首页

毕业论文

首页 毕业论文 问题

三甲基铟有关毕业论文

发布时间:

三甲基铟有关毕业论文

我建议你去:"天圆地方"建筑论坛看一看,那里会有的

摘要:本文对工程测量学重新进行了定义,指出了该学科的地位和研究应用领域;阐述了工程测量学领域通用和专用仪器的发展;在理论方法发展方面,重点对平差理论、工程网优化设计、变形观测数据处理方法进行了归纳和总结。扼要地叙述了大型特种精密工程测量在国内外的发展情况。结合科研和开发实践,简介了地面控制与施工测量工程内外业数据处理一体化自动化系统——科傻系统。最后展望了21世纪工程测量学若干发展方向。关键词:工程测量工业测量精密工程测量测量机器人工程网优化设计一、学科地位和研究应用领域学科定义工程测量学是研究地球空间中具体几何实体的测量描绘和抽象几何实体的测设实现的理论方法和技术的一门应用性学科。它主要以建筑工程、机器和设备为研究服务对象。学科地位测绘科学和技术是一门具有悠久历史和现代发展的一级学科。该学科无论怎样发展,服务领域无论怎样拓宽,与其他学科的交叉无论怎样增多或加强,学科无论出现怎样的综合和细分,学科名称无论怎样改变,学科的本质和特点都不会改变。总的来说,整个学科的二级学科仍应作如下划分:——大地测量学;——工程测量学;——航空摄影测量与遥感学;——地图制图学;——不动产地籍与土地整理。研究应用领域目前国内把工程建设有关的工程测量按勘测设计、施工建设和运行治理三个阶段划分;也有按行业划分成:线路工程测量、水利工程测量、桥隧工程测量、建筑工程测量、矿山测量、海洋工程测量、军事工程测量、3维工业测量等,几乎每一行业和工程测量都有相应的著书或教材。由Hennecke,Mueller,Werner3个德国人所编著的工程测量学,主要按下述内容进行划分和编写:①测量仪器和方法;②线路、铁路、公路建设测量;③高层建筑测量;④地下建筑测量;⑤安全监测;⑥机器和设备测量。由于工程测量的研究应用领域非常广泛,发展变化也很快,因此写书十分困难。目前国内外没有一本全面涉及工程测量学理论、技术、方法和实际应用的现代专著或教材。国际测量师联合会的第六委员会称作工程测量委员会,过去它下设4个工作组:测量方法和限差;土石方计算;变形测量;地下工程测量。此外还设了一个非凡组:变形分析与解释。现在,下设了6个工作组和2个专题组。6个工作组是:大型科学设备的高精度测量技术与方法;线路工程测量与优化;变形测量;工程测量信息系统;激光技术在工程测量中的应用;电子科技文献和网络。2个专题组是:工程和工业中的非凡测量仪器;工程测量标准。德国、瑞士、奥地利3个德语语系国家自50年代发起组织每3~4年举行一次的“工程测量国际学术讨论会”。过去把工程测量划分为以下几个专题:测量仪器和数据获取;数据解释、处理和应用;高层建筑和设备安装测量;地下和深层建筑测量;环境和工程建筑物变形监测。1992年第11届讨论会的专题是:测量理论与测量方案;测量技术和测量系统;信息系统和CAD;在建筑工程和工业中的应用。1996年的第12届讨论会的专题是:测量和数据处理系统;监测和控制;在工业和建筑工程中的质量问题;数据模型和信息系统;交叉学科的大型工程项目。从以上可见,工程测量学的研究领域既有相对的固定性,又是不断发展变化的。笔者认为,工程测量学主要包括以工程建筑为对象的工程测量和以设备与机器安装为对象的工业测量两大部分。在学科上可划分为普通工程测量和精密工程测量。工程测量学的主要任务是为各种工程建设提供测绘保障,满足工程所提出的要求。精密工程测量代表着工程测量学的发展方向,大型特种精密工程建设是促进工程测量学科发展的动力。二、工程测量仪器的发展工程测量仪器可分通用仪器和专用仪器。通用仪器中常规的光学经纬仪、光学水准仪和电磁波测距仪将逐渐被电子全测仪、电子水准仪所替代。电脑型全站仪配合丰富的软件,向全能型和智能化方向发展。带电动马达驱动和程序控制的全站仪结合激光、通讯及CCD技术,可实现测量的全自动化,被称作测量机器人。测量机器人可自动寻找并精确照准目标,在1s内完成一目标点的观测,像机器人一样对成百上千个目标作持续和重复观测,可广泛用于变形监测和施工测量。GPS接收机已逐渐成为一种通用的定位仪器在工程测量中得到广泛应用。将GPS接收机与电子全站仪或测量机器人连接在一起,称超全站仪或超测量机器人。它将GPS的实时动态定位技术与全站仪灵活的3维极坐标测量技术完美结合,可实现无控制网的各种工程测量。专用仪器是工程测量学仪器发展最活跃的,主要应用在精密工程测量领域。其中,包括机械式、光电式及光机电结合式的仪器或测量系统。主要特点是:高精度、自动化、遥测和持续观测。用于建立水平的或竖直的基准线或基准面,测量目标点相对于基准线的偏距,称为基准线测量或准直测量。这方面的仪器有正、倒锤与垂线观测仪,金属丝引张线,各种激光准直仪、铅直仪、自准直仪,以及尼龙丝或金属丝准直测量系统等。在距离测量方面,包括中长距离、短距离和微距离及其变化量的精密测量。以ME5000为代表的精密激光测距仪和TERRAMETERLDM2双频激光测距仪,中长距离测量精度可达亚毫米级;可喜的是,许多短距离、微距离测量都实现了测量数据采集的自动化,其中最典型的代表是铟瓦线尺测距仪DISTINVAR,应变仪DISTERMETERISETH,石英伸缩仪,各种光学应变计,位移与振动激光快速遥测仪等。采用多谱勒效应的双频激光干涉仪,能在数十米范围内达到μm的计量精度,成为重要的长度检校和精密测量设备;采用CCD线列传感器测量微距离可达到百分之几微米的精度,它们使距离测量精度从毫米、微米级进入到纳米级世界。高程测量方面,最显著的发展应数液体静力水准测量系统。这种系统通过各种类型的传感器测量容器的液面高度,可同时获取数十乃至数百个监测点的高程,具有高精度、遥测、自动化、可移动和持续测量等特点。两容器间的距离可达数十公里,如用于跨河与跨海峡的水准测量;通过一种压力传感器,答应两容器之间的高差从过去的数厘米达到数米。与高程测量有关的是倾斜测量,即确定被测对象在竖直平面内相对于水平或铅直基准线的挠度曲线。各种机械式测斜仪、电子测倾仪都向着数字显示、自动记录和灵活移动等方向发展,其精度达微米级。具有多种功能的混合测量系统是工程测量专用仪器发展的显著特点,采用多传感器的高速铁路轨道测量系统,用测量机器人自动跟踪沿铁路轨道前进的测量车,测量车上装有棱镜、斜倾传感器、长度传感器和微机,可用于测量轨道的3维坐标、轨道的宽度和倾角。液体静力水准测量与金属丝准直集成的混合测量系统在数百米长的基准线上可精确测量测点的高程和偏距。综上所述,工程测量专用仪器具有高精度、快速、遥测、无接触、可移动、连续、自动记录、微机控制等特点,可作精密定位和准直测量,可测量倾斜度、厚度、表面粗糙度和平直度,还可测振动频率以及物体的动态行为。 三、工程测量理论方法的发展测量平差理论最小二乘法广泛应用于测量平差。最小二乘配置包括了平差、滤波和推估。附有限制条件的条件平差模型被称为概括平差模型,它是各种经典的和现代平差模型的统一模型。测量误差理论主要表现在对模型误差的研究上,主要包括:平差中函数模型误差、随机模型误差的鉴别或诊断;模型误差对参数估计的影响,对参数和残差统计性质的影响;病态方程与控制网及其观测方案设计的关系。由于变形监测网参考点稳定性检验的需要,导致了自由网平差和拟稳平差的出现和发展。观测值粗差的研究促进了控制网可靠性理论,以及变形监测网变形和观测值粗差的可区分性理论的研究和发展。针对观测值存在粗差的客观实际,出现了稳健估计;针对法方程系数阵存在病态的可能,发展了有偏估计。与最小二乘估计相区别,稳健估计和有偏估计称为非最小二乘估计。巴尔达的数据探测法对观测值中只存在一个粗差时有效,稳健估计法具有反抗多个粗差影响的优点。建立改正数向量与观测值真误差向量之间的函数关系,可对多个粗差同时进行定位和定值,这种方法已在通用平差软件包中得到算法实现和应用。方差和协方差分量估计实质上是精化平差的随机模型,过去一直仅停留在理论的研究上。实际中,要求对多种观测量进行综合处理,因此,方差分量估计已成为测量平差的必备内容了。目前,通用平差软件包中已增加了该功能,但还需要在测量规范中明确提出来。需要指出的是:许多测量作业单位喜欢采用附合导线进行逐级加密,主要依据目前规范中有关一、二、三级导线和图根导线的规定。无疑附合导线具有许多优点,但由于多余观测少,发现和反抗粗差的能力较弱,不宜滥用。建立一个区域的控制,首级网点采用GPS测量,下面最好用一个等级的导线网作全面加密。从测量平差理论来看,全面布设的导线网具有更好的图形强度,精密较均匀,可靠性也较高。工程控制网优化设计理论和方法网的优化设计方法有解析法和模拟法两种。解析法是基于优化设计理论构造目标函数和约束条件,解求目标函数的极大值或极小值。一般将网的质量指标作为目标函数或约束条件。网的质量指标主要有精度、可靠性和建网费用,对于变形监测网还包括网的灵敏度或可区分性。对于网的平差模型而言,按固定参数和待定参数的不同,网的优化设计又分为零类、一类、二类和三类优化设计,涉及到网的基准设计,网形、观测值精度以及观测方案的设计。在工程测量中,施工控制网、安装控制网和变形监测网都需要作优化设计。由于采用GPS定位技术和电磁波测距,网的几何图形概念与传统的测角网有很大的区别。除非凡的精密控制网可考虑用专门编写的解析法优化设计程序作网的优化设计外,其他的网都可用模拟法进行设计。模拟法优化设计的软件功能和进行优化设计的步骤主要是:根据设计资料和地图资料在图上选点布网,获取网点近似坐标。模拟观测方案,根据仪器确定观测值精度,可进一步模拟观测值。计算网的各种质量指标如精度、可靠性、灵敏度。精度应包括点位精度、相邻点位精度、任意两点间的相对精度、最弱点和最弱边精度、边长和方位角精度。进一步可计算坐标未知数的协方差阵或部分点坐标的协方差阵,协方差阵的主成份计算,特征值计算,点位误差椭圆、置信椭圆的计算等。可靠性包括每个观测值的多余观测分量和某一观测值的粗差界限值对平差坐标的影响。灵敏度包括灵敏度椭圆、在给定变形向量下的灵敏度指标以及观测值的灵敏度影响系数。将计算出的各质量指标与设计要求的指标比较,使之既满足设计要求,又不致于有太大的富余。通过改变观测值的精度或改变观测方案或局部改变网形等方法重新作上述设计计算,直到获取一个较好的结果。在实践中,总结出了下述优化设计策略:先固定观测值的精度,对选取的网点,观测所有可能的边和方向,计算网的质量的指标,若质量偏低,则必须提高观测值的精度。在某一组先验精度下,若网的质量指标偏高了,这时可按观测值的内部可靠性指标ri,删减观测值。ri太大,说明该观测值显得多余,应删去;若ri很小,则该观测值的精度不宜增加。这种根据ri大小来删除观测值的方法称为从“密”到“疏”,从“肥”到“瘦”的优化策略。从模拟法优化设计的整个过程来看,它是一种试算法,需要有一个好的软件。该软件除具有通用平差软件的功能外,在成果输出的多样性、直观性,在可视化以及人机交互界面设计方面都有更高要求。同时也要求设计者具有坚实的专业知识和丰富的经验。用模拟法可获得一个相对较优且切实可行的方案,可进一步用模拟观测值作网的平差计算,同时可模拟观测值粗差并计算对结果的影响。这种方法称为数学扭曲法或蒙特卡洛法。对于一个精度、可靠性以及灵敏度要求极高的监测网或精密控制网,作上述优化设计和精细计算是十分必要的。国内在这方面的应用道较少。多是为了安全起见,有较大的质量富余,建网费用偏高。网优化设计费用很少,所带来的效益较大,凡是较重要的工程控制网,都应作优化设计。变形观测数据处理工程建筑物及与工程有关的变形的监测、分析及预是工程测量学的重要研究内容。其中的变形分析和预涉及到变形观测数据处理。但变形分析和预的范畴更广,属于多学科的交叉。变形观测数据处理的几种典型方法

