接触网是电气化铁道中主要供电装置,接触网平面设计的意义:接触网平面设计 特别是接触网站场平面设计是施工设计的重要内容。从现场设计、施工等部门来看, 接触网平面设计占用了大量人力,花费过多精力。 随着计算机技术的发展,近年来 CAD 技术在该领域得到了广泛应用,设计等部门普遍采用 CAD 技术进行辅助设计, 节约了大量
电气化铁道电能质量综合控制研究摘 要:作为典型的非平衡负载,电气化铁道的牵引负载给公共电网带来的谐波、负序和无功等电能质量问题不容忽视。静止无功补偿装置(SVC)是一种减小甚至消除无功、谐波以及其他电能质量问题的有效方法。以静止无功补偿器(SVC)为基础,对电气化铁道的电能质量问题的综合控制进行研究。关键词:电气化铁道;电网;电能质量;综合控制1 前言中国的电气化铁道总里程已经突破2·4万公里,跃居世界第二。电气化铁道具有运载能力强、行车速度快、节约能源、对环境污染小等优点,在现代国民经济发展中起着举足轻重的作用。但是,由于电气化铁道牵引负载所具有的随即波动性和不对称性,其给公共电网带来的诸如负序电流、谐波以及无功功率等电能质量问题也引起了极大的关注。研究如何利用有效手段治理电气化铁道牵引负载所带来的一系列电能质量问题,确保电网中其他电力设备的安全经济运行具有重大意义。2 电气化铁道牵引供电系统2·1 概述我国的动力供电电网电压一般为110kV或者220kV,通过牵引变压器转换为27·5kV作为牵引动力机车的供电。现在普遍流行的牵引变压器种类主要有单相牵引变压器、Y-D11牵引变压器、阻抗匹配牵引变压器、Scott变压器等。我国电气化铁道采用工频交流50Hz三相供电单相用电,其负荷牵引电力机车的功率大,速度、负载状况变化频繁,且具有不对称的特性,导致牵引电网具有功率因数低、谐波含量高、负序电流大等特点,不但自身损耗大,而且对公共电网及铁路沿线的其他电力设备也带来严重危害,必须采取有效措施加以治理[1]。2·2 单相变压器牵引供电网采用单相牵引变压器的牵引供电系统拓扑结构如图1所示[2]。单相接线牵引网采用单相变压器供电,供电方式又分为单相接线方式和V-V接线方式。单相接线牵引变压器的原边跨接于三相电力系统中的两相;副边一端与牵引侧母线连接,另一端与轨道及接地网连接。牵引变压器的容量利用率高,但其在电力系统中单相牵引负荷产生的负序电流较大,对接触网的供电不能实现双边供电。所以,这种结线只适用于电力系统容量较大,电力网比较发达,三相负荷用电能够可靠地由地方电网得到供应的场合。另外,单相牵引变压器要按全绝缘设计制造。而单相V-V接线将两台单相变压器以V的方式联于三相电力系统每一个牵引变电所都可以实现由三相系统的两相线电压供电。两变压器次边绕组,各取一端联至牵引变电所两相母线上。而它们的另一端则以联成公共端的方式接至钢轨引回的回流线。这时,两臂电压相位差60°接线,电流的不对称度有所减少。这种接线即通常所说的60°接线。2·3 三相Y-D11变压器牵引供电网采用三相Y-D11牵引变压器的牵引供电系统拓扑结构如图2所示[2]。三相Y-D11结线牵引变压器的高压侧通过引入线按规定次序接到110kV或220kV,三相电力系统的高压输电线上;变压器低压侧的一角c与轨道,接地网连接,变压器另两个角a和b分别接到27·5kV的a相和b相母线上。由两相牵引母线分别向两侧对应的供电臂供电,两臂电压的相位差为60°,也是60°接线。因此,在这两个相邻的接触网区段间采用了分相绝缘器。3 SVC静止型动态无功补偿装置3·1 SVC的发展静止型动态无功补偿装置SVC是一种先进的高压电网动态功率因数补偿装置。它通过提高功率因数来节约大量的电能,同时又起到减少电网谐波、稳定电压、改善电网质量(环境)的作用。20世纪70年代以来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容器(TSC)以及二者的混合装置(TCR+TSC)等主要形式组成的静止无功补偿器(SVC)得到快速发展。SVC可以看成是电纳值能调节的无功元件,它依靠电力电子器件开关来实现无功调节。SVC作为系统补偿时可以连续调节并与系统进行无功功率交换,同时还具有较快的响应速度,它能够维持端电压恒定3·2 SVC的工作原理及在电网中应用TCR+TSC型SVC的基本拓扑结构见图3。它由1台TCR、2台TSC以及2个无源滤波器组成,在实际系统中,TSC及无源滤波的组数可根据需要设置。TCR的工作原理是通过控制与相控电抗器连接的反并联晶闸管对的移相触发脉冲来改变电抗器等效电纳的大小,从而输出连续可变的无功功率。图3中两个晶闸管分别按照单相半波交流开关运行,通过改变控制角α可以改变电感中通过的电流。α的计量以电压过零点为基准,α在90°~180°之间可部分导通,导通角增大则电流基波分量减小,等价于用增大电抗器的电抗来减小基波无功功率。导通角在90°~180°之间连续调节时电流也从额定到0连续变化,TCR提供的补偿电流中含有谐波分量[3]。TSC的工作原理是根据负载感性无功功率的变化通过反并联晶闸管对来切除或者投入电容器。这里,晶闸管只是作为投切开关,而不像TCR中的晶闸管起相控作用。在实际系统中,每个电容器组都要串联一个阻尼电抗器,以降低非正常运行状态下产生的对晶闸管的冲击电流值,同时避免与系统产生谐振。用晶闸管投切电容器组时,通常选取系统电压峰值时或者过零点时作为投切动作的必要条件。由于TSC中的电容器只是在两个极端的电流值之间切换,因此它不会产生谐波,但它对无功功率的补偿是阶跃的。TCR和TSC组合后的运行原理为:当系统电压低于设定的运行电压时,根据需要补偿的无功量投入适当组数的电容器组,并略有一点正偏差(过补偿),此时再利用TCR调节输出的感性无功功率来抵消这部分过补偿容性无功;当系统电压高于设定电压时,则切除所有电容器组,只留有TCR运行。4 电网电能质量综合控制与治理4·1 谐波抑止与无功补偿利用SVC动态无功补偿装置对牵引供电系统的谐波和无功进行综合治理的关键是SVC最大无功补偿量的确定和滤波器支路的设计[3]。SVC最大无功补偿量Qsvc应该和设计线路牵引负荷的大小相适应,应该按电气化铁道牵引负荷的最大有功需求以及补偿后对装设地点功率因数或在最大无功冲击时的最大电压损耗的要求来确定,具体可以按照式(1)、(2)来计算。QSVC=(tanφ1-tanφ2)Pmax(1)式中,φ1、φ2分别为补偿前后110kV电源测功率因数角;Pmax为电铁负荷最大有功需求。QSVC=Qfmax-ΔU%Xs(2)式中,Qfmax为装设地点最大无功冲击;ΔU%为装设地点最大电压损耗要求;Xs为系统阻抗。要想达到理想的谐波抑止效果,必须综合考虑FC滤波支路的设计,既要保证装置的安全运行,又要达到预计的理想效果。在实际设计中,首先需要根据供电臂中所含的谐波分量来确定FC滤波支路的组成。由于在电力牵引负荷的谐波中, 3、5、7次谐波占了很大的比重,所以FC滤波支路一般由3、5、7次单调谐滤波器构成。当最大无功补偿容量和滤波支路的组成确定后,如何将需补无功容量合理分配到各滤波支路中,这是非常重要的问题。如果各滤波支路的容量分配不合理,一方面会使设备安装总容量偏大,另一方面有可能因为某此滤波回路补偿功率偏小而发生过负荷,对设备安全运行造成影响。一些著名的电气公司采用的一些算法如下[6]:如西门子公司的无功功率补偿按式(3)分配Qc(h)=QSVCIh/h∑Ih/h(3)式中,Qc(h)是第h次滤波支路分配的补偿容量;Ih为供电臂第h次谐波电流。