六年级的数学论文,让我们可以写一写我们生活中遇到的一些数学应用的地方,然后具体的数学公式也写一写,具体怎么使用的也写一些。可以看一看下面的这篇例文。生活中处处充满了数学知识,这些知识不但有趣而且在我们的生活中占有重要的地位。如果离开了这些看似简单的数字那我们的生活就无法像往常一样正 常生活。可见数学在我们的生活中占有多么重要的地位。举个例子,如:银行存款分:整存整取、零存整取、定期存款、活期、国债……这些存款形式各种各样,利率也有大有小,平时我们是这样计算利率的:本金× 利率×时间=所得利息,然后还要从利息里扣除20%来上税(除国债外)之后剩下的80%的利息就是你自己应得的利息了。大家想一想如果没有这些百分数帮忙,恐怕银行就要宣布破产了。再说科学家们发明的种种东西,气象学家测量的天气情况……这些多要经过各项认真的思考和精密的计算才能获得正确的答案。哪怕不小心写错一个小数点也就前功尽弃了。还有常在天空翱翔的宇航员们他们要操作上百个由数字组成的仪表,如果稍有不慎那么结果就是机毁人亡。可见数学在我们生活中是不可缺少,不可马虎的,否则会造成严重的后果。数学不光只有这些价值,我们生活中处处可以见到并用到它。如:农民用几何图形,为了使农场更美观更好管理;工程师使用比例尺,为了让人们更好的了解 这件东西;商农使用的四则计算,是为了更简单、准确的计算出该商品价值;制作各类统计表,是为了更好的统计资料,使人一看一目了然;使用百分数,是为了更好的计算出商品打折后的价钱;这些计算表面积而使用进一法,是为了使用最少的材料做出合格的商品;计算容积或体积而使用去尾法,是为了 确保无误的让物品存放而不溢出;同一类单位换算,是为了方便我们的计算;使用代数代表运算定律和计算公式,是为了更方便地为研究和解决问题;再说一说 球吧,把它切开使切开面积最大,那就要从球心o沿着直径切下,才能使切开面积最大,再细细想想我们有时切西瓜不就是这个道理吗?再看看各种数学知识还不都 用在了生活中去了吗?其实,只要我们用心去发现,用心去思考,那么你一定能学好数学的,因为数学就在我们身边。
关于一个中国古代皇帝的故事。皇帝爱上一项称为“围棋”的游戏,决定嘉奖此项游戏的发明者。他把发明者召入宫并且宣布要满足发明者的一个愿望。 “陛下,我深感荣幸。”发明者喃喃说,“我的愿望是你赏我一粒米。” “只是一粒米?”皇帝很惊讶。 “是的,只要在棋盘上的第一格放上一粒米,”发明者说,“在第二格上放上二粒米,在第三格上加倍至4粒。。。依次类推,每一格均是前一格的双倍,直到放满整个棋盘为止。这就是我的愿望。” 皇帝很高兴。“如此廉价便可以换得这么好的游戏,”他心想,“我的祖辈们一定恩泽于我了。” “好的!”皇帝大声说,“把棋盘拿出来让在座的各位见证我们的协定。” 皇宫的人都聚集到棋盘边。厨房的仆人一磅重的一代米送给发明者。发明者笑着打开了袋子。 “我建议你回厨房换一个大的袋子,”发明者对仆人说,皇宫里的人大笑起来,误认为这句话是讽刺的意思。然后发明者开始在棋盘上摆放米粒,每放一格便倍增米粒的数量。 当第一排的8个格放满时,1。。。2。。。4。。。8。。。16。。。32。。。64。。。128粒米,旁观者大笑着,指指点点。但放到第二排中间时,咯咯的笑声渐渐消失了,而被惊讶声所代替,因为小堆的米不久就增成了小袋的米,然后倍增成中袋的米,再倍增成大袋的米。 到第二排结束时,皇帝知道他犯了个极大的错误。他欠发明者的米粒数为32768,而还有48个格子空着呢! 我问:启德先生,假如您是这位皇帝,您该如何处置? 启德曰:假如我是皇帝,我会信守承诺,因为君无戏言我会说: 我很欣赏你的才能,我决定兑现我的诺言,不过你必须计算出我应该赏你多少粒米,否则我无法奖赏您发明家可惜不是数学家,无法计算米粒数量,于是自愿提出终止游戏
【容易忽略的答案】大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
1+1=2