污水再生利用有关问题的探讨关键词 污水 回用问题 分析摘要:用水量的增加对现有水资源的压力越来越大,人们开始意识到污水回用是一种非常可靠的供水水源,成功的污水回用工程越来越多,供水和污水处理行业越来越意识到污水再生利用的 经济 和环境效益。为满足高水质标准而进行污水处理厂更新改造的成本不断增加,污水回用越来越受到人们的重视。 一、污水回用的意义 污水回用在发达国家已得到广泛应用,而且越来越多的行业已经开始利用处理后的污水。人口增加和用水量的增加对现有水资源的压力越来越大;人们开始意识到污水回用是一种非常可靠的供水源;成功的污水回用工程越来越多;供水和污水处理行业越来越意识到污水回用的经济和环境效益;蓄水工程的环境和经济成本越来越高;人们逐渐意识到与过度用水有关的环境影响;趋向于回收成本水价制度的引入促进了污水的回用;为满足高水质标准而进行污水处理厂更新改造的成本不断增加。 二、污水可持续利用的领域 (一) 工业 用水的回用 从理论上说,经处理的污水可以回用于各种不需要符合饮用水水质要求的工业 企业 。各种工业生产过程中的冷却水、锅炉用水、生产和加工用水、清洗和辅助用水(如除尘和浇地)等,都可以利用经处理的污水。可以使用经过处理的污水的行业包括商业洗车、造纸厂、矿山、石油精炼厂、电站、商业洗衣、道路建设企业、 旅游 点、酿酒厂,以及混凝土、砖、纺织品、金属及涂料的生产厂。日本近40%经处理的市政污水被用于工业用途,而美国的佛罗里达州和加利福尼亚洲分别为2%和5%。 (二)居民及社区的非饮用水回用 限制污水回用于居民和社区非饮用水的因素包括:健康因素;缺乏相关的指导;更新和建设水处理和供水设施的成本;处理过的污水水源的距离;灌溉需水的季节性变化;灌溉方面的技术性问题和环境的可持续性。 (三)间接的饮用水循环 间接的饮用水循环是将一部分经过处理的污水注入已有的供水水源中,通过水体的稀释作用,以及长时间的存放和取水后的处理,确保它满足可饮用水的水质标准。 缺乏对水质和水处理知识的了解、社会的理解和对健康的关注,可能是间接饮用水循环的最大障碍。 三、污水的可持续回用分析 制定可持续污水回用战略必须坚持以下基本原则:一是回用水的水质必须满足不同用水要求的原则;二是污水回用必须符合生态可持续 发展 要求的原则;三是在污水回用决策方面必须强调适当的健康、环境和经济因素的原则;四是污水回用项目必须是社会所需要的原则;五是污水回用必须作为总的水管理一部分的原则;六是污水回用的决策程序必须透明的原则;七是鼓励社会参与污水回用规划、开发和实施的原则;八是社会应可以得到有关污水回用可靠信息的原则。依据上述原则,应为实施可持续污水回用战略制定相应的行动计划,包括:修订或颁布 法律 ;制定回用指南和标准;提供技术支持与培训;加强宣传,提高对污水回用的了解;对关键领域与技术的研究提供支持;建设污水回用示范项目;积极支持污水回用项目;广泛合作,实施污水回用战略。 (一)从立法上支持污水回用 应该从立法上建立鼓励和支持污水回用的制度。首先应对国家现有相关立法的适用性进行评价,确定哪些方面不利于污水的回用,并对这些方面进行修订;没有涉及到的,应通过颁布新的法律法规来完善。美国加利福尼亚洲在《安全饮用水法》、《水回用法》和《加利福尼亚洲管理法》中,对污水回用的准则、领域、水处理、水质要求等方面都作了详细的规定。 中国论文联盟 (二)制定污水回用的 科学 标准 应在进行详细的咨询和研究后,制定污水回用指南。这些指南应能够为污水用水户提供有关回用项目规划、设计和运行方面的指导.指南应涉及污水回用的各个领域,如利用污水灌溉牧场和作物,灌溉城市公园、花园、运动场和休息场所等,浇灌高尔夫球场,将污水回用于 工业 目的,分质供水,用于娱乐目的和间接饮用水循环,等等。对有关的标准要进行评价,特别是水质标准,并根据评价的结果修改现有的标准或制定新的标准。美国加利福尼亚洲污水回用准则就详细地规定了经不同处理的污水在灌溉、蓄水、冷却用水及其他用水方面的适用范围。 (三)在技术上对污水回用提供支持 政府部门应鼓励和促进 教育 机构、行业和其他培训组织进行有关污水回用工程设计、运行、维护、管理、技术及污水利用方面的培训,而且应为这样的培训提供支持,使服务商和用水户掌握必要的知识和技能.通过有关污水回用的宣传材料和因特网等手段向用水户提供有关安全用水的信息,包括立法、指南与标准、培训课程、研讨会及研究成果方面的信息。

威海职业学院毕业论文5000T杂货船油船船舯典型分段生产设计设计与制造学 生 姓 名: 王建坡指 导 教 师: 余秀丽、王正海专 业 名 称: 船舶工程技术所 在 系 部: 船舶工程系目 录摘要 IAbstract II第一章 前言 1第二章 船体说明书 总体部分 概述 2第三章 船舯分段构件数量 纵向构件 纵骨:52 件 第二、三甲板:2×2 件 旁底桁:6 件(水密旁底桁1件) 纵向舱壁:1 件 横向构件 强肋位上强结构:16×5 件 弱肋位上强结构:23×12 件 6第四章 识图 7第五章 分段拆分 8第六章 零件套料 9第七章 舯部分段装配 9第八章 结论与建议 11致谢 12摘要本文介绍的是5000t油轮的舯部典型分段设计过程,采用的是母型船改造法。设计过程包括主尺度的确定,总布置设计,舱容和各种载况下的稳性计算。整个设计过程以货舱舱容、稳性、操纵性和经济性为中心。确保设计的船具有足够的舱容,改善设计船的稳性和操纵性,同时具备良好的经济性。关键词:5000t油船,典型分段,结构,设计AbstractIn this paper the design process of midship 5000t oil ship is introduced, in which basic ship method is used. The design process involves in the determination of principal dimensions, general layout design, general arrangement, stability calculationThat centers on volume of compartment,stability,maneuverability,economy in design course. Ensure that oil ship have volume of compartment enough,improve stability and maneuverability of the designing ship . Meanwhile,having good words:5000t oil shiptanker; typical subsection; structure; design第一章 前言我国5000T钢质油轮油轮行业正在逐步走出低谷,而且该行业已经基本步走出了全球经济萧条的低迷期。5000T钢质油轮油轮行业在现代济危机时代背景下,面临更多新的不确定因素,这些因素增加了判断未来经济走势和把握经济增长与通货膨胀之间关系的难度。5000T钢质油轮油轮行业是否持续低迷?5000T钢质油轮油轮生产企业的决策影响很大,要求我们站在全球经济背景下、把握好经济发展的周期、剖析中国宏观经济政策走向,认清5000T钢质油轮油轮行业发展形势、抓住机遇,准确预测5000T钢质油轮油轮行业未来走势,制定正确的发展规划、及时调整发展战略、积极开拓新的市场,在危机后迅速崛起。沿海成品油运输历来在国民经济中占有重要地位,但我国成品油供需存在地区间的不平衡,形成了“北油南运,西油东进”的格局。为缓解成品油运输压力,提高成品油运输的经济性和安全性,迫切需要开发新型成品油船。第二章 船体说明书总体部分 概述设计船为5000t油轮,航区为Ⅱ类航区,主要作业海区为各大洋近海航区1。本论文是毕业设计的一个重要组成部分,它包括了设计中的重要计算过程,以及部分重要设计步骤。毕业设计是我们大学学习生涯中重要的一环,是我们学习新的知识,对以往所学知识的应用及检。不断的发现问题,解决问题,提高我们实际应用知识的能力。这对我们将来学习和工作都有很大的帮助。本船为5000T近海成品油船。本船的设计是油船船舯典型分段设计,总体上满足设计所需的要求。本分段共有17个肋位组成。2. 主要数据2. 主尺度总长 :型宽 :型深 :吃水 :垂线间长:. 主要船型系数长 宽 比 Lpp/B 长 深 比 Lpp/D1 宽 深 比 B/D1 宽度吃水比 B/T . 载重量载重量(吨)吨:5000第三章 船舯分段构件数量纵向构件纵骨:52 件图纵骨第二、三甲板:2×2 件图甲板旁底桁:6 件(水密旁底桁1件)纵向舱壁:1 件横向构件强肋位上强结构:16×5 件弱肋位上强结构:23×12 件扶强材:若干第四章 识图在对图纸进行拆分前,应认真观察图纸中的符号与数据。船体中线¢表示船体的纵向中心,吃水符号表示水浸没船体的位置,一般接缝表示两块板拼接时的焊缝,分段接缝表示两分段合拢时的焊接缝,连续符号表示零件是连续的,间断符号表示两结构是断开的,小开口剖面符号,剖切符号表示纵向构件的详细纵向剖面图,肋位符号#表示肋骨所在的位置排号。第五章 分段拆分5000t油轮按1:6的比例缩小后将其舯部剖面图拆分成不同的零件图。使用autoCAD软件将5000t油轮原图缩比后,把油轮舯部横剖面图的局部移出,然后使用CAD软件中的工具修正,将需要拆分的零件呈现出来,把除零件外其它多余部分清除,然后把每个零件的零件图进行排列,按我所要设计的船舯典型分段肋位数,复制成若干。我所设计的船舯典型分段需要17个肋位,其中包含5个强肋位和12个弱肋位。在我拆分船舯横剖面图时,首先拆分强肋位上的强结构,每一个强肋位上需要拆分16个强结构,同时每个强结构上都附有扶强材(加强筋),对扶强材拆分时要注意,扶强材需要削斜时斜边的长度应该是扶强材面宽的3倍。其次在图纸上拆分弱肋位上的零件,每个弱肋位上共有23个零件,每个零件上附加着扶强材。将横向结构中的零件全部拆分完毕,把强肋位上的强结构复制5份,弱肋位上的所有零件复制12份。对船舯典型分段图纵向构件进行拆分,根据纵向构件的详细图解进行拆分,每件纵向结构附加着扶强材,纵向结构中旁桁材5件,第二、三甲板4件,纵向舱壁1件。对内外板的拆分,根据工具测量内外板的尺寸进行拆分。上述所有的零件中需要安装扶强材的,应作出位置线便于安装校正。将所有的零件拆分完毕,对零件进行进行排版,排版原则:零件厚度一致,排列紧密。把厚度相同的零件排列在同一块板上,尽可能的利用板的空间。排版完毕后,按板的厚度由小到大的顺序排列放好。(注意:纵向构件的两端应位于肋距的1/4或1/3处。)第六章 零件套料对使用autoCAD软件拆分出的零件图进行打印,将打印出的图纸粘贴到硬纸板上,用剪刀或小刀对拆分零件进行套料,制作出每个肋位上的零件。对零件的套料必须精准,便于组装。第七章 舯部分段装配托盘管理4【4】使用托盘管理,对套料后的零件进行分组,同一肋位上的零件放到一起,并编写顺序号;纵向构件放到一起,并编写顺序号。在分段装配中,首先进行的是小组立安装,所有开孔的强结构都需安装扶强材。装配顺序船底分段装配在分段装配中,首先装配船底分段,使用反造法,将船底内板反放,便于纵桁材和横向强结构的安装。纵向结构和横向结构安装时应与内底板上的划线相一致,以提高装配的效率和准确性。船底分段装配中首先安装旁桁材,由船中向两侧对称安装,旁桁材沿船底位置线定位后,对旁桁材全面涂胶进行固定粘结,旁桁材两端应留有50mm暂不粘2。横向结构进行安装时,由中间向两侧粘贴,横向结构粘贴时应先粘横向接缝,后粘角接缝。舷侧分段装配对舷侧分段装配时,使用侧造法,以舷侧内壳为底,便于舷侧纵骨和横向强结构的安装,纵骨和强结构安装时应与内壳板位置划线相一致,以提高装配效率和缩小误差。其粘贴顺序同船底构件安装顺序相同,纵骨两端仍留50mm暂不粘2。将所有的零件拆分完毕,对零件进行进行排版,排版原则:零件厚度一致,排列紧密。把厚度相同的零件排列在同一块板上,尽可能的利用板的空间。排版完毕后,按板的厚度由小到大的顺序排列放好。装配成果一段文字说明附上装配成果图片第八章 结论与建议历时两个多月的毕业设计与制作,通过这次毕业设计对大学三年所学的专业知识有了系统的运用,对知识有了更深刻的理解和掌握,同时提高了自己的动手能力。这次的设计是关于5000t油船的船舯典型分段的设计与制作,通过网络和图书馆查阅了很多相关的知识,对5000t油船的船体设计、套料、装配、建造有了深入的系统的了解。这次设计运用的最多的软件是AutoCAD,通过这次毕业设计对AutoCAD的运用更加熟练,速度也有了很大的提高。还有对EXCEL编程的能力也得到了很大的提高。我衷心的建议学校能够更多的引进这方面的软件,让同学们能更早的接触这方面的知识,对将来能更快的适应工作奠定一定的基础。致谢参考文献【1】. 《船舶设计原理》 哈尔滨工程大学出版社,20062. 李忠林、魏莉洁、张子睿《船舶建造工艺学》 哈尔滨工程大学出版社,20063. 彭公武 《船舶结构与制图》 哈尔滨工程大学出版社,20064. 黄广茂 《造船生产设计》 哈尔滨工程大学出版社,20065. 刁玉峰 《船舶舾装工程》 哈尔滨工程大学出版社,2006[7] 杨永祥,茆文玉.《船体制图》.哈尔滨:哈尔滨工程大学出版社,1994[7] 杨永祥,茆文玉.《船体制图》.哈尔滨:哈尔滨工程大学出版社,1994