BBC电气公司按照式(4)分配无功功率Qc(h)=QSVC∑Ih(4)AEG电气公司则按照式(5)分配无功Qc(3)∶Qc(5)∶Qc(11)∶Qc(13)=2∶2∶1∶1 (5)式中,Qc(3)、Qc(5)、Qc(11)、Qc(13)分别为第3、5、11、13次滤波支路分配的补偿容量。4·2 负序电流补偿牵引电力机车产生的大量负序电流给电网中其他的电力设备的安全、经济运行带来极大影响。SVC静止动态无功补偿装置在补偿负序和末端电压上有着相当高的效率。工程应用上可以选择在电网系统和负荷上都安装SVC[5]。在电网系统端安装应用SVC来补偿负序电流的原则是参照斯坦梅茨法则(Steinmetz′s laws)。不管采用哪一种牵引变压器,负序补偿的实现分为如下两步:(1)电力因数修正。通过安装电容器件,使得每相负荷都为电阻性。(2)参照斯坦梅茨法则(Steinmetz′s laws),AB相的电阻性负荷G,与BC相的电容性负荷G/ 3以及CA相的电感性负荷G/ 3互相对称。电流环路图和相位图分别如图4、5所示:从图5可以明显看到线电流I·A,I·B,I·C是对称且正序的,BC相和CA相之间的阻抗负载也可以做到类似的对称,因此系统中的所有负序电流都可以被补偿而消除。现在问题的关键是如何随着牵引负荷的起伏动态地控制补偿需要的电容和电感器组。急于数字信号处理器(DSP)的固定电容(FC)和晶闸管控制的电抗器(TCR)的组合得以广泛应用,如图6所示。得益于DSP对数据信息的快速处理,补偿所需的电容和电感参数可以被快速、精确计算得到。5 结论与展望本文提出的基于静止动态无功补偿装置(SVC)的电气化铁道牵引电网电能质量综合控制与治理原理与方案具有重要的工程意义。电气化铁道的电能质量是一个突出且严峻的课题与难题,要求我们不断探求新的综合补偿方法,来综合控制与治理影响电能质量的无功、谐波、负序等因素,以提高电网电能质量,确保电网安全、经济运行。参考文献[1] 李群湛.电气化铁道并联综合补偿及其应用[M].北京:中国铁道出版社, 1993.[2] TB/10009-2005铁路电力牵引供电设计规范[S].[3] 王兆安.谐波抑止和无功功率补偿[M].北京:机械工业出版社,1999.[4] 铁道部电气化工程局电气化勘测设计院.电气化铁道设计手册牵引供电系统[M].北京:中国铁道出版社, 1988.[5] 安鹏,张雷,刘玉田.电气化铁道对电力系统安全运行的影响及对策[J].山东电力技术, 2005, (4): 16-19.[6] 马千里.动态无功补偿装置在牵引变电所的应用[J].电气化铁道, 2008(4).
1、 高压软开关充电电源硬件设计2、 自动售货机控制系统的设计3、 PLC控制电磁阀耐久试验系统设计4、 永磁同步电动机矢量控制系统的仿真研究5、 PLC在热交换控制系统设计中的应用6、 颗粒包装机的PLC控制设计7、 输油泵站机泵控制系统设计8、 基于单片机的万年历硬件设计 9、 550KV GIS中隔离开关操作产生的过电压计算10、 时滞网络化控制系统鲁棒控制器设计11、 多路压力变送器采集系统设计12、 直流电机双闭环系统硬件设计 13、 漏磁无损检测磁路优化设计14、 光伏逆变电源设计15、 胶布烘干温度控制系统的设计16、 基于MATLAB的数字滤波器设计与仿真17、 电镀生产线中PLC的应用18、 万年历的程序设计19、 变压器设计20、 步进电机运动控制系统的硬件设计21、 比例电磁阀驱动性能比较22、 220kv变电站设计23、 600A测量级电流互感器设计24、 自动售货机控制中PLC的应用25、 足球机器人比赛决策子系统与运动轨迹的研究26、 厂区35kV变电所设计27、 基于给定指标的电机设计28、 电梯控制中PLC的应用29、 常用变压器的结构及性能设计30、 六自由度机械臂控制系统软件开发31 输油泵站热媒炉PLC控制系统设计32 步进电机驱动控制系统软件设计33 足球机器人的视觉系统与色标分析的研究34 自来水厂PLC工控系统控制站设计35 永磁直流电动机磁场分析36 永磁同步电动机磁场分析37 应用EWB的电子表电路设计与仿真38 电路与电子技术基础》之模拟电子篇CAI课件的设计39 逻辑无环流直流可逆调速系统的仿真研究40 机器人足球比赛图像采集与目标识别的研究41 自来水厂plc工控系统操作站设计42 PLC结合变频器在风机节能上的应用43 交流电动机调速系统接口电路的设计44 直流电动机可逆调速系统设计45 西门子S7-300PLC在二氧化碳变压吸附中的应用46 DMC控制器设计47 电力电子电路的仿真48 图像处理技术在足球机器人系统中的应用49 管道缺陷长度对漏磁场分布影响的研究 50 生化过程优化控制方案设计51 交流电动机磁场定向控制系统设计52 开关电磁阀流量控制系统的硬件设计53 比例电磁阀的驱动电源设计54 交流电动机SVPWM控制系统设计55 PLC在恒压供水控制中的应用56 西门子S7-200系列PLC在搅拌器控制中的应用57 基于侧抑制增强图像处理方法的研究58 西门子s7-300系列plc在工业加热炉控制中的应用59 西门子s7-200系列plc在电梯控制中的应用60 PLC在恒压供水控制中的应用61 磁悬浮系统的常规控制方法研究62 建筑公司施工进度管理系统设计63 网络销售数据库系统设计64 生产过程设备信息管理系统的设计与实现
电气化铁道电能质量综合控制研究摘 要:作为典型的非平衡负载,电气化铁道的牵引负载给公共电网带来的谐波、负序和无功等电能质量问题不容忽视。静止无功补偿装置(SVC)是一种减小甚至消除无功、谐波以及其他电能质量问题的有效方法。以静止无功补偿器(SVC)为基础,对电气化铁道的电能质量问题的综合控制进行研究。关键词:电气化铁道;电网;电能质量;综合控制1 前言中国的电气化铁道总里程已经突破2·4万公里,跃居世界第二。电气化铁道具有运载能力强、行车速度快、节约能源、对环境污染小等优点,在现代国民经济发展中起着举足轻重的作用。但是,由于电气化铁道牵引负载所具有的随即波动性和不对称性,其给公共电网带来的诸如负序电流、谐波以及无功功率等电能质量问题也引起了极大的关注。研究如何利用有效手段治理电气化铁道牵引负载所带来的一系列电能质量问题,确保电网中其他电力设备的安全经济运行具有重大意义。2 电气化铁道牵引供电系统2·1 概述我国的动力供电电网电压一般为110kV或者220kV,通过牵引变压器转换为27·5kV作为牵引动力机车的供电。现在普遍流行的牵引变压器种类主要有单相牵引变压器、Y-D11牵引变压器、阻抗匹配牵引变压器、Scott变压器等。我国电气化铁道采用工频交流50Hz三相供电单相用电,其负荷牵引电力机车的功率大,速度、负载状况变化频繁,且具有不对称的特性,导致牵引电网具有功率因数低、谐波含量高、负序电流大等特点,不但自身损耗大,而且对公共电网及铁路沿线的其他电力设备也带来严重危害,必须采取有效措施加以治理[1]。2·2 单相变压器牵引供电网采用单相牵引变压器的牵引供电系统拓扑结构如图1所示[2]。单相接线牵引网采用单相变压器供电,供电方式又分为单相接线方式和V-V接线方式。单相接线牵引变压器的原边跨接于三相电力系统中的两相;副边一端与牵引侧母线连接,另一端与轨道及接地网连接。牵引变压器的容量利用率高,但其在电力系统中单相牵引负荷产生的负序电流较大,对接触网的供电不能实现双边供电。所以,这种结线只适用于电力系统容量较大,电力网比较发达,三相负荷用电能够可靠地由地方电网得到供应的场合。另外,单相牵引变压器要按全绝缘设计制造。