首页

毕业论文

首页 毕业论文 问题

图像边缘处理毕业论文

发布时间:

图像边缘处理毕业论文

呵呵,你去你们学校图书馆网站上的论文库里下载一篇相关方面的硕士论文吧,多下几篇,凑一凑就能够数了

图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!

图像分割技术研究

摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。

关键词:图像分割、阈值、边缘检测、区域分割

中图分类号: 文献标识码: A

1引言

随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。

2图像分割方法

图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。

基于灰度特征的阈值分割方法

阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。

这类方法主要包括以下几种:

(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。

(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。

(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。

边缘检测分割法

基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。

基于区域的分割方法

基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。

区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。

结合特定工具的图像分割技术

20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。

基于数学形态学的分割算法

分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。

基于模糊数学的分割算法

目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。

这类方法主要有广义模糊算子与模糊阈值法两种分割算法。

(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。

(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。

基于遗传算法的分割方法

此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。

基于神经网络分割算法

人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。

图像分割中的其他方法

前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。

(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。

(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的

(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。

(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。

3图像分割性能的评价

图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。

4图像分割技术的发展趋势

随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。

参考文献

[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003

[2] 章毓晋.图像分割[M].北京:科学出版社,2001.

[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.

[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.

点击下页还有更多>>>图像分割技术论文

1 基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像 直接分割图像 处理后的分割图像 2 基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。

