首页

毕业论文

首页 毕业论文 问题

六路抢答器的设计毕业论文

发布时间:

六路抢答器的设计毕业论文

基于视频的人流量监测系统设计与实现 图像水印识别微信小程序设计与实现 基于重力传感器的飞机大战游戏开发 手机平台加减乘除口算训练游戏开发 基于Android平台的个人移动地图软件开发 面向多种数据源的爬虫系统的设计与实现 基于Zabbix的服务器监控系统的设计与实现 基于新浪微博的分布式爬虫以及对数据的可视化处理 基于分布式的新闻热点网络爬虫系统与设计 舆情分析可视化系统的设计与实现 基于大数据的用户画像的新闻APP设计 基于Android平台的语言翻译程序设计与实现 基于SSH的水电信息管理系统的设计与实现 基于SSM的学科竞赛管理系统

用数字电路实现抢答器一、设计目标 设计一个带有用户选手按下后,其他用户选手按下无效,同时,响警报、显示是谁按下的。由主持人开关复位的抢答器。二、 基本功能我设计的抢答器有如下功能:有人按下时,显示是谁按下的。同时,其他人再按下时电路不做任何处理。也就是说,如果有人按下以后,别人再按的话电路既不会显示是他按下的。三、抢答器的组成抢答器的一般构成框图如图2-1所示。它主要由开关阵列电路、触发锁存电路、编码器、7段显示器几部分组成。下面逐一给予介绍。(1)开关阵列电路该电路由多路开关所组成,每一竞赛者与一组开关相对应。开关应为常开型,当按下开关时,开关闭合;当松开开关时,开关自动弹出断开。(2)触发锁存电路当某一开关首先按下时,触发锁存电路被触发,在输出端产生相应的开关电平信息,同时为防止其它开关随后触发而产生紊乱,最先产生的输出电平变化又反过来将触发电路锁定。若有多个开关同时按下时,则在它们之间存在着随机竞争的问题,结果可能是它们中的任一个产生有效输出。(3)编码器编码器的作用是将某一开关信息转化为相应的8421BCD码,以提供数字显示电路所需要的编码输入。 图3-1 抢答器的组成框图(4)7段显示译码器译码驱动电路将编码器输出的8421BCD码转换为数码管需要的逻辑状态,并且为保证数码管正常工作提供足够的工作电流。(5)数码显示器数码管通常有发光二极管(LED)数码管和液晶(LCD)数码管。本设计提供的为LED数码管。四、抢答器的工作原理(1)开关阵列电路图所示为8路开关阵列电路,从图上可以看出其结构非常简单。电路中,R1~R8为上拉和限流电阻。当任一开关按下时,相应的输出为低电平,否则为高电平。 图4-1 开关阵列电路(2)触发锁存电路图3-1所示为8路触发锁存电路。图中,74HC373为8D锁存器,一开始,当所有开关均未按下时,锁存器输出全为高电平,经8输入与非门和非门后的反馈信号仍为高电平,该信号作为锁存器使能端控制信号,使锁存器处于等待接收触发输入状态;当任一开关按下时,输出信号中必有一路为低电平,则反馈信号变为低电平,锁存器刚刚接收到的开关被锁存,这时其它开关信息的输入将被封锁。由此可见,触发锁存电路具有时序电路的特征,是实现抢答器功能的关键。(3)编码器如图4-3所示,74HC147H为10-4线优先(高位优先)编码器,当任意输入为低电平时,输出为相应的输入编号的8421码(BCD码)的反码。 图4-2 8路触发锁存电路。 图4-3 10-4线优先编码器(4)译码驱动及显示单元编码器实现了对开关信号的编码并以BCD码的形式输出。为了将编码显示出来,需用显示译码电路将计数器的输出数码转换为数码显示器件所需要的输出逻辑和一定的电流。一般这种译码通常称为7段译码显示驱动器。常用的7段译码显示驱动器有CD4511等。数码显示器件中的液晶数码管价格较高,驱动较复杂,并且仅能工作于有外界光线的场合,所以使用较少。大多情况下使用的是LED数码管。平时使用较多的LED数码有单字和双字之分。LED数码管尺寸有大有小,一般小的数码管每个数字笔画为一个发光二极管,而尺寸较大的数码管一个笔画可能是多个发光二极管串接而成的,这时一般无法直接用译码驱动器直接驱动(其输出高电平一般为3V左右)。(5)解锁电路当触发锁存电路被触发锁存后,若要进行下一轮的重新抢答,则需将锁存器解锁。可将使能端强迫置1或置0(根据具体情况而定),使锁存顺处于等待歉收状态即可。五、改进、简化设计(1)功能简介抢答器同时供8名选手或8个代表队比赛,分别用8个按钮S0 ~ S7表示。设置一个系统清除和抢答控制开关S,该开关由主持人控制。 抢答器具有锁存与显示功能。即选手按动按钮,锁存相应的编号,并在LED数码管上显示,同时扬声器发出报警声响提示。选手抢答实行优先锁存,优先抢答选手的编号一直保持到主持人将系统清除为止。 抢答器具有定时抢答功能,且一次抢答的时间由主持人设定(如30秒)。当主持人启动"开始"键后,定时器进行减计时,同时扬声器发出短暂的声响,声响持续的时间秒左右。 参赛选手在设定的时间内进行抢答,抢答有效,定时器停止工作,显示器上显示选手的编号和抢答的时间,并保持到主持人将系统清除为止。 如果定时时间已到,无人抢答,本次抢答无效,系统报警并禁止抢答,定时显示器上显示00。(2)设计原理图如图2-1所示为总体方框图。其工作原理为:接通电源后,主持人将开关拨到"清除"状态,抢答器处于禁止状态,编号显示器灭灯,定时器显示设定时间;主持人将开关置开始"状态,宣布"开始"抢答器工作。定时器倒计时,扬声器给出声响提示。选手在定时时间内抢答时,抢答器完成:优先判断、编号锁存、编号显示、扬声器提示。当一轮抢答之后,定时器停止、禁止二次抢答、定时器显示剩余时间。如果再次抢答必须由主持人再次操作"清除"和"开始"状态开关。 图5-1 总体设计(3)电路设计 (1) (2)图5-2 完整电路抢答器电路参考电路如图5-2所示。该电路完成两个功能:一是分辨出选手按键的先后,并锁存优先抢答者的编号,同时译码显示电路显示编号;二是禁止其他选手按键操作无效。工作过程:开关S置于"清除"端时,RS触发器的 端均为0,4个触发器输出置0,使74LS148的 =0,使之处于工作状态。当开关S置于"开始"时,抢答器处于等待工作状态,当有选手将键按下时(如按下S5),74LS148的输出 经RS锁存后,1Q=1, =1,74LS48处于工作状态,4Q3Q2Q=101,经译码显示为"5"。此外,1Q=1,使74LS148 =1,处于禁止状态,封锁其他按键的输入。当按键松开即按下时,74LS148的 此时由于仍为1Q=1,使 =1,所以74LS148仍处于禁止状态,确保不会出二次按键时输入信号,保证了抢答者的优先性。如有再次抢答需由主持人将S开关重新置;清除"然后再进行下一轮抢答。74LS148为8线-3线优先编码器,表5-1为其功能表。表5-1功能表 由节目主持人根据抢答题的难易程度,设定一次抢答的时间,通过预置时间电路对计数器进行预置,计数器的时钟脉冲由秒脉冲电路提供。可预置时间的电路选用十进制同步加减计数器74LS192进行设计,具体电路如图4-4所示。(3)报警电路由555定时器和三极管构成的报警电路如图5-4所示。其中555构成多谐振荡器,振荡频率fo=1.43/〔(RI+2R2)C〕,其输出信号经三极管推动扬声器。PR为控制信号,当PR为高电平时,多谐振荡器工作,反之,电路停振。本电路给出了所有相关电路,对于发声报警电路只有左下角555电路。时序控制电路是抢答器设计的关键,它要完成以下三项功能:1、主持人将控制开关拨到"开始"位置时,扬声器发声,抢答电路和定时电路进人正常抢答工作状态。2、当参赛选手按动抢答键时,扬声器发声,抢答电路和定时电路停止工作。3、当设定的抢答时间到,无人抢答时,扬声器发声,同时抢答电路和定时电路停止工作。工作原理:当555电路的到信号后,开始产生高低电压不同的方波,这些方波从555电路的输出端出来,经过510欧姆的保护电阻进入放大电路。信号经过放大后,再传给扬声器,这时信号已经不再是方波,而是一种连续变化的一种类似于简谐波的电信号。但是他的频率还是和555电路的输出端的频率一样。 图5-4 定时电路 图5-5扬声器设计根据上面的功能要求,设计的时序控制电路如4-5图所示。图中,门G1的作用是控制时钟信号CP的放行与禁止,门G2的作用是控制74LS148的输人使能端 。图11、4的工作原理是:主持人控制开关从"清除"位置拨到"开始"位置时,来自于图5-5中的74LS279的输出 1Q=0,经G3反相, A=1,则时钟信号CP能够加到74LS192的CPD时钟输入端,定时电路进行递减计时。同时,在定时时间未到时,则"定时到信号"为 1,门G2的输出 =0,使 74LS148处于正常工作状态,从而实现功能①的要求。当选手在定时时间内按动抢答键时,1Q=1,经 G3反相, A=0,封锁 CP信号,定时器处于保持工作状态;同时,门G2的输出 =1,74LS148处于禁止工作状态,从而实现功能②的要求。当定时时间到时,则"定时到信号"为0, =1,74LS148处于禁止工作状态,禁止选手进行抢答。同时, 门G1处于关门状态,封锁 CP信号,使定时电路保持00状态不变,从而实现功能③的要求。集成单稳触发器74LS121用于控制报警电路及发声的时间。(4)需要器材:1.数字实验箱。2. 集成电路74LS148 1片,74LS279 1片,74LS48 3片,74LS192 2片,NE555 2片,74LS00 1片,74LS121 1片。3. 电阻 510Ω 2只,1KΩ 9只,Ω l只,Ω l只,100kΩ l只,10kΩ 1只, 15kΩ 1只, 68kΩ l只。4.电容 1只,10uf 2只,100uf 1只。5. 三极管 3DG12 1只。6. 其它:发光二极管2只,共阴极显示器3只。六、其他设计思路电路设计的思路方法多样可以满足不同需求。 而且我还考虑了很多不同的设计思路,这些不同的思路,他们所用到的器件也不同。下面的内容是我参考的其他的大致的设计方法使用JK触发器实现用户选手的信号输入和电路的锁存,使一个用户选手输入信号后其他选手输入信号不再有效。在使用户选手输入信号的锁存电路组的输出信号,也就是JK触发器组的输出信号作为二-十进制译码器的输入信号产生十进制8421信号。这个过程可以采用一些与非门电路完成也可以采用7442二-十进制译码器或者74148优先编码器他们都可以达到输入单信号,输出8421十进制信号的目的完成信号转换的作用。为完成下一个步骤做准备。在完成上两个步骤以后,就可以将得到的8421十进制信号传送给显示译码器用来显示数字,这给数字应该是用户选手的序列号,来表示是谁按下的。这样,就可以实现一个新功能了。同时,可以从很多地方取输出信号,传送给555电路用来产生一定频率的方波信号。这种频率应该是人类耳朵能够分辨的频率,超过或低于这个频率范围,普通人就听不见了,那么这种电路的设计就失去了意义。从这个555电路传出来的方波信号,在通过保护电阻后,送到放大电路,将信号放大。这时,到达放大电路输出端的信号已经变成一种简谐波,不再是方波。在将输出端信号中的直流成分通过电容器予以去掉,就可以将信号送到蜂鸣器了。这时蜂鸣器也能发出声音了。就又实现了一个功能。从任意一个能用的输出端例如从555电路的输入端取信号送到一个发光二极管,就可以实现如果有人按下以后,就发光的功能。也可以在送到一个放大电路上,接上一个功率较大的发光器件上,使得发光效果更明显。另外,二-十进制转换器也可以用一些与非门来完成。如图6-1 图6-1 2-10进制转换电路七、学年设计总结实习给了我们一个很好的提高动手能力的机会。平常我们只是在头脑中去抽象的记忆、理解那些课本上的理论知识。有的理论知识很好懂,但是有的理论知识确是晦涩难懂的,甚至只是靠自己的死记硬背去记住。但是我们都知道,那样的记忆只是一时的,很快你就会忘记。而这次的实习却给了我们一个在实践中灵活运用知识的机会,我们通过在实践中发现问题,进而去书本中找相关的知识去解决问题,从而巩固了理论知识。那样的知识是你从根本上去认识它,理解它,所以你的记忆时间会很长。