而单相V-V接线将两台单相变压器以V的方式联于三相电力系统每一个牵引变电所都可以实现由三相系统的两相线电压供电。两变压器次边绕组,各取一端联至牵引变电所两相母线上。而它们的另一端则以联成公共端的方式接至钢轨引回的回流线。这时,两臂电压相位差60°接线,电流的不对称度有所减少。这种接线即通常所说的60°接线。2·3 三相Y-D11变压器牵引供电网采用三相Y-D11牵引变压器的牵引供电系统拓扑结构如图2所示[2]。三相Y-D11结线牵引变压器的高压侧通过引入线按规定次序接到110kV或220kV,三相电力系统的高压输电线上;变压器低压侧的一角c与轨道,接地网连接,变压器另两个角a和b分别接到27·5kV的a相和b相母线上。由两相牵引母线分别向两侧对应的供电臂供电,两臂电压的相位差为60°,也是60°接线。因此,在这两个相邻的接触网区段间采用了分相绝缘器。3 SVC静止型动态无功补偿装置3·1 SVC的发展静止型动态无功补偿装置SVC是一种先进的高压电网动态功率因数补偿装置。它通过提高功率因数来节约大量的电能,同时又起到减少电网谐波、稳定电压、改善电网质量(环境)的作用。20世纪70年代以来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容器(TSC)以及二者的混合装置(TCR+TSC)等主要形式组成的静止无功补偿器(SVC)得到快速发展。SVC可以看成是电纳值能调节的无功元件,它依靠电力电子器件开关来实现无功调节。SVC作为系统补偿时可以连续调节并与系统进行无功功率交换,同时还具有较快的响应速度,它能够维持端电压恒定3·2 SVC的工作原理及在电网中应用TCR+TSC型SVC的基本拓扑结构见图3。它由1台TCR、2台TSC以及2个无源滤波器组成,在实际系统中,TSC及无源滤波的组数可根据需要设置。TCR的工作原理是通过控制与相控电抗器连接的反并联晶闸管对的移相触发脉冲来改变电抗器等效电纳的大小,从而输出连续可变的无功功率。图3中两个晶闸管分别按照单相半波交流开关运行,通过改变控制角α可以改变电感中通过的电流。α的计量以电压过零点为基准,α在90°~180°之间可部分导通,导通角增大则电流基波分量减小,等价于用增大电抗器的电抗来减小基波无功功率。导通角在90°~180°之间连续调节时电流也从额定到0连续变化,TCR提供的补偿电流中含有谐波分量[3]。TSC的工作原理是根据负载感性无功功率的变化通过反并联晶闸管对来切除或者投入电容器。这里,晶闸管只是作为投切开关,而不像TCR中的晶闸管起相控作用。在实际系统中,每个电容器组都要串联一个阻尼电抗器,以降低非正常运行状态下产生的对晶闸管的冲击电流值,同时避免与系统产生谐振。用晶闸管投切电容器组时,通常选取系统电压峰值时或者过零点时作为投切动作的必要条件。由于TSC中的电容器只是在两个极端的电流值之间切换,因此它不会产生谐波,但它对无功功率的补偿是阶跃的。TCR和TSC组合后的运行原理为:当系统电压低于设定的运行电压时,根据需要补偿的无功量投入适当组数的电容器组,并略有一点正偏差(过补偿),此时再利用TCR调节输出的感性无功功率来抵消这部分过补偿容性无功;当系统电压高于设定电压时,则切除所有电容器组,只留有TCR运行。4 电网电能质量综合控制与治理4·1 谐波抑止与无功补偿利用SVC动态无功补偿装置对牵引供电系统的谐波和无功进行综合治理的关键是SVC最大无功补偿量的确定和滤波器支路的设计[3]。SVC最大无功补偿量Qsvc应该和设计线路牵引负荷的大小相适应,应该按电气化铁道牵引负荷的最大有功需求以及补偿后对装设地点功率因数或在最大无功冲击时的最大电压损耗的要求来确定,具体可以按照式(1)、(2)来计算。QSVC=(tanφ1-tanφ2)Pmax(1)式中,φ1、φ2分别为补偿前后110kV电源测功率因数角;Pmax为电铁负荷最大有功需求。QSVC=Qfmax-ΔU%Xs(2)式中,Qfmax为装设地点最大无功冲击;ΔU%为装设地点最大电压损耗要求;Xs为系统阻抗。要想达到理想的谐波抑止效果,必须综合考虑FC滤波支路的设计,既要保证装置的安全运行,又要达到预计的理想效果。在实际设计中,首先需要根据供电臂中所含的谐波分量来确定FC滤波支路的组成。由于在电力牵引负荷的谐波中, 3、5、7次谐波占了很大的比重,所以FC滤波支路一般由3、5、7次单调谐滤波器构成。当最大无功补偿容量和滤波支路的组成确定后,如何将需补无功容量合理分配到各滤波支路中,这是非常重要的问题。如果各滤波支路的容量分配不合理,一方面会使设备安装总容量偏大,另一方面有可能因为某此滤波回路补偿功率偏小而发生过负荷,对设备安全运行造成影响。一些著名的电气公司采用的一些算法如下[6]:如西门子公司的无功功率补偿按式(3)分配Qc(h)=QSVCIh/h∑Ih/h(3)式中,Qc(h)是第h次滤波支路分配的补偿容量;Ih为供电臂第h次谐波电流。BBC电气公司按照式(4)分配无功功率Qc(h)=QSVC∑Ih(4)AEG电气公司则按照式(5)分配无功Qc(3)∶Qc(5)∶Qc(11)∶Qc(13)=2∶2∶1∶1 (5)式中,Qc(3)、Qc(5)、Qc(11)、Qc(13)分别为第3、5、11、13次滤波支路分配的补偿容量。4·2 负序电流补偿牵引电力机车产生的大量负序电流给电网中其他的电力设备的安全、经济运行带来极大影响。SVC静止动态无功补偿装置在补偿负序和末端电压上有着相当高的效率。工程应用上可以选择在电网系统和负荷上都安装SVC[5]。在电网系统端安装应用SVC来补偿负序电流的原则是参照斯坦梅茨法则(Steinmetz′s laws)。不管采用哪一种牵引变压器,负序补偿的实现分为如下两步:(1)电力因数修正。通过安装电容器件,使得每相负荷都为电阻性。(2)参照斯坦梅茨法则(Steinmetz′s laws),AB相的电阻性负荷G,与BC相的电容性负荷G/ 3以及CA相的电感性负荷G/ 3互相对称。电流环路图和相位图分别如图4、5所示:从图5可以明显看到线电流I·A,I·B,I·C是对称且正序的,BC相和CA相之间的阻抗负载也可以做到类似的对称,因此系统中的所有负序电流都可以被补偿而消除。现在问题的关键是如何随着牵引负荷的起伏动态地控制补偿需要的电容和电感器组。急于数字信号处理器(DSP)的固定电容(FC)和晶闸管控制的电抗器(TCR)的组合得以广泛应用,如图6所示。得益于DSP对数据信息的快速处理,补偿所需的电容和电感参数可以被快速、精确计算得到。5 结论与展望本文提出的基于静止动态无功补偿装置(SVC)的电气化铁道牵引电网电能质量综合控制与治理原理与方案具有重要的工程意义。电气化铁道的电能质量是一个突出且严峻的课题与难题,要求我们不断探求新的综合补偿方法,来综合控制与治理影响电能质量的无功、谐波、负序等因素,以提高电网电能质量,确保电网安全、经济运行。参考文献[1] 李群湛.电气化铁道并联综合补偿及其应用[M].北京:中国铁道出版社, 1993.[2] TB/10009-2005铁路电力牵引供电设计规范[S].[3] 王兆安.谐波抑止和无功功率补偿[M].北京:机械工业出版社,1999.[4] 铁道部电气化工程局电气化勘测设计院.电气化铁道设计手册牵引供电系统[M].北京:中国铁道出版社, 1988.[5] 安鹏,张雷,刘玉田.电气化铁道对电力系统安全运行的影响及对策[J].山东电力技术, 2005, (4): 16-19.[6] 马千里.动态无功补偿装置在牵引变电所的应用[J].电气化铁道, 2008(4).
