选入固定因子框点击右边“模型”按钮,进入“单变量:模型对话框,点击“设定”单选按钮,设置“主效应”、“交互作用”其余选项取默认值就行,点击“继续”按钮,回到“单变量”界面,ok统计专业研究生工作室为您服务,需要专业数据分析可以找我
梁广1,2邵长高1,2
(1.广州海洋地质调查局 广州 510760;2.国土资源部海底矿产资源重点实验室 广州 510760)
第一作者简介:梁广(1972—),男,工程师,主要从事网络管理和数据管理工作,E-mail:。
摘要 近年来资源勘探已经覆盖大部分陆地区域,越来越多的国家把目光投向海洋。海洋作为一个巨大的能源和资源宝库在国民经济、军事战略等的重要性也日益显现。各个国家竞相制定海洋科技开发规划、战略计划,优先发展海洋新技术[1]。如何有效的从海量海洋地质调查数据中获取有用信息是海洋新技术研究中的重要研究内容。论文针对海洋地质调查数据研究技术应用需求,引入了回归分析模型到海洋地质调查数据库中,详细介绍了回归分析的技术方法和在海洋地质调查数据库研究中的应用优势,为海洋科学研究提供了技术支持。
关键词 海洋地质 回归分析 数据库
1 前言
随着陆地资源的消耗和人类对能源越来越强烈的需求,海洋作为一个尚待大规模开发的能源和资源宝库引起各国越来越多的关注。我国作为世界上最大的发展中国家对能源的需求也在大幅增加,近年来我国石油进口数量急剧增长,据估计到2020年我国石油进口依存度将达到60%。党和国家领导人多次提出“资源、能源、特别是油气资源,已成为我国经济和社会发展的重要因素,解决后备能源问题是保证国家经济安全的大事”。随着我国国土资源大调查和海洋地质专项调查的开展,大量的海洋地质数据被收集和积累,并建立了多个满足各自业务需求的信息系统和数据源[2]。如何有效的从海量海洋地质调查数据中获取有用信息是海洋新技术研究中的重要研究内容。论文针对海洋地质调查数据研究技术应用手段的需求,引入了回归分析技术到海洋地质调查数据库中,详细介绍了回归分析的技术方法和在海洋地质调查数据库研究中的应用优势,为海洋科学研究提供了技术支持。
2 回归分析概述
概述
回归分析是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析[3]。回归分析预测法可以从各数据之间的相互关系出发,通过对与预测对象有联系的现象变动趋势的分析,推算预测对象未来状态数量表现的一种预测方法,通过对与预测对象(y)有联系的多个因素X1,X2,……,Xk建立回归模型。求出的回归模型是否合理,是否符合变量之间的客观规律性,引入相关因素是否有效,变量之间是否存在线性相关关系,模型能否付诸应用,这要通过检验决定。本文给出了两方面的检验:一方面为实际意义检验。即利用理论所拟定的期望值与实际结果相比较是否相符。另一方面为统计检验:分别为拟合优度检验(R平方检验)、方程显著性检验(F检验)、变量显著性检验(t检验)[4]。论文主要介绍一元线性回归分析在海洋地质调查数据库中的应用。
一元线形回归分析模型
线性回归分析可以描述两个要素之间的回归关系。线性回归分析公式为:yi=a+bxi+εi.其中a和b为参数.εi是误差.我们定义Q(a,b)a为总误差。则:
南海地质研究(2014)
对公式两边的a和b求导得:
南海地质研究(2014)
南海地质研究(2014)
x表示x的平均值.y表示y的平均值.
