首页

毕业论文

首页 毕业论文 问题

风窗清洗装置毕业论文

发布时间:

风窗清洗装置毕业论文

三、风窗玻璃洗涤系统的结构和工作原理风应洗涤器主要由储液罐、洗涤泵、输液软管、喷嘴等组成。储液由理料制成,内装有洗涤液。洗涤泵俗称喷水电动机,由直流电动机和离心泵组成,其作用更将清洗液加压,通过输液软管和喷嘴喷洒到风窗玻璃表面,当风窗玻璃上有灰尘或污物时。先开动洗涤泵,将洗涤液喷到刮水片的上部,湿润玻璃。然后再开动刮水器,将玻璃上的灰尘或污物刮掉。

电动泵为短时工作电器,每次喷洒工作时间不要超过5秒;洗涤器应与刮水器配合使用。先开洗涤器,待清洗液喷到玻璃上以后,才能开动刮水器

风窗玻璃洗涤系统的作用是向风窗玻璃表面喷洒水或专用洗涤液,使之与刮水器配合工作,清除风窗玻璃表面的灰尘等,保持风窗玻璃表面的清洁,让驾驶员获得良好的视线。

汽车玻璃洗涤系统的检修,首先就是日常,我们最常见的检查,看雨刮器的胶条是否时间长了,出现老化变形,需要更换,再就是看玻璃清洗液是否需要进行添加,到了冬季的话,需要更换冰点更低的玻璃清洗液,再看喷水开关是否能够正常工作,喷水的高度和角度是否需要调整。

