首页

> 学术期刊知识库

首页 学术期刊知识库 问题

数列中的递推关系毕业论文

发布时间:

数列中的递推关系毕业论文

感觉还不错的说

帅啊!Justin_Rong

Combined Counting and Recursion RelationshipAuthor:directorBrief Content: not only the recursion relationship has the crucial function on the combined counting, but also nearly to all math branches. From the under skin perspective the recursion relationship is researching the integer variables or series. The thesis what i wrote is mainly the application of recursion relationship on the first catogory of Catalan series and the second catogory of Stirling series

浅谈数学中的研究性学习 (转,供参考)找个自己感兴趣的题目去写,参考范文! 现代社会知识更新的速度不断加快,在高中阶段,对学生传授的知识是有限的,学校教育不可能让学生学的知识用上一辈子。人们在获得生存与发展中所面临的问题越来越具有社会性、复杂性和不可预见性,人们所必需的知识范围与能力素养的范围急剧扩大。而作为一名数学教师我们有责任引导学生从数学的角度分析社会生活和实践活动中的问题、开展探究活动,让学生在获得必要的数学知识与技能的同时,认识知识探究与问题探索的基本方法和途径,提高参与社会生活的探究、发现和改造等一切活动中进行决策的基本能力。 一、 正确的认识是开展数学研究性学习的基础 弄清概念:什么是数学研究性学习 数学研究性学习是培养学生在数学教师指导下,从自身的数学学习和社会生活、自然界以及人类自身的发展中选取有关数学研究专题,以探究的方式主动地获取数学知识、应用数学知识解决数学问题的学习方式。它同社会实践等教育活动一样,从特定的数学角度和途径让学生联系社会生活实例,通过亲身体验进行数学的学习。数学研究性学习强调要结合学生的数学学习和社会生活实践选择课题,学生从自身数学学习实践出发,找到他们感兴趣的、有探究价值的数学问题。开展数学研究性课题学习将会转变学生的数学学习方式,变传统的“接受性、训练性学习”为新颖的“研究性学习”,它有利于克服当前数学教学中注重教师传授而忽视学生发展的弊端,有利于调动学生的研究热情,激发学生的求知欲和进取精神,从而有效提高学生对数学的探究性学习能力、实践能力、创造能力和创新意识。 数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学和现实问题的一种有意义的主动学习,是以学生动手动脑,主动探索实践和相互交流为主要学习方式的学习研究活动。 二、如何进行数学研究性学习 数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学的和现实的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和相互交流为主要学习方式的学习研究活动。它能营造一个使学生勇于探索争论和相互学习鼓励的良好氛围,给学生提供自主探索、合作学习、独立获取知识的机会。古希腊哲学家德谟克利特曾经指出:“教育力图达到的目标不是完备的知识,而是充分的理解。”我国古代教育家说得更精辟且形象:教学中应“授之以‘渔’”,而不仅是“授之以‘鱼’”。数学研究性学习更加关注学习过程,然而老师又如何让学生在数学课堂上进行研究性学习呢? (一) 从教材切入让学生在数学家探索数学规律的研究思维过程中体验研究性学习 ?在高中数学教材中有大量的材料可切入研究性学习的探索。在课堂教学中,教师应把握住“遵循大纲、教材,但又不拘泥于大纲、教材”的原则,结合生产、生活实际适当地加深、加宽,选出探究的切入点,对学生创新意识和能力进行初步培养。如:在讲复数的概念的引入时,告诉学生数的发展是由生产与生活的需要和解方程的需要推动的,是科学实际和生产、生活相结合的产物,然后要学生:解方程: 。学生一定会说无解或无实数解,教师引导学生分析“无解”和“无实数解”的区别,要学生探讨是不是有什么新的东西?如果有应该是怎样的?