三甲基铟试验方法毕业论文

金属有机气相沉积原料,能提供连续不断的源料。主要指TMGA、TMIN、TEGA等,其性质如下:MO Source特性三甲基镓Ga(CH3)3 1.英文名: Trimethylgallium,常简写为TMG或TMGa 2.用途:外延成长、化学气相淀积、金属的有机合成。 3.制法:2GaCl3+6MgCH3I→2Ga(CH3)3+3Mgl2+3MgCl2 4.理化性质:分子量: 熔点(): ℃ 沸点(): ℃ 液体密度(15℃,100kPa): 1151 kg/m 气体密度: kg/m。 蒸气压(-10℃): (10℃): (30℃): 三甲基镓在常温常压下为无色透明有毒液体。在空气中易氧化,在室温自燃,燃烧时发出金属氧化物白烟。高温时自行分解。它在已烷、庚烷等脂肪族饱和烃和甲苯、二甲苯等芳香族烃中以任何比例相溶。与水激烈反应生成Me2GaOH和[(Me2Ga)2O]X,并放出甲烷气。与AsH3、PH3、乙醚类、叔胺及其它路易士碱形成稳定的络合物。与具有活性氢的醇类、酸类产生激烈反应。用烃类溶剂烯释到25%以下的三甲基镓,失去其自燃性。 5.毒性 三甲基镓接触皮肤能引起组织破坏和烧伤。三甲基镓的燃烧产物氧化物白烟,能刺激和腐蚀眼、皮肤和呼吸道粘膜,损伤支气管、肺和肾,严重时可引起肺水肿。 6.安全防护 贮液钢瓶内的液面要用N2、Ar等惰性气体保护。容器及用气设备装置必须事先烘干,抽真空,用惰性气体清洗,赶出空气和水分。经探漏,在确保密封的情况下使用。 三甲基镓无腐蚀性,可以用碳钢、不锈钢、铜、青铜、黄铜、镍等金属材料,不能用铅、镁、锡、锌和铝。可以用聚四氟乙烯、含聚四氟乙烯的石棉、聚三氟氯乙烯聚合体、含碳石棉。尼龙、聚丙烯、氟化橡胶也可短时间使用。不能用硅橡胶、天然橡胶、氯丁橡胶、丁腈橡胶和纤维素、羊毛等纤维类。 三甲基镓着火时,灭火比较困难。一般是用干粉、干砂、二氧化碳和砾石来控制火势,防止火灾蔓延到别处,直至其完全燃烧掉。绝不可用水、泡沫和卤代烃灭火剂。 当三甲基镓泄漏时,首先要切断所有火源,然后用不燃性分散剂制成的乳剂洗刷,或用干燥砂土吸收后拿到空旷地方掩埋。污染的地面要用肥皂或洗涤剂洗刷,洗水经稀释后排入废水系统。三甲基铝1、英文名:Aluminium trimethyt,Trinethyluminium. 分子式:[(CH3)3Al]2 性质:无色液体,熔点15℃。 沸点126℃。闪点-18℃。密度。2、用途:石油烃聚合的催化剂、火箭燃烯料、化学气相淀积、外延成长、有机合成。 3、理化性质:分子量: 熔点(): ℃ 沸点(): ℃ 液体密度(20℃,100kPa): 752kg/m 熔化热(℃,): kJ/kg 气化热(℃,): 比热容(25℃,): J/(kg•℃) 蒸气压(10℃): (20℃): (60℃): 着火点: 室温 毒性级别: 3 易燃性级别: 3 易爆性级别: 3 三甲基铝在常温常压下为无色透明液体。反应性极强。空气中自燃,瞬间就能着火。与具有活性氢的酒精类、酸类激烈反应。与水反应激烈,既使在冷水中也能产生爆炸性分解反应,并生成甲烷,有时还能发火。在300℃时缓慢分解产生甲烷。与AsH3、PH3、醚类、叔胺及其它路易士碱形成稳定的络合物。能与己烷、庚烷等脂肪烃及甲苯、二甲苯等芳香族烃以任意比例混溶。用烃系溶剂烯释到25%以下的三甲基铝失去其自燃性。 三甲基铝与一些物质混合接触时的危险性如下表所示: 混合接触危 险物质名称 化学式 危险等级 摘要氯酸钠 NaClO3 A 高氯酸钠 NaClO4 A 过氧化氧 H2O2 A 过氧化钠 Na2O2 B 硝酸铵 NH4NO3 A 硝酸钠 NaNO3 A 高锰酸钾 KMnO4 A 氯苯 C6H5Cl B 有激烈反应的危险硝酸 HNO3 A 硫酸 H2SO4 A 三氧化铬 CrO3 A 亚氯酸钠 NaClO2 A 溴酸钠 NaBrO3 A 重铬酸钾 K2Cr2O7 B 四氯化碳 CCl4 B 有爆炸的危险性 4、生产方法:①碘甲烷和金属铝反应。 ②二甲基银和铝作用。 ③参见三异丁基铝。 烷基铝都是无色液体,商品以20%烃类溶液供应。贮运时可用己烷、庚烷、苯、甲苯等烃类作为溶剂。空气中自燃。遇水、氧化剂、卤代烃、醇或其它含氧有机物都能起猛烈反应。加热至177~232℃时自行分解并放出相应的如乙烯、丙烯、丁烯等易燃性不饱和烃类气体。铝的有机化合物全部操作要在惰性气体(N2、Ar)中进行。20%的烃类溶液无自燃性,但在空气中仍发烟。这种溶液的闪点为所用溶剂的闪点。溢出溶液与空气作用放出的反应热能使溶剂挥发,增加其着火危险。 5、毒性特征:最高容许浓度: mg/m 三甲基铝接触皮肤能引起组织破坏和烧伤。因为三甲基铝太活泼,它不可能以其原形直接吸人体内。它在空气中自燃时发出对人体有害的氧化铝烟雾。这种烟雾能刺激和腐蚀眼、皮肤和呼吸道粘膜。人吸入后气管和肺受损伤,严重时能引起肺水肿。 遇到吸入氧化铝烟雾的患者,应立即转移至无污染区,安置休息并保持温暖和舒适,并速请医诊治。眼睛和皮肤接触后,立即用大量水充分冲洗后就医。进入口内时立即漱口并急送医院抢救。 铝的有机化合物,其毒性决定于它的分解产物。急性中毒时出现对眼和上呼吸道的刺激作用、抑制神经系统(无麻醉作用)、降低耗氧量、大脑和内脏充血、肺气肿,严重染毒能引起死亡。烷基铝对人的不幸事件大多与火灾和烧伤有关。死亡病例发生在中毒后36~72小时。参见四乙基铅的毒性。 6、安全防护:工作时必须穿戴氯乙烯或氯丁橡胶防护服,皮或者尼龙的手套,高腰胶靴,护目镜,防毒(酸性气体用)口罩等。工作场所要通风,保持环境空气新鲜干燥。用钢瓶盛装,液面要用N2、Ar等惰性气体保护。在保护气中的含水及含氧量均应小于20PPm。钢瓶要存放在室外阴凉干燥之处,或易燃液体专用库内,要远离火种、热源、可燃物及能与三甲基铝反应的物质。电气设备必须有防火花装置。库温要低于30℃,相对湿度在75%以下。 有机金属化合物一般没有腐蚀性,可以用碳钢、不锈钢、铜、青铜、黄铜、镍等通用金属材料,但是不能用铅、镁、锡、锌和铝。可用聚四氟乙烯、含聚四氟乙烯或碳的石棉、聚三氟氯乙烯聚合体、聚氯乙烯、聚乙烯、聚丙烯等。 三甲基铝等烷基铝一接触空气就着火,而且还没有有效的灭火方法,所以灭火是比较困难的。着火时,一般的对策是先切断所有火源,隔绝其它可燃物,用干粉、干砂、二氧化碳、砾石等来控制火势,使火灾不蔓延到别处。绝不能使用泡沫及四氯化碳等卤代烃灭火剂。 当三甲基铝泄漏时,首先要切断所有的火源,然后用不燃性分散剂制成的乳剂刷洗。如果没有分散剂,可用干燥砂土吸收后拿到空旷处掩埋,或者用苏打粉混合泄漏液后放在空旷处的大钢盘上,上面用废木料或纸盖住,并在严格监督下烧掉。受污染的地面要用肥皂或洗涤剂洗刷,洗水经稀释后排入废水系统。 有机铝化合物可用煤油、汽油及其它碳氢化合物慢慢地洗涤。对于弱的有机铝溶液,只用水洗。但是在碳氢化合物溶液中使用有机铝化合物时,要防止有机铝化合物着火 三乙基镓Ga(C2H5)3 1.名•英文名 :Triethylgallium. 2.用途 有机合成、化学气相淀积、处延成长。 3.制法: 4.理化性质 分子量: 熔点(): ℃ 沸点(): ℃ 液体密度(30℃,100kPa): 1058kg/m 气体密度: 蒸气压(30℃): (70℃): (90℃): 三乙基镓在常温常压下为无色透明液体;空气中自燃。与水激烈反应放出乙烷气。在乙烷、庚烷等脂肪族饱和碳氢化合物,甲苯、二甲苯等的芳香族碳氢化合物中,以任意比例相溶解。同AsH3、PH3、醇类、叔胺及路易士碱生成稳定的络合物。与含有活性氢的醇类、酸类产生激烈反应。在室温下,在N2、Ar等惰性气体中保存时稳定。二茂镁1、英文名称: magnesocene;di (cyclopentadienyl) magnesium 2、分子式:Mg(C5H5)2 又称双(异戊二烯基)镁。 白色晶体。熔点176℃。在100℃时升华。对空气、潮湿、二氧化碳和二硫化碳均很敏感,固态晶体曝置在空气中着火。溶于乙醚、四氢呋喃、苯、二甲苯。棕褐色。强烈水解。与某金属的氯化物反应,可脱去氯化镁而得二茂金属。在二茂镁分子中,化学键属共价键还是金属离子键,目前尚有争论。二茂镁是向过渡金属引入环戊二烯基的一种很有用的试剂。 3、制法:溴化乙基镁与苯和乙醚反应可脱去乙烷而得溴化茂基镁(C5H5MgBr),二个分子的后者于220℃及10-2Pa下可缩去一分子溴化镁而得二茂镁。又金属镁与异戊二烯在500℃反应亦可脱H2而得二茂镁。 三甲基铟In(CH3)3 1.别名•英文名 Trimethylindium. 2.用途 外延成长、有机合成、化学气相淀积。 3.制法 4.理化性质•毒性•安全防护 分子量: 熔点: 89℃ 沸点: ℃ 液体密度(10℃): 1568kg/m3 蒸气压(30℃): (70℃): 三甲基铟在常温常压下为无色透明具有特殊臭味的升华性无色结晶。遇冷水部分水解放出甲烷气体。它与己烷、庚烷等脂肪族饱和烃,甲苯、二甲苯等芳香族烃以任意比例相溶。空气中自燃。与AsH3、PH3、醚类、叔胺及其它路易士碱形成稳定的络合物。与具有活性氢的醇类、酸类进行激烈反应。与甲基醚、三甲基磷烷、三甲基砷烷等作用形成配位化合物,但是其稳定性比镓差。光照易引起三甲基铟的分解,长期保存时需要存放在阴凉干燥之处。 最高容许浓度: mg/m3(以In计)