求基于单片机求基于单求求基于单片机的抢答器(六路或者八路)的抢答器 求求基于单片机的抢答器(六路或者八路)的抢答器 原理图 单片机代码单片机的抢答器(六路或者八路)的抢答器 原理图 单片机代码求基于单片机的抢答器(六路或者八路)的抢答求基于单片机的抢答器(六路或者八路)的抢答器 原理图 单片机代码 原理图 单片机代码 单片机代码单片机的抢答器(六路或者八路)的抢答器 原理图 单片机代码机的抢答器(六路或者八路)的抢答器 原理图 单片机代码抢答器(六路或者八路)的抢答器 原理图 单片机代码

源代码见私信

plc控制抢答器的设计毕业论文

这么简单的题目?关于PLC就可以?没别的要求了 ? 没有个设计方向?我这好象有几套...2008毕业论文(自动化)

PLC毕业设计毕业论文

我帮您!请加我!! 保证论文,唯一性、专业性、高质量。 知网检测!包过!

摘要:通过对应急发电机自启动要求的分析,结合装备现状、配电系统的设计要求,利用PLC(可编程控制器)改造现有设备的优势,提出了详细的设计思路和方案以供参考。 关键词:PLC 应急发电机 方案 配电系统 通过对应急发电机自启动要求的分析,结合装备现状、配电系统的设计要求,利用PLC(可编程控制器)改造现有设备的优势,提出了详细的设计思路和方案以供参考。 通常传统发电机控制采用落后继电接触器控制方式,中间继电器和时间继电器太多,体积大,功能少,寿命短,线路复杂,接点多,造成故障多可靠性差,维修困难;而采用微电子技术由于集成电路(IC)的系统芯片种类繁多,体积大,设计周期长,费用低,工艺复杂,抗干扰性差,可靠性差;而可编程控制器(PLC)是以微处理器为核心,综合了计算机技术、通信技术而发展起来的一种新型、通用的自动控制装置,具有结构简单、性能优越、可靠性高、灵活通用、易于编程、使用方便等优点,近年来在工业自动控制、机电一体化、改造传统产业等方面得到了广泛的应用。 应急发电机组用PLC控制有很多优点,它主要通过软件控制,从而省去了硬件开发工作,外围电路很少,大大提高了系统的可靠性与抗干扰能力;由于它简单易行的可编程序功能,无须改变系统的外部硬件接线,便能改变系统的控制要求,使系统的“柔性”大大提高。 主要设计功能 在生产过程中突然停电,应急发电机立即给设备继续供电。应急电源原动机一般采用一台独立冷却和供油系统的柴油机,并设有自启动装置,保证在主站失电后0-50秒内启动,应急电网通常为主电网的一部分,在正常情况下,这些用电设备由总配电板供电,只是在应急情况下由应急发电机组供电,因此在应急配电板上的应急发电机主开关与主开关向应急配电板供电的开关之间设有电气联锁,以保证安全。 应急发电机组作为一个应急电源,应具备以下基本要求: 1、自动启动 当正常供电出现故障(断电)时,机组能自动启动、自动升速、自动合闸,向应急负载供电。 2、自动停机 当正常供电恢复,经判断正常后,控制切换开关,完成应急电到正常电的自动切换、然后控制机组降速到怠速、停机。 3、自动保护 机组在运行过程中,如果出现油压过低(小于)、冷却水温过高(大于95度)、电压异常故障,则紧急停机,同时发出声光报警信号,如果出现水温高(大于90度)、油温高等故障。则发出声光报警信号,提醒维护人员进行干预。 4、三次启动功能 机组有三次启动功能,若第一次启动不成功,经10秒延时后再次启动,若第二次启动不成功,则延时后进行第三次启动。三次启动中只要有一次成功,就按预先设置的程序往下运行;若连续三次启动均不成功,则视为启动失败,发出声光报警信号(也可以同时控制另一台机组起动)。 5、自动维持准启动状态 机组能自动维持准启动状态。此时,机组的自动周期性预供油系统、油和水的自动加温系统、蓄电池的自动充电装置投入工作。 6、具备手动、自动两种操作模式。 控制系统的硬件设计 应急电源多采用135系列的柴油机组,下面就以此为例用PLC实现对柴油机自启动的控制。 电路分析 设计说明:控制面板上有“手动/自动”选择旋钮, “启动”、“加速” 、 “减速、”“合闸”、“分闸”按钮,柴油机上加装接近开关(旋转编码器),用于测速度,加装油门电机用于控制柴油机转速,加装电磁铁用于停机熄火,电压检测、水温、油压都是外部开关信号。 一次启动过程:正常电失电后,经5秒确认,“启动电机”启动4秒钟,如柴油机发火运行,则接近开关(旋转编码器)测到柴油机达到启动转速,PLC立即停止“启动电机”。柴油机怠速30S后开始根据接近开关的信号加速,直到稳定转速,发电机开始发电,电压正常后合上主开关向负载供电。运行中PLC自动稳定转速。 三次启动过程:若一次启动未成功,则接近开关(旋转编码器)测到柴油机达不到启动转速速度,并在5秒后测不到柴油机转速,由PLC内部的定时器来进行控制进行再次启动,以10秒作为一个周期,三次启动时间约30秒,32秒后输出报警,如启动中接近开关(旋转编码器)测不到柴油机达转速,则直接启动失败。 启动失败及柴油机组停机:启动失败后,电磁电把油门拉回到“停机”位置,当正常电恢复时,PLC发出分闸信号并由油门电机减速到怠速60S后,电磁电将油门拉回“停机”位置,柴油机缺油熄火。 并可根据用户需要增加小型人机界面,以文字、指示灯、图案等形式显示柴油机的各种数值及状态。并可通过其面板的按钮改变柴油机的数值及状态。可修改有与时间有关的参数,对输入的数据进行范围设定,超出范围的数据拒绝输入。可以对柴油机的各种故障以文字形式显示以便于查找故障,如三次起动失败,转速高,缸温高,市电供电等等。带密码保护功能,可以防止非授权用户更改重要数据和开关量。机组--自控的特点(1)机组由柴油机发电机组和中心控制柜组成,可以单机单柜、双机单柜或联网自动化控制(无人值守)。(2)控制柜的核心是可编程序控制器(PLC),通常选用选用北京凯迪恩公司CPU306小型可编程序控制器,运行可靠,质量稳定。(3)充分利用PLC的指令和功能编制程序,尽量减少外围控制元器件和接口,电路简单,操作方便,便于维护。(4)利用PLC的高速计数器功能,准确测出机组转速,不采用原来的测速发电机、转速表,避免了安装困难并提高了可靠性。(5)控制器采用直流24V供电,并配备先进的高频开关式直流充电设备,可对蓄电池进行浮充电,保证控制柜直流供电。(6)PLC中的EPROM(只读存储器)可固化程序,使原程序长期不丢失。(7)利用PLC的通信功能可实现近程、远程集中监控。技术要求:采用旋转编码器比接近开关性能效果更好。接近开关技术要求:螺纹式接近开关检测距离10mm±10%工作电压DC型:10-30VDC 三线型响应频率400Hz 接近开关又称无触点接近开关,是理想的电子开关量传感器。当金属检测体接近开关的感应区域,开关就能无接触,无压力、无火花、迅速发出电气指令,准确反应出运动机构的位置和行程,即使用于一般的行程控制,其定位精度、操作频率、使用寿命、安装调整的方便性和对恶劣环境的适用能力,是一般机械式行程开关所不能相比的。根据所需的输入/输出点数选择PLC机型 根据自动化机组的控制要求,所需PLC的输入点数为14个,输出点数为10个。系统的控制量基本上是开关量,只有电压是模拟量,为了降低成本,可以通过检测电路把模拟量转换成开关量、如电压监测可以用电压保护器代替。这样可以选用不带模拟量输入的PLC。对于小型发电机可不加装油门电机用于控制柴油机转速。本系统选用北京凯迪恩公司CPU306小型可编程序控制器,可靠性高,体积小,输入点数为14个,输出点数为10个。电源、输入、输出电压均为24VDC。分配PLC输入输出 根据自动化机组的控制要求和电气原理图,PLC输入、输出信号分配表见表1。表1输入/输出分配表 停市电信号 油门加速 接近开关 (旋转编码器) 油门减速 接近开关** (旋转编码器)** 启动电机 电压正常 合闸 油压低 分闸 水温高 停机电磁铁 手动/自动 故障信号 启动按钮 加速按钮 减速按钮 停机按钮 合闸按钮 分闸按钮 合闸输出信号注: I全为直流24V输入Q为无源触点输出(24V3A)1表示接通0表示断开 电路设计见附录1所示:(Autocad2004打开) 发电机时序图见附录2所示:(Autocad2004打开) 发电机PLC源程序见附件:(从北京凯迪恩自动化技术有限公司网站下载最新版EasyProg软件打开)源程序是加装接近开关,柴油机每转发出6个脉冲信号,柴油机每分钟1000转,秒一个周期测速,如采用旋转编码器则秒一个周期测速,效果更佳。结论 采用PLC控制的自动化柴油发电机组,硬件结构简单,成本低廉,响应速度快,性能、价格比很高,和单片机系统相比具有极高的可靠性。经现场使用考验,性能稳定,运行可靠。另外还可以根据实际需要很方便地进行扩展。程序稍作修改,就可以满足用户不同的控制要求,对于现代智能楼宇,控制系统还可以通过通讯模块纳入到整个楼宇的监控系统之中,体现出极大的灵活性和适应性,具有极高的实际推广价值。