清洗装置毕业论文

清洗液分离技术的研究刘祥来 QQ584680928所在院系:电子信息工程学系 机电051 指导老师:范剑红摘要介绍了国外清洗技术的发展情况及国内清洗机行业现状,指出了国内清洗技术与国外相比存在的差距和应重视的问题。利用PIC16C72单片机实现了对智能型电热水器的控制。其主要控制功能除了通常的控制加热和保护外,还具有较强的智能,包括根据用户设定的温度自动调节冷热水的混水比例,给出恒定温度等。同时介绍了系统的结构、硬件和软件设计。介绍了产品的外观及电子电路设计,包括报警电路和延时电路等,PTC热敏电阻的介绍以及优势优点。关键词:智能型电热水器 单片机 清洗机 清洗机现状 智能型电热水器 单片机 报警电路 热敏电阻1绪论 课题背景及研究意义清洗行业是随着工业化和现代化的进程及社会生产的需要而产生和发展起来的。所有工业部门都有某种形式的清洗,只是不同的部门对清洗的重视、依赖程度及应用发展水平不同。工业清洗具有重要意义:恢复设备装置生产能力、保证生产连续高负荷运行的必要手段;对设备的清洗,可以有效地延长设备的使用寿命;对设备的清洗,有利于节能降耗、降低冷却水的用量;对设备的清洗,是降低安全事故发生的有效途径。概括起来有节能、降耗、节水、安全、稳产、提高产品质量、加快生产速度、延长设备使用寿命、降低环境污染以及外表美观和人类的卫生健康等目的。开展对“碳氢真空超声波清洗干燥系统”的开发,对于发展我国的环保事业是完全必要的。我国到处都在建设新的工厂和生产线.正在逐步成为“世界加工厂”.巨大的市场需求.为工业清洗设备制造商和专业清洗剂生产供应商提供了快速发展的良机.鉴于该产品的市场前景较好且有国家的大力支持,我觉的此项目投入能带来巨大的经济效益和社会效益,开展对工业清洗液分离技术的研究是非常有必要的。目前国内大部分的工厂都使用全自动清洗机,特别是使用日立全自动生化分析清洗机。由于该型仪器的检测速度很快。准确性又好。很受广大工厂的欢迎。但是该清清洗机价格昂贵,操作复杂。至于国内的清洗机,国内的清洗即清洗效果差或清洗机没用几天机器就被腐蚀,国内的清洗机跟国外的清洗机相比还是有一定的距离,为了降低成本。研究出一种能使用于自动加热分离清洗液的意义重大。 参考文献[27[28] 本课题旨在研究工业清洗液分离技术,主要工作内容有:(1)清洗剂冷却、加热蒸馏以及清洗剂自动循环回收系统的设计制作。(2)清洗剂内循环的过滤、沉淀、排渣、蒸馏、控温、补液以及工艺过程。导热油加热系统、冷却、液位/温度传感器、油水分离器、PLC自控系统、液位/温度/压力自控系统。(3)增加防爆措施。防止因仪器液体发生爆炸而误伤工作人员。(4)从清洗液的原料选择。。(5)研究目标:工业清洗液分离技术的研究。 本课题设计基本要求和一般过程(1)是在满足预期功能的前提下,性能好,效率高,成本低。安全可靠。操作简单。维修方便。(2)是确定加热器的工作原理,选择合适的机构。拟定设计方案;对加热器的各个工作机构进行能力计算,总体设计。(3)是如何提高系统安全。水箱不能直接进行加热。防止油水因直接加热导致爆炸,对水箱的材料也应该进行选择,电炉丝的功率也要进行适当的选择。选什么样的炉丝做材料等等(4)是对水箱容器大小的设计。以及混合液中含水量,含酒精量,含油量,含煤油量的测定,以及要计算加热多久刚好全部挥发出水,酒精,油,煤油,在这段时间内电炉丝产生多少热量。空气消耗了多少热量。以及水蒸气带走了多少热量等等。2加热器的选择 概 述电热丝加热器是电加热器中最早出现的最普遍的加热器 如实验室中使用的电炉,电烘箱,恒温培,电热套等民用方面的如面包烘烤炉,电吹风,电烙铁等这一类电加热器具有结构简单发热养箱温度控制方便的特点。工厂以及我们平常使用的含有电阻丝的电阻主要是PTC热敏电阻, PTC热敏电阻是一种典型具有温度敏感性的半导体电阻,超过一定的温度(居里温度)时,它的电阻值随着温度的升高呈阶跃性的增高。 它的电阻值随着温度的升高呈阶跃性的增高。电阻常常会因为电阻通电加热,产生的热量过多而烧坏电阻,因此选择电阻的时候应该考虑防止温度过高,本课题选用PTC热敏电阻作为发热元件。因为PTC热敏电阻除用作加热元件外还具有使温度保持在特定范围的功能,又起到开关作用,还可对电器起到过热保护作用。。 PTC热敏电阻电热丝加热器工作原理电加热器是依据电阻通电加热产生热量的原理,电热管通电后,依据焦耳定律Q=I2Rt,电热管产生热量,热量通过介质传递给水箱里的水从而使水变成水蒸或者使水中的温度到达了油的挥发点而挥发出油。PTC热敏电阻除用作加热元件外,同时还能起到“开关”的作用,兼有敏感元件、加热器和开关三种功能,称之为“热敏开关”, 如图1和2所示电流通过热敏电阻元件后电阻丝产生热量引起温度升高,即发热体的温度上升,当超过居里点温度后,电阻增加,从而限制电流增加,于是电流的下降导致元件温度降低,电阻值的减小又使电路电流增加,元件温度升高,周而复始,因此具有使温度保持在特定范围的功能,又起到开关作用.利用这种阻温特性做成加热源,作为加热元件应用的有暖风器、电烙铁、烘衣柜、空调等,还可对电器起到过热保护作用。PTC热敏电阻电热丝加热器发热原理:电热丝加热器发热是根据焦耳–楞次定律Q=I2Rt而发热温度在几百至一千多摄氏度之间,辐射(散失) 的热量Q1随温度的升高而增大 即:Q1=Q-Q2 = I2Rt-[Cm(T-T0)+C m(T1-T0)]公式中Q 是电能提供的总热量,Q2是电热丝及介质等的热容热量,C是电热丝比,C0是介质等的比热容。m是电热丝质量,m0 是介质等的质量,T0是室温,T是电热丝发热温度,T1是介质等的温度。刚通电时T随时间而升高,当电提供的能量与散失的能量达到动态平衡时,电热丝发热温度T就稳定不变。散失的能量达到动态平衡时,电热丝发热温度T就稳定不变。参考文献[29]图1 直接保护原理图图 图 2 间接保护原理图电热丝加热器的结构 电阻丝材料的选择加热器一般采用镍铬合金丝作为发热器,这是因为该类材料具有电阻率高且熔点温度较高的特点,为了使单位面积发出的热量高 温度更高 都将电热丝制成螺旋状盘绕在耐高温而绝缘陶瓷或云母介质上,电源引入一般用铁质螺丝螺母连接 如下图3和图4所示,其接点根据不同的加热器有二至十多个接点。电热丝加热器的结构 电阻丝材料的选择加热器一般采用镍铬合金丝作为发热器,这是因为该类材料具有电阻率高且熔点温度较高的特点,为了使单位面积发出的热量高 温度更高 都将电热丝制成螺旋状盘绕在耐高温而绝缘陶瓷或云母介质上,电源引入一般用铁质螺丝螺母连接 如下图3和图4所示,其接点根据不同的加热器有二至十多个接点。图3 螺旋状电热丝图4 铁质螺丝螺母连接图 加热管T系列该系列共有3种外形的加热管,可方便地在加热管插座上插拔,像插拔灯泡一样,见下图5。T系列加热管适用于不同的使用条件。图5 两种加热管的外形简图T1用于加热小口杯中的水,特点是管功率低。它的水平面投影为圆形,面积较小5 cm左右。因此可方便地深入口径与高度都口杯里。T2用于加热水位较深或者开水壶中的般的“热得快”加热管一样,成长条形,仅仅部设有卡槽,该槽的作用是将加热管固定在插座内,并使其与座中的金属片接触,以保电路的畅通。T3用于加热横截面积较大容量较大,但高的容器中的水。比如说一大盆水,用T1将耗费较多的时间,无法达到快速加热的目的,T2又无法保证加热管完全伸入液体中。因此,在T1的基础上,将它的直径放大5倍,深度也提高到20 cm。因此系统采用T3系列加热管 加热管插座用来连接加热管和温度探头,像灯泡插座,加热管插入后即被卡紧,同时和插座内的金属触点接触,供电电路导通;当需要更换加热管时,像更换灯泡一样方便。加热管插座上还有一个重要部件———温度探头。需要测温时,旋下该探头,测量回路导通,可以测量;不需测量时,将探头旋入插头内的凹槽里,断开测量回停止加热路,同时保护探头免受侵蚀。 温度探头主要由热敏电阻RT构成,为了保护热敏电阻,将它置于一保险盒内,该保险盒的作用是防止水侵入热敏电阻上的触点而将探头侵蚀。当选择不使用报警功能时,应将整个探头旋入加热管插座中的凹槽内。2 电加热管特点(1)性能稳定可靠。电加热管采用中等功率高密度设计,大大延长了电热管的寿命。不锈钢316以上材质制作,耐腐蚀、可清洗,使用寿命长。(2)维护工作量最小 水表面除污(泡沫)器去除漂浮在水面上的矿物杂质,最大限度的去除表面污垢,水箱内配有特制电磁阀,定时控制排水,可以彻底地去除沉淀的矿物质及杂质。(3)反复的热胀,冷缩使水箱水垢不断脱落。(4)更优化的结构设计,用常用工具就可以方便的进行检视和维修。(5)安全的电路设计:三级电路保护:短路、过电流、漏电保护使其免去用户的担心。(6)防干烧设计,当电热元件加热温度超过电热元件能承受的极限的时候,自动切断加热元件的电源,保护电热元件不被烧坏。(7)特殊的保温设计:以适用各种工作环境及最大限度的减小能量的损失。 三种控制方式(1)开关式控制:接受讯号即开(关),达到精确控制温度。(2)时间比例控制(PID):根据实际工况变化,采用模糊逻辑的PID算法,自动修正参数,调节可变功率达到最佳温度节能状态。(3)比例控制:利用智能调控模块(SCR)切割相角输出功率,经控制器的精确计算输出控制信号,使功能输出与控制信号成线性对应。控制精度可达RH±1%之内。 设计重要参数以及性能曲线下面是一些在电加热计算中经常要用到的性能曲线,对我们的设计是很有帮助的。 阻-温特性(R-T)电阻-温度特性通常简称为阻温特性, 指在规定的电压下,PTC热敏电阻零功率电阻与电阻温度之间的依赖关系。零功率电阻,是指在某一温度下测量PTC热敏电阻值时,加在PTC热敏电阻上的功耗极低,低到因其功耗引起的PTC热敏电阻的阻值变化可以忽略不计。额定零功率电阻指环境温度25℃条件下测得的零功率电阻 。