接触网平面设计的意义如下:高速铁路接触网是沿铁路线上空架设的向电力机车供电的特殊形式的输电线路,是高速铁路重要基础设施,担负着为高速铁路机车提供电源的重要责任。一、传统接触网设计传统接触网设计是基于二维CAD,一般将平面布置图、装配图等作为设计成果进行交付。CAD 图纸看起来不直观,非专业人员很难理解,且无法表现接触网设备和周围环境之间复杂的关系,很难发现侵限或者绝缘不满足要求等问题。此外,接触网和路、桥、隧等站前专业接口不易检查,很难发现设计之间的冲突。而这些问题往往都是集中在施工阶段才被发现,容易引起设计变更,造成资源和工期的浪费,甚至会带来质量隐患。基于二维CAD 的接触网设计期、施工期数据比较分散,很难有一套成熟的机制将设计、出厂、安调等信息数据有机地结合在一起,竣工交付后很难支撑后期智能运维。BIM技术作为一种全新的设计手段和信息化手段,可有效地解决这些问题。二、接触网设计阶段BIM应用参数化快速建模接触网设备是由支柱基础、支柱、腕臂、定位装置、接触线、承力索、吊弦、附加导线等构成。接触网设备零部件众多,空间结构复杂,涉及电气、结构、机械等多个领域,需要一种参数化快速建模的方式,实现腕臂的装配设计和线路布置。三、零部件三维族库根据《电气化铁路接触零部件(TBT 2075-2010)》标准,对腕臂支撑装置、定位装置、补偿装置、接触悬挂等涉及到的零部件,根据功能及型号进行建模,建立零部件三维族库。对于工程实际中运用到的非标零部件或新设备,要及时在族库中增加,保证族库零部件模型的完整。四、接触网零部件三维族库目前,只有Power rail overhead line 接触网专用软件,因此,在选择某一软件平台后,用户要建立自己的三维族库,并随着接触网新工艺、新设备的出现,及时完善三维族库。五、腕臂计算及可视化装配零部件三维族库建立以后,调取族库模型,对接触网腕臂支撑装置进行可视化装配,形成接触网腕臂装配库,包括下锚柱、中间柱、转换柱、中心柱等腕臂装配类型。在Autodesk 等平台中,开发二次插件,实现腕臂理论计算,根据设计要求的侧面限界、外轨超高等,生成腕臂管及相关部件的理论长度,并实现腕臂的可视化、参数化装配。六、接触网中间柱装配图在腕臂可视化装配过程中,将腕臂零部件的几何信息和非几何信息等设计期属性数据补充完整,例如,定位点导高、拉出值,腕臂零部件的长度、尺寸、名称、材质等。。接触网平面设计电气化铁路的接触网也提出了相关的要求本设计的目的是完成嘉峪关车站接触网平面设计同时按要求绘制接触网设备装配图和平面。接触网毕业论文题目接触网平面设计摘要近年来,高速电气化铁路的发展十分迅猛。接触网技术的研究和设计是高速电气化铁路发展的基础。本论文在概述接触网基本组成第 1 页的基础上,系统的阐述了高速电气化铁路接触网的支持装置、结构特征、供电方式等,并着重论述了高速接触网的设计原理及设计内容。最后,本论文完成了安家河至打柴沟区间的接触网平面设计。本论文共包括七章内容,第一章是对高速电气化铁路接触网的概述;第二章则主要介绍了高速电气化接触网的基本组成和结构特征;第三章是关于接触网设计的基本内容;第四、五章主要包括接触网设计计算基础和平面设计基础;最后两章主要是对安家河至打柴沟区间的接触网平面设计。关键词高速电气化铁路,接触网,平面设计,结构特征Abstract第 2 页The development of high-speed electrified railway is very tendency in recent years. It is based on the research and design of the catenary systems. Based on the introduction of the basic contents of catenary systems, this thesis systematically elaborates the supporting equipments, structure features and power way of high-speed catenary systems, emphasizes on the principle and contents of design catenary systems. At last, this thesis has completed the graphic design of the interval from An Jia He to Da Chai thesis includes 7 Chapters .The first Chapter summaries to catenary systems of high-speed electrified railway. The second第 3 页Chapter is the introduction of the basic contents and the structure features of catenary systems. The third Chapter is about the basic contents of the design of the catenary systems . The forth and fifth Chapter are mainly including basic knowledge of the design calculation and graphic design. The last two Chapters are mainly about the graphic design from An Jia He to Da Chai Words High-speed electrified railway, catenary systems, graphic design,structure features目录摘要 ................................................................... I AB第 4 页STRACT ................................................................ II 第一章绪论 . (1)第一节电气化铁道概述 (1)第二节接触网(平面)设计原则 (1)第三节本论文的主要设计内容 (2)第二章接触网的设备与结构 (3)第一节接触网悬挂类型 (3)一、简单接触悬挂 (3)二、链形接触悬挂 (3)三、高速接触网的悬挂模式 (4)第二节接触网线索 (4)一、接触线 (4)第 5 页二、承力索 (6)第三节支持装置 (7)一、概述 (7)二、腕臂支持装置 (7)第四节定位装置 (11)一、定位装置的作用 (11)二、定位器类型 (11)三、定位装置形式 (12)四、高速接触网定位装置 (14)第五节支柱 (14)一、支柱的分类原则 (14)第 6 页二、预应力钢筋混凝土支柱 (14)三、钢支柱 (15)第六节基础及其类型选择 (15)一、基础类型 (15)二、钢筋混凝土柱横卧板 (16)第七节锚段关节及中心锚节 (17)一、锚段关节 (17)二、中心锚结 (21)第八节张力自动补偿装置 (23)第九节线岔及供电设施 (24)一、线岔 (24)第 7 页二、接触网供电设施 (24)第三章接触网设计的基本内容 (26)第一节接触网的设计程序 (26)第二节接触网设计的原始资料 (27)第三节接触网设计的主要内容 (27)第四章接触网设计计算基础 (29)第一节气象条件的确定 (29)一、概述 (29)二、接触网设计计算气象条件的确定 (29)第二节计算负载的确定 (31)一、自重负载 (31)第 8 页二、冰负载 (32)三、风负载 (32)第三节全补偿链形悬挂的安装曲线 (33)第四节接触线跨距许可长度的计算 (35)第五节链形悬挂锚段长度的计算 (37)第六节支柱负载的计算 (38)一、垂直负载 (39)二、水平负载 (39)第五章接触网平面设计基础 (42)第一节概述 (42)第二节区间接触网平面设计 (42)第 9 页一、区间锚段长度的划分 (42)二、区间支柱的平面布置 (43)第三节表格栏及相应说明 (44)一、侧面限界及拉出值 (44)二、支柱类型 (45)三、地质情况 (45)四、基础(横卧板)类型 (45)五、软横跨结点或拉杆、腕臂、定位管、定位器 (46)六、安装图号 (46)七、接触线高度 (47)第六章安家河—打柴沟接触网平面设计 (49)第 10 页第一节原始资料 (49)一、气象资料 (49)二、线路资料 (49)第二节设计计算(调整校验) (50)一、全补偿链形悬挂的安装曲线计算 (50)二、最大跨距许可长度的校验计算 (51)三、锚段长度的校验计算 (53)四、支柱容量的校验计算 (54)第三节设备选择及设计参数 (57)第四节平面布置(设计) (57)第七章结论 (59)第 11 页致谢 (60)参考文献 (61)附录1 外文资料翻译 (62)译文 (62)原文 (65)附录2 相关装配图 (68)一﹑支柱装配图 (68)附录3 安家河至打柴沟区间平面设计接触网平面设计
1、 高压软开关充电电源硬件设计2、 自动售货机控制系统的设计3、 PLC控制电磁阀耐久试验系统设计4、 永磁同步电动机矢量控制系统的仿真研究5、 PLC在热交换控制系统设计中的应用6、 颗粒包装机的PLC控制设计7、 输油泵站机泵控制系统设计8、 基于单片机的万年历硬件设计 9、 550KV GIS中隔离开关操作产生的过电压计算10、 时滞网络化控制系统鲁棒控制器设计11、 多路压力变送器采集系统设计12、 直流电机双闭环系统硬件设计 13、 漏磁无损检测磁路优化设计14、 光伏逆变电源设计15、 胶布烘干温度控制系统的设计16、 基于MATLAB的数字滤波器设计与仿真17、 电镀生产线中PLC的应用18、 万年历的程序设计19、 变压器设计20、 步进电机运动控制系统的硬件设计21、 比例电磁阀驱动性能比较22、 220kv变电站设计23、 600A测量级电流互感器设计24、 自动售货机控制中PLC的应用25、 足球机器人比赛决策子系统与运动轨迹的研究26、 厂区35kV变电所设计27、 基于给定指标的电机设计28、 电梯控制中PLC的应用29、 常用变压器的结构及性能设计30、 六自由度机械臂控制系统软件开发31 输油泵站热媒炉PLC控制系统设计32 步进电机驱动控制系统软件设计33 足球机器人的视觉系统与色标分析的研究34 自来水厂PLC工控系统控制站设计35 永磁直流电动机磁场分析36 永磁同步电动机磁场分析37 应用EWB的电子表电路设计与仿真38 电路与电子技术基础》之模拟电子篇CAI课件的设计39 逻辑无环流直流可逆调速系统的仿真研究40 机器人足球比赛图像采集与目标识别的研究41 自来水厂plc工控系统操作站设计42 PLC结合变频器在风机节能上的应用43 交流电动机调速系统接口电路的设计44 直流电动机可逆调速系统设计45 西门子S7-300PLC在二氧化碳变压吸附中的应用46 DMC控制器设计47 电力电子电路的仿真48 图像处理技术在足球机器人系统中的应用49 管道缺陷长度对漏磁场分布影响的研究 50 生化过程优化控制方案设计51 交流电动机磁场定向控制系统设计52 开关电磁阀流量控制系统的硬件设计53 比例电磁阀的驱动电源设计54 交流电动机SVPWM控制系统设计55 PLC在恒压供水控制中的应用56 西门子S7-200系列PLC在搅拌器控制中的应用57 基于侧抑制增强图像处理方法的研究58 西门子s7-300系列plc在工业加热炉控制中的应用59 西门子s7-200系列plc在电梯控制中的应用60 PLC在恒压供水控制中的应用61 磁悬浮系统的常规控制方法研究62 建筑公司施工进度管理系统设计63 网络销售数据库系统设计64 生产过程设备信息管理系统的设计与实现
回顾下论文小节内容总结呀。还有总结的话就是总结下,你毕业论文的收获呀。。。
毕业论文小结是你对自己的论文最终的一个感悟,如果你的文章是自己一字一句的去斟酌写出来的,那这不算个问题。人生只有一次大学毕业的机会,自己好好把握吧,别人帮不了你,也不能帮你
大学毕业总结 大学生活临近尾声。这短短的大学生活,却是我人生中弥足珍贵的。在这里,我从一个莽撞少年成长为一名合格的毕业生,用脱胎换骨来形容并不为过。总结过去可以拨开时间的迷雾,清晰的回首所走过的路,从而为将来的人生旅程准备一些经验和教训。 大学的生活主线是学习。大学学习是迥然不同于以往的一种新形式,它赋予了学习者更大的自主性和更广阔的思维空间,同时也对学习者提出了更高的要求。在这种半开放式的教学模式下,要求学习者必须有明确的学习目的,有更强的选择辨别能力和更强的自学能力。对于这个方面,我应该感谢大学的学习生涯,在这期间的历次挫折与成功,使我真正知道了怎样进行自我学习,怎样有选择有目的的学习,随之而来的是自己自学能力和学习效率的提高。而学习之外的课外活动的参与,也促使自己学习更多更新的东西,这更进一步丰富了自己的理论知识。 在大学里,所得不仅仅是知识上的东西,校园严谨踏实的学风,求实创新的气氛,同时也潜移默化的影响着我的学习和思维,所有这些能力和思维模式的获得,是我几年学习的最大收获,这也必将影响我未来一生的发展。 在一个人成长的过程中,需要的不仅是知识的积累,还需要正确的思想基础和正确的人生观、价值观。知识可以不断获得,而人生观一旦形成,对一个人的一生都有难以估量的影响。在这几年,我可以明确感受到学校在教书的同时,对育人这一环节的重视。各种各样的主题活动,各种各样的思想探索,都影响着我的人生观的形成。在未入大学之前,人生观对于我而言,是属于比较虚幻的东西,我虽然能感觉到它的存在和作用,却没有形成一个明确的概念。在大学的学习生活中,由于自己的思考、学习和一些外在因素的作用,使我基本形成了一整套对人生的看法
具体的范文模板链接:
首先是你的论文总结,你参考了什么文件,运用了那些辅助材料完成。然后写写从中都学到了什么。最后,得到了哪些人的帮助,以表感谢。
电气化铁道电能质量综合控制研究摘 要:作为典型的非平衡负载,电气化铁道的牵引负载给公共电网带来的谐波、负序和无功等电能质量问题不容忽视。静止无功补偿装置(SVC)是一种减小甚至消除无功、谐波以及其他电能质量问题的有效方法。以静止无功补偿器(SVC)为基础,对电气化铁道的电能质量问题的综合控制进行研究。关键词:电气化铁道;电网;电能质量;综合控制1 前言中国的电气化铁道总里程已经突破2·4万公里,跃居世界第二。电气化铁道具有运载能力强、行车速度快、节约能源、对环境污染小等优点,在现代国民经济发展中起着举足轻重的作用。但是,由于电气化铁道牵引负载所具有的随即波动性和不对称性,其给公共电网带来的诸如负序电流、谐波以及无功功率等电能质量问题也引起了极大的关注。研究如何利用有效手段治理电气化铁道牵引负载所带来的一系列电能质量问题,确保电网中其他电力设备的安全经济运行具有重大意义。2 电气化铁道牵引供电系统2·1 概述我国的动力供电电网电压一般为110kV或者220kV,通过牵引变压器转换为27·5kV作为牵引动力机车的供电。现在普遍流行的牵引变压器种类主要有单相牵引变压器、Y-D11牵引变压器、阻抗匹配牵引变压器、Scott变压器等。我国电气化铁道采用工频交流50Hz三相供电单相用电,其负荷牵引电力机车的功率大,速度、负载状况变化频繁,且具有不对称的特性,导致牵引电网具有功率因数低、谐波含量高、负序电流大等特点,不但自身损耗大,而且对公共电网及铁路沿线的其他电力设备也带来严重危害,必须采取有效措施加以治理[1]。2·2 单相变压器牵引供电网采用单相牵引变压器的牵引供电系统拓扑结构如图1所示[2]。单相接线牵引网采用单相变压器供电,供电方式又分为单相接线方式和V-V接线方式。