智能抢答器设计毕业论文

液压伺服系统设计 液压伺服系统设计 在液压伺服系统中采用液压伺服阀作为输入信号的转换与放大元件。液压伺服系统能以小功率的电信号输入,控制大功率的液压能(流量与压力)输出,并能获得很高的控制精度和很快的响应速度。位置控制、速度控制、力控制三类液压伺服系统一般的设计步骤如下: 1)明确设计要求:充分了解设计任务提出的工艺、结构及时系统各项性能的要求,并应详细分析负载条件。 2)拟定控制方案,画出系统原理图。 3)静态计算:确定动力元件参数,选择反馈元件及其它电气元件。 4)动态计算:确定系统的传递函数,绘制开环波德图,分析稳定性,计算动态性能指标。 5)校核精度和性能指标,选择校正方式和设计校正元件。 6)选择液压能源及相应的附属元件。 7)完成执行元件及液压能源施工设计。 本章的内容主要是依照上述设计步骤,进一步说明液压伺服系统的设计原则和介绍具体设计计算方法。由于位置控制系统是最基本和应用最广的系统,所以介绍将以阀控液压缸位置系统为主。 全面理解设计要求 全面了解被控对象 液压伺服控制系统是被控对象—主机的一个组成部分,它必须满足主机在工艺上和结构上对其提出的要求。例如轧钢机液压压下位置控制系统,除了应能够承受最大轧制负载,满足轧钢机轧辊辊缝调节最大行程,调节速度和控制精度等要求外,执行机构—压下液压缸在外形尺寸上还受轧钢机牌坊窗口尺寸的约束,结构上还必须保证满足更换轧辊方便等要求。要设计一个好的控制系统,必须充分重视这些问题的解决。所以设计师应全面了解被控对象的工况,并综合运用电气、机械、液压、工艺等方面的理论知识,使设计的控制系统满足被控对象的各项要求。 明角设计系统的性能要求 1)被控对象的物理量:位置、速度或是力。 2)静态极限:最大行程、最大速度、最大力或力矩、最大功率。 3)要求的控制精度:由给定信号、负载力、干扰信号、伺服阀及电控系统零飘、非线性环节(如摩擦力、死区等)以及传感器引起的系统误差,定位精度,分辨率以及允许的飘移量等。 4)动态特性:相对稳定性可用相位裕量和增益裕量、谐振峰值和超调量等来规定,响应的快速性可用载止频率或阶跃响应的上升时间和调整时间来规定; 5)工作环境:主机的工作温度、工作介质的冷却、振动与冲击、电气的噪声干扰以及相应的耐高温、防水防腐蚀、防振等要求; 6)特殊要求;设备重量、安全保护、工作的可靠性以及其它工艺要求。 负载特性分析 正确确定系统的外负载是设计控制系统的一个基本问题。它直接影响系统的组成和动力元件参数的选择,所以分析负载特性应尽量反映客观实际。液压伺服系统的负载类型有惯性负载、弹性负载、粘性负载、各种摩擦负载(如静摩擦、动摩擦等)以及重力和其它不随时间、位置等参数变化的恒值负载等。 拟定控制方案、绘制系统原理图 在全面了解设计要求之后,可根据不同的控制对象,按表6所列的基本类型选定控制方案并拟定控制系统的方块图。如对直线位置控制系统一般采用阀控液压缸的方案,方块图如图36所示。图36 阀控液压缸位置控制系统方块图表6 液压伺服系统控制方式的基本类型伺服系统 控制信号 控制参数 运动类型 元件组成机液电液气液电气液 模拟量数字量位移量 位置、速度、加速度、力、力矩、压力 直线运动摆动运动旋转运动 1.阀控制:阀-液压缸,阀-液压马达2.容积控制:变量泵-液压缸;变量泵-液压马达;阀-液压缸-变量泵-液压马达3.其它:步近式力矩马达 动力元件参数选择 动力元件是伺服系统的关键元件。它的一个主要作用是在整个工作循环中使负载按要求的速度运动。其次,它的主要性能参数能满足整个系统所要求的动态特性。此外,动力元件参数的选择还必须考虑与负载参数的最佳匹配,以保证系统的功耗最小,效率高。 动力元件的主要参数包括系统的供油压力、液压缸的有效面积(或液压马达排量)、伺服阀的流量。当选定液压马达作执行元件时,还应包括齿轮的传动比。 供油压力的选择 选用较高的供油压力,在相同输出功率条件下,可减小执行元件——液压缸的活塞面积(或液压马达的排量),因而泵和动力元件尺寸小重量轻,设备结构紧凑,同时油腔的容积减小,容积弹性模数增大,有利于提高系统的响应速度。但是随供油压力增加,由于受材料强度的限制,液压元件的尺寸和重量也有增加的趋势,元件的加工精度也要求提高,系统的造价也随之提高。同时,高压时,泄漏大,发热高,系统功率损失增加,噪声加大,元件寿命降低,维护也较困难。所以条件允许时,通常还是选用较低的供油压力。 常用的供油压力等级为7MPa到28MPa,可根据系统的要求和结构限制条件选择适当的供油压力。 伺服阀流量与执行元件尺寸的确定 如上所述,动力元件参数选择除应满足拖动负载和系统性能两方面的要求外,还应考虑与负载的最佳匹配。下面着重介绍与负载最佳匹配问题。 (1)动力元件的输出特性 将伺服阀的流量——压力曲线经坐标变换绘于υ-FL平面上,所得的抛物线即为动力元件稳态时的输出特性,见图37。 图37 参数变化对动力机构输出特性的影响a)供油压力变化;b)伺服阀容量变化;c)液压缸面积变化 图中 FL——负载力,FL=pLA; pL——伺服阀工作压力; A——液压缸有效面积; υ——液压缸活塞速度, ; qL——伺服阀的流量; q0——伺服阀的空载流量; ps——供油压力。 由图37可见,当伺服阀规格和液压缸面积不变,提高供油压力,曲线向外扩展,最大功率提高,最大功率点右移,如图37a。 当供油压力和液压缸面积不变,加大伺服阀规格,曲线变高,曲线的顶点A ps不变,最大功率提高,最大功率点不变,如图37b。 当供油压力和伺服阀规格不变,加大液压缸面积A,曲线变低,顶点右移,最大功率不变,最大功率点右移,如图37c。 (2)负载最佳匹配图解法 在负载轨迹曲线υ-FL平面上,画出动力元件输出特性曲线,调整参数,使动力元件输出特性曲线从外侧完全包围负载轨迹曲线,即可保证动力元件能够拖动负载。在图38中,曲线1、2、3代表三条动力元件的输出特性曲线。曲线2与负载轨迹最大功率点c相切,符合负载最佳匹配条件,而曲线1、3上的工作点α和b,虽能拖动负载,但效率都较低。 (3)负载最佳匹配的解析法 参见液压动力元件的负载匹配。 (4)近似计算法在工程设计中,设计动力元件时常采用近似计算法,即按最大负载力FLmax选择动力元件。在动力元件输出特性曲线上,限定 FLmax≤pLA= ,并认为负载力、最大速度和最大加速度是同时出现的,这样液压缸的有效面积可按下式计算: (37) 图38 动力元件与负载匹配图形 按式37求得A值后,可计算负载流量qL,即可根据阀的压降从伺服阀样本上选择合适的伺服阀。近似计算法应用简便,然而是偏于保守的计算方法。采用这种方法可以保证系统的性能,但传递效率稍低。 (5)按液压固有频率选择动力元件 对功率和负载很小的液压伺服系统来说,功率损耗不是主要问题,可以根据系统要求的液压固有频率来确定动力元件。 四边滑阀控制的液压缸,其活塞的有效面积为 (38) 二边滑阀控制的液压缸,其活塞的有效面积为 (39) 液压固有频率ωh可以按系统要求频宽的(5~10)倍来确定。对一些干扰力大,负载轨迹形状比较复杂的系统,不能按上述的几种方法计算动力元件,只能通过作图法来确定动力元件。 计算阀控液压马达组合的动力元件时,只要将上述计算方法中液压缸的有效面积A换成液压马达的排量D,负载力FL换成负载力矩TL,负载速度换成液压马达的角速度 ,就可以得到相应的计算公式。当系统采用了减速机构时,应注意把负载惯量、负载力、负载的位移、速度、加速度等参数都转换到液压马达的轴上才能作为计算的参数。减速机构传动比选择的原则是:在满足液压固有频率的要求下,传动比最小,这就是最佳传动比。 伺服阀的选择 根据所确定的供油压力ps和由负载流量qL(即要求伺服阀输出的流量)计算得到的伺服阀空载流量q0,即可由伺服阀样本确定伺服阀的规格。因为伺服阀输出流量是限制系统频宽的一个重要因素,所以伺服阀流量应留有余量。通常可取15%左右的负载流量作为伺服阀的流量储备。 除了流量参数外,在选择伺服阀时,还应考虑以下因素: 1)伺服阀的流量增益线性好。在位置控制系统中,一般选用零开口的流量阀,因为这类阀具有较高的压力增益,可使动力元件有较大的刚度,并可提高系统的快速性与控制精度。 2)伺服阀的频宽应满足系统频宽的要求。一般伺服阀的频宽应大于系统频宽的5倍,以减小伺服阀对系统响应特性的影响。 3)伺服阀的零点漂移、温度漂移和不灵敏区应尽量小,保证由此引起的系统误差不超出设计要求。 4)其它要求,如对零位泄漏、抗污染能力、电功率、寿命和价格等,都有一定要求。 执行元件的选择 液压伺服系统的执行元件是整个控制系统的关键部件,直接影响系统性能的好坏。执行元件的选择与设计,除了按本节所述的方法确定液压缸有效面积A(或液压马达排量D)的最佳值外,还涉及密封、强度、摩擦阻力、安装结构等问题。 反馈传感器的选择 根据所检测的物理量,反馈传感器可分为位移传感器、速度传感器、加速度传感器和力(或压力)传感器。它们分别用于不同类型的液压伺服系统,作为系统的反馈元件。闭环控制系统的控制精度主要决定于系统的给定元件和反馈元件的精度,因此合理选择反馈传感器十分重要。 传感器的频宽一般应选择为控制系统频宽的5~10倍,这是为了给系统提供被测量的瞬时真值,减少相位滞后。传感器的频宽对一般系统都能满足要求,因此传感器的传递函数可近似按比例环节来考虑。 确定系统方块图 根据系统原理图及系统各环节的传递函数,即可构成系统的方块图。根据系统的方块图可直接写出系统开环传递函数。阀控液压缸和阀控液压马达控制系统二者的传递函数具有相同的结构形式,只要把相应的符号变换一下即可。 绘制系统开环波德图并确定开环增益 系统的动态计算与分析在这里是采用频率法。首先根据系统的传递函数,求出波德图。在绘制波德图时,需要确定系统的开环增益K。 改变系统的开环增益K时,开环波德图上幅频曲线只升高或降低一个常数,曲线的形状不变,其相频曲线也不变。波德图上幅频曲线的低频段、穿越频率以及幅值增益裕量分别反映了闭环系统的稳态精度、截止频率及系统的稳定性。所以可根据闭环系统所要求的稳态精度、频宽以及相对稳定性,在开环波德图上调整幅频曲线位置的高低,来获得与闭环系统要求相适应的K值。 由系统的稳态精度要求确定K 由控制原理可知,不同类型控制系统的稳态精度决定于系统的开环增益。因此,可以由系统对稳态精度的要求和系统的类型计算得到系统应具有的开环增益K。 由系统的频宽要求确定K 分析二阶或三阶系统特性与波德图的关系知道,当ζh和K/ωh都很小时,可近似认为系统的频宽等于开环对数幅值曲线的穿越频率,即ω-3dB≈ωc,所以可绘制对数幅频曲线,使ωc在数值上等于系统要求的ω-3dB值,如图39所示。由此图可得K值。 图39 由ω-3dB绘制开环对数幅频特性a)0型系统;b)I型系统 由系统相对稳定性确定K 系统相对稳定性可用幅值裕量和相位裕量来表示。根据系统要求的幅值裕量和相位裕量来绘制开环波德图,同样也可以得到K。见图40。 实际上通过作图来确定系统的开环增益K,往往要综合考虑,尽可能同时满足系统的几项主要性能指标。 系统静动态品质分析及确定校正特性 在确定了系统传递函数的各项参数后,可通过闭环波德图或时域响应过渡过程曲线或参数计算对系统的各项静动态指标和误差进行校核。如设计的系统性能不满足要求,则应调整参数,重复上述计算或采用校正环节对系统进行补偿,改变系统的开环频率特性,直到满足系统的要求。 仿真分析 在系统的传递函数初步确定后,可以通过计算机对该系统进行数字仿真,以求得最佳设计。目前有关于数字仿真的商用软件,如Matlab软件,很适合仿真分析。