lgR(Ω)25 Tmin Tc T(℃)图6阻-温特性曲线Ik 在外加电压Vk时的动作电流Ir 外加电压Vmax时的残余电流Vmax 最大工作电压VN 额定电压VD 击穿电压 伏-安特性(V-I特性)电压-电流特性简称伏安特性,它展示了PTC热敏电阻在加电气负载达到热平衡的情况下,电压与电流的相互依赖关系。I(A)IkVk VN Vmax VD V图7 伏-安特性特性曲线Ik 在外加电压Vk时的动作电流Ir 外加电压Vmax时的残余电流Vmax 最大工作电压VN 额定电压VD 击穿电压PTC热敏电阻的伏安特性大致可分为三个区域:在0-Vk之间的区域称为线性区,此间的电压和电流的关系基本符合欧姆定律,不产生明显的非线性变化,也称不动作区。在Vk-Vmax之间的区域称为跃变区,此时由于PTC热敏电阻的自热升温,电阻值产生跃变,电流随着电压的上升而下降,所以此区也称动作区。在VD以上的区域称为击穿区,此时电流随着电压的上升而上升, PTC热敏电阻的阻值呈指数型下降,于是电压越高,电流越大,PTC热敏电阻的温度越高,阻值越低,很快导致PTC热敏电阻的热击穿。伏安特性是过载保护PTC热敏电阻的重要参考特性。 电流-时间特性(I-t特性)电流-时间特性是指PTC热敏电阻在施加电压的过程中,电流随时间变化的特性。开始加电瞬间的电流称为起始电流,达到热平衡时的电流称为残余电流。图8 电流-时间特性曲线一定环境温度下,给PTC热敏电阻加一个起始电流(保证是动作电流), 通过PTC热敏电阻的电流降低到起始电流的50%时经历的时间就是动作时间。电流-时间特性是自动消磁PTC热敏电阻、延时启动PTC热敏电阻、过载保护PTC热敏电阻的重要参考特性。 参考文献[25][26] 与热效应有关的参数(1)耗散系数δ:电阻器中功率耗散的变化量与元件相应温度变化量之比称为耗散系数,其单位为 W/℃。耗散系数是表征电阻器与周围媒介进行热交换能力的一个参数, 也是PTC元器件应用中十分重要的参数之一。 在材料配方、工艺一定的前提下, PTC本身的居里温度、升阻比均基本不变, PTC器件的其它性能参数则由其结构、外壳及散热条件决定。耗散系数则是这些条件的综合表现。因此PTC元器件的动作时间、恢复特性等均与耗散系数有关。对于大功率发热件来讲,耗散系数就更重要,它直接影响到功率输出。当PTC热敏电阻器两端加上电压时,由于功耗。电阻体温度逐渐升高,同时向周围媒质散发热量直至电阻体的温度达到稳定,此时消耗的功率全部扩散到媒质中。电阻器的功耗变化量△P与电阻体的温度变化量△T之比就是耗散系数δ。耗散系数对于各种加热器件的结构设计十分重要, 只要在器件结构上略加修改便可使电参数大为提高,很多工程师却长期被困扰在PTC材料和配方的研究上,这是十分可惜的。(2)热时间常数ε:表征元件对周围环境温度反应的快慢,当系统中有温度传感器时,这个参数十分重要。热时间常数定义为:在零功率条件下,当环境温度突变时,电阻的温度变化了其始末温差的63。2%所需要的时间,用ε表示。(3)热容量C:使电阻器的温度每升高1℃所需要的热量,称为热容量,单位J/℃,C=εδ。(4)热传递条件:有温度差。热量:在热传递过程中,物体吸收或放出热的多少。热传递的方式:传导(热沿着物体传递)、对流(靠液体或气体的流动实现热传递)和辐射(高温物体直接向外发射出热)三种。(5)汽化:物质从液态变成气态的现象。方式:蒸发和沸腾,汽化要吸热。影响蒸发快慢因素:①液体温度,②液体表面积,③液体表面空气流动。蒸发有致冷作用。(6)比热容C:单位质量的某种物质,温度升高1℃时吸收的热量,叫做这种物质的比热容。 比热容是物质的特性之一,单位:焦/(千克℃) 常见物质中水的比热容最大。 C水=4。2×103焦/(千克℃)物理含义:表示质量为1千克水温度升高1℃吸收热量为4。2×103焦。(7)热量计算:Q放=cm⊿t降 Q吸=cm⊿t升 。Q与c、m、⊿t成正比,c、m、⊿t之间成反比。(8)电功率的定义式:P=W/t 常用公式:P=UI W=Uit Q吸=cmΔT。 参考文献[21] 电加热器的设计计算 电加热器的热量设计步骤,一般按以下四步进行:(1)计算从初始温度加热至设定温度的所需要的功率以及所需要的时间。(2)计算维持介质温度不变的前提下,实际所需要的维持温度的功率。(3)设备及其空气散热损失的热量。(4)根据以上两种计算结果,选择加热器的型号和数量。总功率取以上二种功率的最大值并考虑1。2系数。 热量计算(1)初始加热所需要的功率KW = ( C1M1△T + C2M2△T )÷ 864/P + P/2 式中:C1C2分别为容器和介质的比热(Kcal/Kg℃)M1M2分别为容器和介质的质量(Kg)△T为所需温度和初始温度之差(℃)H为初始温度加热到设定温度所需要的时间(h)P最终温度下容器的热散量(Kw)(2)维持介质于恒温度所需要的功率KW=C2M3△T/864+P式中:M3每小时所增加的介质kg/h(3)维持介质于恒温度所需要的功率KW=C2M3△T/864+P式中:M3每小时所增加的介质kg/h(4)热敏电阻的物理特性用下列参数表示:电阻值、B值、①.电阻值:RT(KΩ)热敏电阻的阻值与温度成指数关系,可近似表示为:①其中:R2:绝对温度为T2(K)时的电阻(KΩ)R1:绝对温度为T1(K)时的电阻(KΩ)B:(T1-T2)温区内B值(K)图9 空气气水和蒸汽加热功率密度选择曲线(电加热管壳体为耐热10000C的不绣钢)②:B值(K)B值决定于热敏的电导激活能,是反映热敏电阻阻值随温度变化快慢的参数,表达式为:②其中:B:(T1-T2)温区内B值(K)R1:绝对温度为T1(K)时的电阻(kΩ)R2:绝对温度为T2(K)时的电阻(kΩ)(5)加热设备散热损失计算方法的理论分析根据传热学理论,热设备表面总的散热损失量Q可由下式计算Q=qpj•S(1)式中 S——设备总散热外表面积,m2qpj——总平均热流密度,W/m2因此,这里的根本问题就是如何获取总平均热流密度qpj的值。总平均热流密度的计算在理论上有热流测试法、导热传热法和对流传热法三种方法。A热流测试法:热流测试法指直接用热流计测出设备表面不同部位或不同温度区域的热流值,然后取平均值作为最终结果。由于实际工程中某些装置有许多无法用热流计测试的部位,而且测试得到的结果又有很大的片面性,所以该方法准确性不高,仅适于现场粗略估算时采用。因此本系统不采用它。B导热传热法导热传热计算方法是根据傅里叶导热定律,在已知内外壁温度及保温层热阻的情况下(设备钢壁热阻很小可忽略)计算出热流值的。其计算公式为③③ 式中 qi——局部热流密度,W/m2δi——该局部保温层的折算厚度,mλ——保温材料的导热系数,W/m•℃tm——水箱内壁温度,℃tbi——水箱外壁温度,℃这里,我们认为造成设备外表面温度场非均匀分布的原因是保温层受到损坏,导致热阻(λ/δi)减小。而一般情况下材料的导热系数是基本上恒定的,故理论上可认为热阻减小的原因是保温层受到损坏而减薄了。但是,实际上保温层并不是均匀减薄,而是局部的各种情形的损坏,这里仅以保温层的折算厚度来表示损坏的程度。δi值通过局部热流测试,然后利用式(2)反算得出。总平均热流密度为④⑤⑥即局部热流以局部面积Si加权的平均值。该方法由于需要通过局部热流测试反算δi,故其准确性也要受到很大影响。并且计算复杂本系统也不采用此方案C对流传热法对流传热法以设备外表面与环境空间的自然对流传热为理论基础,在已知设备外表面温度tbi、环境温度t0及气流速度V时,可由式(3)及下式计算出总平均热流qpj。⑦I式中 α——设备外表面与环境间的对流换热系数, W/m2对次系统水箱以及其他设备,由下列公式(4)⑧将式⑧代入式⑥整理后得到 ⑨通过红外热象测试,可以得到准确的设备外表面温度场分布结果,即tbi值,于是可以计算出总平均热流密度qpj的值。显然,计算的核心是求表面温度用面积加权的平均壁温。 参考文献[22] [24] 电加热器设计计算举例有一只封闭的容器,尺寸为宽500mm,长1200mm,高为600mm,容器重量150Kg。内装500mm高度的水,容器周围都有50mm的保温层,材料为硅酸盐。水需3小时内从15℃加热至70℃,然后并保持水箱内的水的温度保持15分钟不变。需要多大的功率才能满足所要的温度。 技术数据:1、水的比重:1000kg/m32、水的比热:1kcal/kg℃3、钢的比热:℃4、水在70℃时的表面损失4000W/m25、保温层损失(在70℃时)32W/m26、容器的面积:、保温层的面积:初始加热所需要的功率:容器内水的加热:C1M1△T = 1×(×××1000)×(70-15) = 16500 kcal容器自身的加热:C2M2△T = ×150×(70-15) = 990 kcal平均水表面热损失: × 4000W/m2 × 3h × 1/2 × 864/1000 = kcal平均保温层热损失: × 32W/m2 × 3h × 1/2 × 864/1000 = kcal(考虑20%的富裕量)初始加热需要的能量为:(16500 + 990 + + )× = kcal/kg℃工作时需要的功率:加热补充的水所需要的热量:20kg/H × (70-15)×1kcal/kg℃ = 1100kcal水表面热损失: × 4000W/m2 × 1h × 864/1000 = kcal保温层热损失: × 32W/m2 × 1h × 864/1000 = kcal(考虑20%的富裕量)工作加热的能量为:(1100 + + )× = kcal/kg℃工作加热的功率为: ÷864÷1 = kw初始加热的功率大于工作时需要的功率,加热器选择的功率至少要。最终选取的加热器功率为7kw。选取4根7KW的电加热管同时对加热水箱进行加热。 电加热器的构成电加热器的构成如下图10。 使用条件及维护方法(1)可使用污水,煤油水,汽油水质无特殊要求(2)环境温度>4℃,湿度≤90%RH。(3)水电到位,外壳保持接地。(4)建议定期清洗水箱。(半年为一周期).(5)电加热器长时间不用,应按下排水按钮将水箱里的油水排放干净。