生活中,处处都有数学的身影,超市里,餐厅里,家里,学校里………都离不开数学。我也有几次对数学的亲身经历呢,我挑其中两件事来给大家说一说。记得三年级,有一次,我和妈妈逛超市,超市现在正在搞春节打折活动,每件商品的折数各不相同。我一眼就看中了一袋旺旺大礼包,净含量是628克,原价35元,现在打八折,可是打八折怎么算呢?我问妈妈。妈妈告诉我,打八折就是乘以8,也就是35*8=28(元)。我恍然大悟。我准备把这袋旺旺大礼包买下来,可是,妈妈告诉我,可能后面的旺旺大礼包更便宜,要去后面看看。走着走着,果然,我又看见了卖旺旺大礼包的,净含量是650克,原价40元,现在也打八折。这下,我犯了愁,净含量不同,原价也不同,哪个划算呢?我又问妈妈。妈妈告诉我35*8=28(元),40*8=32(元),一袋是628克,现价28元,另一袋是650克,现价32元。用28/628≈045,32/650≈0。049,049>045,所以第二袋划算一点儿,于是,我们买下了第二袋。通过这次购物,我知道了怎样计算打折数,怎样计算哪种物品更划算一些。记得四年级,有一次,我和一个朋友出去玩,朋友的妈妈给我们俩出了一道题:1~100报数,每人可以报1个数,2个数,3个数,谁先报到100,谁就获胜。话音刚落,我便思考怎样才能获胜,我想:这肯定是一道数学策略问题,不能盲目地去报,里面肯定有数学问题,用1+3=4,100/4=25,我不能当第一个报的,只能当最后一个报的,她报X个数,我就报(4-X)个数,就可以获胜,我抱着疑惑的心理去和她报数,显然,她没有思考获胜的策略,我用我的方法去和她报数,到了最后,我果然报到了100,我获胜了。原来这道数学问题是一道典型的对策问题,需要思考,才能获胜。到了六年级,我也学到了这类知识,只不过,更加难了,通过这次游玩,我喜欢上了对策问题,也更加爱思考,寻找数学中的奥秘。数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧。这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的,站在峰脚的人是望不到峰顶的。只有在生活中发现数学,感受数学,才能让自己的视野更加开阔!
生活中的数学我们生活中处处充满了数学知识,这些知识不但有趣而且在我们的生活中占有重要的地位。如果离开了这些看似简单的数字那我们的生活就无法像往常一样正常生活。可见数学在我们的生活中占有多么重要的地位。举个例子,如:银行存款分:整存整取、零存整取、定期存款、活期、国债……这些存款形式各种各样,利率也有大有小,平时我们是这样计算利率的:本金×利率×时间=所得利息,然后还要从利息里扣除20%来上税(除国债外)之后剩下的80%的利息就是你自己应得的利息了。大家想一想如果没有这些百分数帮忙,恐怕银行就要宣布破产了。再说科学家们发明的种种东西,气象学家测量的天气情况……这些多要经过各项认真的思考和精密的计算才能获得正确的答案。哪怕不小心写错一个小数点也就前工尽弃了。还有常在天空翱翔的宇航员们他们要操作上百个由数字组成的仪表,如果稍有不慎那么结果就是机毁人亡。可见数学在我们生活中是不可缺少,不可马虎的,否则会造成严重的后果。数学不光只有这些价值,我们生活中处处可以见到并用到它。如:农民用几何图形,为了使农场更美观更好管理;工程师使用比例尺,为了让人们更好的了解这件东西;商农使用的四则计算,是为了更简单、准确的计算出该商品价值;制作各类统计表,是为了更好的统计资料,使人一看一目了然;使用百分数,是为了更好的计算出商品打折后的价钱及××率;这些计算表面积而使用进一法,是为了使用最少的材料做出合格的商品;计算容积或体积而使用去尾法,是为了确保无误的让物品存放而不溢出;同一类单位换算,是为了方便我们的计算;使用代数代表运算定律和计算公式,是为了更方便地为研究和解决问题;再说一说球吧,把它切开使切开面积最大,那就要从球心o沿着直径切下,才能使切开面积最大,再细细想想我们有时切西瓜不就是这个道理吗?再看看各种数学知识还不都用在了生活中去了吗?其实,只要我们用心去发现,用心去思考,那么你一定能学好数学的,因为数学就在我们身边。
写论文?!