图像视频处理毕业论文

原动画后期制作研究摘要:随着电脑技术的快速发展 其硬件和软件随着时间的推移在快速更新,Pc处理能力在迅速增长 硬盘的容量在不断增大。现在一台高配置的Pc机已经可以满足相当一部分动画制作的计算及处理上的需要.已经具备了利用较为廉价的电脑来完成学生的动画作品后期制作的条件。近几年来,计划开设和已开设动画专业的院校的数量在逐年增长。本文就原动画后期制作方面作一些探讨。关键词:动画,后期制作原动画学生短片的制作分成三个阶段:前期创作、中期创作及后期创作 前期和中期创作的任务主要有剧本的完成、根据剧本将人物和场景设计出来、分镜,并把每一卡的原画画好,从而完成了纸面上的工作。但这只是停留在纸上,是静止的.还不会动。作为动画专业的学生,需要把他所想的和他所画的以动画片的形式展现出来 这就要用到电脑作为制作工具来完成最后一个阶段的工作。用电脑来完成后期制作.尽管电脑只是一个工具 但实际上会涉及很多环节,要扫描、上色,对图片进行一些处理 制作律表并渲染、收集合适的音频素材和录制声音 然后到非线性编辑软件编辑合成并生成视频文件。再由此视频文件压缩成MPEG-1和DVD兼容的MPEG-2文件 接下来才可以刻录成VCD和DVD光盘,作为毕业作品用于播放、展示和交流。整个后期制作过程中,会涉及到好几个软件,同时还会碰到很多概念和技术问题 譬如压缩、场、AIpha通道、VCD和DVD的标准等问题,很多学生对电脑的基础知识不够扎实 对后期所用到的软件学得比较肤浅 这样在后期这个过程中不可避免地会出现很多问题 各个环节都会碰到问题。鉴于这几年所碰到的问题 选择一种在学校环境下简便易行的后期制作方案就十分有必要这有助于学生更好地创作。计算机动画的关键技术体现在计算机动画制作软件及硬件上。计算机硬件在条件允许的情况下,尽量配置得高一点,硬盘尤其要大一点。计算机动画制作软件目前很多不同的计算机动画软件.有不同的动画效果,虽然制作的复杂程度不同 但动画的基本原理是一致的。考虑到价格和易用性等因素,我们选用了日本生产的一种计算机二维动画软件——Retas。后期制作的第一个环节是把已经画好的每一卡画稿在Retas的TraceMan模块中将动画铅笔稿序列和背景通过扫描仪输入电脑并将轮廓线修整到最适合上色的状态。TraceMan模块中一次可以同时辨认7种颜色的色线,以便在序列上色过程中对轮廓线进行保护,由此把纸上的画稿转换成TGA格式的数字图像。接着在PaintMan模块中 为描线后的铅笔动画稿上色.线条和颜色可以保存在不同的层里。上完色后 有些图片可以到Photoshop中进行进一步处理,然后在CoreRetas模块中制作每一卡的律表 其中可包含多达1OO层的二维动画.能够自由全面地模拟镜头工作。支持律表的嵌套。实现复杂的律表合成:可分别控制连续关键帧和不连续关键帧:通过Plugin插件可对每层和每帧进行特殊效果控制 可满足高清晰度电影和电视的要求,制作完成的动画可事先预览,满意后经渲染输出成一视频文件。为了尽可能保证视频质量,我们选用无压缩的AVI或MOV格式.但同时也使得每一个镜头的视频文件所占用的硬盘空间极为庞大。当每一个镜头都渲染完成后 再到Premiere软件中串起来添上字幕和音频,最后经渲染形成一个视频文件。在Premiere6 5中可以直接渲染成MPEG-1和MPEG-2格式的视频文件 但生成的视频图像的质量不太令人满意。如果生成有压缩的或DV格式的AVI文件,其视频质量也不太好 尤其是一些镜头变化比较快的地方容易出现马赛克现象,颜色过渡比较丰富的地方会出现色块,缺乏颜色的平滑过渡。如果用这个AVI文件去经编码转成MPEG一1和MPEG一2格式的视频文件,视频质量会更差。由于劣质的视频图像质量会严重影响播放效果 对正确评价毕业创作带来负面影响。为了在非专业设备的情况下尽可能得到高的视频图像质量 渲染时生成无压缩的AVI或MOV格式的视频文件作为母版是上上之选。但在以前,我们在这一个环节上出现问题,却一时不知其中缘由。由于一个五分钟左右或者更长的动画短片,其前期和中期创作的任务就非常繁重,光是画稿就要上千张.而毕业创作的整个时间也就4个月左右,到了后期制作往往所剩时间已不多,然而后期制作的环节很多 而且都是必须做的.工作量很大,加上对各个软件的使用和理解上还有偏差.这样一来,加班加点便是家常便饭。如果对片子想要精雕细琢,就需要付出更加艰辛的劳动。同时.由于对毕业创作的进程把握上不是很有经验.到了毕业设计交稿的日子.有些学生还没有把整个片子最后渲染出来:时间线上已编辑好的.却无法把整个片子按无压缩的方式生成AVI或MOV格式的视频文件 由于时间紧迫,没有太多的时间来分析问题.解决问题。事后经查阅资料,发现这个问题实践上不是由Premiere软件引起的.而是出在wi ndow s操作系统上。当时我们采用的操作系统为Windows 2000专业版,但硬盘的每个逻辑盘采用了FAT32格式.这种格式下。单个文件其大小最多只能达到4GB.而1 8分钟DV格式的AVI文件其大小达到4GB:一分钟720 x 576无压缩AVI格式的视频文件的大小为1 75GB,二分钟多一点的不压缩视频文件就达到4GB,已达到FAT32格式文件的上限,就停止渲染,而毕业作品的片长都在三分钟以上.所以就没办法用无压缩的AVI格式渲染整个片子。由于单个文件4GB对于绝大多数用户来说是不可想象的也就不会出现这样的情况 所以很少会有书籍或资料提到这个实际上由操作系统和文件分配表引起的问题。硬盘逻辑分区只要采用NTFS格式,文件大小就不会有限制 这时受限的是其他因素,例如视频文件所在硬盘逻辑盘所剩空间的大小。对于有非线性编辑板卡的机器,一般采用Windows NT操作系统.其文件格式已采用NTFS 就不会出现单个文件最多4GB的问题。找到问题的症结后,考虑到有些学生的片子可能会比较长,对二年前购买的机器进行升级,扩充内存,加装硬盘,并把所有机器的每个逻辑分区都用NTFS格式,其中有一个分区的容量达到60GB或更大,用来存放不压缩的视频文件。由于有着清晰的后期制作思路,创作得以顺利进行,这次最长的一部片子时间长达1 2分48秒,渲染出的视频文件大小达22 4GB。

数字图像处理方面了解的了。

数字图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。这里学术堂为大家整理了一些数字图像处理毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计