天下没有免费的午餐

1. 基于FX2N-48MRPLC的交通灯控制2. 西门子PLC控制的四层电梯毕业设计论文3. PLC电梯控制毕业论文4. 基于plc的五层电梯控制5. 松下PLC控制的五层电梯设计6. 基于PLC控制的立体车库系统设计7. PLC控制的花样喷泉8. 三菱PLC控制的花样喷泉系统9. PLC控制的抢答器设计10. 世纪星组态 PLC控制的交通灯系统11. X62W型卧式万能铣床设计12. 四路抢答器PLC控制13. PLC控制类毕业设计论文14. 铁路与公路交叉口护栏自动控制系统15. 基于PLC的机械手自动操作系统16. 三相异步电动机正反转控制17. 基于机械手分选大小球的自动控制18. 基于PLC控制的作息时间控制系统19. 变频恒压供水控制系统20. PLC在电网备用自动投入中的应用21. PLC在变电站变压器自动化中的应用22. FX2系列PCL五层电梯控制系统23. PLC控制的自动售货机毕业设计论文24. 双恒压供水西门子PLC毕业设计25. 交流变频调速PLC控制电梯系统设计毕业论文26. 基于PLC的三层电梯控制系统设计27. PLC控制自动门的课程设计28. PLC控制锅炉输煤系统29. PLC控制变频调速五层电梯系统设计30. 机械手PLC控制设计31. 基于PLC的组合机床控制系统设计32. PLC在改造z-3040型摇臂钻床中的应用33. 超高压水射流机器人切割系统电气控制设计34. PLC在数控技术中进给系统的开发中的应用35. PLC在船用牵引控制系统开发中的应用36. 智能组合秤控制系统设计37. S7-200PLC在数控车床控制系统中的应用38. 自动送料装车系统PLC控制设计39. 三菱PLC在五层电梯控制中的应用40. PLC在交流双速电梯控制系统中的应用41. PLC电梯控制毕业论文42. 基于PLC的电机故障诊断系统设计43. 欧姆龙PLC控制交通灯系统毕业论文44. PLC在配料生产线上的应用毕业论文45. 三菱PLC控制的四层电梯毕业设计论文46. 全自动洗衣机PLC控制毕业设计论文47. 工业洗衣机的PLC控制毕业论文48. 《双恒压无塔供水的PLC电气控制》49. 基于三菱PLC设计的四层电梯控制系统50. 西门子PLC交通灯毕业设计51. 自动铣床PLC控制系统毕业设计52. PLC变频调速恒压供水系统53. PLC控制的行车自动化控制系统54. 基于PLC的自动售货机的设计55. 基于PLC的气动机械手控制系统56. PLC在电梯自动化控制中的应用57. 组态控制交通灯58. PLC控制的升降横移式自动化立体车库59. PLC在电动单梁天车中的应用60. PLC在液体混合控制系统中的应用61. 基于西门子PLC控制的全自动洗衣机仿真设计62. 基于三菱PLC控制的全自动洗衣机63. 基于plc的污水处理系统64. 恒压供水系统的PLC控制设计65. 基于欧姆龙PLC的变频恒压供水系统设计66. 西门子PLC编写的花样喷泉控制程序67. 欧姆龙PLC编写的全自动洗衣机控制程序68 景观温室控制系统的设计69. 贮丝生产线PLC控制的系统70. 基于PLC的霓虹灯控制系统71. PLC在砂光机控制系统上的应用72. 磨石粉生产线控制系统的设计73. 自动药片装瓶机PLC控制设计74. 装卸料小车多方式运行的PLC控制系统设计75. PLC控制的自动罐装机系统76. 基于CPLD的可控硅中频电源77. 西门子PLC编写的花样喷泉控制程序78. 欧姆龙PLC编写的全自动洗衣机控制程序79. PLC在板式过滤器中的应用80. PLC在粮食存储物流控制系统设计中的应用81. 变频调速式疲劳试验装置控制系统设计82. 基于PLC的贮料罐控制系统83. 基于PLC的智能交通灯监控系统设计1.基于labVIEW虚拟滤波器的设计与实现2.双闭环直流调速系统设计3.单片机脉搏测量仪4.单片机控制的全自动洗衣机毕业设计论文电梯控制的设计与实现6.恒温箱单片机控制7.基于单片机的数字电压表8.单片机控制步进电机毕业设计论文9.函数信号发生器设计论文变电所一次系统设计11.报警门铃设计论文单片机交通灯控制13.单片机温度控制系统通信系统中的接入信道部分进行仿真与分析15.仓库温湿度的监测系统16.基于单片机的电子密码锁17.单片机控制交通灯系统设计18.基于DSP的IIR数字低通滤波器的设计与实现19.智能抢答器设计20.基于LabVIEW的PC机与单片机串口通信设计的IIR数字高通滤波器22.单片机数字钟设计23.自动起闭光控窗帘毕业设计论文24.三容液位远程测控系统毕业论文25.基于Matlab的PWM波形仿真与分析26.集成功率放大电路的设计27.波形发生器、频率计和数字电压表设计28.水位遥测自控系统 毕业论文29.宽带视频放大电路的设计 毕业设计30.简易数字存储示波器设计毕业论文31.球赛计时计分器 毕业设计论文数字滤波器的设计毕业论文机与单片机串行通信毕业论文34.基于CPLD的低频信号发生器设计毕业论文变电站电气主接线设计序列在扩频通信中的应用37.正弦信号发生器38.红外报警器设计与实现39.开关稳压电源设计40.基于MCS51单片机温度控制毕业设计论文41.步进电动机竹竿舞健身娱乐器材42.单片机控制步进电机 毕业设计论文43.单片机汽车倒车测距仪44.基于单片机的自行车测速系统设计45.水电站电气一次及发电机保护46.基于单片机的数字显示温度系统毕业设计论文47.语音电子门锁设计与实现48.工厂总降压变电所设计-毕业论文49.单片机无线抢答器设计50.基于单片机控制直流电机调速系统毕业设计论文51.单片机串行通信发射部分毕业设计论文52.基于VHDL语言PLD设计的出租车计费系统毕业设计论文53.超声波测距仪毕业设计论文54.单片机控制的数控电流源毕业设计论文55.声控报警器毕业设计论文56.基于单片机的锁相频率合成器毕业设计论文57.基于Multism/protel的数字抢答器58.单片机智能火灾报警器毕业设计论59.无线多路遥控发射接收系统设计毕业论文60.单片机对玩具小车的智能控制毕业设计论文61.数字频率计毕业设计论文62.基于单片机控制的电机交流调速毕业设计论文63.楼宇自动化--毕业设计论文64.车辆牌照图像识别算法的实现--毕业设计65.超声波测距仪--毕业设计66.工厂变电所一次侧电气设计67.电子测频仪--毕业设计68.点阵电子显示屏--毕业设计69.电子电路的电子仿真实验研究70.基于51单片机的多路温度采集控制系统71.基于单片机的数字钟设计72.小功率不间断电源(UPS)中变换器的原理与设计73.自动存包柜的设计74.空调器微电脑控制系统75.全自动洗衣机控制器76.电力线载波调制解调器毕业设计论文77.图书馆照明控制系统设计78.基于AC3的虚拟环绕声实现79.电视伴音红外转发器的设计80.多传感器障碍物检测系统的软件设计81.基于单片机的电器遥控器设计82.基于单片机的数码录音与播放系统83.单片机控制的霓虹灯控制器84.电阻炉温度控制系统85.智能温度巡检仪的研制86.保险箱遥控密码锁 毕业设计变电所的电气部分及继电保护88.年产26000吨乙醇精馏装置设计89.卷扬机自动控制限位控制系统90.铁矿综合自动化调度系统91.磁敏传感器水位控制系统92.继电器控制两段传输带机电系统93.广告灯自动控制系统94.基于CFA的二阶滤波器设计95.霍尔传感器水位控制系统96.全自动车载饮水机97.浮球液位传感器水位控制系统98.干簧继电器水位控制系统99.电接点压力表水位控制系统100.低成本智能住宅监控系统的设计101.大型发电厂的继电保护配置102.直流操作电源监控系统的研究103.悬挂运动控制系统104.气体泄漏超声检测系统的设计105.电压无功补偿综合控制装置型无功补偿装置控制器的设计电机调速频段窄带调频无线接收机109.电子体温计110.基于单片机的病床呼叫控制系统111.红外测温仪112.基于单片微型计算机的测距仪113.智能数字频率计114.基于单片微型计算机的多路室内火灾报警器115.信号发生器116.基于单片微型计算机的语音播出的作息时间控制器117.交通信号灯控制电路的设计118.基于单片机步进电机控制系统设计119.多路数据采集系统的设计120.电子万年历121.遥控式数控电源设计降压变电所一次系统设计变电站一次系统设计124.智能数字频率计125.信号发生器126.基于虚拟仪器的电网主要电气参数测试设计127.基于FPGA的电网基本电量数字测量系统的设计128.风力发电电能变换装置的研究与设计129.电流继电器设计130.大功率电器智能识别与用电安全控制器的设计131.交流电机型式试验及计算机软件的研究132.单片机交通灯控制系统的设计133.智能立体仓库系统的设计134.智能火灾报警监测系统135.基于单片机的多点温度检测系统136.单片机定时闹钟设计137.湿度传感器单片机检测电路制作138.智能小车自动寻址设计--小车悬挂运动控制系统139.探讨未来通信技术的发展趋势140.音频多重混响设计141.单片机呼叫系统的设计142.基于FPGA和锁相环4046实现波形发生器143.基于FPGA的数字通信系统144.基于单片机的带智能自动化的红外遥控小车145.基于单片机AT89C51的语音温度计的设计146.智能楼宇设计147.移动电话接收机功能电路148.单片机演奏音乐歌曲装置的设计149.单片机电铃系统设计150.智能电子密码锁设计151.八路智能抢答器设计152.组态控制抢答器系统设计153.组态控制皮带运输机系统设计154..基于单片机控制音乐门铃155.基于单片机控制文字的显示156.基于单片机控制发生的数字音乐盒157.基于单片机控制动态扫描文字显示系统的设计158.基于LMS自适应滤波器的MATLAB实现功率放大器毕业论文160.无线射频识别系统发射接收硬件电路的设计161.基于单片机PIC16F877的环境监测系统的设计162.基于ADE7758的电能监测系统的设计163.智能电话报警器164.数字频率计 课程设计165.多功能数字钟电路设计 课程设计166.基于VHDL数字频率计的设计与仿真167.基于单片机控制的电子秤168.基于单片机的智能电子负载系统设计169.电压比较器的模拟与仿真170.脉冲变压器设计仿真技术及应用172.基于单片机的水温控制系统173.基于FPGA和单片机的多功能等精度频率计174.发电机-变压器组中微型机保护系统175.基于单片机的鸡雏恒温孵化器的设计176.数字温度计的设计177.生产流水线产品产量统计显示系统178.水位报警显时控制系统的设计179.红外遥控电子密码锁的设计180.基于MCU温控智能风扇控制系统的设计181.数字电容测量仪的设计182.基于单片机的遥控器的设计电话卡代拨器的设计184.数字式心电信号发生器硬件设计及波形输出实现185.电压稳定毕业设计论文186.基于DSP的短波通信系统设计(IIR设计)187.一氧化碳报警器188.网络视频监控系统的设计189.全氢罩式退火炉温度控制系统190.通用串行总线数据采集卡的设计191.单片机控制单闭环直流电动机的调速控制系统192.单片机电加热炉温度控制系统193.单片机大型建筑火灾监控系统接口设备驱动程序的框架设计195.基于Matlab的多频率FMICW的信号分离及时延信息提取196.正弦信号发生器197.小功率UPS系统设计198.全数字控制SPWM单相变频器199.点阵式汉字电子显示屏的设计与制作200.基于AT89C51的路灯控制系统设计200.基于AT89C51的路灯控制系统设计201.基于AT89C51的宽范围高精度的电机转速测量系统202.开关电源设计203.基于PDIUSBD12和K9F2808简易USB闪存设计204.微型机控制一体化监控系统205.直流电机试验自动采集与控制系统的设计206.新型自动装弹机控制系统的研究与开发207.交流异步电机试验自动采集与控制系统的设计208.转速闭环控制的直流调速系统的仿真与设计209.基于单片机的数字直流调速系统设计210.多功能频率计的设计信息移频信号的频谱分析和识别212.集散管理系统—终端设计213.基于MATLAB的数字滤波器优化设计214.基于AT89C51SND1C的MP3播放器215.基于光纤的汽车CAN总线研究216.汽车倒车雷达217.基于DSP的电机控制218.超媒体技术219.数字电子钟的设计与制作220.温度报警器的电路设计与制作221.数字电子钟的电路设计222.鸡舍电子智能补光器的设计223.高精度超声波传感器信号调理电路的设计224.电子密码锁的电路设计与制作225.单片机控制电梯系统的设计226.常用电器维修方法综述227.控制式智能计热表的设计228.电子指南针设计229.汽车防撞主控系统设计230.单片机的智能电源管理系统231.电力电子技术在绿色照明电路中的应用232.电气火灾自动保护型断路器的设计233.基于单片机的多功能智能小车设计234.对漏电保护器安全性能的剖析235.解析民用建筑的应急照明236.电力拖动控制系统设计237.低频功率放大器设计238.银行自动报警系统