无机气体的物理性质名称氧氮氩氦氢硫化氢氨氧化亚氮分子式O2N2ArHeH2H2SNH3N2O分子量外观(常温常压)无色无色无色无色无色无色无色无色味道无臭无臭无臭无臭无臭腐蛋臭刺激臭芳香有甜味气体密度/ (kg﹒m-3)(0℃,1大气压)比重 (空气=1)液体密度 / (kg﹒L-1)沸点 /℃融点 /℃(26atm)临界温度 /℃临界压力/大气压水中的溶解度(mL/100mL H2O;0℃,1大气压)(g/100g H2O)氢化物的物理性质名称硅烷乙硅烷磷烷砷烷乙硼烷锑烷氢化硒碲化氢锗烷分子式SiH4Si2H6PH3AsH3B2H6SbH3SeH2H2TeGeH4外观(常温常压)无色气体无色气体无色气体无色气体无色气体无色气体无色气体无色气体无色气体味道恶心臭味刺激性臭味腐鱼臭味大蒜臭味VB 臭味大蒜臭味大蒜臭味类似砷烷恶臭刺激性臭味气体比重(空气=1)()—液体密度(大气压)(-185℃)()(-90℃)(℃)(℃)(-25℃)(℃)()(-142℃)沸点/℃ (1大气压)冰点/℃ (1大气压)蒸气压(大气压)℃(-30)(20)(21)()28(0)200mmHg(-47)100mmHg()(10)210mmHg(-110)临界压力(大气压)——临界温度/℃—13720035在水中的溶解度发生反应碱性反应20mL/100mL(20℃)20mL/100mL(℃)发生反应500mL/100 mL(常温)377mL/100 mL(4℃)充分溶解—备 注在室温下稳定,但加热到300℃以上或放电会分解比硅烷还不稳定,在室温下分解为SiH4和H2在300℃以上时分解在约300℃以上时分解在室温下逐渐分解在常温下容易分解在160℃时分解在室温时分解,光和水蒸气会促进其分解约280℃时分解成Ge和—沸点 卤化物的物理性质 表一名称三氯化硼三氟化硼氯氯化氢四氯化碳三氟甲烷六氟乙烷八氟丙烷分子式BCl3BF3Cl2HClCCl4CHF3C2F6C3F8外观(常温常压)无色气体无色气体黄绿色气体无色气体无色液体无色气体无色气体无色气体味道干草臭味刺激性臭味刺激性臭味刺激性臭味无味无味无味 气体比重(空气=1)——液体密度g/(11℃)()(0℃ 大气压)(-36℃)(15℃)()()()沸点/℃ (1大气压)冰点/℃ (1大气压)蒸气压(大气压) ℃100mmHg()40(-20)(20)100mmHg()200mmHg()(120)18(0)(20)临界压力(大气压)—临界温度/℃—在水中的溶解度发生反应发生反应(20℃)(0℃)(20℃)(重量)稍有水解—表二名称五氟化磷氧氯化磷二氯硅烷三氯硅烷氯硅烷四氟化硅三氯化磷三氟化磷三氯化砷分子式PF5POCl3SiH2Cl2SiHCl3SiCl4SiF4PCl3PF3AsCl3外观(常温常压)无色气体无色透明气体无色气体无色气体无色透明气体无色气体无色透明气体无色气体油状液体味道刺激性臭味刺激性臭味刺激性甜酸味刺激性臭味刺激性臭味窒息性臭味刺激性臭味无味—气体比重(空气=1)——液体密度/(g/mL)0℃()(25)(7)(20)(0)(-80)(21)(0)(25)沸点/℃ (1大气压)冰点/℃ (1大气压)蒸气压/mmHg ℃大气压(-90)100()100(-36)100()100()100()100(21)(-50)100()临界压力(大气压)————临界温度/℃—176——在水中的溶解度发生反应发生反应发生反应发生反应发生反应发生反应发生反应逐渐水解—备注有热稳定性,如果非常干燥在250℃会腐蚀玻璃。热分解成磷的氯化物和高毒性的氧化物薄膜。能溶于苯、乙醚、氯仿中由于紫外线照射而分解 有机金属化合物、烷基金属的物理性质 表一名称二甲基锌二乙基锌二甲基镉二乙基镉三甲基铝分子式(CH3)2Zn(C2H5)2Zn(CH3)2Cd(C3H5)2Cd(CH3)3Al分子量/g﹒沸点/℃( mmHg)冰点/℃液体密度 g﹒(mL)-1(℃) g﹒(mL)-1(20℃)比重()比重 g﹒(mL)-1(20℃)蒸气压P/mmHgT/K㏒P = 10℃ mmHg㏒P = 10℃ mmHg㏒P = 10℃ mmHg—㏒P = 10℃ mmHg表二名称三乙基铝三异丁基铝三甲基镓三乙基镓三甲基铟三乙基铟分子式(C2H5)3Al(iC4H9)3Al(CH3)3Ga(C2H5)3Ga(CH3)3In(C2H5)3In分子量g﹒沸点/℃冰点/℃液体密度/g﹒mol-1 ℃(15)(15)(15)(30)—(20)蒸气压P/mmHgT/K10℃ ℃ ㏒P= 10℃ ㏒P= 10℃ 237mmHg30℃ ℃ 72mmHg75℃ 10mmHg有机金属化合物、烷基金属的化学性质 表一名称硅烷二氯硅烷三氯硅烷氯硅烷氟硅烷乙硅烷分子式SiH4SiH2Cl2SiHCl3SiCl4SiF4Si2H6与水的反应性水解产生四份H2,在碱性水溶液中特别容易分解水解生成HCl和聚硅氧烷的混合物与水激烈反应生成硅盐酸水解生成硅酸和盐酸与水反应,生成硅氟酸(H2SiF6)和SiO2·XH2O,HF·SiO2不能与纯水和酸反应,但能与碱反应生成H2和硅酸燃烧性能在空气中自燃100℃以上在空气中自燃~在空气中发烟 不燃烧在空气中会立即燃烧与其它物质的反应性与Cl2等卤素激烈反应与丙酮反应 在酒精中分解在600℃与SiCl4反应生成SiClF3, SiCl2F2 和SiCl3F能与F2,Br2,Cl2,NCl3,SF6等激烈反应材料使用上注意事项无腐蚀性有微量水时会生成强酸。在干燥状态下活性差。能腐蚀铝、黄铜,奥氏体不锈钢等有水分存在下会变成强酸有水分存在下会变成强酸对氧化和还原稳定可使用碳素钢,不锈钢,铜,聚乃尔、哈斯特洛伊合金,玻璃,特氟纶,Kel-F,尼龙,氟化橡胶等 表二名称磷烷三氯化磷三氟化磷五氟化磷氧氯化磷砷烷分子式PH3PCl3PF3PF5POCl3AsH3与水的反应性生成水合物水解生成盐酸缓慢水解即使有少量水存在也会分解生成HF和POF3与水反应生成磷酸和盐酸在加压下生成水合物,由溶解O2分解成As。燃烧性在空气中自燃在空气中不燃烧。与氧缓慢化合,生成氧氯化磷在空气中不太发烟在空气中强烈发烟在湿空气中会激烈发烟在空气中燃烧成蓝白色火焰,生成As2O3与其它物质的反应性与Cl2等卤素气体激烈反应能与HBr,HI反应在加热下与H2反应生成PH3能与三甲基胺强烈反应,也会与NH3,N2O4,NOF等反应能与带羟基的有机化合物反应与Cl2反应生成HCl和.~98%材料使用上注意事项有比氨强的还原性。可用碳素钢、SUS、蒙乃尔、哈斯特洛伊合金等PCl3+3HX→PX3+3HCl 可用镍钢,铁和低合金钢,镍铬钢,特氟纶,Kel-F等可保存在铁质或玻璃容器中。可使用蒙乃尔,因科合金,镍,Kel-F,特氟纶等会腐蚀不锈钢,一般使用玻璃有强的还原性。可使用碳素钢,不锈钢,蒙乃尔,黄铜,特氟纶,Kel-F,氟化橡胶,尼龙等表三名称三氯化砷乙硼烷三氯化硼三氟化硼锑烷氢化硒分子式AsCl3B2H6BCl3BF3SbH3SeH2与水的反应性水解生成As(OH)3和HCl迅速而且完全水解,变成硼酸和氢气容易分解生成盐酸水解生成氟硼酸在含水的玻璃管内经24小时后完全分解水解燃烧性——在空气中自燃,特别是在40℃~50℃的湿空气中不燃烧不燃烧在空气中燃烧生成Sb在空气中燃烧成蓝白色火焰,生成SeO2与其它物质的反应性AsCl3+4NaOH→NaH2AsO3+3NaCl+H2O能与HCl等卤素气体激烈反应,也能与氨反应。与吡啶和硝基苯生成加成化合物。与碱金属和碱土金属生成硼和金属氟化物。能与Cl2激烈反应生成SbCl3和HCl,在碱性反应中迅速分解。与硝酸激烈反应。材料使用上注意事项与Mo,Ag,Au,Pt不起反应,但与Na,Mg,Zn,Al,Sn,Pb,Cu等强烈反应。可使用一般的金属,但不可用橡胶,油脂,润滑油等。可用氯乙烯,聚乙烯和特氟纶等。可使用Ni-Cr钢,镍钢,铁和低合金钢,镍,哈斯特洛伊合金,因科合金,特氟纶,Kel-F,玻璃等。干燥气体可用钢,SUS,Cu,Ni,黄金,Al,蒙乃尔合金,湿气体可用Cu,硬橡胶,硬质玻璃,也可用橡胶,特氟纶,酚醛树脂。 弱酸可使用Al,SUS,碳素钢,黄铜,特氟纶,氟化橡胶,尼龙等。表四名称碲化氢锗烷氯氯化氢硫化氢氨分子式H2TeGeH4Cl2HClH2SNH3与水的反应性与湿空气接触会立即分解与硅烷类似,但反应性较小。Cl2+H2O=HClO+HClHClO→HCl+O2 不发生反应,但能充分溶解在水溶液中有如下电离平衡H2S=H++HS-HS- =H++S2-不发生反应,但能充分溶解燃烧性在空气中着火产生蓝白色火焰不如硅烷那样激烈燃烧。.~98%助燃性对氧气稳定在空气中着火产生蓝白色火焰在650℃的空气中燃烧(在O2中~25%)与其它物质的反应性与盐酸激烈反应生成碲氯化物 与H2发生爆炸性反应,几乎能与所有金属反应与F2强烈反应,与大多数金属反应生成氯化物和H2与Cl2、Br2能激烈反应,几乎能在水分存在下与所有金属反应能与卤素激烈反应,与Hg反应生成爆炸性化合物材料使用上注意事项 可用碳素钢,不锈钢,铜,黄铜,蒙乃尔,哈斯特洛伊,Kel-F,特氟纶,玻璃,氟化橡胶,尼龙等对于干燥的气体(液体)可使用钢,SUS,铸铁,铜合金,镍合金,铅等,对湿气体可用蒙乃尔,哈斯特洛伊,特氟纶等在有水分存在下为强酸,几乎能与所有金属反应。可使用焙烧碳素,石墨等对湿气体可用Al、SUS316,对干气体可用铜碱性,腐蚀性很强。可用铁,SUS,不可用铜,锡,锌及其合金,用铅石棉包装最好表五名称氧化亚氮四氯化碳三氟甲烷六氟乙烷八氟丙烷分子式N2OCCl4CHF3C2F6C3F8与水的反应性不反应不反应,但在Fe或Al的作用下会水解不反应稍有水解 燃烧性助燃不燃烧不燃烧不燃烧即使在高温的空气中也不燃烧与其它物质的反应性可将有机物、碱金属氧化与苛性钾醇溶液或加热会分解与可燃气体混合并点火则分解产生有毒气体与可燃气体混合并点火则分解产生有毒气体与可燃气体混合并点火则分解产生有毒气体材料使用上注意事项无腐蚀性在Fe或Al的作用下水解,CCl4+H2O→CO2+4HCl无腐蚀性无腐蚀性无腐蚀性