要自己动脑筋哦
不 倒 翁 与 重 心亲爱的同学,你听说过哥伦布竖鸡蛋的故事吗?哥伦布将鸡蛋打碎才能竖起来,其实,不用打碎也能竖起来,但是大约要花五分钟的时间,真是太麻烦了。因为重心在三角形的正上方时,鸡蛋才能竖起来。重心不在三角形上方时,鸡蛋就倒下了。所谓重心,是指物体各部分所受重力的合力的作用点。由此,我们可以想到一个物体,它不但能够站起来,而且怎么推也推不倒。不用我说,聪明的你肯定会想到,那就是不倒翁。有趣的不倒翁,无论你怎么使劲推它都不会倒,甚至你把它横过来放,倔强的它又会站在你的面前。不倒翁为什么不会倒下来呢?哦!一方面,是因为它上轻下重,底部有一个较重的铁块,所以重心很低;另一方面,不倒翁的下半部,都是做成滑滑的球状,当它受力向一边倾斜时,它的重心被提高了,而处于不稳定的状态。在重力的作用下,它向稳定平衡状态的位置运动。由天惯性,它要来回几次摆动后,最终又停留在原来的位置上。啊!原来我们身边处处有科学,我们一定要多做科学实验,多学科学知识,好好学习,才能造福人类。
额,日全食
水精灵”之现形记(水精灵是一种想果冻一样的东西,不知道你们那边有没有) 引言: 最近一段时间,一种被称为“水精灵”的玩具,出现在大街小巷尤其是学校周围的玩具摊上。因其色彩艳丽着实吸引了不少同学的眼球,不少人抵挡不住小贩的吹嘘,常买几只带回家。开学初,我们班许多同学也加入了买了水精灵的行列。水精灵是个什么东西,它是用什么做成的,对人体有无害处,怀着这些问题,我展开了对水精灵的调查。 一、 分析水精灵 九月底,我先对学校周围的商家进行采访,想了解这些水精灵是从什么地方批发来的,有无生产家,是否符合国家卫生标准,但学校周围的商家对此避而不答,有些甚至威胁我们。我只好改变策略,进行暗中调查,我先买了一袋,当即用小刀对水精灵进行解剖。立即遭到小贩的制止:“这都是有生命的东西,老动它,会弄死它的。”据其称,这是一种类似于蘑菇一样的人工培育的海底真菌,它质地柔软,无毒、无污染。用手触摸的感觉像果冻。当用小刀从中间切开后,一股透明的液体随之流出。凭感觉我觉得这是明胶之类的物质,明胶是做果冻的主要材料。这些水精灵有红的,黄的,绿的,蓝的,透明的,五颜六色非常漂亮。圆圆的,跟黄豆差不多大小,直径约为5厘米,捏起来软软的,富有弹性,很粘手。一股刺鼻的香味,熏得人头发晕。 经过初步的观察,我们觉得这是一种很少见到的儿童玩具。但它为什么有这么多颜色,为什么气味那么刺鼻,它的成份是什么,我又开始了第二步行动:并且开始记录: 第1天:开始膨胀。我把一滴墨水滴入水中,一会儿水就又变成清的了。我很纳闷,难道水精灵是污水清道夫? 第2-3天中,水精灵长出了尾巴。同时开始脱色,尾巴短小,像蝌蚪尾巴。 第4-5天:长翅膀。(还未长出)。 第6天:产卵。(就是从一个里面出来另一个)水精灵的蛋蛋特圆,可以捏碎,表面光滑。好像不会动。捏碎后里面像碎玻璃,里外都是透明的。我们怀疑是不是活的,可又会下蛋。还十分有弹性,真怪异。 二、水精灵的成分 水精灵整个生长过程就像是一个细胞分裂过程。后来我上网查才知道水精灵是一种吸水性树脂(化学材料),一般是用淀粉混合丙烯腈或丙烯酸酯制成的。