数字图像处理,MATLAB,可好 ,

图像算法处理毕业论文

目录 一.引言……………………………………………………………………2 二.设计方法和创意 ………………………………………………………2 三.实例制作 …………………………………………………………………3 小结 …………………………………………………………………………8 参考文献 ………………………………………………8 一.引言 近年来,计算机图像技术的飞速发展和应用使个人电脑上的美术创作进入一个新的阶段,各种图像处理软件也越来越完善,普及程度不断的提高。其中的图像软件处理工具Photoshop是目前公认的、较好的通用平面美术设计软件,它功能完善,性能稳定,使用方便。Photoshop所具有的功能包括:可以对图像进行修饰、对图形进行编辑、对图像的色彩进行处理等,此外,还有绘图和输出功能。在实际生活和工作中,人们可以将数码照相机拍摄下来的照片利用Photoshop进行编辑和修饰,还可以利用PhotoShop为图像制作特效效果,如果和其它工具软件配合使用,则可以进行高质量的广告设计、美术创意和三维动画制作。由于PhotoShop功能强大,目前,正在被越来越多的图像编排、广告和形象设计以及婚纱影楼等领域广泛使用,是一个非常受欢迎的应用软件。本毕业论文中的设计实例就采用了Photoshop这一图像处理软件。 二.设计方法和创意 利用图像处理软件制作图形,要产生一个好的作品包括三个方面的内容:创意、构图能力、计算机表达。即首先要有好的创意,然后对其进行粗略构图,最后借助计算机手段,制作出所构想的最终效果图。当然,也有一些经典的创意,只用寥寥数笔即可表现,但这种情况非常少。上述所说的三个方面的内容,其中的创意需要具备跳跃思维,灵活善变,也与创作者的美术素养相关;而构图则主要指平面构成,色彩构成和立体构成。对于平面设计来说,平面构成和色彩构成尤为重要,它需要通过合理组织各种元素,确定视觉中心,使画面美观并能引导读者的目光和兴趣;计算机表达则是利用有关的图像处理软件工具,将构思的图像效果制作出来。本毕业论文的实例制作,就是利用Photoshop来制作水滴的效果图,设计思想是利用已有的素材,制作出将一个杯子的水倒入另一个杯子后产生水滴的效果。 三.实例制作 本实例制作通过制作相关素材,并运用了Photoshop中的笔刷、扭曲/波浪滤镜、自由变形等工具,最终合成所制作的素材以得到所构思的效果图。具体制作步骤如下: 1.新建一个100x100像素图像文件,背景为蓝色; 2.新建透明图层2,建立该图层的目的是因为本设计的主要操作是在图层2中进行的; 3.利用工具面板中的椭圆选框工具在图层2中选出一个圆形区域。 4.选取工具面板画笔工具(画笔颜色选白色,画笔大小13,不透明度100%)在选区的四周绘制线条。 5.再将画笔的不透明度调节为50%,绘制如下的线条;此时可以看到,所绘制的效果已经很像一颗水珠了。 6.选中图层2,可按Ctrl+A全选,拷贝图层2;然后新建一新的图像文件,大小为200x200,背景设为蓝色;把前一图像文件中的图层2中所制作好的水珠粘贴到该新建图像文件中,多粘贴几个,并调节好大小,然后合并为图层7。 7.选中当前图层(图层7),利用菜单命令:滤镜→扭曲→波浪,调节好参数值。即可得到 8.对图层7再进行波浪变形,参数要有所不同,以产生随机效果。 9.复制粘贴图层7以得到图层8,在图层8中利用自 由变换工具调节大小和角度。 10.再粘贴一次,完成后的效果。 11.对图层8、图层9分别再使用一次波浪变形滤镜; 12.将图层7、8、9合并,并作拷贝,导入一幅图片。 13.粘贴图层,用自由变换工具调整到合适位置,到此为止,整个效果图即制作完毕。 小结 平面设计是一项相当复杂的工作,要设计一件比较理想的平面作品,设计者需要具有一定的美术知识和素养。并且需要知道色彩的构成、分类与感情的关系,以及调和与配色等一系列美术知识,需要具备一定的设计经验。还要懂得如何使用相关平面设计软件,通过这次的毕业设计通过本次毕业设计,使我对Photoshop有了很深的认识,对平面设计的布局、创意都有了一定的提高。

数字图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。这里学术堂为大家整理了一些数字图像处理毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计

数字图像处理OK,帮你处理。

数字图像处理方面了解的了。

图像处理方向毕业论文

数字图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。这里学术堂为大家整理了一些数字图像处理毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计