金属有机源;metal organic source;MO source 含有碳—金属键,适于金属有机化合物化学气相沉积(MOCVD)技术应用的一类金属有机化合物,又称MO源。制备方法有:(1)金属卤化物和格利雅试剂反应;(2)金属卤化物和金属有机化合物反应;(3)金属合金和烷基卤化物反应;(4)金属和格氏试剂进行电化学反应。所得产品经精馏提纯,或与适当的有机化合物生成配合物,除去杂质后再分解得到高纯产品。MO源也可用于金属有机源分子束外延(MOMBE)和化学束外延(CBE)等。

甲基苯毕业论文

s8+支持微信指纹支付功能:打开微信-我-钱包-点击右上角图标-支付管理-指纹支付-滑动开关。如果无法找到,由于网络平台的局限性,无法查看手机的具体情况,建议您携带购机发票、三包凭证将手机送至您就近的售后服务中心,让工程师帮您检测及处理。

他们最原始都是苯环上连有一个甲基,苯甲基是甲基上失去一个氢所剩下的部分,它只有一种,而甲苯基是苯环上失去一个氢所剩下的部分,它有三种,即邻位,间位和对位。

1.苯和一氯甲烷在无水三氯化铝催化下制甲苯(控制一氯甲烷的量,不然副产物增多,可能生成二甲苯)2.甲苯在浓硫酸中磺化(注意要加热约100度,不然温度低会生成邻位取代的甲基苯磺酸)3.对甲基苯磺酸在混酸中的硝化另:LZ应该是3-硝基-4-甲基-苯磺酸吧?硝基不优先,命名放在前面

【中文名称】二苯甲基胺;α-苯基苯甲胺;1,1-二苯基甲胺;α-氨基二苯基甲烷【英文名称】benzhydryl amine【结构或分子式】【相对分子量或原子量】【密度】(20/20℃,过冷液)【熔点(℃)】34【沸点(℃)】304();176()【折射率】(过冷液)【性状】从水中析出者为六角形片状晶体。【溶解情况】微溶于水,溶于苯。【用途】染料中间体,制备偶氮染料、三苯甲烷染料等;香料及医药原料。

甲醇有关毕业论文题目

ML28-1 杯芳烃化合物的合成及其在氟化反应中的相转移催化作用ML28-2 高效液相色谱分离硝基甲苯同分异构体ML28-3 甲烷部分氧化反应的密度泛函研究ML28-4 硝基吡啶衍生物的结构及其光化学的研究ML28-5 酰胺衍生的P,O配体参与的Suzuki偶联反应及其在有机合成中的应用ML28-6 磺酰亚胺的新型加成反应的研究ML28-7 纯水相Reformatsky反应的研究ML28-8 一个合成邻位氨基醇化合物的绿色新反应ML28-9 恶二唑类双偶氮化合物的合成与光电性能研究ML28-10 CO气相催化偶联制草酸二乙酯的宏观动力学研究ML28-11 三芳胺类空穴传输材料及其中间体的合成研究ML28-12 光敏磷脂探针的合成、表征和光化学性质研究ML28-13 脱氢丙氨酸衍生物的合成及其Michael加成反应研究ML28-14 5-(4-硝基苯基)-10,15,20-三苯基卟啉的亲核反应研究ML28-15 醇烯法合成异丙醚的研究ML28-16 手性螺硼酸酯催化的前手性亚胺的不对称硼烷还原反应研究ML28-17 甾类及相关化合物的结构与生物活性关系研究ML28-18 金属酞菁衍生物的合成与其非线性光学性能的研究ML28-19 新型手性氨基烷基酚的合成及其不对称诱导ML28-20 水滑石类化合物催化尿素醇解法合成有机碳酸酯研究ML28-21 膜催化氧化正丁烷制顺酐ML28-22 甲醇选择性催化氧化制早酸甲酯催化剂的研制与反应机理研究ML28-23 甲酸甲酯水解制甲酸及其动力学的研究ML28-24 催化甲苯与甲醇侧链烷基化反应制取苯乙烯和乙苯的研究ML28-25 烯胺与芳基重氮乙酸酯的新反应研究 ML28-26 核酸、蛋白质相互作用研究及毛细管电泳电化学发光的应用ML28-27 H-磷酸酯在合成苄基膦酸和肽衍生物中的应用ML28-28 微波辐射下三价锰离子促进的2-取代苯并噻唑的合成研究ML28-29 铜酞菁—苝二酰亚胺分子体系的光电转换特性研究ML28-30 新型膦配体的合成及烯烃氢甲酰化反应研究ML28-31 肼与羰基化合物的反应及其机理研究ML28-32 离子液体条件下杂环化合物的合成研究ML28-33 超声波辐射、离子液体以及无溶剂合成技术在有机化学反应中的应用研究ML28-34 有机含氮小分子催化剂的设计、合成及在不对称反应中的应用ML28-35 金属参与的不对称有机化学反应研究ML28-36 黄酮及噻唑类衍生物的合成研究ML28-37 钐试剂产生卡宾的新方法及其在有机合成中的应用ML28-38 琥珀酸酯类内给电子体化合物的合成与性能研究ML28-39 3-甲基-4-芳基-5-(2-吡啶基)-1,2,4-三唑铜(II)配合物的合成、晶体结构及表征ML28-40 直接法合成二甲基二氯硅烷的实验研究ML28-41 中性条件下傅氏烷基化反应的初步探索IIβ-溴代醚新合成方法的初步探索ML28-42 几种氧化苦参jian类似物的合成ML28-43 环丙烷和环丙烯类化合物的合成研究ML28-44 基于甜菜碱的超分子设计与研究ML28-45 新型C2轴对称缩醛化合物合成研究ML28-46 环状酰亚胺光化学性质研究及消毒剂溴氯甘脲的制备ML28-47 蛋白质吸附的分子动力学模拟ML28-48 富硫功能化合物的分子设计与合成ML28-49 ABEEM-σπ模型在Diels-Alder反应中的应用ML28-50 快速确定丙氨酸-α-多肽构象稳定性的新方法ML28-51 SmI2催化合成含氮杂环化合物的研究及负载化稀土催化剂的探索ML28-52 新型金属卟啉化合物的合成及用作NO供体研究ML28-53 磁性微球载体的合成及其对酶的固定化研究ML28-54 甾体—核苷缀合物的合成及其性质研究ML28-55 非键作用和库仑模型预测甘氨酸-α-多肽构象稳定性ML28-56 多酸基有机-无机杂化材料的合成和结构表征ML28-57 5-芳基-2-呋喃甲醛-N-芳氧乙酰腙类化合物的合成、表征及生物活性研究ML28-58 氟喹诺酮类化合物的合成、表征及其生物活性研究ML28-59 手性有机小分子催化剂催化的Baylis-Hillman反应和直接不对称Aldol反应ML28-60 多核铁配合物通过水解途径识别蛋白质a螺旋ML28-61 一种简洁地获取结构参数的方法及应用ML28-62 水杨酸甲酯与硝酸钇的反应性研究及其应用ML28-63 脯氨酸及其衍生物催化丙酮与醛的不对称直接羟醛缩合反应的量子化学研究ML28-64 新型荧光分子材料的合成及其发光性能研究ML28-65 枸橼酸西地那非中间体1-甲基-3-丙基-4-硝基吡唑-5-羧酸的合成研究ML28-66 具有生物活性的含硅混合二烃基锡化合物的研究ML28-67 直接法合成三乙氧基硅烷的研究ML28-68 具有生物活性的含硅混合三烃基锡化合物的研究ML28-69 过氧钒有机配合物的合成及其对水中有机污染物氧化降解的催化性能研究ML28-70 查耳酮化合物的合成与晶体化学研究ML28-71 二唑衍生物的合成研究ML28-72 2-噻吩甲酸-2,2’-联吡啶二元、三元稀土配合物的合成、表征及光致发光ML28-73 3’,5’-二硫代脱氧核苷的合成及其聚合性质的研究ML28-74 β-烷硫基丁醇和丁硫醇类化合物及其衍生物的合成研究ML28-75 新型功能性单体丙烯酰氧乙基三甲基氯化铵合成与研究ML28-76 5-取代吲哚衍生物结构和性能的量子化学研究ML28-77 新型水溶性手性胺膦配体的合成和在芳香酮不对称转移氢化中的应用ML28-78 大豆分离蛋白的接枝改性及其溶液行为研究ML28-79 N-(4-乙烯基苄基)-1-氮杂苯并-34-冠-11的合成和其自由基聚合反应的研究ML28-80 稀土固体超强酸催化合成酰基二茂铁ML28-81 硒(硫)杂环化合物与金属离子的合成与表征ML28-82 新型二阶非线性光学发色团分子的设计、合成与性能研究ML28-83 对△~4-烯-3-酮结构的甾体选择性脱氢生成△~(4,6)-二烯-3-酮结构的研究ML28-84 对苯基苯甲酸稀土二元、三元配合物的合成、表征及荧光性能研究ML28-85 D-π-A共轭结构有机分子的设计合成及理论研究ML28-86 羧酸酯一步法嵌入式烷氧基化反应研究ML28-87 分子内电荷转移化合物溶液及超微粒分散体系的光学性质研究ML28-88 手性氨基烷基酚的合成ML28-89 酪氨酸酶的模拟及酚的选择性邻羟化反应研究ML28-90 单分子膜自组装结构与性质的研究ML28-91 氯苯三价阳离子离解势能面的理论研究ML28-92 香豆素类化合物的合成与晶体化学研究ML28-93 离子液体的合成及离子液体中的不对称直接羟醛缩合反应研究ML28-94 五元含氮杂环化合物的合成研究ML28-95 ONOO~-对胰岛素的硝化和一些因素对硝化影响的体外研究ML28-96 酶解多肽一级序列分析与反应过程建模及结构变化初探ML28-97 一系列二茂铁二取代物的合成和表征ML28-98 N2O4-N2O5-HNO3分析和相平衡及硝化环氧丙烷研究ML28-99 光催化甲烷和二氧化碳直接合成乙酸的研究ML28-100 N-取代-4-哌啶酮衍生物的合成研究ML28-101 电子自旋标记方法对天青蛋白特征分析ML28-102 材料中蛋白质含量测定及蛋白质模体分析ML28-103 具有不同取代基的偶氮芳烃化合物的合成及其性能研究ML28-104 非光气法合成六亚甲基二异氰酸酯(HDI)ML28-105 邻苯二甲酸的溶解度测定及其神经网络模拟ML28-106 甲壳多糖衍生物的合成及其应用研究ML28-107 吲哚类化合物色谱容量因子构致关系ab initio方法研究ML28-108 全氯代富勒烯碎片的亲核取代反应初探ML28-109 自催化重组藻胆蛋白结构与功能的关系ML28-110 二茂铁衍生的硫膦配体的合成及在喹啉不对称氢化中的应用ML28-111 离子交换电色谱纯化蛋白质的研究ML28-112 氨基酸五配位磷化合物的合成、反应机理及其性质研究ML28-113 手性二茂铁配体的合成及其在碳—碳键形成反应中的应用研究ML28-114 水溶性氨基卟啉和磺酸卟啉的合成研究ML28-115 金属卟啉催化空气氧化对二甲苯制备对甲基苯甲酸和对苯二甲酸ML28-116 简单金属卟啉催化空气氧化环己烷和环己酮制备己二酸的选择性研究ML28-117 四苯基卟啉锌掺杂8-羟基喹啉铝与四苯基联苯二胺的电致发光性能研究ML28-118 可降解聚乳酸/羟基磷灰石有机无机杂化材料的制备及性能研究ML28-119 大豆分离蛋白接枝改性及应用研究ML28-120 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-121 常压非热平衡等离子体用于甲烷转化的研究ML28-122 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-123 蛋白质在晶体界面上吸附的分子动力学模拟ML28-124 微乳条件下氨肟化反应的探索性研究ML28-125 微波辅助串联Wittig和Diels-Alder反应的研究ML28-126 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-127 3-乙基-4-苯基-5-(2-吡啶基)-1,2,4-三唑配合物的合成、晶体结构及表征ML28-128 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-129 具有生物活性的1,2,4-恶二唑类衍生物的合成研究ML28-130 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-131 PhSeCF2TMS的合成及转化ML28-132 离子液体中脂肪酶催化(±)-薄荷醇拆分的研究ML28-133 脂肪胺取代蒽醌衍生物及其前体化合物合成ML28-134 萘酰亚胺类一氧化氮荧光探针的设计、合成及光谱研究ML28-135 微波条件下哌啶催化合成取代的2-氨基-2-苯并吡喃的研究ML28-136 镍催化的有机硼酸与α,β-不饱和羰基化合物的共轭加成反应研究ML28-137 茚满二酮类光致变色化合物的制备与表征ML28-138 新型手性螺环缩醛(酮)化合物的合成ML28-139 芳醛的合成及凝胶因子的设计及合成ML28-140 固定化酶柱与固定化菌体柱耦联—高效拆分乙酰-DL-蛋氨酸ML28-141 苯酚和草酸二甲酯酯交换反应产品的减压歧化反应研究ML28-142 有机物临界性质的定量构性研究ML28-143 3-噻吩丙二酸的合成及卤代芳烃亲核取代反应ML28-144 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-145 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-146 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-147 功能性离子液的合成及在有机反应中的应用ML28-148 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-149 气相色谱研究β-二酮酯化合物的互变异构ML28-150 二元烃的混合物过热极限的测定与研究ML28-151 芳杂环取代咪唑化合物的合成及洛汾碱类过氧化物化学发光性能测定ML28-152 卤代苯基取代的咪唑衍生物的合成及其荧光性能的研究ML28-153 取代并四苯衍生物的合成及其应用ML28-154 苯乙炔基取代的杂环及稠环化合物的合成ML28-155 吸收光谱在有机发光材料研发材料中的应用ML28-156 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-157 苯并噻吩-3-甲醛的合成研究ML28-158 微波辅助串联Wittig和Diels-Alder反应的研究ML28-159 超声辐射下过渡金属参与的药物合成反应研究ML28-160 呋喃酮关键中间体—3,4-二羟基-2,5-己二酮的合成研究ML28-161 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-162 吡咯双希夫碱及其配合物的制备与表征ML28-163 负载型Lewis酸催化剂的制备及催化合成2,6-二甲基萘的研究ML28-164 PhSeCF2TMS的合成及转化ML28-165 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-166 多取代β-CD衍生物的合成及其对苯环类客体分子识别ML28-167 多取代_CD衍生物的合成及其对苯环类客体分子识别ML28-168 柿子皮中类胡萝卜素化合物的分离鉴定及稳定性研究ML28-169 毛细管电泳研究致癌物3-氯-1,2-丙二醇ML28-170 超临界水氧化苯酚体系的分子动力学模拟ML28-171 甲烷和丙烷无氧芳构化反应研究ML28-172 2-取代咪唑配合物的合成、晶体结构及表征ML28-173 气相色谱研究β-二酮酯化合物的互变异构ML28-174 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-175 二元烃的混合物过热极限的测定与研究ML28-176 氨基酸在多羟基化合物溶液中的热力学研究ML28-177 分子印迹膜分离水溶液中苯丙氨酸异构体研究ML28-178 杯[4]芳烃酯的合成及中性条件下对醇的酯化反应研究ML28-179 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-180 双氨基甲酸酯化合物的合成及分子自组装研究ML28-181 由芳基甲基酮合成对应的半缩水合物的新方法ML28-182 取代芳烃的选择性卤代反应研究ML28-183 吡啶脲基化合物的合成、分子识别及配位化学研究ML28-184 丙烯(氨)氧化原位漫反射红外光谱研究ML28-185 嘧啶苄胺二苯醚类先导结构的发现和氢化铝锂驱动下邻位嘧啶参与的苯甲酰胺还原重排反应的机理研究ML28-186 酰化酶催化的Markovnikov加成与氮杂环衍生物的合成ML28-187 多组分反应合成嗪及噻嗪类化合物的研究ML28-188 脂肪酶构象刻录及催化能力考察ML28-189 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-190 烯基铟化合物与高碘盐偶联反应的研究及其在有机合成中的应用ML28-191 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-192 邻甲苯胺的电子转移机理及组分协同效应研究ML28-193 负载型非晶态Ni-B及Ni-B-Mo合金催化剂催化糠醛液相加氢制糠醇的研究ML28-194 含吡啶环套索冠醚及配合物的合成与性能研究ML28-195 芳烃侧链分子氧选择性氧化反应研究ML28-196 多组分复合氧化物对异丁烯制甲基丙烯醛氧化反应的催化性能研究ML28-197 多孔甲酸盐[M3(HCOO)6]及其客体包合物的合成、结构和性质ML28-198 纳米修饰电极的制备及其应用于蛋白质电化学的研究ML28-199 对于几种蛋白质模型分子的焓相互作用的研究ML28-200 氨基酸、酰胺、多羟基醇化合物相互作用的热力学研究......