大学是干嘛的地方?无论多高的学历和职称,不会设计、制造教具,不会设计、制造教学仪器,不会维修仪器和设备;用你父母的钱进口教学仪器模仿了委托工厂仿制就是佼佼者;用你父母的钱请校外的人来维修设备、从校外采购配件;用你父母的钱请教学仪器生产企业提供教学实验讲义,将作者填上他们的名字就有教学突出成就奖;教你背诵的公式和外语,永远也比不上美国麻省理工学院在网上公开的教材内容。学生也不要埋怨学费贵,除了上面教师的原因,你们自己的基础实验、专业课就上的迷迷糊糊的,高额投资下的创新实验项目、挑战杯、科技竞赛、毕业论文、商业开发,都见不得阳光,将真金白银变成了一堆堆的垃圾!!!!

五人抢答器设计毕业论文

1.前言1. 1工厂、学校和电视台等单位常举办各种智力竞赛, 抢答记分器是必要设备。在我校举行的各种竞赛中我们经常看到有抢答的环节,举办方多数采用让选手通过举答题板的方法判断选手的答题权,这在某种程度上会因为主持人的主观误断造成比赛的不公平性。为解决这个问题,我们小组准备就本次大赛的机会制作一个低成本但又能满足学校需要的八路数显抢答器。本课程设计是“模拟电子技术”与“数字电子技术”两门课程的综合课程设计。1. 2本课程设计旨在培养学生综合模拟、数字电路知识,解决电子信息方面常见实际问题的能力,掌握一般电子电路设计方法与设计步骤。促使学生积累实际电子制作经验,准备走向更复杂更实用的应用领域,是参加“全国大学生电子竞赛”前的理论与实践相结合的综合技能训练。目的在于巩固基础、注重设计、培养技能、追求创新、走向实用。 主要功能介绍抢答器最多可供8名选手参赛,编号为1~8号,各队分别用一个按钮(分别为S1~S8)控制,并设置一个系统清零和抢答控制开关S,该开关由主持人控制。 抢答器具有数据锁存功能,并将锁存数据用LED数码管显示出来,同时蜂鸣器发出间歇式声响(持续时间为1秒),主持人清零后,声音提示停止。 抢答先后的分辨率为5ms。 关S作为清零及抢答控制开关(由主持人控制),当开关S被按下时抢答电路清 零,松开后则允许抢答。输入抢答信号由抢答按钮开关S1~S8实现。 有抢答信号输入(开关S1~S8中的任意一个开关被按下)时,并显示出相 对应的组别号码。此时再按其他任何一个抢答器开关均无效,指示灯依旧“保持” 第一个开关按下时所对应的状态不变。2.总体方案设计 方案一:如图1所示为总体方框图。其工作原理为:接通电源后,主持人将开关拨到"清零"状态,抢答器处于禁止状态,编号显示器灭灯,定时器显示设定时间;主持人将开关置;开始"状态,宣布"开始"抢答器工作。定时器倒计时,扬声器给出声响提示。选手在定时时间内抢答时,抢答器完成:优先判断、编号锁存、编号显示、扬声器提示。当一轮抢答之后,定时器停止、禁止二次抢答、定时器显示剩余时间。如果再次抢答必须由主持人再次操作"清除"和"开始"状态开关。2.2方案二 实验电路原理方框图如图所示。该电路作为抢答信号的接收、保持和输出的基本电路,手动清零开关CR,S1~S8为抢答按钮开关。本抢答器可同时供8名选手或8个代表队比赛,分别用8个开关S1~S8表示。同时设置一个系统清除和抢答控制开关,该开关由裁判控制。此抢答器应具有数据锁存功能与显示功能。即选手按动按钮,锁存相应的编号,并在数码管上显示,同时蜂鸣器发出报警声响提示。选手抢答实行优先锁存,优先抢答选手的编号一直保持到裁判将系统清零为止。方案比较通过对方案一和方案二的比较可以看出,并且增加了控制电路,是电路图简单明了,避免重复,控制起来更加方便。抢答器队参赛选手的动作的先后有很强的分辨力,即使先后只相差几毫秒,抢答器也能分辨出来,抢答器直线实现动作选手的编号,并保持到主持人清零为止。2.4方案论证2.5方案选择通过对比,最终选择方案一3单元模块设计3.1抢答器电路 3.1.1抢答器电路图方框图3.1.2抢答器电路图设计及电路功能介绍设计电路见附录图所示。电路选用优先编码器 74LS148 和锁存器 74LS279 来完成。该电路主要完成两个功能:一是分辨出选手按键的先后,并锁存优先抢答者的编号,同时译码显示电路显示编号(显示电路采用七段数字数码显示管);二是禁止其他选手按键,其按键操作无效。工作过程:开关S置于"清除"端时,RS触发器的 R、S端均为0,4个触发器输出置0,使74LS148的优先编码工作标志端(图中5号端)=0,使之处于工作状态。当开关S置于"开始"时,抢答器处于等待工作状态,当有选手将抢答按键按下时(如按下S5),74LS148的输出经RS锁存后,CTR=1,RBO(图中4端) =1,七段显示电路74LS48处于工作状态,4Q3Q2Q=101,经译码显示为“5”。此外,CTR=1,使74LS148 优先编码工作标志端(图中5号端)=1,处于禁止状态,封锁其他按键的输入。当按键松开即按下时,74LS148的 此时由于仍为CTR=1,使优先编码工作标志端(图中5号端)=1,所以74LS148仍处于禁止状态,确保不会出二次按键时输入信号,保证了抢答者的优先性。如有再次抢答需由主持人将S开关重新置“清除”然后再进行下一轮抢答。3.2可预致时间的定时电路3.2.1可预致时间的定时电路方框图3.2.2可预致时间的定时电路图设计及电路功能介绍原理及设计:该部分主要由555定时器秒脉冲产生电路、十进制同步加减计数器74LS192减法计数电路、74LS48译码电路和2个7段数码管即相关电路组成。具体电路如图3所示。两块74LS192实现减法计数,通过译码电路74LS48显示到数码管上,其时钟信号由时钟产生电路提供。74192的预置数控制端实现预置数,由节目主持人根据抢答题的难易程度,设定一次抢答的时间,通过预置时间电路对计数器进行预置,计数器的时钟脉冲由秒脉冲电路提供。按键弹起后,计数器开始减法计数工作,并将时间显示在共阴极七段数码显示管DPY_7-SEG 上,当有人抢答时,停止计数并显示此时的倒计时时间;如果没有人抢答,且倒计时时间到时, 输出低电平到时序控制电路,控制报警电路报警,同时以后选手抢答无效。下面结合图4具体讲一下标准秒脉冲产生电路的原理。结合图4,图中电容C的放电时间和充电时间分别为 , 于是从NE555的3端输出的脉冲的频率为 ,结合我们的实际经验及考虑到元器件的成本,我们选择的电阻值为R1=15K,R2=68K,C=10uF,代入到上式中即得 ,即秒脉冲。 3.2.3控制电路和报警电路由555 芯片构成多谐振荡电路 ,555 的输出信号再经三极管放大 ,从而推动扬声器发声控制电路包括时序和报警两个电路 ,如图5 所示。控制电路需具有以下几个功能。主持人闭合开关扬声器发声 ,多路抢答器电路和计时电路进入正常状态; 参赛者按键时 ,扬声器发声 ,抢答电路和计时电路停止工作;抢答时间到 ,无人抢答 ,扬声器发声 ,抢答电路和计时电路停止工作 电源电路3.3电路参数的计算及元器件的选择 3.3.1电路参数的计算 3.3.2元器件的选择4软件设计 4.1软件设计原理及设计所用工具 4.2主要软件设计流程框图 4.3功能介绍5特殊器件介绍5.1 74LS148为8线-3线优先编码器,表为其真值表,表为其功能表,图为其管脚图,图为其电路图。表 74LS148 8线—3线二进制编码器真值表输 入 输 出A7 A6 A5 A4 A3 A2 A1 A0 Y2 Y1 Y00 0 0 0 0 0 0 1 0 0 0 0 0 0 1 00 0 0 0 0 1 0 00 0 0 0 1 0 0 00 0 0 1 0 0 0 00 0 1 0 0 0 0 00 1 0 0 0 0 0 01 0 0 0 0 0 0 0 0 0 00 0 10 1 00 1 11 0 01 0 11 1 01 1 1 表 74LS148 8线—3线二进制编码器功能表图 74LS148电路图 图 74LS148管脚图 74LS148工作原理如下: 该编码器有8个信号输入端,3个二进制码输出端。此外,电路还设置了输入使能端EI,输出使能端EO和优先编码工作状态标志GS。 当EI=0时,编码器工作;而当EI=1时,则不论8个输入端为何种状态,3个输出端均为高电平,且优先标志端和输出使能端均为高电平,编码器处于非工作状态。这种情况被称为输入低电平有效,输出也为低电来有效的情况。当EI为0,且至少有一个输入端有编码请求信号(逻辑0)时,优先编码工作状态标志GS为0。表明编码器处于工作状态,否则为1。由功能表可知,在8个输入端均无低电平输入信号和只有输入0端(优先级别最低位)有低电平输入时,A2A1A0均为111,出现了输入条件不同而输出代码相同的情况,这可由GS的状态加以区别,当GS=1时,表示8个输入端均无低电平输入,此时A2A1A0=111为非编码输出;GS=0时,A2A1A0=111表示响应输入0端为低电平时的输出代码(编码输出)。EO只有在EI为0,且所有输入端都为1时,输出为0,它可与另一片同样器件的EI连接,以便组成更多输入端的优先编码器。 74LS148功能表 从功能表不难看出,输入优先级别的次为7,6,……,0。