它们是胶丸大小的透明小球,有红的、黄的、蓝的……五颜六色,非常抢眼,用小塑料袋或小玻璃瓶装着,每瓶里面大概有60个小球,售价为5元,因为放入水中会有“神奇”的变化,所以它们也有个比较玄的名字———“水精灵”。这些珠子很软、滑、湿,在水里膨胀以后,有的会鼓出一个包,慢慢地分离出来,所以珠子也会越来越多。 三、水精灵对人体的危害 丙烯腈和丙烯酸酯都有一定的毒性,而且商家在制作中也不可能用昂贵的食用色素,可能会添加一些工业色素,所以建议小学生最好不要玩这种东西,如果皮肤接触了就要赶紧清洗,当然家长也要十分留心,切忌让年龄小的孩子玩耍,以免误食。 四、水精灵带来的伤害 1、对人体造成的伤害。丙烯腈和丙烯酸酯都有一定的毒性,而且商家在制作中也不可能用昂贵的食用色素,可能会添加一些工业色素。所以建议小学生最好不要玩这种东西,如果皮肤接触了就要赶紧清洗,当然家长也要十分留心,切忌让年龄小的孩子玩耍,以免误食。 2、让同学们养成乱用零用钱的坏习惯,有些甚至偷拿家长的钱,盲目地追随潮流。 3、如果把水精灵带到学校,有些同学就会在课桌下玩水精灵,不认真听讲,分散注意力,从而影响我们的学习。 节约用电小窍门 摘要:随着能源的减少,人们逐渐变得重视节能了。在我还上小学时就教育我们节能的观念,只为了我们人类能在地球永远的生活下去。在现实生活中,人们仍不清楚怎样节能,让节能只是一个说的到,却不能全做的到的事情,往往还因缺乏科学的节约常识和“小窍门”,造成不必要的浪费现象。现在我来就介绍家庭的节电。 关键词:1、电饭煲的节能 2、电视机节电小窍门 3、 空调节电小窍门4、冰箱节电小窍门 引言:随着能源的减少,人们逐渐变得重视节能了。在我还上小学时就教育我们节能的观念,只为了我们人类能在地球永远的生活下去。在现实生活中,人们仍不清楚怎样节能,让节能只是一个说的到,却不能全做的到的事情,往往还因缺乏科学的节约常识和“小窍门”,造成不必要的浪费现象。现在我来就介绍家庭的节电。 电饭煲节电小窍门 一、电饭煲的节能 现在市面上的电饭煲分为两种:一种是机械电饭煲,另外一种是电脑电饭煲。使用机械电饭煲时,电饭煲上盖一条毛巾,注意不要遮住出气孔,这样可以减少热量损失。当米汤沸腾后,将按键抬起利用电热盘的余热将米汤蒸干,再摁下按键,焖15分钟即可食用。电饭煲用完后,一定要拔下电源插头,不然电饭煲内温度下降到 70度以下时,会自动通电,这样既费电又会缩短使用寿命。尽量选择功率大的电饭煲,因为煮同量的米饭,700瓦的电饭煲比500瓦的电饭煲要省时间。电脑电饭煲一般功率较大,在800瓦左右,从而节能,但价格稍贵,一般都在500元至800元之间。 二、电视机节电小窍门 电视机节能可以通过如下几条途径:首先控制好对比度和亮度。一般彩色电视机最亮与最暗时的功耗能相差3o瓦至50瓦,建议室内开一盏低瓦数的日光灯,把电视对比度和亮度调到中间为最佳。其次控制音量,音量大,功耗高。第三个省电的办法是观看影碟时,最好在av状态下。因为在av状态下,信号是直接接入的,减少了电视高频头工作,耗电自然就减少了。第四是看完电视后,不能用遥控器关机,要关掉电视机上的电源。因为遥控关机后,电视机仍处在整机待用状态,还在用电。一般情况下,待机10小时,相当于消耗半度电。