单相接线牵引变压器的原边跨接于三相电力系统中的两相;副边一端与牵引侧母线连接,另一端与轨道及接地网连接。牵引变压器的容量利用率高,但其在电力系统中单相牵引负荷产生的负序电流较大,对接触网的供电不能实现双边供电。所以,这种结线只适用于电力系统容量较大,电力网比较发达,三相负荷用电能够可靠地由地方电网得到供应的场合。另外,单相牵引变压器要按全绝缘设计制造。而单相V-V接线将两台单相变压器以V的方式联于三相电力系统每一个牵引变电所都可以实现由三相系统的两相线电压供电。两变压器次边绕组,各取一端联至牵引变电所两相母线上。而它们的另一端则以联成公共端的方式接至钢轨引回的回流线。这时,两臂电压相位差60°接线,电流的不对称度有所减少。这种接线即通常所说的60°接线。2·3 三相Y-D11变压器牵引供电网采用三相Y-D11牵引变压器的牵引供电系统拓扑结构如图2所示[2]。三相Y-D11结线牵引变压器的高压侧通过引入线按规定次序接到110kV或220kV,三相电力系统的高压输电线上;变压器低压侧的一角c与轨道,接地网连接,变压器另两个角a和b分别接到27·5kV的a相和b相母线上。由两相牵引母线分别向两侧对应的供电臂供电,两臂电压的相位差为60°,也是60°接线。因此,在这两个相邻的接触网区段间采用了分相绝缘器。3 SVC静止型动态无功补偿装置3·1 SVC的发展静止型动态无功补偿装置SVC是一种先进的高压电网动态功率因数补偿装置。它通过提高功率因数来节约大量的电能,同时又起到减少电网谐波、稳定电压、改善电网质量(环境)的作用。20世纪70年代以来,以晶闸管控制的电抗器(TCR)、晶闸管投切的电容器(TSC)以及二者的混合装置(TCR+TSC)等主要形式组成的静止无功补偿器(SVC)得到快速发展。SVC可以看成是电纳值能调节的无功元件,它依靠电力电子器件开关来实现无功调节。SVC作为系统补偿时可以连续调节并与系统进行无功功率交换,同时还具有较快的响应速度,它能够维持端电压恒定3·2 SVC的工作原理及在电网中应用TCR+TSC型SVC的基本拓扑结构见图3。它由1台TCR、2台TSC以及2个无源滤波器组成,在实际系统中,TSC及无源滤波的组数可根据需要设置。TCR的工作原理是通过控制与相控电抗器连接的反并联晶闸管对的移相触发脉冲来改变电抗器等效电纳的大小,从而输出连续可变的无功功率。图3中两个晶闸管分别按照单相半波交流开关运行,通过改变控制角α可以改变电感中通过的电流。α的计量以电压过零点为基准,α在90°~180°之间可部分导通,导通角增大则电流基波分量减小,等价于用增大电抗器的电抗来减小基波无功功率。导通角在90°~180°之间连续调节时电流也从额定到0连续变化,TCR提供的补偿电流中含有谐波分量[3]。TSC的工作原理是根据负载感性无功功率的变化通过反并联晶闸管对来切除或者投入电容器。这里,晶闸管只是作为投切开关,而不像TCR中的晶闸管起相控作用。在实际系统中,每个电容器组都要串联一个阻尼电抗器,以降低非正常运行状态下产生的对晶闸管的冲击电流值,同时避免与系统产生谐振。用晶闸管投切电容器组时,通常选取系统电压峰值时或者过零点时作为投切动作的必要条件。由于TSC中的电容器只是在两个极端的电流值之间切换,因此它不会产生谐波,但它对无功功率的补偿是阶跃的。TCR和TSC组合后的运行原理为:当系统电压低于设定的运行电压时,根据需要补偿的无功量投入适当组数的电容器组,并略有一点正偏差(过补偿),此时再利用TCR调节输出的感性无功功率来抵消这部分过补偿容性无功;当系统电压高于设定电压时,则切除所有电容器组,只留有TCR运行。4 电网电能质量综合控制与治理4·1 谐波抑止与无功补偿利用SVC动态无功补偿装置对牵引供电系统的谐波和无功进行综合治理的关键是SVC最大无功补偿量的确定和滤波器支路的设计[3]。SVC最大无功补偿量Qsvc应该和设计线路牵引负荷的大小相适应,应该按电气化铁道牵引负荷的最大有功需求以及补偿后对装设地点功率因数或在最大无功冲击时的最大电压损耗的要求来确定,具体可以按照式(1)、(2)来计算。QSVC=(tanφ1-tanφ2)Pmax(1)式中,φ1、φ2分别为补偿前后110kV电源测功率因数角;Pmax为电铁负荷最大有功需求。QSVC=Qfmax-ΔU%Xs(2)式中,Qfmax为装设地点最大无功冲击;ΔU%为装设地点最大电压损耗要求;Xs为系统阻抗。要想达到理想的谐波抑止效果,必须综合考虑FC滤波支路的设计,既要保证装置的安全运行,又要达到预计的理想效果。在实际设计中,首先需要根据供电臂中所含的谐波分量来确定FC滤波支路的组成。由于在电力牵引负荷的谐波中, 3、5、7次谐波占了很大的比重,所以FC滤波支路一般由3、5、7次单调谐滤波器构成。当最大无功补偿容量和滤波支路的组成确定后,如何将需补无功容量合理分配到各滤波支路中,这是非常重要的问题。如果各滤波支路的容量分配不合理,一方面会使设备安装总容量偏大,另一方面有可能因为某此滤波回路补偿功率偏小而发生过负荷,对设备安全运行造成影响。一些著名的电气公司采用的一些算法如下[6]:如西门子公司的无功功率补偿按式(3)分配Qc(h)=QSVCIh/h∑Ih/h(3)式中,Qc(h)是第h次滤波支路分配的补偿容量;Ih为供电臂第h次谐波电流。BBC电气公司按照式(4)分配无功功率Qc(h)=QSVC∑Ih(4)AEG电气公司则按照式(5)分配无功Qc(3)∶Qc(5)∶Qc(11)∶Qc(13)=2∶2∶1∶1 (5)式中,Qc(3)、Qc(5)、Qc(11)、Qc(13)分别为第3、5、11、13次滤波支路分配的补偿容量。4·2 负序电流补偿牵引电力机车产生的大量负序电流给电网中其他的电力设备的安全、经济运行带来极大影响。SVC静止动态无功补偿装置在补偿负序和末端电压上有着相当高的效率。工程应用上可以选择在电网系统和负荷上都安装SVC[5]。在电网系统端安装应用SVC来补偿负序电流的原则是参照斯坦梅茨法则(Steinmetz′s laws)。不管采用哪一种牵引变压器,负序补偿的实现分为如下两步:(1)电力因数修正。通过安装电容器件,使得每相负荷都为电阻性。(2)参照斯坦梅茨法则(Steinmetz′s laws),AB相的电阻性负荷G,与BC相的电容性负荷G/ 3以及CA相的电感性负荷G/ 3互相对称。电流环路图和相位图分别如图4、5所示:从图5可以明显看到线电流I·A,I·B,I·C是对称且正序的,BC相和CA相之间的阻抗负载也可以做到类似的对称,因此系统中的所有负序电流都可以被补偿而消除。现在问题的关键是如何随着牵引负荷的起伏动态地控制补偿需要的电容和电感器组。急于数字信号处理器(DSP)的固定电容(FC)和晶闸管控制的电抗器(TCR)的组合得以广泛应用,如图6所示。得益于DSP对数据信息的快速处理,补偿所需的电容和电感参数可以被快速、精确计算得到。5 结论与展望本文提出的基于静止动态无功补偿装置(SVC)的电气化铁道牵引电网电能质量综合控制与治理原理与方案具有重要的工程意义。电气化铁道的电能质量是一个突出且严峻的课题与难题,要求我们不断探求新的综合补偿方法,来综合控制与治理影响电能质量的无功、谐波、负序等因素,以提高电网电能质量,确保电网安全、经济运行。参考文献[1] 李群湛.电气化铁道并联综合补偿及其应用[M].北京:中国铁道出版社, 1993.[2] TB/10009-2005铁路电力牵引供电设计规范[S].[3] 王兆安.谐波抑止和无功功率补偿[M].北京:机械工业出版社,1999.[4] 铁道部电气化工程局电气化勘测设计院.电气化铁道设计手册牵引供电系统[M].北京:中国铁道出版社, 1988.[5] 安鹏,张雷,刘玉田.电气化铁道对电力系统安全运行的影响及对策[J].山东电力技术, 2005, (4): 16-19.[6] 马千里.动态无功补偿装置在牵引变电所的应用[J].电气化铁道, 2008(4).