输入有效信号为低电平,当某一输入端有低电平输入,且比它优先级别高的输入端无低电平输入时,输出端才输出相对应的输入端的代码。例如5为0。且优先级别比它高的输入6和输入7均为1时,输出代码为010,这就是优先编码器的工作原理 锁存器74LS279 原理:在74ls279中,由于4回路中2回路置位端子为两个,所以使用其一时,整理两个置位输入作为1个使用,或将另一个输入固定为“H”使用。另外,作为稍微变化74LS279 的使用方法,也可将3组作为RS锁存器使用,剩余的RS锁存器作为2输入NAND门电路使用,复位输入例如①管脚固定为”L”时其输入为”H”,所以可构成将②和③作为输入,输出为④的2输入NAND,此变换如图2所示。图5-6 74LS279管脚引线图5.3中规模集成BCD七段显示译码驱动器译码与编码是相反的过程,是将二进制代码表示的特定含义翻译出来的过程。能实现译码功能的组合逻辑电路称为译码器。集成译码器可分为三种,即:二进制译码器、二-十进制译码器和显示译码器。二进制译码器是将输入的二进制代码的各种状态按特定含义翻译成对应输出信号的电路。也称为变量译码器。若输入端有n位,代码组合就有2n个,当然可译出2n个输出信号。显示译码器由译码输出和显示器配合使用,最常用的是BCD七段译码器。其输出是驱动七段字形的七个信号,常见产品型号有74LS48、74LS47等。字符显示器:分段式显示是将字符由分布在同一平面上的若干段发光笔划组成。电子计算器,数字万用表等显示器都是显示分段式数字。而LED数码显示器是最常见的。通常有红、绿、黄等颜色。LED的死区电压较高,工作电压大约,驱动电流为几十毫安。图5-2是七段LED数码管的引线图和显示数字情况。74LS47译码驱动器输出是低电平有效,所以配接的数码管须采用共阳极接法;而74LS48译码驱动器输出是高电平有效,所以,配接的数码管须采用共阴极接法。数码管常用型号有BS201、BS202等。图5-3(a)是共阴式LED数码管的原理图,使用时,公阴极接地,7个阳极a~g由相应的BCD七段译码器来驱动,如图5-3(b)所示。 (a)引线图 (b)七段字形组合情况 图5-2 七段LED数码管图5-3 共阴式LED数码管的原理图和驱动电路上面提到,74LS48是输出高电平有效的中规模集成BCD七段显示译码驱动器,它的功能简图和管脚引线图如图5-4所示。其真值表见表5-2所示。 表5-2 74LS48BCD七段译码驱动器真值表十进制数或功能 输 入 输 出 A3 A2 A1 A0 a b c d e f g0 1 1 0 0 0 0 1 1 1 1 1 1 1 01 1 × 0 0 0 1 1 0 1 1 0 0 0 02 1 × 0 0 1 0 1 1 1 0 1 1 0 13 1 × 0 0 1 1 1 1 1 1 1 0 0 14 1 × 0 1 0 0 1 0 1 1 0 0 1 15 1 × 0 1 0 1 1 1 0 1 1 0 1 16 1 × 0 1 1 0 1 0 0 1 1 1 1 17 1 × 0 1 1 1 1 1 1 1 0 0 0 08 1 × 1 0 0 0 1 1 1 1 1 1 1 19 1 × 1 0 0 1 1 1 1 1 0 0 1 110 1 × 1 0 1 0 1 0 0 0 1 1 0 111 1 × 1 0 1 1 1 0 0 1 1 0 0 112 1 × 1 1 0 0 1 0 1 0 0 0 1 113 1 × 1 1 0 1 1 1 0 0 1 0 1 114 1 × 1 1 1 0 1 0 0 0 1 1 1 115 1 × 1 1 1 1 1 0 0 0 0 0 0 0灭灯 × × × × × × 0 0 0 0 0 0 0 0灭零 1 0 0 0 0 0 0 0 0 0 0 0 0 0试灯 0 × × × × × 1 1 1 1 1 1 1 1 74LS48的输入端是四位二进制信号(8421BCD码),a、b、c、d、e、f、g是七段译码器的输出驱动信号,高电平有效。可直接驱动共阴极七段数码管, 是使能端,起辅助控制作用。使能端的作用如下: (1) 是试灯输入端,当 =0, =1时,不管其它输入是什么状态,a~g七段全亮;(2)灭灯输入 ,当 =0,不论其它输入状态如何,a~g均为0,显示管熄灭;(3)动态灭零输入 ,当 =1, =0时, 如果 =0000时,a~g均为各段熄灭; (4) 动态灭零输出 ,它与灭灯输入 共用一个引出端。当 =0或 =0且 =1, =0000时,输出才为0。片间 与 配合,可用于熄灭多位数字前后所不需要显示的零。74LS48功能简图 74LS48管脚引线6系统调试把上面所设计的单元电路连接起来可得到整机电路。然后可在印刷电路板上焊接分立元件并进行调试。在调试的过程中可能会遇到由于逻辑门传输延时的存在而带来的竞争冒险问题 ,主要表现在当按键大于8 时 ,在连续按键的情况下大约有10 %的可能性误显示为 8 ,1. 测试使用的主要的仪器和仪表是万用表。 2. 调试电路的方法和技巧是用红黑表笔测试接电源处是否有电压显示,再用表笔分别测试各集成块和电阻,电容的电压,注意用手背触摸一下,检查各仪器是否发热工作,。 3. 测试的数据电压显示为伏等。 4. 调试中出现的故障,原因及排除方法有的电阻焊接为虚焊,原因是检查发生漏洞,排除方法是再焊接;74LS148接地引角8不为零,可能焊连,去掉焊连部分。7系统功能、指标参数1)八个抢答按钮电阻R1~R8:由74系列参数Iil<=Iil(max)=,所以R>=(Vcc-Vol)/Iil=3k,取(R1~R8)=5k。 8总结与体会9谢辞10参考文献1.康华光.电子技术基础[M].北京:高等教育出版社.1980

1、 基于RTOS的单片机方波信号发生器设计与实现 摘 要随着计算机技术的迅速发展和芯片制造工艺的不断进步,嵌入式系统的应用日益广泛:从民用的电视、手机等电路设备到军用的飞机、坦克等武器系统,到处都有嵌入式系统的身影。在嵌入式系统的应用开发中,采用... 类别:毕业论文 大小: MB 日期:2008-07-13 2、 [电子信息工程]基于单片机的电器遥控器设计 摘要:通过对设计要求地认真分析和研究,拿出了几种可行方案,最终选定了一个最佳方案。该方案是采用先进的单片机技术实现遥控的主要手段。我们所设计的遥控器能控制5个电器的电源开关,并且可对一路电灯进行亮度的... 类别:毕业论文 大小:242 KB 日期:2008-07-06 3、 基于单片机无线收发控制的交通信号灯模型 摘 要利用AT89C51单片机控制交通信号灯的工作原理及其硬件电路设计。文章对AT89C51单片机芯片及本交通信号灯模型作了较详细介绍。最后简单介绍了本系统可改进的地方。关键词:AT8... 类别:课题课程 大小:158 KB 日期:2008-07-06 4、 基于单片机的多人智能比赛记分抢答器 摘 要 本设计是采用单片机设计的多人比赛用记分抢答器系统。它具有电路简单、功能齐全、制作成本低、性价比高等特点,是一种经济、实用的比赛用抢答器。硬件部分主要由单片机、 74LS377锁存器、CC... 类别:毕业论文 大小:243 KB 日期:2008-07-06 5、 基于AT89C51的新一代单片机多功能数字钟 一、题目 1二、课程设计目的 1三、课程设计系统环境 1四、课程设计要求 1五、系统功能说明 2六、原理图 2七、程序框图 3八、源程序 5九、参考资料 7 类别:课题课程 大小:84 KB 日期:2008-07-06 6、 [电气工程]用单片机实现分频段测量信号频率 摘 要 近年来随着科技的飞速发展,单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面... 类别:毕业论文 大小:207 KB 日期:2008-07-03 7、 基于MCS 51单片机车用数字仪表设计与实现 摘 要:随着科技进步,车用显示仪表由指针式向数字式发展。数字显示仪表是采用的微处理器测控和传感器测量技术,通过控制数字显示器发光二极管和发光组合来显示车速、里程、用条段表示油量多少,并辅助显示速度大小... 类别:毕业论文 大小:179 KB 日期:2008-07-02 8、 [信息安全]基于AVR单片机的嵌入式心率提取算法 2008-06-11 13:39 188,416 外文翻译.doc2007-11-16 11:28 352,955 外文翻译原文.pdf2008-06-10... 类别:毕业论文 大小: MB 日期:2008-06-30 9、 基于单片机与VC串口通信的温度采集系统设计 摘 要温度检测是现代检测技术的重要组成部分,在保证产品质量、节约能源和安全生产等方面起着关键的作用。随着科学技术的发展,由单片集成电路构成的温度传感器的种类越来越多,测量的精度越来越高,响应时间越来... 类别:毕业论文 大小:480 KB 日期:2008-06-26