最后是给电视机加防尘罩。这样可防止电视机吸进灰尘,灰尘多了增加电耗。 三、空调节电小窍门 1、空调使用过程中温度不能调得过低。因为空调所控制的温度调得越低,所耗的电量就越多,故一般把室内温度降低6至7度就行了。 2、制冷时室温定高1度,制热时室温定低2度,均可省电10%以上,而人体几乎觉察不到这微小的差别。 3、设定开机时,设置高冷/高热,以最快达到控制目的;当温度适宜时,改中、低风、减少能耗,降低噪音。 4、“通风”开关不能处于常开状态,否则将增加耗电量。 5、少开门窗可以减少房外热量进入,利于省电。 6、使用空调器的房间,最好使用厚质地的窗帘,以减少凉空气散失。 7、室内、外机连接管不超过推荐长度,可增强制冷效果。 8、安装空调器要尽量选择房间的阴面,避免阳光直射机身。如不具备这种条件,应给空调器加盖遮阳罩。 9、定期清除室外散热片上的灰尘,保持清洁。散热片上的灰尘过多,可大幅度增加耗电量。 四、冰箱节电小窍门 目前市场上出现的a++级节能冰箱比普通的冰箱要省电。家庭用的节能冰箱一般消耗5~8度电/天,而普通冰箱一般耗电1~5度电/天,大约可以省一半电。另外,使用冰箱的过程中,应注意以下问题: 1、冷藏物品不要放得太密,留下空隙利于冷空气循环,这样食物降温的速度比较快,减少压缩机的运转次数,节约电能。 2、在冰箱里放进新鲜果菜时,一定要把它们摊开。如果果菜堆在一起,会造成外冷内热,就会消耗更多的电量。 3、对于那些块头较大的食物,可根据家庭每次食用的份量分开包装,一次只取出一次食用的量,而不必把一大块食物都从冰箱里取出来,用不完再放回去。反复冷冻既浪费电力,又容易对食物产生破坏。 4、解冻的方法有水冲、自然解冻等几种。在食用前几小时,可以先把食物从冷藏室(4度左右)里拿到微冻室(1度左右)里,因为冷冻食品的冷气可以帮助保持温度,减少压缩机的运转,从而达到省电目的。 冰箱的摆放也有讲究,一般应该注意以下两个问题: 1、在摆放冰箱时,一般应在两侧预留5~10厘米、上方10厘米、后侧10厘米的空间,可以帮助冰箱散热。 2、不要与音响、电视、微波炉等电器放在一起,这些电器产生的热量会增加冰箱的耗电量。 节能是很重要的,人都应该用这些小窍门,不应该因嫌麻烦就不去做这些事。这些事对谁都有极大的好处的,仅仅需要举手之劳而已。有关部门也应该加大节能力度,多多宣传。让人类都节约这并不是永远都有的能源!为造福我们的后代而努力吧
惯性的认识和惯性定律 惯性是物理学中最基本的概念之一,也是学习物理学最早碰到的概念之一。这一极为普通和平凡的概念曾经引导许多物理学家深入思考和剖析,促进物理学重大进展,其中蕴涵着深刻的物理思想和丰富的物理学研究方法的教益,是培养学生科学地思考问题的能力非常有效的素材。 惯性概念的肇始和牛顿的综合惯性一般是指物体不受外力作用时,保持其原有运动状态的属性。人们对于惯性这一熟悉有赖于惯性定律的建立,而它则依靠于对于力的熟悉以及区分运动状态和运动状态改变的熟悉,这一点在人类熟悉发展史上经历了漫长的岁月。 在人类思想史上,两千多年前希腊的哲学家亚里士多德的学说无疑地起过广泛的影响,然而他关于物理学的论述,许多都是错误的。他把物体的运动分为自然运动和强制运动。