甲醇生产技术作为甲醇制作中的一个重要步骤,有较大的技术难道和较高的技术要求。下面是由我整理的甲醇生产技术论文,谢谢你的阅读。

甲醇生产中甲醇分离技术的运用

【摘要】最近几年以来,各个甲醇的生产企业以及相关的研究单位积极的探索减少甲醇含量占整个入塔气中的比例,逐渐探索出把气液高效分离开来的有效途径,并且总结出很多的宝贵经验。基于此,本文主要结合实例对甲醇生产中甲醇分离技术的运用进行了探讨。

【关键词】甲醇生产;甲醇分离技术;运用

C1学里最主要的产品可以说是甲醇,它也是一种被广泛应用于各个行业中的有机化学原料。目前甲醇工业正处于快速发展的阶段,这就增大了对甲醇的需求,尤其是近几年来逐渐将甲醇应用到交通能源中以后,对甲醇的需求量更加庞大,所以促进甲醇的生产具有可观的经济效应以及社会效应等。某甲醇生产企业根据目前拥有的装置设备等情况,经过不断的技术研究讨论后找到问题所在,最终确定了以提高气液分离这一技术水平来增加甲醇的生产产量。

1.存在的问题以及采取的对策

存在的问题

对于以往的甲醇装置来说,主要使用的技术为低压法进行合成,在这过程中对甲醇的合成有直接或间接影响的因素包括:温度和压力、水冷和分离效率、气体的成分、触媒的活性、分离器和闪蒸槽的液位以及空间速度等。该企业在2011年对当时装置在实际生产过程中的使用情况进行了调查和研究发现,装置中最主要的设备汽轮机由于对动力的消耗太大,存在一定程度的车沉状况,然后在调研循环气的基础上,发现循环气里含有甲醇的量大概在,跟初始设计值相对比发现,在甲醇分离器的出口部位,甲醇的含量要比初始设计值高出左右。这就导致进入到合成塔中的所有入塔气里,含有甲醇的比例过大,降低了合成反应转化率,最终减少了甲醇的产量。与此同时还对合成循环气机组造成了一定程度的影响,无法让机组在长期内保持稳定的运行状态,降低了生产装置的经济效益。

采取对策

针对以上问题,现场生产技术工作人员在经过认真的分析和讨论后,认为甲醇占循环气的比例过高是导致甲醇产量减少的最主要因素,所以,有效的降低甲醇含量在循环气中所占的比例,能够改善气体组分,改善后的气体在进入汽轮机以后可以有效的降低其对动力的消耗量,甲醇占循环气的比例下降可以提高甲醇合成过程中的正向反应。通过研究最终觉得,由于甲醇具有易溶于水这一性质,可以利用水洗技术,在生产过程中让循环气和水进行逆向的,充分的接触之后有效的让甲醇溶于水,进而降低甲醇含量占循环气的比例。

2.改进措施

技术上进行改造

在技术上进行改进,为了有效的降低甲醇含量占循环气的比例,在生产过程中需要新增加安装一台分离装置,把原来那台分离器中出来的循环气进行进一步的洗净。在新增加的分离装置内,循环气自下而上流动,雾状的除盐水在注水泵对其施加压力的基础上自上而下进行喷淋,这就让气体和盐水能充分接触,将循环气中绝大部分的甲醇在盐水中溶解,形成了粗甲醇,其浓度大约在70%左右,将粗甲醇送到闪蒸槽里,最后送到槽区进行储存。

操作上进行优化

为了有效的降低甲醇含量占循环气的比例,生产车间最后增加了一道工序,即补水测试,具体操作方式为,根据车间的规定和要求,每个班组要对循环气进行补水操作,在达到满负荷的状态之后,要求将补水量从原来的逐渐上调到,实时监控上调情况做好记录,最后确定了最佳的补水点为。

工程上进行改造

(1)在传统的装置基础上,再新增设一套用于分离的组合装置。(2)对于新增加的仪表控制系统来说,需要在原来装置中DCS系统的基础上来运行控制,主要目的是在实际生产过程中提高操作效率,保证系统能够安全正常的运行。(3)将原来的P609A/B 泵拆卸掉,然后在该位置上新增设两台高压水泵,主要用于给除盐水施加压力确保打入分离组合装置的上端部分。(4)将操作过程中的各项工艺参数进行优化。按照甲醇的实际浓度值来适当的调整除盐水的量,要求闪蒸槽的压力控制在以下。(5)异常处理。甲醇分离装置液位高时,中控人员迅速打开 LICA-1503a 调节阀,同时注意闪蒸槽压力≤。(6)关键技术的改进,甲醇分离技术是根据甲醇可溶于水的特性,将甲醇分离装置作为主要的分离设备,将少量的水作为吸收甲醇的溶剂,让水和循环气在逆向上进行充分的接触,在塔体内需要在液相上进行无级的提取浓度,在气相上进行无级的净化,最终能够让水将循环气中的甲醇进行全面的吸收,重新进行分离整合,最终降低甲醇含量占循环气的比例。

3.甲醇分离技术效果的验证

实际生产状况

在将甲醇分离装置安装使用之后,生产车间的技术工作人员提取了分离装置出口处的甲醇,分析了甲醇洗手液的浓度,检测了甲醇含量占循环气的比例,适当的将加在分离装置上水量进行调整和控制。到目前为止加水量大约保持在之间,稀甲醇的浓度控制在70%以上,稀甲醇的采出量大约在之间等。

装置改造后的状况

在经过装置的改造之后,以往的一些主要问题都得到了解决和改善,这就提高了整个装置的经济效益,降低了汽轮期对动力的消耗,加快了汽轮机的转动速度,由以前转速最高能达到的11700转/分提高到了目前的12400转/分。

装置潜能在经过挖掘后增加的效果

在甲醇生产装置进行检查维修的时候已经安装完成甲醇分离装置,目前已经开始投入使用,运行情况基本稳定。经过检测发现,甲醇分离装置的上部甲醇的浓度从以往的有效的降低到,每天生产的粗甲醇量达到了424t,比以往多出将近20t。

4.结语

在整个生产甲醇的装置组合里,存在着非常大的潜能,需要生产技术工作人员进一步的挖掘,仅仅依靠设计上的改造是无法满足实际生产要求的,所以要在生产现场进行调查研究,积极探寻将装置进一步优化的有效途径,不断的引进新技术,不断在现有技术上进行创新,按照装置的实际生产状况将新技术应用到甲醇的生产过程中去,并且积极的推广和学习。

【参考文献】

[1]朱晓霞,李剑峰.膜分离技术在化工公司甲醇装置中的应用[J].石油和化工节能, 2011,4.

[2]周楠.甲醇全回收从分离技术“突围”[J].中国石油和化工,2010,3.

[3]张先春,渠兵.膜分离氢回收技术在甲醇合成中的应用[J].氮肥技术,2011,(03).