关系系数R2求值方法为[5]:
南海地质研究(2014)
多元线形回归分析模型
研究对象y受多个因素x1,x2,x3,…xn的影响,假定各个影响因素与y的关系是线性的,则可建立多元线性回归模型:
y=β0+β1x1+β2x2+…+βkxk+ε
式中:x1,x2,……,xk代表影响因子;ε 为随机误差;y 代表所研究的对象,即预测目标[3]。
统计检验
统计检验是运用数理统计的方法,对方程进行检验、对模型参数估计值的可靠性进行检验。这主要包括拟合优度检验、方程显著性检验、变量显著性检验,即常用的R2检验、F检验和t检验。
拟合优度检验(检验):
拟合优度检验就是检验回归方程对样本观测值的拟合程度。又称为复相关系数检验法,它是通过对总变差(总离差)的分解得到。
南海地质研究(2014)
其中
南海地质研究(2014)
总变差平方和S总是各个观察值与样本均值之差的平方和,反映了全部数据之间的差异;残差平方和S残是总变差平方和中未被回归方程解释的部分,由解释变量x1,x2……,xk中未包含的一切因素对被解释变量y的影响而造成的;回归平方和S回是总变差平方和中由回归方程解释的部分。对于一个好的回归模型,它应该较好地拟合样本观测值,S总中S残越小越好。于是可以用:
南海地质研究(2014)
求得[4]。
方程显著性检验(F 检验):
对于多元线性回归方程,方程显著性检验就是对总体的线性关系是否显著成立作出推断,即检验被解释变量y与所有解释变量X1,X2,……,Xk之间的线性关系是否显著,
南海地质研究(2014)
即F统计量服从以(k,n-k-1)为自由度的F分布。首先根据样本观测值及回归值计算出统计量F,于是在给定的显著性水平a下,若F>Fa(k,n-k-1),则拒绝H0,判定被解释变量y与所有解释变量x1,x2,……,xk之间的回归效果显著,即确实存在线性关系;反之,则不显著[4]。
变量显著性检验(t检验):
对于多元回归模型,方程的显著性并不意味每个解释变量对被解释变量y的影响都是重要的。如果某个解释变量并不重要,则应该从方程中把它剔除,重新建立更为简单的方程。所以必须对每个解释变量进行显著性检验。
在给定的显著性水平a下,若|ti|>ta/2(n-k-1),则拒绝H0,说明解释变量xi对被解释变量y有显著影响,即xi是影响y的主要因素;反之,接受H0,说明解释变量xi对被解释变量y无显著影响,则应删除该因素[4]。
3 应用实例
论文利用线形回归分析模型对南海海域海洋沉积物温度进行了分析,其中散点图显示如图1所示,回归分析结果见表1。
图1 水深与沉积物温度散点图
Water depth temperature
表1 水深沉积物温度回归分析结果 The regression analysis result for Water depth temperature
读取回归结果如下:
截距:a=;斜率:b=;相关系数:R=;测定系数:R2=;F值:F=。
建立回归模型,并对结果进行检验
模型为: 。
F值的计算公式和结果为:
南海地质研究(2014)
其中P<。回归结果证明,沉积物温度与海水深度有着密切的关系,但是通过散点图显示,并不是温度越深沉积物温度越低。而是受到其他例如海底热流,海洋环流等因素的影响。
4 结语
本文介绍了回归分析在海洋地质调查研究中的应用,同时提供了回归分析的技术原理及实现方法,并通过对南海沉积物与海水深度关系模型进行了应用分析,回归结果显示了两者具有密切但是存在不确定性的关系。实验结果得到有效的应用。
参考文献
[1]单宝强,毛永强.中的坐标系定义与转换[J].黑龙江国土资源,11,38-39
[2]苏国辉,孙记红,等.2011.海洋地质数据集成中的关键问题和方案[J].海洋地质前沿,11(27):51
[3]百度百科.回归分析.