他认为圆周是完善的几何图形,圆周运动对于所有星体都是天然的,因而是自然运动;另外,地球上的物体都具有其天然位置,重物趋于向下,轻物趋于向上,假如没有其他物体阻碍,物体力图回到天然位置的运动也是自然运动;其他所有形式的运动则都是强制运动。他还进而指出,关于物体的强制运动,只有在外力的不断作用下才能发生;当外力的作用停止时,运动也立即停止。从这里可以看出亚里士多德肯定了两点:一,自然运动不涉及曳力的问题,只有强制运动才存在力的问题;二、力是物体强制运动的原因。从今天来看,这显然是错误的,然而它束缚了人们近两千年。 从这种把物体的运动归结为外力作用的观念,可以提取出静止物体具有惯性的概念。开普勒在他1609年发表的著作《新天文学》和1619年发表的著作《宇宙谐和论》中写道;“天体有留在天空中任何地方的性质,除非它被拖曳着。”“假如天体不赋有类似于重量的惯性,要使它运动就不需要力,最小的动力就足以使它有无限的速度,但由于天体公转需要用一定的时间,有的长些,有的短些,因此非常明显,物质必须具有能说明这些差别的惯性。”“惯性,或对运动的阻力是物质的一种特性,在给定的体积中,物质的量愈多,惯性愈强。”这大概是关于物体惯性的最早陈述。可以看出开普勒所说的惯性是指静止物体的惯性,甚至他已经熟悉到物体的惯性与它的质量有关,然而他显然受到亚里士多德思想的束缚,不可能思考运动物体是否具有惯性的问题。 伽利略开创了实验和理性思维相结合的近代物理研究方法,并用于研究物体的运动。他对于亚里士多德关于物体运动的粗糙的日常观察、抽象的猜测玄想和想当然的思辨推理十分不满,他通过科学实验和科学推理得到许多正确的结果,总结在他的著作《关于托勒密和哥白尼两大世界体系的对话》和《关于力学和运动两门新科学的对话。中,其中一个重要的结果如下。假设沿斜面AB落下的物体,以B点得到的速度沿另一斜面BC向上运动,则物体不受BC倾斜的影响仍将达到与A点相同的高度,只是需要的时间不同;当第二个斜面变成既不上升,亦不下降的水平面时,物体将一直以已获得的速度永远向前运动。伽利略的思想无疑地比他的前辈前进了一大步,他熟悉到不受其他物体的作用,物体可以永恒地运动,这已经很接近惯性定律,但是伽利略还没有摆脱亚里士多德的影响,他所说的水平面是和地球同心的球面,也就是说,那种不受其他物体作用的物体的永恒运动是圆周运动,因此我们还不能说伽略发现了惯性定律。最早清楚表述惯性定律并把它作为原理加以确定的是笛卡儿。笛卡儿是唯理论哲学家,他试图建立起整个宇宙在内的各种自然现象都能从基本原理中推演出来的体系,惯性定律就是他的体系中的一条基本原理。他在他的《哲学原理》一书中把这条基本原理表述为两条定律:一、每一单独的物质微粒将继续保持同一状态,直到与其他微粒相碰被迫改变这一状态为止;二、所有的运动,其本身都是沿直线的。然而笛卡儿没有建立起他试图建立的那种能演绎出各种自然现象的体系,其中许多是错误的,不过他的思想对牛顿的综合产生了一定的影响。 牛顿1661年进入剑桥大学学习亚里士多德的运动论,1664年他从事力学的研究,摆脱了亚里士多德的影响。他继续了伽利略重视实验和逻辑推理的研究方法,他也继续了笛卡儿的研究成果。