图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。学术堂在这里为大家整理了一些图像处理本科毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计

数字图像处理,MATLAB,可好 ,

数字图像处理方面了解的了。

图像视觉处理毕业论文

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

:构图图形的层次感 图形和元素之间的层次感,可以在干扰视觉的同时,突出自身所想体现的主题,这种表现方式往往是比较直接而且有效的方式。 我们所说的这种视觉干扰是在分散欣赏者多余视线的同时,更能注意到这一设计的主题上,为这种干扰方式所产生的图形是这个主题的辅助图形。 :构图的视觉线牵引 利用色彩或者元素来牵引欣赏者的视觉,让欣赏者随着设计师的的思维去思考和观看作品。现在存在的大多数作品都是运用点、线、面来引导,以图形和元素出现的引导方式的作品比较少见。就像下面的这个图形,视觉的中心是中间的那一条白色的色块,及当中的文字,而在上下的张图片的交接处出现的那条蓝色的线段,就在牵引欣赏者的视觉移动到图形中的文字和其他的小的图形上。 :色彩诱导 主体色块运用了红色和灰色,而大背景的白色块和红色行成了强烈的对比,灰色在平衡色彩的强烈对比的同时,也和红色起了一定的对比重用 :明暗诱导 利用由光感折射、光感捕捉、动态光感及明暗差异性的一些共性来衬托主题。 :瞬间捕捉 利用眼睛感官的瞬间接受、来捕捉视觉点。 :抓突破点 突破图形图象本身的视觉平衡点来达到视觉要求 运用图片素材的本身来寻找设计的突破点,依据图形自身所产生的空间感,光感,等一些突出的地方,来加以利用,从而突出设计的主题。 :比例大小 依据事物本身的比例关系,在等比的关系上追求视觉上的平衡关系、突破事物本身的等比关系,进而推出自身的视觉重点以求突破。就如一些夸张漫画那样,一个大头小身子的人物形象,一种夸张的歪曲正常比例的方式,在不经意间往往能收来奇效。 :依据欣赏者的接受能力,及平常所说的感情,利用平时生活的一些元素,充分考虑欣赏者对图形的认可能力,以自然美及突破普通接受能力的残酷美来打动欣赏者的情感,以获得人们对图形的记忆。 :视觉幻象 利用视觉幻象得空间感来突出整体设计的视觉中心。 : 抽象的表现方式 运用色彩的对比突出主题的同时,也起到了一定的娱乐性,这样的作品容易让人有好感,而且比较不容易忘记。