点击下页还有更多>>>甲醇生产技术论文

住宅室内空气中甲醛的污染现状调查与分析论文

无论是在学校还是在社会中,大家都接触过论文吧,论文是进行各个学术领域研究和描述学术研究成果的一种说理文章。如何写一篇有思想、有文采的论文呢?下面是我精心整理的住宅室内空气中甲醛的污染现状调查与分析论文,仅供参考,大家一起来看看吧。

摘要: 根据对石家庄市100户居民住宅室内空气中甲醛含量的检测及分析,甲醛已经成为家庭装修后威胁人体健康最主要的有害成分,甲醛含量超标情况普遍且严重,随着装修竣工时间的延长,甲醛含量呈下降趋势,但效果并不明显。对受检的100户住宅中有无家具情况进行了统计分析,结果表明:家具是造成室内空气中甲醛含量超标的另一个重要因素,特别是板材家具,会明显加重甲醛的污染程度。

关键词: 室内环境;甲醛;污染

1 引言

随着当今社会的高速发展,生态环境与可持续发展已成为我们无法回避的现实问题,尤其是与我们工作生活息息相关的室内空气环境污染问题,更成为影响我们自身健康的重大威胁。建筑材料、装修材料的广泛使用使得室内空气中的有害物质种类和数量都明显增多,其中甲醛对人体健康的危害最为明显。

甲醛是一种挥发性有机化合物,无色,具有刺激性气味,易溶于水。甲醛主要来源于室内装修使用的胶合板、细木工板、中密度纤维板和刨花板、木芯板等人造板材,贴墙布、贴墙纸、化纤地毯、油漆、涂料以及一些有机材料。甲醛对眼睛、呼吸道、人体黏膜和皮肤产生明显的刺激作用;急性中毒可导致流泪、流涕、咳嗽等症状,引发多种呼吸道疾病;慢性吸入低浓度可导致持续头痛、无力、失眠等;长期接触低剂量可引起慢性呼吸道疾病、女性月经紊乱、妊娠综合症、新生儿体质降低、染色体异常,甚至诱发鼻咽癌;高浓度时会侵害人的神经系统、肝脏等。针对甲醛严重的危害性,于2010年9月对石家庄市100家居民住宅进行了摸底调查,严格按照国标方法进行采样检验,并对最终数据进行科学的'分析总结。

2 室内空气中甲醇检测方法

采样方法

在河北省会报名参加免费室内空气检测活动的500名业主中随机抽取,对抽中的100名业主的住宅选取一个代表性房间进行检测。采样工作严格按照《室内空气质量标准》(GB/T 18883-2002)执行,采样点的数量根据监测室内面积大小和现场情况确定,原则上小于50m2的房间应设(1~3)个点,在对角线上或梅花式均匀分布,并避开通风口,离墙壁距离大于,采样点高度原则上与人的呼吸带高度一致,在之间。采样前受检房间在充分通风后封闭门窗12h。

检测方法

采用国标中“酚试剂分光光度法”分析样本,方法原理是空气中的甲醛与酚试剂反应生成嗪,嗪在酸性溶液中被高铁离子氧化成蓝绿色化合物,根据颜色深浅,比色定量。比色时采用10mL的具塞闭塞管和分光光度计,在630nm测定吸光度。

判定标准

检测依据《室内空气质量标准》(GB/T 18883-2002)中的甲醛≤为标准判定检测结果。

检测结果分析

检测结果总体分析

在此次检测的100户住宅中,甲醛含量范围为。超标数量为84户,不合格率为84%;超标一倍以上的23家,占总数的23%,占甲醛不合格家庭的27%;超标2倍以上的16家,占总数的16%,占甲醛不合格家庭的19%;最大超标52倍。

装修竣工时间对甲醛含量的影响

表1是对100户住宅的装修竣工时间与所测空气中甲醛含量及超标率的数据统计,由此可以直观的反映出空气中甲醛含量随装修竣工时间变化的趋势。从下表可明显看出,装修竣工后1个月内的室内空气中甲醛含量最为严重,在受检的26户住宅中仅有2户合格,超标率达到92%,最高超标倍数甚至达到倍;随着装修竣工时间的延长,室内空气中甲醛含量略有下降,装修竣工时间1~6个月的,超标率降为89%,最高超标倍数倍;装修竣工时间6~12个月的,超标率降为76%,最高超标倍数倍;装修竣工时间1年以上的,超标率降为67%,最高超标倍数倍。从这些数据可以看出,甲醛含量随着装修竣工时间的延长呈现下降趋势,但效果并不明显,装修竣工1年后仍有一半的家庭室内空气甲醛含量不合格,甲醛挥发相对于其他污染物来说是一个漫长的过程,人们在入住新居时一定要警惕室内空气中的甲醛成分及其含量高低,入住前必须进行一段时间的通风晾房,入住后也要保持大量通风换气。

表1 装修竣工时间与甲醛含量的情况统计

装修竣工

时间样本数/户含量范围/mg·m-3甲醛标准/mg·m-3超标数/户超标率/%

1个月内

1~6个月

6~12个月

1年以上

合计

家具对甲醛含量的影响

此次检测活动也对受检住宅是否进驻家具及家具类别进行了统计,具体情况详见表2。装修后没有购置新家具的住宅,室内空气中甲醛含量超标率为75%,最高超标倍数倍;购置实木家具的住宅室内空气中甲醛含量超标率为80%,最高超标倍数为倍;购置板材家具的住宅室内空气中甲醛含量超标率为93%,最高超标倍数为倍。由此可以看出,住宅内放置的家具越多,尤其是板材家具越多,室内空气中甲醛含量超标情况越严重,家具能明显加重室内空气甲醛污染。

表2 家具与甲醛含量的情况统计

装修竣工

时间样本数/户含量范围/mg·m-3甲醛标准/mg·m-3超标数/户超标率/%

无家具

实木家具

板材家具

合计

检测结论

(1)甲醛超标情况较严重。100户住宅中室内空气甲醛超标的84家,不合格率为84%;超标1倍以上的23家,占甲醛不合格家庭的27%;超标2倍以上的16家,占甲醛不合格家庭的19%。由此可见,住宅室内空气中甲醛超标情况普遍且严重。

(2)装修竣工时间对室内空气中甲醛含量的影响并不显着。随着装修竣工时间的延长甲醛含量略有下降,但下降趋势不明显。

(3)家具的购入是造成室内空气中甲醛含量超标的另一个重要因素。通过对住宅内有无家具的不同情况下室内空气中甲醛含量进行对比,会发现住宅内有家具的情况下甲醛含量大大高于无家具的情况,尤其是板材家具更会明显加重甲醛的污染程度。

3 甲醇污染预防措施

优化家装方案和施工工艺

在家庭装修中,应当尽可能的选择有资质的装饰公司,优化设计方案,注意空间承载量和材料使用量,对装修使用的各种材料严格把关,采用先进施工工艺,只有这样才能减少因施工带来的室内环境污染。

规范家具的选择和购买

选购家具时必须要求厂方提供的说明书,特别注意说明书里描述家具的主材和主材中有害物质含量,严格按照国家标准进行选择购买。

加强通风措施,提高净化能力

在装修竣工后必须进行一定时间的通风换气,保持空气流通,以降低室内空气污染,这是一种简便易行且最有效的改善室内空气质量的方法。除此之外,还可以在室内栽种绿色植物,放置活性炭、硅胶等吸附材料,以加强对室内空气中有害物质的清除。

参考文献:

冯瑞玉.室内环境污染现状分析与对策.河北企业,2009(8):74~75.

苏 瑛,冯 垚,赵宏伟,等.重庆装修室内空气污染现状及控制.检验医学与临床,2010,7(8):747~748.

国家质量技术监督局.GB/T ,公共场所空气中甲醛测定方法.北京:中国标准出版社,2000.

居宁生.高校新建宿舍舍内空气质量的现状与调查.现代科技,2009,8(7):26~27.