他深入地研究了碰撞问题、圆周运动以及行星运动等问题,澄清了动量概念和力的概念。1687年出版著作《自然哲学的数学原理》,以“定义”和“公理,即运动定律”为基础建立起把天上的力学和地上的力学统一起来的力学体系。惯性定律就是牛顿第一定律,表述为“所有物体始终保持静止或匀速直线运动状态,除非由于作用于它的力迫使它改变这种状态。”惯性定律真正成为力学理论的出发点。根据惯性定律,物体具有保持原有运动状态的属性,这种属性称为惯性。不仅静止的物体具有惯性,运动的物体也具有惯性;物体惯性的大小用其质量大小来衡量。至此,人们对于物体惯性的熟悉达到第一阶段比较完善的程度。从此,人们对于运动中的种种惯性现象都能很好地理解;在实际中设计出种种利用惯性造福和防止惯性伤害的措施。 楼主 我是第一个的 希望你满意
打的过搞的广告费沟沟壑壑好尴尬飞飞哥vvv现代风格v不会太丰富非常v比较运费搭错车滚滚滚哈哈哈吃的
生活中的数学平安夜,妈妈带我去逛商场到了商场一看,今天商场里到处都在搞活动妈妈对我说;“今天在搞活动,商场的东西一定比平时便宜,看看我们有没有什么想买的”在商场逛了一圈,我看中了一双鞋子,标价318元,这个柜台搞的活动时满166减61元,妈妈对我说:“平时不搞活动时这种鞋打8折”营业员告诉我们今天搞活动买鞋可划算了,说完就要帮我们按照活动价开票,这时妈妈突然说:“等一下”转身又对我说:“你算一下按照活动价到底有没有便宜”我心想:搞活动嘛肯定比平时要便宜,还要算什么呢?但是妈妈让我算,我只能勉为其难,算一下呗按照活动价算,满166减61元,318元里只有一个166,也就是只能减一个61元,318-61=257(元),按照平时的价格打8折计算,318*80%=4(元)一算真的还是平时不搞活动时的价格便宜,于是妈妈对营业员说还是按照平时的价格开票吧付过钱后,我们就拿了鞋走开了离开了柜台,妈妈就对我说:“我们平时做什么事情都要认真考虑,别被一些表面现象所迷惑了”看来数学在生活中还真是无处不在啊
数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。
相当丰富
关键词:数学总复习 基础知识 计算能力 小学数学总复习不同于单元复习、学期复习,对学生来说,知识容量多、跨度大、时间长,所学的知识遗忘率高;对教师来说则感到时间紧、内容多,知识的综合性强,难以在短时间内取得明显的复习效果。下面我就多年六年级数学教学所得谈自己的几点看法: 一、系统分析 在六年级的数学复习阶段开始前,老师要首先明确数学教学的目的、教学任务、知识范围、顺序与结构,教学重点与难点,这些一定要让学生掌握。其次,要全面了解全班情况,知道每一位学生现在学到了什么程度,还需要加强哪些方面的知识;要针对学生的特点,明确应该用什么方法去引导学生,激发学生的学习兴趣,把学生的求知欲望调动起来,使学生养成一个良好的学习习惯,真正成为学习的主人。最后根据学生的实际情况和特点结合六年级知识特征制订出切实可行的复习计划。 二、抓好基础 在六年级的数学复习中,首先要抓好五个方面的基础知识运用:一是概念。要让学生真正理解每部分的知识点,把容易混淆的内容一一区别开来。比如:让学生判断等底等高的两个三角形的面积相等,能不能拼成一个平行四边形?