搜狐你就出来了

目录论汽车搭铁不良的危害〔摘要〕搭铁线就是一种电流的回流线,电源从电瓶正极出来,经过各种开关、电器执行机构、再经过一根回流线回到电瓶负极,形成一个循环,使电器产生各种各样动作和功用,汽车上采用的是单线制,即大多数线都是来自电源的,各种用电执行机构的回路不都是直接到电瓶负极的,而是通过汽车本身的金属机体间接地回到电瓶负极的,但凡连接到汽车金属机体的线我们都可以统称搭铁线。〔关键词〕负极;搭铁;回路电气设备的某个部分与大地之间作良好的电气联接称为接地。与大地土壤直接接触的金属导体或金属导体组称为接地体:联接电气设备应接地部分与接地体的金属导体称为接地线;接地体和接地线统称为接地装置。电气设备接地的目的主要是保护人身和设备的安全,所有电气设备应按规定进行可靠接地。汽车电路中有许多用电设备被不同颜色的电线连接起来,其中最不可忽视的应该是搭铁。负极是习惯叫法。负极搭铁的作用是所有电路用电设备的回路,搭铁不良过载故障而过热损坏,甚至起火。因此我们可以认为,搭铁是非常重要的,没有搭铁所有的电器设备,就用不了,所以千万不要小看它,把它当成可有可无的东西。1汽车电路的组成汽车整车电路通常有电源电路、起动电路、点火电路、照明与灯光信号装置电路、仪表信息系统电路、辅助装置电路和电子控制系统电路组成。电源电路也称充电电路,是由蓄电池、发电机、调节器及充电指示装置等组成的电路,电能分配(配电)及电路保护器件也可归入这一电路。起动电路是由起动机、起动继电器、起动开关及起动保护电路组成的电路。也可将低温条件下起动预热的装置及其控制电路列入这一电路内。点火电路是汽油发动机汽车特有的电路。它由点火线圈、分电器、电子点火控制器、火花塞及点火开关组成。微机控制的电子点火控制系统一般列入发动机电子控制系统中。照明与灯光信号装置电路是由前照灯、雾灯、示廓灯、转向灯、制动灯、倒车灯、车内照明灯及有关控制继电器和开关组成的电路。仪表信息系统电路是由仪表及其传感器、各种报警指示灯及控制器组成的电路。辅助装置电路是由为提高车辆安全安性、舒适性等而设置的各种电器装置组成的电路。辅助电器装置的种类随车型不同而有所差异,汽车档次越高,辅助电器装置越完善。一般包括风窗刮水及清洗装置、风窗除霜(防雾)装置、空调装置、音响装置等。较高级车型上还装有车窗电动举升装置、电控门锁、电动座椅调节装置和电动遥控后视镜等。电子控制安全气囊归入电子控制系统。电子控制系统电路主要有发动机控制系统(包括燃油喷射、点火、排放等控制)、自动变速器及恒速行驶控制系统、制动防抱死系统、安全气囊控制系统等电路组成2汽车电路的特性低压汽油车多采用12V,柴油车多采用24V。直流主要从蓄电池的充电来考虑。 单线制单线制即从电源到用电设备使用一根导线连接,而另一根导线则用汽车车体或发动机机体的金属部分代替。单线制可节省导线,使线路简化、清晰,便于安装与检修。 负极搭铁将蓄电池的负极与车体相连接,称为负极搭铁。并联电路中的各用电器并列地接到电路的两点间,用电器的这种连接方式叫做并联。即若干二端电路元件共同跨接在一对节点之间的连接方式。这样连成的总体称为并联组合。其特点是:组合中的元件具有相同的电压;流入组合端点的电流等于流过几个元件的电流之和;线性时不变电阻元件并联时,并联组合等效于一个电阻元件,其电导等于各并联电阻的电导之和,称为并联组合的等效电导,其倒数称为等效电阻;几个初始条件为零的线性时不变电容元件并联时的等效电容为;几个初始条件为零的线性时不变电感元件并联时的等效电为;正弦稳态下,几个复数导纳的并联组合的等效导纳为,式中Yk是并联组合中第k个导纳。并联电路中,电阻大小的计算公式为 1/R=1/R1+1/R2+1/R3+…… (R1、R2、R3……表示各支路电阻大小)串联和并联的区别:若电路中的各元件是逐个顺次连接来的,则电路为串联电路,若各元件“首首相接,尾尾相连”并列地连在电路两点之间,则电路就是并联电路。在并联电路中,除各支路两端电压相等以外,电阻和其它物理量之间均成反比(在相同时间内), R1:R2=I2:I1=P2:P1=W2:W1=Q2:Q1 除电阻和电压以外,其它物理量之间又成正比I1:I2=P1:P2=W1:W2=Q1:Q2 。基本并联线路图3一般汽车电路的接线规律汽车线路一般采用单线制、用电设备并联、负极搭铁、线路有颜色和编号加以区分,并以点火开关为中心将全车电路分成几条主干线,即:蓄电池火线(30号线)、附件火线(Acc线)、钥匙开关火线(15号线)。蓄电池火线(B线或30号线)从蓄电池正极引出直通熔断器盒,也有汽车的蓄电池火线接到起动机火线接线柱上,再从那里引出较细的火线。点火仪表指示灯线(IG线或15号线)点火开关在ON(工作)和ST(起动)挡才有电的电线,必须有汽车钥匙才能接通点火系统、预充磁、仪表系统、指示灯、信号系、电子控制系重要电路。专用线(Acc线或15A线)用于发动机不工作时需要接入的电器,如收放机、点烟器等。点火开关单独设置一挡予以供电,但发动机运行时收音机等仍需接入与点火仪表指示灯等同时工作,所以点火开关触刀与触点的接触结构要作特殊设计。起动控制线(ST线或50号线)起动机主电路的控制开关(触盘)常用磁力开关来通断。磁力开关的吸引线圈、保持线圈可以由点火开关的起动挡控制。大功率起动机的吸引、保持线圈电流也很大(可达40~80A),容易烧蚀点火开关的“30-50”触点对,必须另设起动机继电器(如东风、解放及三菱重型车)。装有自动变速器的轿车,为了保证空挡起动,常在50号线上串有空挡开关。搭铁线(接地线或31号线) 汽车电路中,以元件和机体(车架)金属部分作为一根公共导线的接线方法称为单线制,将机体与电器相接的部位称为搭铁或接地。搭铁点分布在汽车全身,由于不同金属相接(如铁、铜与铝、铅与铁),形成电极电位差,有些搭铁部位容易沾染泥水、油污或生锈,有些搭铁部位是很薄的钣金件,都可能引起搭铁不良,如灯不亮、仪表不起作用、喇叭不响等。要将搭铁部位与火线接点同等重视,所以现代汽车局部采用双线制,设有专门公共搭铁接点,编绘专门搭铁线路图,堪与熔断器电路提纲图并列。为了保证起动时减少线路接触压降,蓄电池极桩夹头、车架与发动机机体都接上大截面积的搭铁线,并将接触部位彻底除锈、去漆、拧紧。4汽车搭铁的含义搭铁是电路上的术语,比较常见的是在汽车修理行业搭铁是直接和负极相连(车身大架就是负极)短路的意思轻微的打铁会造成汽车跑电,严重了就会烧坏线路甚至着火。为减少蓄电池电缆铜端子在车架车身连接处的化学腐蚀,提高撘铁可靠性、统一标准,便于汽车电子设备的生产、使用和维修,汽车电气系统使用单线制时、必须统一电源负极撘铁。5汽车搭铁的形式及作用主搭铁线在汽车上,搭铁线是构成电路回路的一部分,但有时候会发现大量的电器元件,就靠仅有的1—2根搭铁线来传递电流,这是因为对于电子线路,很多是数字信号及高精度的模拟信号电路,如果搭铁线有接触不良故障时,就相当于在电路中串联了一个接触电阻Rj一样,就可能会使高精度的信号值失真。因此,只有非常良好的搭铁线才能达到要求,所以在很多含有电子设备的线路中,有意识地装了少量的非常好的搭铁线(即主搭铁线)。并且在搭铁线的两端还使用了特殊形状的搭铁线连接端子、垫片和紧固螺钉,对部件的线路也给予了特殊的考虑。    主搭铁线如果出现故障将影响很多线路,而不只是一条线路工作不正常,因此维修人员在故障诊断时必须考虑主搭铁线故障,以免瞎猜乱测或更换一些价值昂贵的电器元件。备用搭铁线    备用搭铁线是指已经有了主搭铁线的同一电路的第2甚至第3搭铁线。它是基于安全和性能的考虑。最简单的例子是计算机电路。附加搭铁线不仅是备用搭铁线,而且还可以改善某些具有复杂电子电路部件的搭铁状况,也就是说,如果没有这一条看似多余的备用搭铁线,虽然能勉强工作,但电路的性能就会退化或者不稳定。防静电搭铁线   对汽车方面的静电而言,它的危害主要有2个方面:一是汽车上较精细的电子及无线电设备,二是汽车上的驾驶员及乘员。为了减小汽车静电的危害,在汽车上装了很多防静电搭铁线来解决这一问题。常见的防静电搭铁线主要安装在以下部位。由于车轮产生大量静电,因此有些汽车甚至在燃料系统的周围加装防静电搭铁线。在这一部位的防静电搭铁线,如果不注意会看不见它。由于汽车内乘员袖口附近、衣物及座椅等处都会产生静电,因此在底座内安装防静电搭铁线,人们可能会看不见它。为了消散加油时积聚的电荷,在燃油油箱加油口处安装有防静电搭铁线,因为加油口加油时有大量的燃油蒸气。所以,拆下任何维修口处的搭铁线后,一定要记住把它重新接好。如果加油口处的防静电搭铁线损坏了,应先装一条跨接线作为临时防静电搭铁线,且在防静电搭铁线装上前,不要将其拆下。当安装电子组件时,特别是在仪表板下面安装时维修人员身体应搭铁。因为维修人员身体向工作的位置滑动时,特别是沿着轿车的内饰件向仪表板下的工作位置滑动时,人体会产生大量静电。 完全断路一般有导线断开、连接端子锈蚀、搭铁导线根本没有与车身搭铁几种情况。对于这类故障,其搭铁线失去了任何作用,严重时可能导致电器不能工作或较明显的工作不良。通常情况下都能通过目视检查发现故障,如果通过目视检查不能发现故障,可以进行电阻值的测量。导通不良主要有导线断股、连接端子锈蚀、连接端子松动、基体件导电不良等几种情况。通常情况下都能通过目视检查发现故障,如果通过目视检查不能发现故障,可以进行电阻值的测量。6诊断搭接导线故障断路故障断路就是电流的通路受阻,不能形成电流回路。平常工作中所说的搭铁不良故障,大多是指搭铁线断路故障。根据实践工作中的情况,按电流的流通状态可以分为完全断路和电流通道受阻(主要是接触不良)2种状况。完全断路一般有导线断开、连接端子锈蚀及搭铁导线根本没有与车身搭铁几种情况。对于这类故障,其搭铁线失去了任何作用,严重时可能导致电器不能工作或较明显的工作不良。通常情况下都能通过目视检查发现故障,如果通过目视检查不能发现故障,可以进行电阻值的测量。导通不良主要有导线断股、连接端子锈蚀、松动及基体件导电不良等几种情况。通常情况下都能通过目视检查发现故障,若通过目视检查不能发现故障,可以进行电阻值的测量。短路(搭铁)线路馈电端短路线路馈电端是指在电机、灯及电磁线圈等用电器前面的线路,线路馈电端短路通常是由于导线绝缘层损坏引起的。造成导线绝缘层损坏的原因有:在安装某些车身零件时固定螺钉拧得太紧安装品质差、导线太松及绝缘层内进入液体变质’绝缘层与发动机灼热的零件(如排气歧管)靠得太近而被烧穿;或被车身金属的锋刃割破;或与车身部件间摩擦磨损等。大多数损坏部位较容易看见,但并不是所有的损坏部位都能直接看见,因为有的损坏部位可能藏在门内或内饰后面。现在,汽车上的线束密集而复杂,对于不易看见的短路故障是很难发现的。可用万用表进行电压及电阻的测量,也可用检测灯和专用蜂鸣器来检查短路。为安全起见,在检查前可用电池取代汽车上的12V蓄电池作电源。