[4]沈聪.2009.基于EXCEL的回归分析在足迹分析上的应用[M].辽宁警官高等专科学校本科毕业论文
[5]Cottrell Analysis:Basic ://~cottrell/ecn215/
The Marine Geological Survey Based on Regression Analysis
Liang Guang1,2,Shao Changgao1,2
( Marine Geological Survey,Guangzhou,510760; Laboratory of Marine Mineral Reasources,MLR,Guangzhou,510760)
Abstract:The new resources survey had covered most of the continental area at ,the ocean resources have attracted more and more attention now as it is a huge resource and energy reservoir that had a profound meaning to national economy and military energy competition made manly countries developed new technology project and put the new ocean technology as the primary study ,how to abstract useful information from marine geological survey data is one of the most important study paper focuses on the study of the deficit of marine database technology and introduces regression analysis model and the application advantage of purpose of this paper is to provide the technology support for marine word:Marine geology;Regression analysis model;Database
问题一:多元线性回归分析论文中的回归模型怎么分析 根据R方最大的那个来处理。(南心网 SPSS多元线性回归分析) 问题二:谁能给我列一下多元线性回归分析的步骤,这里正在写论文,第一部分是研究方法,多谢 10分 选题是论文写作关键的第一步,直接关系论文的质量。常言说:“题好文一半”。对于临床护理人员来说,选择论文题目要注意以下几点:(1)要结合学习与工作实际,根据自己所熟悉的专业和研究兴趣,适当选择有理论和实践意义的课题;(2)论文写作选题宜小不宜大,只要在学术的某一领域或某一点上,有自己的一得之见,或成功的经验.或失败的教训,或新的观点和认识,言之有物,读之有益,就可以作为选题;(3)论文写作选题时要查看文献资料,既可了解别人对这个问题的研究达到什么程度,也可以借鉴人家对这个问题的研究成果。 需要指出,论文写作选题与论文的标题既有关系又不是一回事。标题是在选题基础上拟定的,是选题的高度概括,但选题及写作不应受标题的限制,有时在写作过程中,选题未变,标题却几经修改变动。 问题三:用SPSS做多元线性回归,之后得到一些属于表格,该怎样分析这些数据? 200分 你的分析结果没能通过T检验,这可能是回归假设不满足导致的,需要进一步对数据进行验证,有问题可以私信我。 问题四:过于多元线性回归分析,SPSS操作 典型的多重共线。 多元回归分析中,一定要先进行多重共线检验,如VIF法。 对于存在多重共线的模型,一个办法是逐步回归,如你做的,但结果的删除变量太多,所以,这种方法效果不好。 此外,还有其它办法,如岭回归,主成分回归,这些方法都保留原始变量。 问题五:硕士毕业论文中做多元线性回归的实证分析,该怎么做 多元线性,回归,的实证分析 问题六:用SPSS做多元回归分析得出的指标结果怎么分析啊? 表一的r值是复相关系数,r方是决定系数,r方表示你的模型可以解释百分之多少的你的因变量,比如你的例子里就是可以解释你的因变量的百分之八十。很高了。表二的sig是指你的回归可不可信,你的sig是0。000,说明在的水平上你的模型显著回归,方程具有统计学意义。表三的sig值表示各个变量在方程中是否和因变量有线性关系,sig越大,统计意义越不显著,你的都小于,从回归意义上说,你这个模型还蛮好的。vif是检验多重共线性的,你的vif有一点大,说明多重共线性比较明显,可以用岭回归或者主成分回归消除共线性。你要是愿意改小,应该也没关系。 ppv课,大数据培训专家,随时随地为你充电,来ppv看看学习视频,助你成就职场之路。更有精品学习心得和你分享哦。 问题七:如何对数据进行多元线性回归分析? 5分 对数据进行多元线性回归分析方法有很多,除了用pss ,可以用Excel的数据分析模块,也可以用Matlab的用regress()函数拟合。你可以把数据发到我的企鹅邮箱,邮箱名为百度名。 问题八:经济类论文 多元线性回归 变量取对数 40分 文 多元线性回归 变量取对数 知道更多 多了解
多因素方差分析菜单选择:分析 -> 一般线性模型 -> 单变量将研究变量选入“因变量”框,分组变量都选入固定因子框点击右边“模型”按钮,进入“单变量:模型对话框,点击“设定”单选按钮,设置“主效应”、“交互作用”其余选项取默认值就行,点击“继续”按钮,回到“单变量”界面,ok统计专业研究生工作室为您服务,需要专业数据分析可以找我
可以。数学专业本科毕业论文可以写回归分析,需要专业对的上。数学是研究数量、结构、变化、空间以及信息等概念的一门学科。
回归分析R方为多少合适?1. 什么是回归分析R方?回归分析是一种通过对变量之间的关系进行拟合,并用拟合的方程来预测未来数据的方法。R方是衡量回归模型拟合优度的一种指标。具体来说,它是由实际值与预测值之间的差异占总方差的比例计算而来。2. 如何判断R方的好坏?一般来说,R方的取值范围在0到1之间,越接近1则说明模型对数据的拟合越好。但是,在实际应用中我们需要根据领域知识和经验来判断R方的好坏是否符合预期。例如,某些行业可能需要高于的R方才能接受,而另一些则可以接受在左右的R方。3. R方值过高的风险是什么?当R方值过高时,虽然模型对数据的拟合效果很好,但是却可能存在过拟合的风险。这意味着模型只能适应当前的数据,而无法预测未来的数据,因为模型过于复杂。因此,在使用回归分析时,需要根据领域知识和经验,结合交叉检验和调整R方等方法来评估模型稳健性。4. R方值过低的风险是什么?当R方值过低时,模型不能很好地解释数据的变化,预测结果会受到噪声的影响。这意味着模型需要特征工程或更多数据来提高准确性。但需要注意的是,有时数据质量差、可计算性差以及数据中暂时性变量等原因也会导致R方的下降。5. 如何提高回归分析的R方?提高R方的方法,主要是通过优化模型拟合的变量、增加数据样本、提高数据质量等方向进行。同时,不同领域的数据结构会导致拟合出的模型性质的区别,要根据领域特点调整模型的参数。6. 结论回归分析是一种非常有用的数据分析方法,在实际应用中需要根据领域知识和经验判断R方值的好坏。除了提高R方以外,我们还需要关注过拟合和数据质量等问题,保证模型的稳健性。
SSR/SST?调整R方是消除自变量增加造成的假象。自由度df=n-k,各种分布不一样吧?至于含义,顾名思义就可以了(k: constraints,f: freedom)。
显著性水平的检验.