接触网是电气化铁道中主要供电装置,接触网平面设计的意义:接触网平面设计 特别是接触网站场平面设计是施工设计的重要内容。从现场设计、施工等部门来看, 接触网平面设计占用了大量人力,花费过多精力。 随着计算机技术的发展,近年来 CAD 技术在该领域得到了广泛应用,设计等部门普遍采用 CAD 技术进行辅助设计, 节约了大量
1、 高压软开关充电电源硬件设计2、 自动售货机控制系统的设计3、 PLC控制电磁阀耐久试验系统设计4、 永磁同步电动机矢量控制系统的仿真研究5、 PLC在热交换控制系统设计中的应用6、 颗粒包装机的PLC控制设计7、 输油泵站机泵控制系统设计8、 基于单片机的万年历硬件设计 9、 550KV GIS中隔离开关操作产生的过电压计算10、 时滞网络化控制系统鲁棒控制器设计11、 多路压力变送器采集系统设计12、 直流电机双闭环系统硬件设计 13、 漏磁无损检测磁路优化设计14、 光伏逆变电源设计15、 胶布烘干温度控制系统的设计16、 基于MATLAB的数字滤波器设计与仿真17、 电镀生产线中PLC的应用18、 万年历的程序设计19、 变压器设计20、 步进电机运动控制系统的硬件设计21、 比例电磁阀驱动性能比较22、 220kv变电站设计23、 600A测量级电流互感器设计24、 自动售货机控制中PLC的应用25、 足球机器人比赛决策子系统与运动轨迹的研究26、 厂区35kV变电所设计27、 基于给定指标的电机设计28、 电梯控制中PLC的应用29、 常用变压器的结构及性能设计30、 六自由度机械臂控制系统软件开发31 输油泵站热媒炉PLC控制系统设计32 步进电机驱动控制系统软件设计33 足球机器人的视觉系统与色标分析的研究34 自来水厂PLC工控系统控制站设计35 永磁直流电动机磁场分析36 永磁同步电动机磁场分析37 应用EWB的电子表电路设计与仿真38 电路与电子技术基础》之模拟电子篇CAI课件的设计39 逻辑无环流直流可逆调速系统的仿真研究40 机器人足球比赛图像采集与目标识别的研究41 自来水厂plc工控系统操作站设计42 PLC结合变频器在风机节能上的应用43 交流电动机调速系统接口电路的设计44 直流电动机可逆调速系统设计45 西门子S7-300PLC在二氧化碳变压吸附中的应用46 DMC控制器设计47 电力电子电路的仿真48 图像处理技术在足球机器人系统中的应用49 管道缺陷长度对漏磁场分布影响的研究 50 生化过程优化控制方案设计51 交流电动机磁场定向控制系统设计52 开关电磁阀流量控制系统的硬件设计53 比例电磁阀的驱动电源设计54 交流电动机SVPWM控制系统设计55 PLC在恒压供水控制中的应用56 西门子S7-200系列PLC在搅拌器控制中的应用57 基于侧抑制增强图像处理方法的研究58 西门子s7-300系列plc在工业加热炉控制中的应用59 西门子s7-200系列plc在电梯控制中的应用60 PLC在恒压供水控制中的应用61 磁悬浮系统的常规控制方法研究62 建筑公司施工进度管理系统设计63 网络销售数据库系统设计64 生产过程设备信息管理系统的设计与实现
接触网是电气化铁道中主要供电装置,接触网平面设计的意义:接触网平面设计 特别是接触网站场平面设计是施工设计的重要内容。从现场设计、施工等部门来看, 接触网平面设计占用了大量人力,花费过多精力。 随着计算机技术的发展,近年来 CAD 技术在该领域得到了广泛应用,设计等部门普遍采用 CAD 技术进行辅助设计, 节约了大量
毕业设计论文摘要范文(通用6篇)
摘要应具有独立性和自明性,并且拥有与文献同等量的主要信息,即不阅读全文,就能获得必要的信息。下面是我为大家收集的关于毕业设计论文摘要范文,欢迎大家阅读!