因为出现短路故障时通常要烧毁熔断丝,所以在检查时首先将已打到电压档或欧姆档的万用表或欧姆表或电压表的红表笔接到断路熔断丝的负荷端,黑表笔接车身搭铁部位,然后从熔断丝座开始沿着线束移动手指,扭捏、抖动及摇晃线束(用手每次移动检查的导线长度大约为10~20cm)。当手触到短路部位时,万用表或欧姆表或电压表的读数应回到0(或接近于0)。若用检测灯和专用蜂鸣器检查短路,此时检测灯亮,蜂鸣器发出蜂鸣声。如果线束的安装较隐蔽,用上述方法不能对短路部位进行确定时,则必须拆下其饰件进行检查。很多汽车维修资料中都有汽车的布线图。可先用短路检测器进行检查,它至少可以帮助确定短路位置是否在壁板的后面或地毯的下面。对处于壁板后面的线束,只要认真地检查,就可用短路检测器找到与线束短路非常接近的部位,从而可避免为了接近线束而拆掉所有部位的壁板。.线路搭铁端短路线路搭铁端即用电器之后的线路。线路搭铁端出现短路故障的诊断比较复杂。因为很多用电器都在搭铁端用开关控制,如果短路点是在手开关或其它控制开关之前甚至是开关本身短路,驾驶员将不能断开用电器。用电器不能断开时,一般都从用电器开始进行诊断,先断开用电器的搭铁线路,如果线路断路(例如灯熄灭或电机停转),说明问题出在线路的搭铁端。然后对照电路图沿着电路一次检查1个连接点。对于在搭铁的一端开关,可用欧姆表或电池检测灯等检查其是否短路,如果开关在断开位置电路仍然是导通的,说明开关短路,应予以更换。在实际维修中,为了节约时间,特殊情况下可采用跨接布线法,即在可以确定哪根导线出了故障时,将这根导线两端断开,在2个相应端头间接1根新导线,将其敷设在配线的外面,但要注意其敷设的路线必须是在无保护的条件下能够避免损坏,这样做只是绕过了故障部位,而不是检查了这个部位。例如,车身螺钉穿透了配线,而且仍然在原来的位置上,很可能其它线路已经被损坏,不久就可能引起故障,所以必须根据情况决定是否进行更彻底的修理。7电路搭铁不良故障的主要特征由电路搭铁不良引起的形形色色的汽车故障,大致具有以下几个特征:启动困难在汽车启动系统电路中,包含有蓄电池负极与车架之间的搭铁线以及启动机磁场线圈接线柱搭铁,若这些部位接触不良,会明显影响发动机的启动性能。一辆电喷轿车,已经行驶4万km,将点火开关转至启动挡,启动机没有反应。将变速杆挂入1挡,可以推车启动。检查蓄电池的电压,正常。拆下启动机试验,运转良好。最后发现是蓄电池的负极电缆搭铁处锈蚀。由于启动机的启动电流高达100A以上,若蓄电池的负极电缆搭铁不良,在搭铁处形成很大的接触电阻,导致电压降增加。这一接触电阻与启动机电枢绕组串联并“分压”,启动时分配到电枢绕组上的电压降低,流到启动机的电流减小,所以启动机运转无力,不能产生足够大的电磁转矩带动发动机曲轴旋转,严重时导致电路不通而使启动机不能转动。 仪表指示反常一辆揽胜车,用户抱怨发动机的水温太高。经过检查,发现用故障诊断仪读出的发动机水温与水温表显示的水温相差20℃。由于发动机ECU检测的水温数值与发动机的实际水温基本相符,因此怀疑水温表的传感器有问题,测量其电阻值,正常。检查其线路和搭铁,也无异常,更换水温表无济于事。最后,发现发动机的搭铁线与车身的连接处有腐蚀现象,将搭铁处用砂布打磨干净后,故障排除。分析这一故障的形成原因,是由于水温表传感器的搭铁线接在发动机上,因此水温表反映的实际上是水温传感器与蓄电池负极之间的电阻值,由于发动机本身搭铁不良造成水温传感器的电势堆积,所以感应出来的电阻值比较高,导致水温表指示反常。 另外,若仪表盘稳压器的电阻丝搭铁不良,稳压器将不能正常工作,当输出电压和输入电压相等时,会出现水温表及燃油表同时指示最大刻度的现象。 故障时有时无一辆轿车,行驶中无规律熄火,熄火后有时能启动,有时不能启动,有时等待半小时左右才能启动。连接油压表和K81解码器检查,发现当发动机突然熄火时油压表指示正常(250kPa),同时ECU反映的蓄电池电压值突然跳动一下,于是怀疑系统搭铁不良。测量发动机壳体与蓄电池负极间的电位差为,启动机运转时的电位差为,可见启动时在搭铁处消耗了较大的电流,导致启动电流减小,因此发动机不能顺利启动。拆开发动机壳体到车身左侧的搭铁线,发现搭铁处表面有几个锈斑。由于搭铁处接触状态不稳定,而且电阻较大,因此ECU在启动时因供电不足而无法实施正常控制。用砂布打磨搭铁处的锈斑后,故障排除。 产生异常火花一辆越野车,更换新启动机以后,接通点火开关,只听到“嗒嗒”的电磁开关吸合声,启动机却不旋转。拆开启动机的防尘套并接通点火开关检查,在启动机拨叉处看到强烈的电火花。原来,启动机出厂时,其外部涂有一层防止锈蚀的保护油漆,正是这层较厚的油漆使启动机与发动机的结合处接触不实,即造成启动机搭铁不良。当把启动机前端与飞轮壳接触部位的黑油漆清除干净,使其露出金属表面后,故障排除。 有的轿车在松开离合器踏板时有电火花产生,而且燃油表指针来回摆动。这种现象说明发动机搭铁不良,造成车上仪表电路出现间歇性断路,无法形成正常回路,电流便由离合器拉索流到离合器踏板处,从而在该处形成电火花。 另外,在摇车时,如果在手摇柄与保险杠之间出现火花,大多数是发动机与车架之间的搭铁铜带线松动。这种情况往往发生在汽车大修(尤其是喷漆)后,主要原因是未清除搭铁处的防锈油漆以及搭铁处固定不牢靠引起的。加速时车辆前后窜动一辆桑塔纳2000轿车,装备AFE 4缸电喷发动机,怠速正常。但是出现不定期的行驶无力,加速时车辆前后窜动,在颠簸路面上情况更加严重。 用故障诊断仪检测,没有故障码显示。既然发动机怠速正常,说明进气管漏气的可能性不大。测量燃油系统压力,用钳子夹住回油管,再加速,发现燃油压力仍然偏低而且波动,说明不是燃油压力调节器的故障。考虑到故障在加速时及路面颠簸时出现,说明燃油泵泵油不连续,所以重点检查燃油系统各电接头是否存在虚接现象。用万用表测量电动燃油泵的棕色线头与发动机机体之间的电阻为80kΩ,用手拉动一下线头,电阻值又变为0,说明故障是由电动燃油泵的搭铁线接触不实引起的,经过拧紧电动燃油泵搭铁线的紧固螺钉后,故障排除。 分析原因,在电动燃油泵搭铁线接触不牢靠的情况下,怠速时由于发动机运转比较平稳,机体的振动不很剧烈,搭铁线尚能与机体接触,所以怠速时电动燃油泵基本上能够正常工作。但是在加速状态下,或者路面颠簸时,发动机的振动加大,燃油泵搭铁线与机体的连接处于不稳定的状态,即出现虚接现象,导致燃油泵的端电压降低,进而使燃油压力下降。于是燃油泵有时工作正常有时工作不正常,最终导致车辆加速时前后窜动。 故障出现在剧烈碰撞之后汽车经过剧烈碰撞以后,往往引起车架变形,或者连接器松动。另一方面,许多轿车的蓄电池安装在发动机旁或者座椅下面,与电控单元、电器插头等靠得很近,一旦蓄电池的电解液溢出,很容易对周边电器设备及搭铁点造成腐蚀。8寻找线路搭铁故障和电路接触不良用试灯检查导线短路先将试灯导线夹子夹在车架上即搭铁,接通开关后,将测试棒从蓄电池开始按接线顺序,逐段向用电设备方向检查,若试灯亮为导通,否则为搭铁也可采用万用表,以同样方法寻找断路故障点。寻找搭铁处当接通开关时,熔断丝立即烧断,说明开关所接通的用电设备之间线路中有搭铁之处,寻找具体发生搭铁处时,先从蓄电池引出一根火线,然后从用电设备一端开始,向开关方向按次序逐段拆线头,每拆下一个线头时用火线碰一下,若在1处,用电设备工作正常,而在2处却“叭”的一声响,并且还出现强烈火花,同时用电设备仍不工作,则搭铁处就在1与2两点之间的线路中。确定搭铁(短路)线路若开关接通的是几个用电设备,则说明其中某一个用电设备的线路中有搭铁(短路)处(见图)。为确定搭铁(短路)处,可先从该开关上拆下烧熔断丝一端所接通的全部线头,然后用蓄电池引来的火线分别地一一同它们相碰。若与1相碰时,用电设备工作正常,则说明该线路完好;若与2相碰时,“叭”的一声响且出现强烈火花,同时用电设备仍不工作,则说明该线路中有搭铁(短路)处(见图3b),然后参照图中的方法找出具体搭铁(短路)处即可。电路接触不良用电设备不能正常工作,时好时坏,在电流较大的电路中,接触处有发热或烧蚀现象。线头连接不牢、焊接不良、接触点氧化、脏污及插头松动等。外观检查各接触点的氧化、脏污及烧蚀情况,用导线把待检查的接触处短接,如果用电装置恢复正常,说明该处接触不良。切断电源开关,用万用表欧姆档测量接触处的接触电阻,根据数据大小,也可以判明故障部位。汽车出现的故障中,大部分都是由一些具体原因引发的。在检修时,如果能围绕着故障现象以及相关因素确定一条维修思路,并且沿着此思路去查找原因,一定会快速准确地排除故障。9电路搭铁不良的排查方法启动机运转以后,若蓄电池的搭铁线温度过高,搭铁处甚至有烧红的现象,说明蓄电池的搭铁线接触不良。 对于已经使用多年的老旧汽车,其搭铁部位都不同程度地存在氧化或者腐蚀。就是新车,由于在制造厂或经销商的露天停车场存放了很长时间,也容易发生搭铁不良的现象。可以在不带电的情况下测量搭铁点的电阻值,即用万用表的一根表笔可靠地连接搭铁线,另一根表笔与车身金属部分相连接,测量其间的电阻,若存在电阻,说明搭铁不良。采用模拟振动法检查。对于有怀疑的部位,可以在垂直方向和水平方向轻轻摆动搭铁线,模拟汽车行驶时的振动状态,同时观察相关部件的反应,检查搭铁线是否有虚焊、松动、接触不良或者导线断裂等现象。如果挪动某一搭铁线时故障再现或者故障消失,说明搭铁不良的地方就在此处。 测量电压降。在电路处于通电状态下,采用万用表测量搭铁点的电压降,其读数应当尽可能低(接近0)。具体方法是:启动发动机,使用万用表的直流电压档,将红表笔接触发电机的输出端,黑表笔接触发动机的机体,测出一个电压值;然后将红表笔接触发电机的输出端,黑表笔接触车架的金属部分,再测出一个电压值。正常情况下,这两个电压值应该是一致的。若前者数值大,后者数值小,相差以上,说明存在以上的电压降,它是由发动机机体与车架之间搭铁不良引起的。 注意:检测某点的搭铁情况时,应该测量该点对电源正极的电压,尽量不要测量该点对电源负极的电阻,这是因为万用表本身具有一定的内阻,测量出的电阻值误差较大。 采用试灯检查。在使用万用表检测电路尤其是电源线和搭铁线之后,最好用有负荷的试灯加以验证,这样可以避免“有电压无电流”的电气陷阱。四、防止电路搭铁不良的几项措施 为了确保启动机有足够的电压和电流,可以采用重复搭铁的方式,即用一根粗搭铁线,一端连接在启动机附近的车架上,另一端连接在启动机下的固定螺柱上,目的是减小搭铁回路的电阻,防止因启动机的固定架、固定螺柱等处接触不良引起电压降增大。在维修中如果拆下了某根搭铁线,必须装复原位。 建议不使用高压水冲洗汽车,否则很容易在搭铁处形成氧化和腐蚀。 对于确认搭铁不良的部位,先用细砂布打磨,将油漆或锈蚀物清理干净,然后涂上专用的导电胶,最后拧紧固定螺栓或者插好连接器,这样才能避免打铁不良的危害致谢感谢老师在百忙中对本论文的帮助与指导这是我们毕业时写的你略改动一下 希望能帮到你