不相交的两条直线叫做平行线吗?等等。二是开拓视野。在数学复习中,老师要注重开拓学生的视野,不断反馈教学。比如:a的3/5与b的1/4相等,比较a、b大小(a、b都不为零)。解答完这个题,再给学生出一道题:甲班的4/5同乙班的3/4的人数相等,那么,甲班同乙班人数谁多谁少?稍微这么一改,有的学生就无从下手了。教师应提示学生a、b可以是人也可以是物,那么甲班和乙班是班级的名称,它同a、b有何联系?这时候有的学生就明白了。三是公式推导。比如圆的面积、圆柱的体积、等计算公式的是怎么推导出来的,让学生进行回顾,亲自实践、亲自品尝。四是知识对比。整数、小数、分数的四则运算的意义,尤其是小数、分数的乘法意义,学生们容易混淆。要从整数乘法入手,看学生是不是写成几个数相加的形式,让学生动手动脑去探索,真正理解他们的意义。五是计算能力。很多学生到了六年级,连基本加减乘除计算都算错,更谈不上应用题了。老师普遍认为是学生太粗心、不认真。追根溯源,原因还是在老师。我们要培养学生养成一种良好的学习习惯。比如:首先要让学生观察式子,进行分析,看是否能用简便方法,其次结合四则混合运算进行计算。学会了做题方法,还要让学生反复练习,检查结果。在此基础上,教师不断地反馈教学,让学生把知识掌握了,应用更灵活,计算准确率就高了。 三、能力的培养 一要注意培养学生合理、灵活地应用简便方法进行计算的能力。在复习量的计量和几何初步知识时,注意培养学生的空间观念,巩固画图和测量的技能。二要培养一题多变的能力。重点是要抓住母题,使学生知道题目源于母题,万变不离其宗。通过改变条件、问题和情境,启发学生从不同的角度思考问题,寻找解决问题的途径,还必须注意对学生进行解题思维灵活性的培养,启发学生多思考,从而达到善于思考,逐步提高学生的应变及解题能力。三是是培养操作实践的能力。如:八宝粥公司请包装公司设计一个能装12罐八宝粥的盒子。[八宝粥罐子为圆柱形,底面直径6厘米,高13厘米]你准备怎样设计?(提示:包装盒一般可设计成长方体,要求需要多少硬纸板是求长方体的表面积,所以我们应该想办法知道长方体的长、宽、高,即先确定八宝粥罐子怎么摆)这时不急于让学生做,让学生找易拉罐摆放。通过亲身实践可以获得直接感受把题解出来。但有的同学做得不切合实际,确定的长、宽、高不适中。所以教师必须把学生做的几种方法都一一列出来让学生比较。通过比较学生们选用最省料的方法。 四、学困生转化工作 作为教师要善于分析学困生形成的原因,到底困在哪里?用什么手段解决?我认为除了要根据学生的实际情况备课外,还要根据记忆和遗忘的规律,重视信息反馈原理的运用,及时巩固当堂效果;要遵照循序渐进的原则,坚持科学训练,进行查漏补缺,提高学生的知识素质,在这方面应做到:细水长流逐一补,以新带旧分散补,突出对象个别补。在班里成立几个小组,每小组选择一个学习好的负责,成绩好的学生教成绩差的学生,这样成绩差的学生进步了,成绩好的成绩更好了,整个班掀起你追我赶的学习气氛,学生由被动的学习转变为主动的学习。
【容易忽略的答案】大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
不错
5555555