之前也是为论文苦恼了半天,网上的范文和能搜到的资料,大都不全面,一般能有个正文就不错了,而且抄袭的东西肯定不行的,关键是没有数据和分析部分,我好不容易搞出来一篇,结果还过不了审。 还好后来找到文方网,直接让专业人士帮忙,效率很高,核心的部分帮我搞定了,也给了很多参考文献资料。哎,专业的事还是要找专业的人来做啊,建议有问题参考下文方网吧 下面是之前文方网王老师发给我的题目,分享给大家: 基于深度学习的无人机地面小目标算法研究 基于视觉的智能汽车面向前方车辆的运动轨迹预测技术研究 模拟射击训练弹着点检测定位技术研究 基于深度卷积神经网络的空中目标识别算法的研究 基于可见光图像的飞行器多目标识别及位置估计 无人驾驶车辆手势指令识别研究与实现 车载毫米波雷达目标检测技术研究 基于多传感融合的四足机器人建图方法 中老年人群跌倒风险评估的数据采集系统 基于深度学习的视觉SLAM闭环检测方法研究 真实图片比较视觉搜索任务的年龄效应及对策研究 室内复杂场景下的视觉SLAM系统构建与研究 基于双目内窥镜的软组织图像三维重建 学习资源画面色彩表征影响学习注意的研究 毫米波雷达与机器视觉双模探测关键技术的研究 语义地图及其关键技术研究 多重影响因素下的语音识别系统研究 基于卷积神经网络的自主空中加油识别测量技术研究 基于视觉语义的深度估计、实例分割与重建 重复视觉危险刺激——本能恐惧反应的“二态型”调控机制研究 低成本视觉下的三维物体识别与位姿估计 面向非规则目标的3D视觉引导抓取方法及系统研究 基于物体识别地理配准的跨视频行人检测定位技术研究 基于结构光的非刚体目标快速三维重建关键技术研究 基于机器视觉的动物交互行为与认知状态分析系统 关于单目视觉实时定位与建图中的优化算法研究 动态场景下无人机SLAM在智慧城市中的关键技术研究 面向视觉SLAM的联合特征匹配和跟踪算法研究 基于深度学习的显著物体检测 基于平面波的三维超声成像方法与灵长类动物脑成像应用研究 基于物体检测和地理匹配的室内融合定位技术研究 基于多模态信息融合的人体动作识别方法研究 基于视觉惯性里程计的SLAM系统研究 基于语义信息的图像/点云配准与三维重建 基于种子点选取的点云分割算法研究 基于深度学习的场景文字检测与识别方法研究 基于运动上下文信息学习的室内视频烟雾预警算法研究 基于深度学习的垃圾分类系统设计与实现 面向手机部件的目标区域检测算法的设计与实现 电路板自动光照检测系统的设计与实现 基于机器视觉的工件识别与定位系统的设计与实现 基于深度学习的物件识别定位系统的设计与实现 基于视觉四旋翼无人机编队系统设计及实现 基于视觉惯导融合的四旋翼自主导航系统设计与实现 面向城市智能汽车的认知地图车道层生成系统 基于深度学习的智能化无人机视觉系统的设计与仿真 基于知识库的视觉问答技术研究 基于深度学习的火灾视频实时智能检测研究 结构化道路车道线检测方法研究 基于机器视觉的带式输送机动态煤量计量研究 基于深度学习的小目标检测算法研究 基于三维激光与视觉信息融合的地点检索算法研究 动态环境下仿人机器人视觉定位与运动规划方法研究 瓷砖铺贴机器人瓷砖空间定位系统研究 城市街景影像中行人车辆检测实现 基于无线信号的身份识别技术研究 基于移动机器人的目标检测方法研究 基于深度学习的机器人三维环境对象感知 基于特征表示的扩展目标跟踪技术研究 基于深度学习的目标检测方法研究 基于深度学习的复杂背景下目标检测与跟踪 动态扩展目标的高精度特征定位跟踪技术研究 掩模缺陷检测仪的图像处理系统设计 复杂场景下相关滤波跟踪算法研究 基于多层级联网络的多光谱图像显著性检测研究 基于深度结构特征表示学习的视觉跟踪研究 基于深度网络的显著目标检测方法研究 基于深度学习的电气设备检测方法研究 复杂交通场景下的视频目标检测 基于多图学习的多模态图像显著性检测算法研究 基于面部视频的非接触式心率检测研究 单幅图像协同显著性检测方法研究 轻量级人脸关键点检测算法研究 基于决策树和最佳特征选择的神经网络钓鱼网站检测研究 基于深度学习的场景文本检测方法研究 RGB-D图像显著及协同显著区域检测算法研究 多模态融合的RGB-D图像显著目标检测研究 基于协同排序模型的RGBT显著性检测研究 基于最小障碍距离的视觉跟踪研究 基于协同图学习的RGB-T图像显著性检测研究 基于图学习与标签传播优化模型的图像协同显著性目标检测 姿态和遮挡鲁棒的人脸关键点检测算法研究 基于多模态和多任务学习的显著目标检测方法研究 基于深度学习的交通场景视觉显著性区域目标检测 基于生物视觉机制的视频显著目标检测算法研究 基于场景结构的视觉显著性计算方法研究 精神分裂症患者初级视觉网络的磁共振研究 基于fMRI与TMS技术研究腹侧视觉通路中结构优势效应的加工 脑机接口游戏神经可塑性研究 基于YOLOV3算法的FL-YOLO多目标检测系统 基于深度与宽度神经网络显著性检测方法研究 基于深度学习的零件识别系统设计与研究 基于对抗神经网络的图像超分辨算法研究 基于深度学习复杂场景下停车管理视觉算法的研究与实现 镍电解状态视觉检测与分析方法研究 跨界训练对提升舞者静态平衡能力的理论与方法研究 施工现场人员类型识别方法的研究与实现 基于深度学习的自然场景文字检测方法研究 基于嵌入式的交通标志识别器的设计 基于视觉感知特性与图像特征的图像质量评价