关于汽车发动机的探讨学生姓名: X X 学号:xxxxxxxxxxx入学时间: 2004 年 9 月指导老师: x x 职称: 讲师 学 校: xxxxxxxxxxxxxxxxxxxxxxxxxxxx 目 录第一节 发动机的分类……………………………………………3第二节 发动机的总体构造………………………………………4第三节 四冲程发动机的工作原理………………………………6第四节 二冲程发动机的工作原理………………………………10第五节 发动机的主要性能指标与特性…………………………13致谢…………………………………………………………………16参考文献……………………………………………………………171关于汽车发动机的探讨内容提要:目前汽车普遍采用的是往复活塞式内燃机,发动机是汽车的心脏,它以其热效率高、结构紧凑、机动性强、运动维护简便的优点著称于世。本文针对发动机作出详细的讲解,包括发动机的分类、发动机的结构、发动机的工作原理,并据此分析汽车发动机的性能及主要指标。关键词:汽油机 柴油机 二冲程 四冲程 性能指标 特性2第一节 发动机的分类 发动机是将自然界某种能量直接转换为机械能并拖动某些机械进行工作的机器。将热能转化为机械能的发动机,称为热力发动机(简称热机),其中的热能是由燃料燃烧所产生的。内燃机是热力发动机的一种,其特点是液体或气体燃料和空气混合后直接输入机器内部燃烧而产生热能,然后再转变成机械能。另一种热机是外燃机,如蒸汽机、汽轮机或燃气轮机等,其特点是燃料在机器外部燃烧以加热水,产生高温、高压的水蒸气,输送至机器内部,使所含的热能转变为机械能。 内燃机与外燃机相比,具有热效率高、体积小、质量小、便于移动、起动性能好等优点,因此广泛应用于飞机、船舶以及汽车、拖拉机、坦克等各种车辆上。但是内燃机一般要求使用石油燃料,且排出的废气中所含有害气体成分较高。为解决能源与大气污染的问题,目前国内外正致力于排气净化以及其他新能源发动机的研究开发工作。 根据车用内燃机将热能转化为机械能的主要构件形式的不同,可分为活塞式内燃机和燃气轮机两大类。前者又可按活塞运动方式不同分为往复活塞式和旋转活塞式两种。往复活塞式内燃机在汽车上应用最广泛,是本文的主要讨论对象。汽车发动机(指汽车用活塞式内燃机)可以根据不同的特征分类: (1)按着火方式分类 可分为压燃式与点燃式发动机。压燃式发动机为压缩气缸内的空气或可燃混合气,产生高温,引起燃料着火的内燃机;点燃式发动机是将压缩气缸内的可燃混合气,用点火器点火燃烧的内燃机。 (2)按使用燃料种类分类可分为汽油机、柴油机、气体燃料发动机、煤气机、液化石油气发动机及多种燃料发动机等。 (3)按冷却方式分类可分为水冷式、风冷式发动机。以水或冷却液为冷却介质的称作水冷式发动机;以空气为冷却介质的称作风冷式发动机。(4)按进气状态分类可分为非增压(或自然吸气)和增压发动机。非增压发动机为进入气缸前的空气或可燃混合气未经压气机压缩的发动机,仅带扫气泵而不带增压器的二冲程发动机亦属此类;增压发动机为进入气缸前的空气或可燃混合气已经在压气机内压缩,藉以增大充量密度的发动机。3 (5)按冲程数分类 可分为二冲程和四冲程发动机。在发动机内,每一次将热能转变为机械能,都必须经过吸人新鲜充量(空气或可燃混合气)、压缩(当新鲜充量为空气时还要输入燃料),使之发火燃烧而膨胀作功,然后将生成的废气排出气缸这样一系列连续过程,称为一个工作循环。对于往复活塞式发动机,可以根据每一工作循环所需活塞行程数来分类。凡活塞往复四个单程(或曲轴旋转两转)完成一个工作循环的称为四冲程发动机;活塞往复两个单程(或曲轴旋转一转)完成一个工作循环的称为二冲程发动机。 (6)按气缸数及布置分类仅有一个气缸的称为单缸发动机,有两个以上气缸的称为多缸发动机;根据气缸中心线与水平面垂直、呈一定角度和平行的发动机,分别称为立式、斜置式与卧式发动机;多缸发动机根据气缸间的排列方式可分为直列式(气缸呈一列布置)、对置式(气缸呈两列布置,且两列气缸之间的中心线呈180。)和V形(气缸呈曲列布首,且两列气缸之问夹角为V形)等发动机。第二节 发动机的总体构造 发动机是一部由许多机构和系统组成的复杂机器。现代汽车发动机的结构形式很多,即使是同一类型的发动机,其具体构造也是各种各样的。我们可以通过一些典型汽车发动机的结构实例来分析发动机的总体构造。下面以CA1014系列轻型货车用的CA488Q型汽油发动机为例,介绍四冲程剐机的一般构造(图1-1)。(1) 机体组 CA488Q型发动机的机体组包括气缸盖14、气缸体7及油底壳37。有的发动机将气缸体分铸成上下两部分,上部称为气缸体,下部称为曲轴箱。机体组的作用足作为发动机各机构、各系统的装配基体,而且其本身的许多部分又分别是曲柄连杆机构、配气机构、供给系统、冷却系统和润滑系统的组成部分。气缸盖和气缸体的内壁共同组成燃烧室的一部分,是承受高温、高压的机件。在进行结构分析时,常把机体组列入曲柄连杆机构。(2) 曲柄连杆机构 曲柄连杆机构包括活塞13、连杆10、带有飞轮28的曲轴5等。它是将活塞的直线往复运动变为曲轴的旋转运动并输出动力的机构。(3) 配气机构 配气机构包括进气门19、排气门15、摇臂45、气门间隙调节器46、凸轮轴25以及凸轮轴定时带轮20(由曲轴定时带轮6驱动)等。其作用是使可燃混合气及时充入气缸并及时从气缸排除废气。4 图2-1 解放CA488Q型汽油机的构造5(4) 供给系统 供给系统包括汽油箱、汽油泵、汽油滤清器、化油器38、空气滤清器、进气管39、排气管53、排气消声器等。其作用是把汽油和空气混合为成分合适的可燃混合气供入气缸,以供燃烧,并将燃烧生成的废气排出发动机。 (5) 点火系统 点火系统的功用是保证按规定时刻及时点燃气缸中被压缩的混合气。其中包括供给低压电流的蓄电池和发电机以及分电器、点火线圈与火花塞等。 (6) 冷却系统 冷却系统主要包括水泵、散热器、风扇22、分水管以及气缸体和气缸盖里铸出的空腔——水套等。其功用是把受热机件的热量散到大气中去,以保证发动机正常工作。 (7) 润滑系统 润滑系统包括机油泵50、机油集滤器51、限压阀、润滑油道、机油滤清器等,其功用是将润滑油供给作相对运动的零件,以减少它们之间的摩擦阻力,减轻机件的磨损,并部分地冷却摩擦零件,清洗摩擦表面。 (8) 起动系统 包括起动机及其附属装置,用以使静止的发动机起动并转入自行运转。 车用汽油机一般都由上述两个机构和五个系统组成。第三节 四程发动机的工作原理一、四冲程汽油机工作原理 现代汽油发动机的构造如图3-1所示。气缸内装有活塞10,活塞通过活塞销、连杆11与曲轴12相连接。活塞存气缸内作往复运动,通过连杆推动 曲轴转动。为了吸入新鲜充量和排除废气,设有进、排气系统等。图3-2所示为发动机示意图。活塞往复运动时,其顶面从一个方向转为相反方向的转变点的位置称为止点。活塞顶面离曲轴中心线最远时的止点,称为上止点(TDC——Top Dead Center);活塞顶面离曲轴中心线最近时的止点称为下止点(BDC——Bottom Dead Centel),活塞运行的上、下两个止点之间的距离s称为活塞行程。曲轴与连杆下端的连接中心至曲轴中心的垂直距离月称为曲柄半径。对于气缸中心线与曲轴中心线相交的发动机,活塞行程5等于曲柄半径R的两倍。6四冲程发动机的工作循环包括四个活塞行程:进气行程、压缩冲程、作功行程、和排气行程。(1) 进气行程 汽油机将空气与燃料先在气缸的外部的化油器中、节气门体处或进气道内进行混合,形成可燃混合气后被吸入气缸。进气过程中进气门开启,节气门关闭。随着活塞从上止点向下止点移动,活塞上方的气缸容积变大,从气缸内的压力将到大气压以下,即在气缸内形成真空度。这样可眼燃混合气便经进气门被吸入气缸。由于进气系统的阻力,进气终了时气缸内的气体压力约为~。 (2) 压缩行程 为使吸入气缸的可燃混合气能迅速燃烧,以产生较大的压力,从而使发动机发出较大功率,必须在燃烧前将可燃混合气压缩,使其容积缩小,密度加大,温度升高,故需要有压缩过程。在这个过程中,进、排气门全部关闭,曲轴推动活塞由下止点向上止点移动一个行程,称为压缩行程。活塞到达上止点时压缩终了,此时,混合气被压缩到活塞上方很小的空间,即燃烧室中。可燃混合气压力升高到~,温度可达600~700K。压缩前气缸中气体的最大容积与压缩后的最小容积之比称为压缩比。7现代汽油发动机的压缩比一般为6~9(轿车有的达到9~11)。如一汽一大众捷达轿车EA827型发动机的压缩比为,而EA113型发动机的压缩比为。 压缩比越大,在压缩终了时混合气压力和温度越高,燃烧速度增快,因而发动机发出的功率增大,热效率提高,经济性越好。但压缩比过大时,不仅不能进一步改善燃烧情况,反而会出现爆燃和表面点火等不正常的燃烧现象。爆燃是由于气体压力和温度过高,在燃烧室内离点燃中心较远处的末端可燃混合气自燃而造成的一种不正常燃烧。爆燃时,火焰以极高的速率传播,温度和压力急剧升高,形成压力波,以声速向前推进。当这种压力波撞击燃烧室壁而时就发出尖锐的敲缸声。同时,还会引起发动机过热,功率下降,燃油消耗量增加等一系列不良后果。严重爆燃时,甚至造成气门烧毁、轴瓦破裂、活塞烧顶、火花塞绝缘体击穿等机件损坏现象。表面点火是由于燃烧室内炽热表面(如排气门头,火花塞电极,积炭)点燃混合气产生的另一种不正常燃烧现象。表面点火发生时,也伴有强烈的敲击声(较沉闷),产生的高压会使发动机机件承受的机械负荷增加,寿命降低。因此,在提高发动机压缩比的同时,必须注意防止爆燃和表面点火的发生。此外,发动机压缩比的提高还受到排气污染法规的限制。(3) 作功行程 在这个行程中,进、排气门仍旧关闭。当活塞接近上止点时,装在气缸体(或气缸盖)上的火化塞即发出电火花,点燃被压缩的可燃混合气。可燃混合气燃烧后,放出大量的热能,其压力和温度迅速增加,所能达到的最高压力p,约为3~5MPa,相应温度则为2200~2800K。高温、高压燃气推动活塞从上止点向F止点运动,通过连杆使曲轴旋转并输出机械能。它除了用于维持发动机本身继续运转而外,其余即用于对外作功。(4) 排气行程 可燃混合气燃烧后生成的废气,必须从气缸中排除,以便进行下一个工作循环。当膨胀接近终了时,排气门丌启,靠废气的压力进行自由排气,活塞到达下止点后再向上止点移动时,继续将废气强制排到大气中。活塞到上止点附近时,排气行程结束。由于燃烧室占有一定的容积,因此在排气终了时,不可能将废气排尽,这一8部分留下的废气称为残余废气。综上所述,四冲程汽油机经过进气、压缩、燃烧作功、排气四个行程,完成一个工作循环。这期问活塞在上、下止点问往复移动了四个行程,曲轴旋转了两周。二、四冲程柴油机工作原理现代柴油发动机的构造如图3-3所示。四冲程柴油机(压燃式发动机)的每个工作循环也经历进气、压缩、作功、排气四个行程。但由于柴油机的燃料是柴油,其粘度比汽油大,而其自燃温度却较汽油低,故可燃混合气的形成及着火方式都与汽油机不同。柴油机在进气行程吸人的是纯空气。存压缩行程接近终了时,柴油机喷油泵将油压提高到10MPa以上,通过喷油器喷人气缸,在很短时间内与压缩后的高温空气混合,形成可燃混合气。因此,这种发动机的可燃混合气是在气缸内部形成的。由于柴油机的压缩比高(一般为16~22),所以压缩终了时气缸内的空气压力可达~,同时温度高达750~1000K,大大超过柴油的自燃温度。