随着社会的发展和现代化的建设,计算机技术在很多领域发挥着越来越重要的作用。毕业设计是高等教育中的重要环节,对毕业设计过程进行信息化处理,能够提高教育管理水平,并且提高教育质量。
本文以软件工程技术的思想为出发点,综合运用数据库技术和信息系统分析与设计的相关知识,实现了高校毕业设计管理系统的功能设计。在分析现有的毕业生管理系统及相关高校的信息管理系统的基础上,初步完成了高校毕业设计管理系统开发,包括系统的需求分析、系统功能模块的具体设计、系统的实现以及最终的测试。通过建立数据库,实现将学生基本信息的筛选,毕业设计过程的论文选题、开题报告、中期报告以及论文提交等网上操作。
系统以 Balsamiq Mockups 为原型工具,并以面向对象设计开发工具 为系统实现工具,做出一个能够实现毕业设计有效管理的系统。系统界面友好,操作简便,经过试运行,使用效果良好,实现了学生毕业设计信息的网上录入、打印、统计分析等管理工作。本系统提高了工作效率,降低了人工成本,保证了学生数据的准确性和安全性,使学校的教学和管理工作实现了信息化和现代化。
毕业设计是目前高校教学过程中最后阶段采用的一种总结性的实践教学环节。通过毕业设计,学生能综合运用所学理论知识与实际技能,进行全面及有针对性的训练与总结。因此加强毕业设计工作,对深化教学改革及课程体系建设,促进与提高人才培养质量有重要意义。
针对目前海南软件职业技术学院毕业设计管理方面的现状及不足之处,提出了基于工作流和 B/S 模式的相结合的管理思想。利用工作流技术对毕业设计工作流程进一步探讨,构建合理的毕业设计管理系统。基于。NET 平台,使用 MVC 模式,构建一个网上毕业设计管理平台,系统整体架构采用了流行的 B/S 架构,根据实际需求将系统的角色划分为了学生、导师以及管理员三个角色。使用者通过互联网网络浏览器便可以实现毕业设计工作过程中的导师与学生的双向选择、开题报告提交、设计过程指导、中期检查、文件资料上传以及下载、答辩申请、毕业答辩结果查询等。不同的角色所具备的功能并不相同,教务管理工作人员则可以根据教学计划启动本年度的毕业设计任务,并能够对整个毕业设计过程以及进程进行监控,此外还能够对毕业答辩分组进行调节、统计,很大程度上提高了毕业设计工作的工作效率,还提高了管理水平。综述,本课题设计与实现的毕业设计管理系统对于任何高校的毕业设计管理工作都具备非常大价值,不仅能够很好的解决毕业设计管理工作中存在的种种问题,还规范了毕业设计管理工作的整个管理流程,此外,还给与了学生、导师以及相关管理工作人员极大的方便,使得管理工作人员的工作强度大大降低,因此具备非常高的理论以及实际应用价值。
毕业设计是高校教学活动中的重要环节,每届的准备工作到成绩归档需要跨越2个学期,工作量大,时间过程长。以往的毕业设计管理方式是以人工方式为主,工作繁琐,效率低,容易出错。近年来高校扩招,毕业生人数也逐年增多,旧的毕业设计管理方式的弊端越来越突出。随着信息化与网络化的推进,高校无纸化教务管理也得到了重视,本毕业设计管理系统是为满足高校无纸化教务管理需求而开发,能迅速提升毕业设计的管理速度‘增加师生间的沟通和交流,提高师生和管理人员的工作效率。
本文针对当前大多数毕业设计管理过程处于人工或半人工方式的状况,于是借用现今流行的。Net平台,设计并实现了基于的毕业设计管理系统,其主要研究内容如下:
1、基于。Net框架,应用VS2010和SQLServer2008数据库设计并实现了一套毕业设计管理系统,系统涵盖了系统管理、教学秘书功能、教师功能和学生功能等几个模块,主要解决了学生和导师的双向选择和毕业答辩管理等问题。
2、以软件工程中的瀑布模型为设计主线,较为详细的介绍了系统的业务需求、功能和非功能需求,系统架构、功能和数据库设计,阐述了界面的设计过程,给出了功能模块的代码,最后展示了系统的功能与性能测试结果。
经过本课题的研发测试,该系统在试运行期间基本正常,各主要功能得到实现,满足了毕业设计管理无纸化的需求。
目前,我国高等院校毕业设计管理方面普遍存在问题,主要表现在:在管理方式、管理理念等方面还停留在传统模式上,对整个管理过程缺乏统一规划、规范和协调,缺乏系统观念以及对决策的支持;对管理信息系统的理解偏重于计算机及通讯技术,而忽视了先进的管理思想的支持;在技术上,原有的系统己经落后于计算机技术、网络通信技术的发展,数据资源无法有效共享,各成员的工作也很难协调一致。因而,如何结合先进教务管理理念,整合信息技术资源,形成基于网络的协同办公,构成了本文开发毕业设计管理系统的研究背景。
本文围绕高校毕业设计管理系统的开发与实现的问题,运用文献法分析了教育理论基础以及开发设计的理论;采用行动研究法归纳了毕业设计管理系统的需求及其关键要素;使用软件开发方法设计并实现了毕业设计管理系统。
本文完成的主要工作如下:
1、分析并论证了毕业设计管理系统相关的理论基础,着重阐述了计算机协同工作理论和软件工程理论。
2、模型。
3、利用UML描述了系统需求、业务流程,分析研究了整个系统的功能模块及概念、比较分析了各类开发技术的优缺点,采用了Java平台下高效的MVC三层架构初步实现了毕业设计管理系统的开发,并己投入试用。
研究存在的不足之处:
1、需求分析的准确性和全面性有所欠缺。
2、总体框架的搭建有一定缺陷,代码存在冗余,后期更改和维护成本较高。
总体而言,本文基于毕业设计管理工作的特点,开发出了毕业设计管理系统并已投入试用,该系统能够将毕业设计工作流程中的大部分工作系统化、规范化、网络化,从而使毕业设计的管理更加科学合理、方便有效,将教务管理人员从重复冗杂的工作中解放出来。
后现代主义的兴起带给当今的建筑界以多元发展的格局,有人认为当今的建筑界不能再像以前那样由现代主义独霸天下,而恰恰应该表现出一种百家争鸣的状态。许多建筑师高举反对现代主义中的理性和逻辑性,反对现代主义中的二元对立性等标语的后现代主义大旗,于是,便有了当今建筑界的一片混乱。
针对这种现象,本文根据对哲学中理性精神本质的分析认为,当代建筑非理性的现象从根本上来说是理性的,因为这些建筑所依据的后现代理论从本质上来说就是理性的,之所以会这样,都是因为对数学发展的误解造成的。
因此,本文首先通过对数学各个发展时期中所产生的重大发展以及由此带给建筑学的'影响的介绍,表明建筑学的发展变化除了受社会、政治、经济等因素的影响之外,更为重要的是受到数学的发展以及由此而带来的世界新图景的不断展现的影响。而数学作用于建筑学的途径则是通过数学理性与数学美。 接下来,本文通过对数学与哲学中理性的比较发现,数学理性不仅是哲学中理性最重要的组成部分,而且也是建筑理性精神的本质,它是蕴含于建筑各个发展时期中不断变化发展的一条主线。
而通过对建筑美学含义及其发展过程以及数学美特点的介绍,本文指出建筑美学与数学美有着共同的最高追求--和谐,对和谐的追求是建筑学与数学顺应自然发展规律的根本保证。 最后,本文提出建筑师不应仅仅看到建筑学发展变化在浅层次上的影响因素,还应当抓住建筑学中数学理性的本质,去寻求与宇宙万物和谐统一的数学美。
女性主义翻译理论主要兴起于20世纪80年代,得益于西方的妇女运动和女权主义浪潮,该理论的形成和发展与译学研究中的“文化转向”密切相关。女性主义翻译理论主张将翻译理论与女性主义运动相结合,一反传统的翻译观。女性主义者认为,传统翻译理论将译文处于从属于原作,类似于传统观念里女性依附男性一样,翻译始终处于弱势地位。因此,为了更好地实现翻译的价值,主张转变传统翻译的“忠实”观,把翻译作为文化介入的方式和文化协调的手段,转变“作者——作品,译者——译文”的二元对立关系,要关注作品原文与译文之间的共生关系,平等对待作者与翻译者,在作者、译者和读者之间搭建一座沟通的桥梁,即翻译,并在其作品中能体现其译者的主体行为。尽管女性主义翻译理论也遭受到不少批评,但是女性主义的发展对现当代的文学翻译具有不可磨灭的价值和贡献。女性主义翻译理论作为翻译理论的一大流派,关注翻译中的性别差异,在文学翻译中一改传统的男性占主导的性别主体意识。女性主义翻译理论以女性作为翻译的隐喻,主张在翻译中用女性的观点重新审视社会文化,注重在翻译作品中突出女性主体身份、女性意识等方面。不仅如此,女性主义翻译理论还给我们翻译者众多启迪,如在翻译过程中要把握女性自身的真正价值,将文本与相应的社会历史文化及其相关文本联系起来研究,在文学翻译中注重翻译者与作者、作品、读者之间的内在关系,从而让其作品更能做到意象、准确与生动,更高地体现其文学水准与价值。
推荐:3a学习网很专业!