你可以参看一下PLC方面的书籍。这个是典型的例子。大部分教科书上都有。

这有一系列的毕业论文qq310852504

智能抢答器毕业论文设计

天下没有免费的午餐

液压伺服系统设计 液压伺服系统设计 在液压伺服系统中采用液压伺服阀作为输入信号的转换与放大元件。液压伺服系统能以小功率的电信号输入,控制大功率的液压能(流量与压力)输出,并能获得很高的控制精度和很快的响应速度。位置控制、速度控制、力控制三类液压伺服系统一般的设计步骤如下: 1)明确设计要求:充分了解设计任务提出的工艺、结构及时系统各项性能的要求,并应详细分析负载条件。 2)拟定控制方案,画出系统原理图。 3)静态计算:确定动力元件参数,选择反馈元件及其它电气元件。 4)动态计算:确定系统的传递函数,绘制开环波德图,分析稳定性,计算动态性能指标。 5)校核精度和性能指标,选择校正方式和设计校正元件。 6)选择液压能源及相应的附属元件。 7)完成执行元件及液压能源施工设计。 本章的内容主要是依照上述设计步骤,进一步说明液压伺服系统的设计原则和介绍具体设计计算方法。由于位置控制系统是最基本和应用最广的系统,所以介绍将以阀控液压缸位置系统为主。 全面理解设计要求 全面了解被控对象 液压伺服控制系统是被控对象—主机的一个组成部分,它必须满足主机在工艺上和结构上对其提出的要求。例如轧钢机液压压下位置控制系统,除了应能够承受最大轧制负载,满足轧钢机轧辊辊缝调节最大行程,调节速度和控制精度等要求外,执行机构—压下液压缸在外形尺寸上还受轧钢机牌坊窗口尺寸的约束,结构上还必须保证满足更换轧辊方便等要求。要设计一个好的控制系统,必须充分重视这些问题的解决。所以设计师应全面了解被控对象的工况,并综合运用电气、机械、液压、工艺等方面的理论知识,使设计的控制系统满足被控对象的各项要求。 明角设计系统的性能要求 1)被控对象的物理量:位置、速度或是力。 2)静态极限:最大行程、最大速度、最大力或力矩、最大功率。 3)要求的控制精度:由给定信号、负载力、干扰信号、伺服阀及电控系统零飘、非线性环节(如摩擦力、死区等)以及传感器引起的系统误差,定位精度,分辨率以及允许的飘移量等。 4)动态特性:相对稳定性可用相位裕量和增益裕量、谐振峰值和超调量等来规定,响应的快速性可用载止频率或阶跃响应的上升时间和调整时间来规定; 5)工作环境:主机的工作温度、工作介质的冷却、振动与冲击、电气的噪声干扰以及相应的耐高温、防水防腐蚀、防振等要求; 6)特殊要求;设备重量、安全保护、工作的可靠性以及其它工艺要求。 负载特性分析 正确确定系统的外负载是设计控制系统的一个基本问题。它直接影响系统的组成和动力元件参数的选择,所以分析负载特性应尽量反映客观实际。液压伺服系统的负载类型有惯性负载、弹性负载、粘性负载、各种摩擦负载(如静摩擦、动摩擦等)以及重力和其它不随时间、位置等参数变化的恒值负载等。 拟定控制方案、绘制系统原理图 在全面了解设计要求之后,可根据不同的控制对象,按表6所列的基本类型选定控制方案并拟定控制系统的方块图。如对直线位置控制系统一般采用阀控液压缸的方案,方块图如图36所示。图36 阀控液压缸位置控制系统方块图表6 液压伺服系统控制方式的基本类型伺服系统 控制信号 控制参数 运动类型 元件组成机液电液气液电气液 模拟量数字量位移量 位置、速度、加速度、力、力矩、压力 直线运动摆动运动旋转运动 1.阀控制:阀-液压缸,阀-液压马达2.容积控制:变量泵-液压缸;变量泵-液压马达;阀-液压缸-变量泵-液压马达3.其它:步近式力矩马达 动力元件参数选择 动力元件是伺服系统的关键元件。它的一个主要作用是在整个工作循环中使负载按要求的速度运动。其次,它的主要性能参数能满足整个系统所要求的动态特性。此外,动力元件参数的选择还必须考虑与负载参数的最佳匹配,以保证系统的功耗最小,效率高。 动力元件的主要参数包括系统的供油压力、液压缸的有效面积(或液压马达排量)、伺服阀的流量。当选定液压马达作执行元件时,还应包括齿轮的传动比。 供油压力的选择 选用较高的供油压力,在相同输出功率条件下,可减小执行元件——液压缸的活塞面积(或液压马达的排量),因而泵和动力元件尺寸小重量轻,设备结构紧凑,同时油腔的容积减小,容积弹性模数增大,有利于提高系统的响应速度。但是随供油压力增加,由于受材料强度的限制,液压元件的尺寸和重量也有增加的趋势,元件的加工精度也要求提高,系统的造价也随之提高。同时,高压时,泄漏大,发热高,系统功率损失增加,噪声加大,元件寿命降低,维护也较困难。所以条件允许时,通常还是选用较低的供油压力。 常用的供油压力等级为7MPa到28MPa,可根据系统的要求和结构限制条件选择适当的供油压力。 伺服阀流量与执行元件尺寸的确定 如上所述,动力元件参数选择除应满足拖动负载和系统性能两方面的要求外,还应考虑与负载的最佳匹配。下面着重介绍与负载最佳匹配问题。 (1)动力元件的输出特性 将伺服阀的流量——压力曲线经坐标变换绘于υ-FL平面上,所得的抛物线即为动力元件稳态时的输出特性,见图37。 图37 参数变化对动力机构输出特性的影响a)供油压力变化;b)伺服阀容量变化;c)液压缸面积变化 图中 FL——负载力,FL=pLA; pL——伺服阀工作压力; A——液压缸有效面积; υ——液压缸活塞速度, ; qL——伺服阀的流量; q0——伺服阀的空载流量; ps——供油压力。 由图37可见,当伺服阀规格和液压缸面积不变,提高供油压力,曲线向外扩展,最大功率提高,最大功率点右移,如图37a。 当供油压力和液压缸面积不变,加大伺服阀规格,曲线变高,曲线的顶点A ps不变,最大功率提高,最大功率点不变,如图37b。 当供油压力和伺服阀规格不变,加大液压缸面积A,曲线变低,顶点右移,最大功率不变,最大功率点右移,如图37c。 (2)负载最佳匹配图解法 在负载轨迹曲线υ-FL平面上,画出动力元件输出特性曲线,调整参数,使动力元件输出特性曲线从外侧完全包围负载轨迹曲线,即可保证动力元件能够拖动负载。在图38中,曲线1、2、3代表三条动力元件的输出特性曲线。曲线2与负载轨迹最大功率点c相切,符合负载最佳匹配条件,而曲线1、3上的工作点α和b,虽能拖动负载,但效率都较低。 (3)负载最佳匹配的解析法 参见液压动力元件的负载匹配。 (4)近似计算法在工程设计中,设计动力元件时常采用近似计算法,即按最大负载力FLmax选择动力元件。在动力元件输出特性曲线上,限定 FLmax≤pLA= ,并认为负载力、最大速度和最大加速度是同时出现的,这样液压缸的有效面积可按下式计算: (37) 图38 动力元件与负载匹配图形 按式37求得A值后,可计算负载流量qL,即可根据阀的压降从伺服阀样本上选择合适的伺服阀。近似计算法应用简便,然而是偏于保守的计算方法。采用这种方法可以保证系统的性能,但传递效率稍低。 (5)按液压固有频率选择动力元件 对功率和负载很小的液压伺服系统来说,功率损耗不是主要问题,可以根据系统要求的液压固有频率来确定动力元件。 四边滑阀控制的液压缸,其活塞的有效面积为 (38) 二边滑阀控制的液压缸,其活塞的有效面积为 (39) 液压固有频率ωh可以按系统要求频宽的(5~10)倍来确定。对一些干扰力大,负载轨迹形状比较复杂的系统,不能按上述的几种方法计算动力元件,只能通过作图法来确定动力元件。 计算阀控液压马达组合的动力元件时,只要将上述计算方法中液压缸的有效面积A换成液压马达的排量D,负载力FL换成负载力矩TL,负载速度换成液压马达的角速度 ,就可以得到相应的计算公式。当系统采用了减速机构时,应注意把负载惯量、负载力、负载的位移、速度、加速度等参数都转换到液压马达的轴上才能作为计算的参数。减速机构传动比选择的原则是:在满足液压固有频率的要求下,传动比最小,这就是最佳传动比。 伺服阀的选择 根据所确定的供油压力ps和由负载流量qL(即要求伺服阀输出的流量)计算得到的伺服阀空载流量q0,即可由伺服阀样本确定伺服阀的规格。因为伺服阀输出流量是限制系统频宽的一个重要因素,所以伺服阀流量应留有余量。通常可取15%左右的负载流量作为伺服阀的流量储备。 除了流量参数外,在选择伺服阀时,还应考虑以下因素: 1)伺服阀的流量增益线性好。在位置控制系统中,一般选用零开口的流量阀,因为这类阀具有较高的压力增益,可使动力元件有较大的刚度,并可提高系统的快速性与控制精度。 2)伺服阀的频宽应满足系统频宽的要求。一般伺服阀的频宽应大于系统频宽的5倍,以减小伺服阀对系统响应特性的影响。 3)伺服阀的零点漂移、温度漂移和不灵敏区应尽量小,保证由此引起的系统误差不超出设计要求。 4)其它要求,如对零位泄漏、抗污染能力、电功率、寿命和价格等,都有一定要求。 执行元件的选择 液压伺服系统的执行元件是整个控制系统的关键部件,直接影响系统性能的好坏。执行元件的选择与设计,除了按本节所述的方法确定液压缸有效面积A(或液压马达排量D)的最佳值外,还涉及密封、强度、摩擦阻力、安装结构等问题。 反馈传感器的选择 根据所检测的物理量,反馈传感器可分为位移传感器、速度传感器、加速度传感器和力(或压力)传感器。它们分别用于不同类型的液压伺服系统,作为系统的反馈元件。闭环控制系统的控制精度主要决定于系统的给定元件和反馈元件的精度,因此合理选择反馈传感器十分重要。 传感器的频宽一般应选择为控制系统频宽的5~10倍,这是为了给系统提供被测量的瞬时真值,减少相位滞后。传感器的频宽对一般系统都能满足要求,因此传感器的传递函数可近似按比例环节来考虑。 确定系统方块图 根据系统原理图及系统各环节的传递函数,即可构成系统的方块图。根据系统的方块图可直接写出系统开环传递函数。阀控液压缸和阀控液压马达控制系统二者的传递函数具有相同的结构形式,只要把相应的符号变换一下即可。 绘制系统开环波德图并确定开环增益 系统的动态计算与分析在这里是采用频率法。首先根据系统的传递函数,求出波德图。在绘制波德图时,需要确定系统的开环增益K。 改变系统的开环增益K时,开环波德图上幅频曲线只升高或降低一个常数,曲线的形状不变,其相频曲线也不变。波德图上幅频曲线的低频段、穿越频率以及幅值增益裕量分别反映了闭环系统的稳态精度、截止频率及系统的稳定性。所以可根据闭环系统所要求的稳态精度、频宽以及相对稳定性,在开环波德图上调整幅频曲线位置的高低,来获得与闭环系统要求相适应的K值。 由系统的稳态精度要求确定K 由控制原理可知,不同类型控制系统的稳态精度决定于系统的开环增益。因此,可以由系统对稳态精度的要求和系统的类型计算得到系统应具有的开环增益K。 由系统的频宽要求确定K 分析二阶或三阶系统特性与波德图的关系知道,当ζh和K/ωh都很小时,可近似认为系统的频宽等于开环对数幅值曲线的穿越频率,即ω-3dB≈ωc,所以可绘制对数幅频曲线,使ωc在数值上等于系统要求的ω-3dB值,如图39所示。由此图可得K值。 图39 由ω-3dB绘制开环对数幅频特性a)0型系统;b)I型系统 由系统相对稳定性确定K 系统相对稳定性可用幅值裕量和相位裕量来表示。根据系统要求的幅值裕量和相位裕量来绘制开环波德图,同样也可以得到K。见图40。 实际上通过作图来确定系统的开环增益K,往往要综合考虑,尽可能同时满足系统的几项主要性能指标。 系统静动态品质分析及确定校正特性 在确定了系统传递函数的各项参数后,可通过闭环波德图或时域响应过渡过程曲线或参数计算对系统的各项静动态指标和误差进行校核。如设计的系统性能不满足要求,则应调整参数,重复上述计算或采用校正环节对系统进行补偿,改变系统的开环频率特性,直到满足系统的要求。 仿真分析 在系统的传递函数初步确定后,可以通过计算机对该系统进行数字仿真,以求得最佳设计。目前有关于数字仿真的商用软件,如Matlab软件,很适合仿真分析。