因此,柴油喷入气缸后,在很短时间内与空气混合便立即自行发火燃烧。气缸内气压急剧上升到6~9MPa,温度也升到2000~2500K。在高压气体推动下,活塞向下运动并带动帅轴旋转而作功。废气同样经排气管排人大气中。柴油机与汽油机比较,各有特点。汽油机具有转速高(目前轿车汽油机最高9转速达5000~6000r/min,货车汽油机转速达4000r/min左右)、质量小、工作噪声小、起动容易、制造和维修费用低等特点,故存轿车和轻型货车及越野车上得到广泛的应用;其不足之处是燃油消耗率高,燃油经济性差。柴油机因压缩比高,燃油消耗率平均比汽油机低20%~30%左右,且柴油价格较低,所以燃油经济性好。一般装载质量为5t以上的货车大都采用柴油机;其缺点是转速较汽油机低(一般最高转速在2500~3000r/min左右)、质量大、制造和维修费用高(因为喷油泵和喷油器加工精度要求高)。但目前柴油机的这些缺点正在逐渐得到克服,其应用范围正在向中、轻型货车扩展。国外有的轿车也采用柴油机,其最高转速可达5000r/min。由此可见,四冲程发动机在一个工作循环的四个活塞行程中,只有一个行程是作功的,其余三个行程则是作功的辅助行程。因此,在单缸发动机内,曲轴每转两周中只有半周是由于膨胀气体的作用使曲轴旋转,其余一周半则依靠飞轮惯性维持转动。显然,作功行程时.曲轴的转速比其他三个行程内的曲轴转速要高,所以曲轴转速是不均匀的,因而发动机运转就不平稳。为了解决这个问题,飞轮必须做成具有很大的转动惯量,而这样做将使整个发动机质量和尺寸增加。显然,单缸发动机工作振动大。采用多缸发动机可以弥补上述缺点。因此,现在汽车上基本不用单缸发动机。用得最多的是4缸、6缸、8缸发动机。在多缸四冲程发动机的每一个气缸内,所有的工作过程是相同的,并按上述次序进行,但所有气缸的作功行程并不同时发生。例如,在4气缸发动机内,曲轴每转半周便有一个气缸在作功;在8缸发动机内,曲轴每转1/4周便有一个作功行程。气缸数越多,发动机的工作越平稳。但发动机气缸数增多,一般将使其结构复杂,尺寸及质量增加。第四节 二冲程发动机的工作原理一、二冲程汽油机工作原理二冲程发动机的工作循环是在两个活塞行程内,即曲轴旋转一周的时间完成的。发动机气缸上有三个孔,这三个孔可分别在一定的时刻为活塞所关闭。进气孔与化油器相连通,可燃混合气经进气孔流入曲轴箱,继而可经扫气孔进入气缸内,而废气则可经过与排气管连通的排气孔被排出。10活塞向上移动,到活塞将三孔都关闭时,开始压缩在上一循环即已吸入缸内的可燃混合气,同时在活塞下面的曲轴箱内形成真空度(这种发动机的曲轴箱必须足密封的)。当活塞继续上行时,进气孔开启,在大气压力作用下,可燃混合气便自化油器流入曲轴箱。活塞接近上止点时,火花塞发出电火花,点燃被压缩的混合气。高温、高压气体膨胀迫使活塞向下移动。进气孔逐渐被关闭,流人曲轴箱的混合气则因活塞的下移而被预先压缩。当活塞接近下止点时,排气孔开启,废气经过排气孔、排气管、消声器流到大气中。受到预压的新鲜混合气便自曲轴箱经扫气孔流入缸内,并扫除废气。废气从气缸内被新鲜混合气扫除并取代的过程,称为气缸的换气过程。由上述可知,在二冲程发动机内,一个工作循环所包含的两个行程是: (1) 第一行程 活塞自下止点向上移动,事先已充入活塞上方气缸内的混合气被压缩,新的可燃混合气又自化油器被吸入活塞下方的曲轴箱内。 (2) 第二行程 活塞自上止点向下移动,活塞上方进行着作功过程和换气过程,而活塞下方则进行可燃混合气的预压缩。 为了防止新鲜混合气大量与废气混合并随废气一起排出气缸而造成浪费,活塞顶做成特殊的形状,使新鲜混合气的气流被引向上部。这样还可以利用新鲜混合气来扫除废气,使排气更为彻底。但是在二冲程发动机中,要完全避免可燃混合气的损失是很困难的。 图4-1为二冲程发动机示功图。它的工作循环如下:活塞由下止点向上止点运动,当将排气孔(a点)关闭时,压缩过程开始。到上止点前开始点火燃烧,缸内压力迅速增高,叮段即燃烧过程。接着活塞下行膨胀作功,一直到6点,排气孔被打开,开始排气。此时,缸内压力较高,一般为0.3~0.6MPa,11故废气以声速从缸内排出,压力迅速下降。当活塞继续下移将换气孔打开,曲轴箱内的新鲜可燃混合气进入气缸。这段时问里的排气称为自由排气。排气一直延续到活塞下行到下止点后再向上将排气孔关闭为止。示功图bda曲线为二冲程发动机的换气过程,大约占130度~150度曲轴转角。接着活塞继续向上,便重复压缩过程,进行新的循环。 二冲程化油器式发动机与四冲程化油器式发动机相比较,其主要优点如下: 1)曲轴每转—周就有一个作功行程,因此,当二冲程发动机的工作容积和转速与四冲程发动机相同时,在理论上它的功率应等于四冲程发动机的2倍。 2)由于发生作功过程的频率较高,故二冲程发动机的运转比较均匀平稳。 3)由于没有专门的换气机构,所以其构造较简单,质量也比较小。 4)使用方便。因为附属机构少,所以易受磨损和经常需要修里理的运动部件数量也比较少。 由于构造上的原因,二冲程发动机的最大缺点是不易将废气自气缸内排除得较干净,并且在换气时减少了有效工作行程。因此,在同样的工作容积和曲轴转速下,二冲程发动机的功率并不等于四冲程发动机的2倍,只等于~倍;而且在换气时有一部分新鲜可燃混合气随同废气排出,因此二冲程发动机不如四冲程发动机经济。 由于上述缺点,二冲程化油器式发动机存汽车上较少被采用。但这种发动机的制造费用低廉,构造简单,质量小,所以在摩托车上广泛应用。二冲程发动机可以通过减少扫气损失来改善燃油经济性差的缺点,因此电控喷射的二冲程发动机在汽车上得到了发展。二、二冲程柴油机工作原理二冲程柴油机的工作过程和二冲程化油器式发动机的工作过程相似。所不同的是进入柴油机气缸的不是可燃混合气,而是纯空气。空气由扫气泵提高压力以后,经过装在气缸外部的空气室和气缸壁(或气缸套)上的许多小孔进入气缸内,废气经由气缸盖上的排气门排出。在第一行程中,活塞自下止点向上止点移动。行程开始前不久,进气孔和排12气门均已开启,利用自扫气泵流出的空气(压力约为~)使气缸换气。当活塞继续向上移动,进气孔被遮盖,排气门也被关闭,空气受到压缩。当活塞接近上止点时,气缸内的压力增到3MPa,温度约升至850~1000K,燃油在高压(约17~20Mpa)下喷入气缸内,致使燃油自行着火燃烧,使气缸内压力增高。在第二行程中,活塞受燃烧气体膨胀作用自上止点向下止点移动而作功。活寒卜行2/3行程时排气门开启,排出废气,此后气缸内压力降低,进气孔开启,进行换气。换气一直继续到活塞向上移动1/3行程的距离,直到进气孔完全被遮盖为止。这种形式的发动机称为气门—窗孔直流扫气柴油机。与四冲程柴油机比较,二冲程柴油机的优缺点与上面讨论二冲程汽油机时所指出的优缺点基本相同,但由于二冲程柴油机用纯空气扫除废气,没有燃料损失,故经济件较高。第五节 发动机的主要性能指标与特性发动机的主要性能指标有动力性能指标(有效转矩、有效功率、转速等)、经济性能指标(燃油消耗率)和运转性能指标(排气品质、噪声和起动性能等)。一、动力性能指标(1)有效转矩发动机通过飞轮对外输出的平均转矩称为有效转矩。有效转矩与外界施加于发动机曲轴上的阻力矩相平衡。(2)有效功率发动机通过飞轮对外输出的功率称为有效功率。它等于有效转矩与曲轴角速度的乘积。发动机曲轴转速的高低,关系到单位时间内作功次数的多少或发动机有效功率的大小,即发动机的有效功率随曲轴转速的不同而改变。因此,在说明发动机有效功率的大小时,必须同时指明其相应的转速。在发动机产品标牌上规定的功率及其相应的转速分别称作标定功率和标定转速。发动机在标定功率和标定转速下的工作状况,称为标定工况。标定功率是发动机所能发出的最大功率,它是根据发动机用途而制定的有效功率最大使用限度。同一种型号的发动机,当其用途不同时,其标定功率值并不相同。按照汽车发动机可靠性试验方法的规定,汽车13发动机应能在标定工况下连续运行300~1000h。二、经济性能指标发动机每发出1 kw有效功率,在1h内所消耗的燃油质量(以g为单位),称为燃油消耗率。 发动机的性能是随着许多因素而变化的,其变化规律称为发动机特性。三、运转性能指标发动机的运转性能指标主要指排气品质、噪声、起动性能等。由于这些性能不仅与使用者利益相关,更关系到人类的健康,因此必须指定共同遵守的统一标准,并给予严格控制。(1)排气品质发动机的排气中含有对人体有害的物质,它对大气的污染已形成公害。为此,各国采取了许多对策,并制定相应的控制法规。发动机排出的有害排放物,主要有氮氧化合物,碳氢化合物(HC)和一氧化碳(CO)等以及排气颗粒。(2)噪声噪声会刺激神经,使人心情烦躁,反应迟钝,甚至造成耳聋,诱发高血压和神经系统的疾病,因此,也必须用法规形式进行限制。汽车是城市中主要的噪声源之一,发动机又是汽车的主要噪声源,故必须给予控制。在我国制定的汽车加速行驶车外噪声限值标准(GBl495--2002)中,对不同分类的汽车以及同一分类中不同总质量及发动机不同额定功率的汽车,详细制定了噪声限值。(3)起动性能起动性能好的发动机在一定温度下能可靠地发动,起动迅速,起动消耗的功率小,起动期磨损少。发动机起动性能的好坏除与发动机结构有关外,还与发动机工作过程相联系,它直接影响汽车机动性、操作者的安全和劳动强度。我国标准规定,不采用特殊的低温起动措施,汽油机在-10℃、柴油机在-5℃以下的气温条件下起动发动机时,15s以内发动机要能自行运转。四、发动机的速度特性当燃料供给调节机构位置固定不变时,发动机性能参数(有效转矩、功率、燃油消耗率等)随转速改变而变化的曲线,称为速度特性曲线。14如果改变燃料供给调节机构的位置又可得到另外一组特性曲线,则当燃料供给调节机构位置达到最大时,所得到的是总功率特性,也称发动机外特性;而把燃料供给调节机构其他位置下得到的特性称为部分速度特性。外特性曲线下标出的发动机最大功率和最大有效转矩及其相应的转速,是表示发动机性能的重要指标。要联系汽车使用条件,诸如道路情况所要求克服的阻力数值、最高车速等,来分析发动机外特性曲线是否符合要求。五、发动机工作状况发动机运转状态或工作状态(简称发动机工况)常以功率和转速来表征,有时也用负荷与转速来表征。 发动机负荷是指发动机驱动从动机械所耗费的功率或有效转矩的大小;也可表述为发动机在某一转速下的负荷,就是当时发动机发出的功率与同一转速下所可能发出的最大功率之比,以百分数表示。15致 谢本论文的设计历时三个多月的时间。在此我要向我的讲师x老师表示最诚挚的感谢。从课题的设计方案、课题的编辑到论文的撰写和修改的各个阶段,都得到了钱老师的认真指导、严格要求。钱老师渊博的学识、严谨的治学精神以及平易近人的态度,使我在学习知识的同时,如浴春风。在整个课题的研究和设计过程中,也得到了同组的其它同学的支持和帮助,大家一起克服了一个又一个难题,在此表示感谢。在大学四年的学习过程中,我的学识有了长进,能力有了提高。为此我要感谢我的家人,以及所有教导过我的老师和长辈们,是他们鼓励着我前进。另外我要感谢我的朋友和同学,使我每天都轻松、愉快。16【参考文献】1、陈家瑞 《汽车构造 上 》 机械工业出版社2、陈家瑞 《汽车构造 下 》 机械工业出版社3、扶爱民 《汽车运用基础》 电子工业出版社4、扶爱民 《汽车发动机构造与维护》 电子工业出版社5、巫安达 乔国荣 《汽车维护技术》 高等教育出版社6、凌凯汽车资料编写组 《汽车原理》 北京邮电大学出版社17