1、R square(R方值)是决定系数,意思是你拟合的模型能解释因变量的变化的百分数,例如R方=,表示你拟合的方程能解释因变量81%的变化,还有19%是不能够解释的。
2、F值是方差检验量,是整个模型的整体检验,看它拟合的方程有没有意义。
3、t值是对每一个自变量(logistic回归)的逐个检验,看它的beta值β即回归系数有没有意义。
R方值是评价的主要指标,F值,t值是两个检验,一般要小于,F和t的显著性都是。
扩展资料
回归分析在科学研究领域是最常用的统计方法。《SPSS回归分析》介绍了一些基本的统计方法,例如,相关、回归(线性、多重、非线性)、逻辑(二项、多项)、有序回归和生存分析(寿命表法、Kaplan-Meier法以及Cox回归)。
《SPSS回归分析》对运用SPSS进行回归分析的介绍,目的是让读者对于这方面的基础知识有一个初步了解和掌握,有经验的读者藉此可在数据挖掘(例如,利用Clementine)领域独立地继续学习新知识
参考资料来源:百度百科-SPSS回归分析
【摘要】相关分析和回归分析是数理统计中两种重要的统计分析方法,在实际生活中应用非常广泛。两种方法从本质上来讲有许多共同点,均是对具有相关关系的变量,从数据内在逻辑分析变量之间的联系,但同时二者存在不同。相关分析可以说是回归分析的基础和前提,而回归分析则是相关分析的深入和继续。当两个或两个以上的变量之间存在高度的相关关系时,进行回归分析寻求其相关的具体形式才有意义。从本质分析了相关分析和回归分析,并比较两种之间的异同,结合生活中的例子,进一步讨论了利用相关分析和回归分析的前提并得出相关结论。【关键词】数理统计 相关性 相关分析 回归分析一、相关关系与相关分析1.相关关系在数理统计学中,回归分析与相关分析是两种常用的统计方法,可以用来解决许多生产实践中的问题,虽然二者之间关系密切,但在具体原理和应用上面有许多不同。首先从总体来说,两者均是对具有相关性的变量或具有联系的标志进行分析,可以借助函数和图像等方法。当一个变量固定,同时另一个变量也有固定值与其相对应,这是一种一一对应的关系,也叫做函数关系。而当一个变量固定,同时与之相对应的变量值并不固定,但是却按照某种规律在一定范围内分布,这两者之间的关系即为相关关系。这里函数关系与相
回归分析研究的主要问题是:(1)确定Y与X间的定量关系表达式,这种表达式称为回归方程;(2)对求得的回归方程的可信度进行检验;(3)判断自变量X对因变量Y有无影响;(4)利用所求得的回归方程进行预测和控制。回归分析的主要内容为: ①从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。 ②对这些关系式的可信程度进行检验。 ③在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。 ④利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。在回归分析中,把变量分为两类。一类是因变量,它们通常是实际问题中所关心的一类指标,通常用Y表示;而影响因变量取值的的另一类变量称为自变量,用X来表示。
数据可以找找,非得要弄问卷调查吗
急吗,如果不急,把题目及数据发给我吧,,我有时间帮你做一下。