看一下别人是怎么写相似的论文的,基本上基础知识是相同的。关键当然是一个满足功能,界面美观的程序。注意:或许这样的程序已经有了。毕竟你作为新手,写程序很为难。

原文在自己下载.抢答器的设计一,设计要求1,画出电路原理图;2,元件及参数选择;3,SCH文件生成与打印输出;二, 技术指标1,设计6组参赛的抢答器,每组设置一个抢答按钮.2,电路具有第一抢答信号鉴别与锁存功能,抢答成功后,显示组别,发出声音. 3,设置记分电路,每组开始预置100分,抢答后由主持人记分,答对一次加10分,答错一次减10分.4,设置犯规电路,对提前抢答或超时抢答的组别发出声音.抢答器的设计摘要:传统的抢答器都是导线布线,受现场环境影响很大.本文介绍的六路无线抢答器,是以8051单片机为核心制成的,其功能为连续可调的0到9秒的 ,抢答有效有高频铃声并显示组别,抢答无效有低频铃声也是显示组别,并且有计分功能,预置100分,答对为加10分,答错为减10分,由主持人手动复位,加减分,所以此抢答操作方便,在很多的场所都可以使用,并且给人的视觉效果非常好.关键字:抢答器,智能抢答器,无线编解码,单片机.一,引言抢答器广泛用于电视台,商业机构及学校,为竞赛增添了刺激性,娱乐性,在一定程度上丰富了人们的业余生活.二,总体设计方案1.设计思路本课题我主要采用单片机电路来实现的.主要设计思路是:在主持人下达命令后,能够准确判断出第一抢答信号并将其锁存,同时将输入信号封锁,使其它抢答无效.主持人没有下达命令时抢答视为犯规.并显示犯规组别,发出低频铃声,抢答成功后对第一信号译码,显示组别并发出高频铃声.定时电路由设置的时间为9秒.计分电路有三个数码管显示.下次抢答时必须由主持人再次操作清除和开始状态开关.2.总体设计框图图1总体框图3.设计原理分析整个流程过程主要四大块:显示部分,计时部分,预置部分,控制部分.电源用正5伏,8051主控制器,当主持人按下复位键后,定时器开始计时,在0~9秒的时间内如果没有人抢答则为弃权,如果有人按键定时器停止计时间,自动显示组别并发出高频铃声,如果答对主持人按键加10分,答错则减10分,然后按复位键开始下一轮抢答.三,主要元件介绍分析芯片:8051芯片含有40个管脚,其中32个管脚是P0,P1,P2,P3,四个I/O接口,两个时钟电路引脚XTAL1,XTAL2,四个控制引脚RST, ALE,PSEN和EA,一个电源引脚和一个接地引脚.其中XTAL1,XTAL2引脚用来控制时钟电路,RST是复位信号输入端,当此输入端保持两个机器周期的高电平时,就可以完成复位操作,ALE端是地址锁存允许信号端,PSEN程序存储允许输出信号端,EA外部程序存储器地址允许输入端.含有20个接口,8个输入端,8个输出端,一个电源接口和一个接地口,LE和OE接口. 3.数码管:数码管有8个输入接口和一个共阴极端,8个输入端分别接A,B,C,D,E,F,G七个显示管和一个小数点端DP.图2数码管4.扬声电路:该电路由一个作为驱动作用的三极管,一个电阻和一个喇叭组成.5.计分电路:该集成电路具有"清零",预置数,加计数和减计数四个功能.进行预置时,在P0口输入100,当抢答成功的时候手动加10分,不成功时候减10分.当需要加分时,按键使P0口输入高电平,在程序寄存器中送入10,则显示器个位进1,显示加10分.当需要减分的时,按键使P0口输入低电平在程序寄存器中送入10,则显示器十位减10分,则显示少10分.四,程序介绍1.定时整定:复位键复位以后,处理器收到整定时间的信号,这样给片内用于定时设置的单元连续的加1操作,其过程的状态显1位显示器显示,当断开整定开关程序转入下一步的访问.2.组别显示:当有人抢答时,则停止定时显示组别,抢答有效发出高频铃声(输出2KHZ脉冲),无效为低频铃声(输出为1KHZ脉冲),此处用了一个键操作程序,还有一个脉冲信号输出程序.3.加减分程序:先预置100分,若抢答成功,主持人按键加10分,若回答错误则减10分,若犯规则执行显示组别,发出低频铃声.4.消噪子程序:以防止误动作,查询得到组别号码,暂存于单片机内指定单元,同时完成下述操作:关闭定时钟,封闭抢答查询,以保证以后 抢答无效.YNYNYNYN图3程序流程图五,源程序清单:ORG 0000HAJMP MAINORG 000BHAJMP MAINORG 3000HMAIN:MOV SP,#2FHMOV B,#5AH ;中断90次MOV TOMD,#01HMOV TL0,#0B0HMOV TH0,#3CHSETB TR0SETB ET0SETB EASJMP $RE: MOV TL0,#0B0HMOV TH0 #3CHDJNA B,LOOPCLR TR0LOOP: SETB RESETLJMP MAINORG 2000HSETB TOMDMOV TMOD #01HCPL P0MOV DPTR,#7F04H ;把地址送到DPTRMOV A,#0BH ;送10次循环MOV @DPTR,AINC DPTRMOV A,#40HMOV @DPTR,AMOVX DPTR,#7F00HRESETORG4000HMOV A,#00H ;向数据输出输入口送0MOV SUBF,AKL0: JNB TI,KL0 CLR TIKL1: JNB ;键是否按下JB : ACALL D10MS ;延时10秒JNB : ACALL D10MSJNB : ACALL D10MSKL4: JNB A,R4 ;取键号ADD A,R3SUBB A,#0AH ;是命令键吗JNC KL6 ;转向命令键处理MOV DPTR,#TABL #TABL ;字型码表初值送DPTRADD A,#0AH ;恢复键号MOVC A,@A+DPTR ;取字型数据MOV R0,60H ;取显示缓冲区指针MOV @R0,A ;将字型码入显示缓冲区INC R0 ;显示缓冲区地址加1CJNE R0,#60H,KD ;判断是否到最高位MOV 60H,#58H ;保存显示缓冲区地址KD : MOV 60H,R0KD1: ACALL LED ;调用显示子程序RETKL6: MOV B,#03 ;修正命令键地址转移表指针MUL ABMOV DPTR,LTB ;地址表转移指令送DPTRLJMP @A+DPTRTABL: DB CCH,86H,92H,CFHDB 80H,8FH,E0H,A4HLED: SETB P0 ;开放显示器MOV R7,#03 ;显示位数送R7LED1: MOV A,@R0 ;送显示数据MOV SUBF,ALED2: JNB TI,LED2CLR TIINC R0DJNZ R7,LED1CLR P0RETORG 5000HMOVX @DPTR,#100HMOV A,@DPTRMOV P0,DPTRLED: SUBB P0,#10HAJMP KF0RG 6000HKE: MOV A,#0B6H ;输入控制字MOVX @DPTR,A ;方式控制字输入MOV DPTR,#7FFEH ;指向计数器MOV A,#0D0H ;1MS周期计数值MOV @DPTR,AMOV A,#02H MOV @DPTR,A ;1KHZ方波输出KF: MOV A,#0B6H MOVX @DPTR,A MOV DPTR,#7FFFHMOV A,#0E0HMOV @DPTR,AMOV A,#02HMOV @DPTR,A ;2KHZ方波输出ORG 7000HSETB R7,#1EHDL: MOV R6,DL1DJNZ R7,DLCLR 8000HSTART: LJMP MAINLJMP PG INT0NOPNOPLJMP ERRLJMP PGT0NOPNOPLJMP ERRRESETEND总结与体会经过近两周的努力,在老师和同学的帮助下,我基本上完成了设计任务.通过这次课程设计,我充认识到了自学的重要性,以及学以致用的道理.我在图书馆查阅了大量的资料,同时也认识到了图书馆的重要作用.在今后的学习过程中,应该多到图书馆看一些专业方面的书籍,以丰富自己的知识.也使我加深了对单片机及接口技术的理解和应用.由于知识水平的局限,设计中可能会存在着一些不足,我真诚的接受老师和同学的批评和指正.最后衷心感谢老师的悉心指导和同学门的热心帮助!参考文献:[1]李朝青主编,《单片机原理与接口技术》,北京航天航空大学出版社,1994[2]何立民主编,《单片机应用与设计》,北京航天航空大学出版社,1990[3]邹逢兴编著,《计算机硬件技术基础实验教程》,高等教育出版社,1994

相关百科

热门百科

首页
发表服务