道路落叶清扫装置毕业论文

工程造价即工程的建造价格,也就是为完成一项工程的建设所需的投资总额.近年来,我国投入大量的资金建设民用建筑,以改善居民的居住条件。如何才能有效地控制造价,合理利用国家有限资源呢?工程造价控制的关键在于施工前的投资决策和设计阶段,而在项目作出决策后,控制工程的关键在于设计。民用建筑设计是根据用户对功能的要求,具体确定建筑标准结构形式建筑物的空间和平面布置以及建筑群体的合理安排的设计。如何使设计在满足功能要求符合国家标准,保护人民的生命财产安全的前提下,能经济合理,使工程造价得到有效控制,应从以下几个方面进行考虑。1、住宅小区规划设计小区规范设计必须满足人们居住和日常生活的基本需要.在节约用地的前提下,既要为居民的生活、工作创造方便舒适、优美的环境,又能体现独特的风格。小区规划设计应根据小区的基本功能要求确定小区构成部分的合理层次与关系,据此安排住宅建筑公共建筑、管网道路及绿地的布局,确定合理的人口与建筑密度、房屋间距与建筑层数,合理布置公共设施项目的规模及服务半径,以及水、电、热、燃气的供应等,并划分包括土地在内的上述部分的投资比例。最后,根据用地指标、密度指标和造价指标来评价小区规划设计的经济合理。2、住宅建筑的平面布置。在多层住宅建筑中,墙体所占比重大,是影响造价高低的主要原因,衡量墙体比重大小,常采用墙体面积系数(墙体面积/建筑面积)。尽量减少墙体面积系数,它与住宅建筑平面布置层高单元组成等均有密切关系。合理加大建筑进深,减少外墙长度是减少墙体面积系数,降低造价、提高经济效果的主要措施之一。在相同建筑面积时,住宅建筑的平面形状不同,住宅的建筑周长系数(即每平米建筑面积所占外墙长度)也不同。它按圆形、正方形、矩形T 形的次序依次增大,即外墙面积墙身基础墙身内外表面装修面积依次逐渐增大o但由于圆形建筑施工复杂,施工费用较矩形增加20%~30%,故其墙体工程量的减少不能使建筑工程造价降低,而且用户使用不便。因此,一般都建造矩形和正方形住宅,既利于施工,又能降低成本和使用方便。在矩形住宅建筑中,又以长:宽 =2:1为佳。因为房屋增加到一定程度,就要设置带有二层隔墙的伸缩缝;当长度超过90米时,就必须贯通式过道。这些都要增加造价,所以一般住宅单元以 3~4个住宅单元、房屋长度60~80米较为经济。在满足住宅功能和质量前提下,加大住宅进深,即采用大开间,对降低工程造价有明显效果。3、住宅的层高和净高。住宅的层高和净高,直接影响工程造价,这是因为层高和净高增加,墙体面积增加,柱体积增加,并带来基础管线采暖等因素也使造价增加。当层高从3米降到米,平均每套住宅综合造价下降4%-5%,并可节约材料、节约能源,有利于抗震口因此,住宅层高不应超过米。4、住宅的层敛。民用建筑按层数分为低层、多层、高层住宅,一般来讲,在中小城市,以建多层住宅较为经济,多层住宅具有降低造价和使用费用以及节约用地的优点。在大城市可沿主要街道建设部分中、高层住宅,以利用空间,美化市容。5、住宅单元组成、户型和住户面积。住宅单元的组成是否合理是关系到适用与经济的重要问题,应根据家庭成员的组成情况、职业情况来确定每单元的房间大小和房间组合。建户型,是指每户有几个居室和组合方式以及厨房、卫生间的合理布置。单元组成和户型设计应尽量使结构面积减小,有效面积增加,同时,增大房屋使用面积,使内墙隔墙在建筑面积中所占比重减小。6、住宅结构与建筑材料的设计选择。建筑结构主要有:预制结构、现浇结构、装配整体式结构等口建筑材料也多种多样。应在满足结构要求的情况下,根据实际情况,因地制宜地取材,采用最经济合理的结构形式和建筑材料。这样,从这几个方面来优选设计方案,把民用建筑的工程造价在设计阶段得以控制

3、4月份是樟树的落叶季节,特别是雨后的落叶黏在地上,极难清扫,给环卫工人的保洁作业带来了巨大的压力和难度,为此城管局提前制定方案,提前部署多措并举全力保障落叶季节道路清洁。一是合理调整人员班次。在重要时段增加作业人员,延长保洁时间,采取不间断、不定时巡回保洁方式,重点对门户区、生活区等落叶密集路段加强保洁力度。二是增加机械作业频率。科学调配机械车辆,发挥机扫车、洒水车等车辆的作业优势,特别针对滨海路、环岛南路及各支路落叶相对严重的地段,由原有每天两班作业调整为三班作业,增加中午时间段机械循环作业次数,提高落叶清扫率。三是提高清运效率。安排专人调度生活垃圾倾倒时间和点位,减少落叶堆积滞留时间,保障中转站落叶收集、运程序畅通。同时加强全体管理人员及班组长对落叶比较严重的道路巡查和管理,及时督促协助一线作业人员进行清扫,确保圆满完成落叶期间的卫生保障任务。

“落叶不扫”错误模式应停止近来,某地在市内为了打造“落叶景观”,在适合的时间段和天气保留路面落叶,以美化城市环境。该市这种做法引发了人们的热议。该市的想要美化环境的想法固然没错,但是利用落在地上的已经没有生命力的叶子来美化环境,却难以令人苟同。树木将黄叶全部落下是一个十分漫长的过程,要形成铺满道路的落叶景观,即使不需要一棵树将叶子落光,也需要很多时间,在这么长的时间里,谁能保证刚形成的“落叶景观”不被车或行人破坏呢?即使不被破坏,经过长时间的落叶之后,虽然落叶能够铺满道路,但第一批落下的叶子已经腐败,整个路面黄中带棕,甚至黄中带黑,还带有难闻的气味。这样一来,不仅没有形成好的“落叶景观”,还造成了落叶清理上的困难。而从实际情况看来,一个城市中并没有那么多密集的树,想要形成大量“落叶景观”也很困难。这样有、无落叶的地方形成强烈对比,让人有凌乱之感。从另一个方面来看,制造“落叶景观”也是不合理的。若是这“落叶景观道”放在人多的地方,虽然能让更多人看到“落叶美景”,但是人人都站在上面拍照,就会使景观被破坏。虽然“落叶景观”不会怎么被破坏,但没有欣赏的人,它就失去了价值,并且浪费了宝贵的落叶资源。其次,地上太多落叶会影响人们日常的出行。铺着落叶的地面相比普通路面更为光滑,再加上底层腐败的落叶产生的水分,行人在上面行走极易滑倒,造成不必要的损失。自行车、汽车等交通工具在落叶上行驶,也易将落叶卷进车轮中,使车轮被卡住或造成严重的事故。总的来说,“落叶不扫”模式都是不合理的,“落叶景观道”就算能够美化环境,可在这偌大的城市中,其效果也微乎其微,更何况还有许多不好的影响。一个城市要是想美化环境,就应该多绿化、少砍树,减少废气、废水的排放,同时呼吁人们多乘公共交通工具或自行车,才能有效美化环境。“落叶不扫”模式应停止,美化环境请使用正确的方法。

stata毕业论文数据清洗

stata分析问卷数据清洗内容很多,可以使用网页在线版本的spssau进行分析,智能化分析结果,人代智能时代的好东西,教授让用的好用

计量经济学stata感悟 计量经济学是应用经济学中非常重要的一个分支,它的目的是通过运用数理统计方法建立经济模型,定量评估经济理论、检验假设以及解决经济问题。Stata是一种常用的应用软件,可以实现计量经济学的数据处理、模型建立和结果分析。在学习和应用计量经济学和Stata的过程中,我得到了许多启发和感悟。 数据分析的基础 在计量经济学中,数据分析是非常重要的一个环节。通过对数据进行分析,可以建立合理的经济模型,并对经济理论进行验证。在使用Stata进行数据分析时,要注意数据的准确性和完整性。在数据清洗和处理的过程中,要严格遵循数据处理的原则和方法,并及时发现和处理异常数据点。另外,在分析数据时还需要注意变量之间的关系。要根据变量之间的相关性来选择合适的分析方法,避免出现多重共线性等问题。对于缺失数据的处理,也需要根据情况选择合适的方法,如删除、插补和模型估计等。 模型建立的思路 模型建立是计量经济学中的核心环节之一。在建立模型时,要注意选取合适的变量,并根据经济理论和数据特点进行合理的假设。在选择变量时,还要注意变量的可观测性和可操作性,并尽量避免使用冗余变量和无关变量。在建立模型的同时,还需要注意模型的参数估计和效果评估。对于不同的模型,可以使用不同的方法进行参数估计,如最小二乘法、极大似然法等。在评估模型效果时,可以采用不同的评价指标,如R方、调整R方、残差平方和等。此外,还可以使用F检验、t检验等方法对模型效果进行显著性检验。 结果分析的应用 在进行计量经济学应用时,要注意结果分析的应用和实践。通过对模型的参数估计和效果评估,可以对经济理论进行定量验证,并得到相关政策的建议和指导。此外,在进行实践应用时,还需要对模型的可靠性和鲁棒性进行检验,避免模型的误导性和失真性。总之,计量经济学和Stata是非常实用的工具,可以有效地解决经济问题,并为经济决策提供科学的依据。在进行计量经济学应用时,要注意数据分析的基础、模型建立的思路和结果分析的应用,以提高计量经济学应用的精度和实效性。

剔除变量***drop *** 当观测值符合某条件时,剔除观测值:drop if ***

自动清洗机毕业论文

超声波清洗机原理主要是通过换能器,将功率超声频源的声能转换成机械振动,通过清洗槽壁将超声波辐射到槽子中的清洗液。由于受到超声波的辐射,使槽内液体中的微气泡能够在声波的作用下从而保持振动。破坏污物与清洗件表面的吸附,引起污物层的疲劳破坏而被驳离,气体型气泡的振动对固体表面进行擦洗。

超声波清洗机工作原理超声波清洗机原理:简单的超声波清洗机由超声波发生器和清洗器(槽)两大部分组成。高频振荡器产生超声频电流,传给换能器(由绕有线圈的环状镍块组成),超声频电流通过换能器线圈时产生电磁场,在电磁场作用下,换能器镍环的直径大小周期性的变化而发生振动,振动频率约20千周。超声波振动通过与换能器连接的液体容器底部而传播到液体内,对产品进行清洗。

超声波清洗是基于超声波在清洗液体介质中传递时特有的“空化效应”物理作用,“空化效应”形成微观强烈冲击波和高速射流作用于被清洗物件表面,从而使污物迅速粉碎、剥离,达到高质量、高效率清洗目的。超声波能力集中,其方向性好、穿透能力强,以水为媒介时,水分子的压力达到一定程度,会迅速形成膨胀的闭合分子并且炸裂,直接对肉眼看不见的污垢进行反复冲击。超声波每秒数万次地负压膨大和正压强烈压缩爆破无数“空穴”,高频率产生无数微观冲击波,使得超声波对于侵入清洗液中被洗物件复杂内外表面形状、狭缝、深孔、拐角、死角等部位独具卓越的洗净能力和清洗效率是其他方法无法比拟和替代的。

webntibuuco

相关百科

热门百科

首页
发表服务