有关地基毕业论文

以下内容均为引用,成果不归本人,希望对您的提问有所帮助软土地基处理方法概述 杜艳花(中交一公局第五工程有限公司京密项目部) 摘要:本文介绍了软土及软土地基的定义及特点,探讨了软土地基在公路工程中造成的危害,并介绍了几种软土地基的处理措施,对软土地基的施工具有一定的指导意义。关键词:软土地基 喷粉桩法 土工格栅 换土垫层法 改革开放以来,我国的公路运输事业经历了一次前所未有的发展机遇,取得了辉煌的成就。随着国民经济的发展,公路对经济的发展产生了越来越大的影响,也越来越受到国家的重视。虽然东南沿海地区的高速公路建设水平居国内前列,但是软土路基公路病害也时有发生。尤其桥头跳车现象严重,影响高速公路使用功能。由于桥头与路堤沉降差异太大,造成行车事故,不得不反复根治,不仅耗费资金,还造成严重的社会影响。为了保证道路的安全运行,对软土路基进行处理就显得尤为重要。1 软土及软土地基 软土软土是指滨海、湖沼、谷地、河滩沉积的天然含水量高、孔隙比大、压缩性高、抗剪强度低的细粒土。具有天然含水量高、天然孔隙比大、压缩性高、抗剪强度低、固结系数小、固结时间长、灵敏度高、扰动性大、透水性差、土层层状分布复杂、各层之间物理力学性质相差较大等特点。 软土地基我国公路行业规范对软土地基未作定义。日本高等级公路设计规范将其定义为:主要由粘土和粉土等细微颗粒含量多的松软土、孔隙大的有机质土、泥炭以及松散砂等土层构成。地下水位高,其上的填方及构造物稳定性差且发生沉降的地基。日本规范还对软土地基做了分类,提出了类型概略判断标准。在给出软土地基定义时指出:软土地基不能简单地只按地基条件确定,因填方形状及施工状况而异,有必要在充分研究填方及构造物的种类、形式、规模、地基特性的基础上,判断是否应按软土地基处理。2 软土地基在公路工程中造成的危害 (1) 勘察设计不详细或不准确,导致对应该做软基处理的地段未做处理设计。(2) 已知是软土地基,但是未做好软土地基处理,造成路堤失稳或危及线外建筑物。(3) 虽然做了软土地基处理,但是措施不力,施工不当造成路堤失稳。(4) 堆料不当,未按规定分层填筑,填土过快,碾压不当,造成路堤失稳。(5) 扰动“硬壳层”或填筑不当,使“硬壳层”遭受破坏,导致路堤失稳。3软土地基的处理方法地基处理的方法很多,高速公路软基处理与其它如房建等地基处理相比,有其自身的特点。一般处理路基的地质稳定问题从以下几个方面进行考虑:(1)改善剪切特性路基的剪切破坏以及在土压力作用下的稳定性取决于路基土的抗剪强度。因为了防止剪切破坏以及减轻土压力,需要采取一定措施以增加路基土的抗剪度。(2)改善压缩特性需采取措施提高地基土的压缩模量,以减少地基土的沉降。(3)改善透水特性由于是在地下水的运动中所出现的问题,因此,需要采取措施使地基土变成不透水或减轻其水压力。(4)改善动力特性地震时饱和松散粉细砂(包括一部分粉土)将会产生液化,因此,需要采取某种措施避免地基土液化,并改善其振动特性以提高地基的抗震性能。(5)改善特殊土的不良地基的特性主要是指消除或减少黄土的湿陷性和膨胀土的胀缩性等特殊土的不良地基特性。地基处理的方法可以从不同角度来分类,一般是根据地基处理的原理来进行分类,大致可以分为以下几种方法。换土垫层法当软弱土地基的承载力或变形满足不了设计要求,而软弱土层的厚度又不是很大时,将基础地面下处理范围内的软弱土层部分或全部挖除,然后分层换填强度较大的砂或其它性能稳定、无侵蚀性的材料,并压实至要求的密度为止,这种地基处理方法称为换土垫层法,简称为换填法。它适用于处理淤泥、淤泥质土、湿陷性黄土、素填土、杂填土地基。换填法的加固机理是:将软弱土层利用人工、.机械或其他方法清除,分层置换强度较高的砂、碎石、素土、灰土以及其他性能稳定和无侵蚀性的材料,并夯实(或振实)至要求的密实度。对软土厚度小于3米的情况,一般可采用全部挖除换填的方法。对厚度大于3米的情况,通常只采取部分挖除换填的方法。全部挖除换填从根本上改善了地基,不留后患,效果最佳,是最为彻底的措施。当高速公路路线通过的软弱土层位于地表、厚度较薄(小于3米)且呈局部分布的软土或泥沼地段,常宜采用全部挖除换填法处理地基。此种方法又可以分为:机械换土法、爆破挤淤法、抛石挤淤法、砂垫层法。强夯法强夯法是20世纪60年代末、70年代初首先在法国发展起来的,国外称之为动力固结法,以区别于静力固结法。它一般是用50吨左右的强夯机,将大吨位(100~400KN)的夯锤起吊到6~40米的高度自由落下,对地基土施加强大的冲击能,在地基土中形成冲击波和动应力,使地基土压密和振密,以加固地基土,达到提高强度、降低压缩性、改善砂土的抗液化条件、消除湿陷性黄土的湿陷性目的。强夯法主要适用于加固砂土和碎石土、低饱和度粉土与粘性土、湿陷性黄土、杂填土和素填土等地基。因其加固效果显著,设备简单,施工方便、快捷,经济易行和节省材料,有利于环境保护等特点,很快传到世界各地约束法在路堤两侧坡脚附近打入木桩、钢筋混凝土桩或者设置片石齿墙等,可限制基底软土的挤动,从而保证基底的稳定。地基在实行侧向约束后,路堤的填筑速度可不加控制,且较反压护道节省土方,少占耕地,但需耗费一定数量的三材,成本较高。此法适用于软土层较薄、底部有较硬土层且施工期紧迫的情况,下卧层面具有横向坡度时尤其适合。土工织物加固法通过在土层中埋设强度较大的土工聚合物、拉筋、受力杆件等,使这种人工复合的土体,可承受抗拉、抗压、抗剪或抗弯作用,以提高地基承载力,减少沉降和增加地基的稳定。它适用于各种软弱地基。加固法的基本原理是通过土体与筋体间的摩擦作用,使土体中的拉应力传递到筋体上,筋体承受拉力,而筋间土承受压应力及剪应力,使加筋土中的筋体和土体能较好发挥各自的作用。常见的土工织物有土工格栅、土工带及土工格室,其中土工格室除了能够像土工带和土工格栅一样,能延缓或者切断地基破坏的滑动面,从而使地基承载能力提高。而且,土工格室能对处于格室内的土粒给予三维约束,,使土粒与格室成为一个刚度远大于地基的整体,它能较好分布施加在它上面的荷载,使地基受力较为均匀,从而提高地基承载力。粉喷桩法粉喷桩法,是用特制的设备和机具,将加固剂粉体材料(水泥或石灰)通过压缩空气的传送,与地基土强行拌和,使之产生充分的物理、化学反应后,形成一定强度的桩体(简称粉喷桩)。这是一种改善土质,提高地基强度的软土地基加固方法,可以广泛地适用于淤泥质土,杂填土,软粘土等地基加固。粉喷桩处理软基属于深层搅拌法中的一种,它是利用压缩空气向软弱土层中输送石灰、水泥等粉状加固料,使其与原位软弱土混合、压密,通过加固料与软弱土之间的离子交换作用、凝聚作用、化学结合作用等一系列物理化学作用,使软弱土硬结成具有整体性、水稳性和一定强度的柱状加固土,它与原位软弱土层组成复合地基,提高软土地基承载力,减少地基沉降量。高压喷射注浆法我国简称为高喷法或旋喷法,这种方法是利用钻机把带有喷嘴的注浆管钻到设计深度的土层,将浆液或水从喷嘴中高压喷射出来,形成喷射流冲击破坏土层。当能量大、速度快呈脉动状的射流,其动压大于土层结构强度时,土颗粒便从土层中剥落下来,一部分细颗粒随浆液或水冒出,其余土粒在射流的冲击力、离心力和重力等力的作用下,与浆液搅拌混合,并按一定的浆土比例和质量大小,有规律的重新排列,浆液凝固后,便在土层中形成一个固结体,可提高地基承载力,减少沉降,还可起到支挡与防渗的作用。它适用于淤泥、淤泥质土、粘性土、黄土、砂土、人工填土和碎石土等地基。轻质路基粉煤灰处理法粉煤灰是一种质轻、多孔隙、颗粒均匀、具有一定水稳性的无粘性材料。由于粉煤灰中含有一定量的CaO,SiO2,MgO等成份,它们在粉煤灰水化过程中体积产生膨胀,可利用这一膨胀率来增加软基加固效果。其路用性能满足公路中的技术要求。Ø 粉煤灰重量轻,最大干容重耐左右,比一般土的最大干容重轻40%左右,在软土路基上填筑粉煤灰时,可有效地减轻路堤重量,减少路基沉降及工后沉降量,从而影响路基处理方案,降低地基处理费用。Ø 粉煤灰强度高、磨擦系数大,在路面设计时,由于粉煤灰提高了软土的回弹模量值,相应减薄路面设计厚度。Ø 击实试验表明,粉煤灰和软土混合物具有更好的干密度,含水量和最大干密度的关系曲线较平缓,更利于在野外的施工水泥土搅拌法 是通过搅拌机械将水泥或(石灰)等材料与地基的软土搅拌成桩柱体,这种桩柱体成为水泥粘土桩、石灰粘土桩或某胶结物粘土桩,它具有一定的强度和水稳性。搅拌桩柱体与四周软土组成复合地基,可以提高地基承载力、提高地基强度、增大地基变形模量。因此,经搅拌法加固的软弱地基能提高地基承载力,减少地基沉降,阻止水体流动,增强地基的稳定性,还能阻止地下水的渗透。水泥土搅拌法分为深层搅拌法(湿法)和粉体喷搅法。 处理正常固结的淤泥、淤泥质土和含水量较高的粘性土、粉土等软土地基,用于处理泥炭土或地下水具有侵蚀性时宜通过试验确定其适用性。在软土地基上修筑公路和桥梁并不都会发生问题、只要设计和施工措施得当,就可以保证路堤、桥梁的稳定和使用效果。软土地基上路堤的设计与施工方案,应结合当地工程地质条件、材料供应、投资环境、工期要求和环境保护等因素,按照因地制宜、就地取材、分期修建、综合处治的原则进行充分论证,使设计和施工方案达到技术上先进、经济上合理。软土地基的处理方法很多,总之,软土地基处理的目的是增加地基稳定性,减少施工后的不均匀沉陷,所以施工的技术人员必须意识到软土地基的危害性,坚决以数据说话,认真测定基底的承载力,并根据不同的地质情况,不同的投资和工期要求,采用切实可行的处理方案,同时一定要采集桥涵施工后的工后沉降数据,积累经验,为今后的施工打下坚实的基础。参考文献[1]林宗元.岩土工程治理手册[M].沈阳:辽宁科学技术出版社,1993. [2]叶书麟.地基处理与托换技术[M].北京:中国建筑工业出版社,1992.[3]朱梅生.软土地基[M].北京:中国铁道出版社,1989.[4]刘玉卓.公路工程软基处理[M].北京:人民交通出版社,2002[5]徐至钧.水泥土搅拌法处理地基[M].北京:机械工业出版社,2004[6]汪双杰.高速公路不良地基处理理论与方法[M].北京:人民交通出版社,2004[7]SidnegM,JohnsonandJ’[M].1968[8]曾国熙.地基处理手册[M].北京:中国建筑工业出版社,1993[9]孙更生.软土地基与地下工程[M].北京:中国建筑工业出版社,1984[10]叶观宝.地基加固新技术(第二版)「M].北京:机械工业出版社,2002[11]钱家欢.殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996[12]叶观宝.高速公路软基处理的优化设计[D].同济大学博士论文,2003[13]刘宝兴.路基工程新技术实用全书[M].北京:海潮出版社,2001[14]刘兴德,牛福生,倪文.粉煤灰的资源化利用现状与研究进展[J].建材技术与应用,2005.[15]王建华.粉喷桩加固高速公路的机理和有效桩长的分析[D].河海大学硕士论文,2007.[16] 张洪强,房建果.土工格室在软土地基处理中的应用[J].山东交通科技,2003.

探讨现代房屋建筑地基基础工程施工技术

论文关键词:房屋建筑 地基基础 施工技术 质量

论文摘要: 本文结合笔者多年的工作经验,对现代房屋建筑地基基础工程施工技术进行了简要的探讨。 1房屋建筑地基基础工程的施工特点 复杂性 中国幅员广阔,工程地质条件非常复杂,例如淤泥质土、杂填土、湿陷性黄土、冻土、季节性冻土等。此外,溶岩地质主要在我国的西南地区,在其它地区也有所分布;同时,中国又是个多地震、高震级的国家,而地震对地基基础的影响是非常大的。这种复杂的地质条件对地基基础工程的勘察设计处理以及工程施工增加了难度,提出了大量且复杂的技术难题。 多发性 由于地基基础设计或施工方案不当而导致房裂屋倒,导致严重损失的实例时有发生,所造成工程建设中的恶性的巨额浪费确实惊人。 潜在性 从主体结构本身复杂的工序衔接来看,后一道工序都在不同程度上覆盖前一道工序,工序质量具有明显的隐蔽性,这也是主体结构工程必须加强隐蔽工程的检查验收,存放完整的隐蔽验收资料的原因所在。 严重性 一定程度上讲,建设工程一旦建成投入使用,地基基础出现质量事故问题往往是无法弥补的,由它所带来的损失,远比地基基础工程建设所要投入的成本大得多。不管是选择场地、勘察设计,还是施工质量问题,地基基础工程一旦出现质量问题,往往会引起地基失稳,建设工程整体结构的破坏,是建设工程致命性、毁灭性的重大质量事故,不仅造成经济上的巨大损失,而且直接危及人们的生命和财产安全。由于地基基础承受上部建筑实体的全部荷载,因此一旦出现局部损坏,其损坏程度扩散很快,而事故的发生又往往是突发性的,常常不易被人们发现,这就更加剧了其危害性和严重性。 困难性 地基基础工程质量事故处理难度大是指它与建设工程其它部位事故处理相比而言,造成的原因是和它的地位与作用密切相关的:① 地基基础工程是地下工程,事故处理的施工操作困难性较大;② 一旦地基基础承担了上部荷载,对它本身的处理,必然影响建筑物上部结构性能,尤其是对于建成交付使用的工程,它承受了所有建设工程的全部荷载,再加上地基基础工程质量事故的连锁性,因此它的处理是非常困难的。 2 确保房屋建筑地基基础工程施工的有效性 重视工程勘查的准确性 工程勘察报告要全面反映建筑场地工程地质和水文地质情况,要预防地基基础的工程事故,首先必须对场地工程地质和水文地质条件做全面正确的了解,要做到这一点关键要搞好工程勘查工作,要根据建筑物场地的特点,建筑的使用要求,合理确定工程勘察任务和目的。勘查工作为建筑物的设计提供举足轻重的参考资料,因此决不能忽视而不做,也不能弄虚作假而不考虑是否适用。特别是对复杂的、软弱的地基,更应慎重对待。 此外,在勘查时要重视对钻孔深度的选择。由于钻孔深度必须符合设计要求,如果不符合设计上对压缩厚度的需要,或者达不到桩所坐落的土层时,那就不可能正确计算出地基的沉降,或桩的正确承载力,也就达不到基础设计要求。因此必须按设计要求确定合适的钻孔深度。如果由于勘查数量不足,钻孔和探坑布点少,再加之钻孔深度不够,以致不能表达出土的不均匀性和层理的不一致性,就有可能引起建筑物的翘曲和弯折而出现裂缝,造成严重的质量事故和巨大的经济损失。 提高结构设计的合理性 地基基础的设计应当根据建筑物的使用要求,结构形式和场地的地质条件,并结合现场具体情况,在适用与经济的前提下,要保证建筑物的主要承重结构在正常使用过程中不发生裂缝或损坏。 设计人员应慎重对待工程勘查报告提供的地基承载力建议值,严格计算基础的实际土压力、若对勘察报告的建议值有怀疑,可以再做荷载试验验证。施工人员在天然地基上建造大中型工程时,应复核设计地基承裁力的合理性。一旦发现地基沉降较大或倾斜,必须立即停工,会同勘查、设计和使用单位共同研究,采取必要措施,防止地基和建筑物发生灾难性破坏。 3 加强房屋建筑地基基础工程的施工技术 下面以某住宅工程为例,探讨如何做好房屋建筑地基基础工程的施工质量。该工程为框架结构7层,下设架空层,层高,上层层高均为。场地内土层自上而下依次为填土、淤泥、粉质粘土、含泥中粗沙和砂质粘土。 地基基础的选型 基础是建筑物和地基之间的连接体,基础把建筑物竖向体系传来的荷载传给地基。如果地基的承载力足够,基础的分布方式与竖向结构的分布方式相同,可采用独立基础;如果地基非常软弱,建筑物很高的情况下,则需要采用筏形基础,筏形基础有较大地基接触面的优点,它与独立基础相比,它的造价更高。如果基础土质较好,地下水位较低的'粘土,亚粘土、则采用作支承的人工挖孔灌注桩。 假设地基承载力不足,属于软土地基,必须采取措施对软弱地基进行处理。软弱地基系由淤泥质土、湿陷性黄土、杂填土或其它等构成的地基,那么在勘察时应查明软弱土层的均匀性组成,分布范围和

相关百科

热门百科

首页
发表服务