目录 一.引言……………………………………………………………………2 二.设计方法和创意 ………………………………………………………2 三.实例制作 …………………………………………………………………3 小结 …………………………………………………………………………8 参考文献 ………………………………………………8 一.引言 近年来,计算机图像技术的飞速发展和应用使个人电脑上的美术创作进入一个新的阶段,各种图像处理软件也越来越完善,普及程度不断的提高。其中的图像软件处理工具Photoshop是目前公认的、较好的通用平面美术设计软件,它功能完善,性能稳定,使用方便。Photoshop所具有的功能包括:可以对图像进行修饰、对图形进行编辑、对图像的色彩进行处理等,此外,还有绘图和输出功能。在实际生活和工作中,人们可以将数码照相机拍摄下来的照片利用Photoshop进行编辑和修饰,还可以利用PhotoShop为图像制作特效效果,如果和其它工具软件配合使用,则可以进行高质量的广告设计、美术创意和三维动画制作。由于PhotoShop功能强大,目前,正在被越来越多的图像编排、广告和形象设计以及婚纱影楼等领域广泛使用,是一个非常受欢迎的应用软件。本毕业论文中的设计实例就采用了Photoshop这一图像处理软件。 二.设计方法和创意 利用图像处理软件制作图形,要产生一个好的作品包括三个方面的内容:创意、构图能力、计算机表达。即首先要有好的创意,然后对其进行粗略构图,最后借助计算机手段,制作出所构想的最终效果图。当然,也有一些经典的创意,只用寥寥数笔即可表现,但这种情况非常少。上述所说的三个方面的内容,其中的创意需要具备跳跃思维,灵活善变,也与创作者的美术素养相关;而构图则主要指平面构成,色彩构成和立体构成。对于平面设计来说,平面构成和色彩构成尤为重要,它需要通过合理组织各种元素,确定视觉中心,使画面美观并能引导读者的目光和兴趣;计算机表达则是利用有关的图像处理软件工具,将构思的图像效果制作出来。本毕业论文的实例制作,就是利用Photoshop来制作水滴的效果图,设计思想是利用已有的素材,制作出将一个杯子的水倒入另一个杯子后产生水滴的效果。 三.实例制作 本实例制作通过制作相关素材,并运用了Photoshop中的笔刷、扭曲/波浪滤镜、自由变形等工具,最终合成所制作的素材以得到所构思的效果图。具体制作步骤如下: 1.新建一个100x100像素图像文件,背景为蓝色; 2.新建透明图层2,建立该图层的目的是因为本设计的主要操作是在图层2中进行的; 3.利用工具面板中的椭圆选框工具在图层2中选出一个圆形区域。 4.选取工具面板画笔工具(画笔颜色选白色,画笔大小13,不透明度100%)在选区的四周绘制线条。 5.再将画笔的不透明度调节为50%,绘制如下的线条;此时可以看到,所绘制的效果已经很像一颗水珠了。 6.选中图层2,可按Ctrl+A全选,拷贝图层2;然后新建一新的图像文件,大小为200x200,背景设为蓝色;把前一图像文件中的图层2中所制作好的水珠粘贴到该新建图像文件中,多粘贴几个,并调节好大小,然后合并为图层7。 7.选中当前图层(图层7),利用菜单命令:滤镜→扭曲→波浪,调节好参数值。即可得到 8.对图层7再进行波浪变形,参数要有所不同,以产生随机效果。 9.复制粘贴图层7以得到图层8,在图层8中利用自 由变换工具调节大小和角度。 10.再粘贴一次,完成后的效果。 11.对图层8、图层9分别再使用一次波浪变形滤镜; 12.将图层7、8、9合并,并作拷贝,导入一幅图片。 13.粘贴图层,用自由变换工具调整到合适位置,到此为止,整个效果图即制作完毕。 小结 平面设计是一项相当复杂的工作,要设计一件比较理想的平面作品,设计者需要具有一定的美术知识和素养。并且需要知道色彩的构成、分类与感情的关系,以及调和与配色等一系列美术知识,需要具备一定的设计经验。还要懂得如何使用相关平面设计软件,通过这次的毕业设计通过本次毕业设计,使我对Photoshop有了很深的认识,对平面设计的布局、创意都有了一定的提高。

相关百科

热门百科

首页
发表服务