学生会通过探求及讨论发现此方程的解有但不是实数从而就会想到是虚的,教师要求学生用已有的方法求出方程的解,学生往往会感觉困难,教师就要问学生为什么困难?学生会说无法求,教师要求学生探求一个新的东西出来解决。 通过问题的层层揭示,并通过联系数的开方知识、解方程知识等手段来突破难点。这一过程使学生亲历数学研究之中,是学生主动地获取知识、应用知识、解决问题的学习活动。这一过程能充分调动学生的参与意识,培养学生的探索精神,启迪学生的思维,使学生能自然地掌握知识。 教师引导学生把提出的新东西进行归纳、总结,上升到理论。然后提出新的问题。如上面这节课对要求学生:解方程:x3-1=0.这样处理能再次将理论和实践结合起来,使学生感悟到在数学学研究中理论和实践之间的辩证关系。课后教师可以再布置几个探究性思考题,让学生在课外进一步巩固课堂上的探究方法和思路,拓展和活跃学生思维。 指导学生进行一题多解和一题多变也是一种研究性学习的方法。 这样以数学教材为载体渗透研究性学习,有一定的灵活性能更好的培养学生探求规律的能力。数学知识探索是数学学习的核心,用类似科学的研究方式,让学生置于探索和研究的气氛之中,亲身参与研究,体会知识及规律的探索方法,提高学生发现和解决问题的能力。 (二) 把握教材例、习题的潜在功能,有效培养学生的研究性学习能力 数学知识由纷繁复杂的客观世界抽象而来,研究性学习能力是学习数学知识的必要条件。很多教师都有一个发现:在学习单个知识时,学生似乎学得不错,但学完了多个知识或一个系统后,却变成简单的题目都不会,这除了综合能力不高外,还与平时没有养成研究性学习有关。像二倍角公式的理解就不能只知道2α是α的二倍角,类似的:4α是2α的二倍,α是的二倍, 例如:已知Sin= ,? ?, 求4的三角函数值。 分析:由,两次运用二倍角公式;又如:Cosα=2Cos 2? ?- 1 = 1 – 2Sin2 ???????? ?Cos 2? ??=? ,? Sin2 ?= ?????? ????tan2 ?= 这实际上是二倍角公式的逆向运用,得到的半角公式(或降幂公式)。有了对例题的深刻理解和研究性学习就能解决一类问题,如求的值;化简等。 通过变式、逆用、一题多解等训练思维的深度,引导学生不满足表面知识,能深入钻研问题,探求各种知识的联系,从而找到解决问题的本质和规律。 在教学上要鼓励学生敢于主动、独立的发现问题、探讨问题,敢于提问,敢于发表自己的不同观点,例如:在△ABC中 ,,求CosC值,可我在批改作业时,没有考究教材参考资料提供的答案(实际上只有),结果把正误答案颠倒。发现错误后,我主动向全班同学道歉,并表扬了善于研究思考、敢于坚持真理的同学。并及时提出新问题:(1)在△ABC中若 ,,求CosC值。有几个解?(2)在△ABC中,成立吗?作为留给学生的课外研究性学习题。学习了正弦定理后,再回头证明。通过这一问题的深刻探讨,不但使学生牢固掌握知识,更大大提升了学习的自信心和学习的热情,在潜移默化中培养了学生的科学态度和研究性学习精神。在学习等比数列前n项和知识时,有一题是:在等比数列中:已知 。在求解过程中学生得到了:? ,进一步发现:成等比数列 ,这就是研究性学习所得的成果,继续引导这一结论并推广就就可完成下面一题。证明:等比数列的也成等比数列。学生们总结前面的学习也较顺利地完成了证明,心理充满了成功的喜悦。真的没有漏洞吗?鼓励学生进行研究性学习探讨其严谨性,有学生举出了反例:数列 1,-1,1,-1……是公比q= -1等比数列,但 ,并不是等比数列;这一发现令人吃惊,因为在课本和其他所有的课外书都没有此说法。从理论上讨论:当,显然当n为偶数且q= -1时, ,不可能为等比数列。由此可见数学研究性学习的重要。 (三) 数学开放题与研究性学习 ??? 研究性学习的开展需要有合适的载体,即使是学生提出的问题也要加以整理归类。作为研究性学习的载体应有利于调动学生学习数学的积极性,有利于学生创造潜能的发挥。实践证明,数学开放题用于研究性学习是合适的。 自70年代日本、美国在中小学教学中较为普遍地使用数学开放题以来,数学开放题已逐渐被数学教育界认为是最富有教育价值的一种数学问题,因为数学开放题能够激起学生的求知欲和学习兴趣,而强烈的求知欲望浓厚的学习兴趣是创新能力发展的内在动力。80年代介绍到我国后,在国内引起了广泛的关注,各类刊物发表了大量的介绍、探讨开放题的理论文章或进行教学实验方面的文章,并形成了一个教育界讨论研究的亮点。 高考命题专家也敏锐地觉察到开放题在考查学生创新能力方面的独特作用,近几年在全国和各地的高考试题中连续出现具有开放性的题目。 数学开放题体现数学研究的思想方法,解答过程是探究的过程,数学开放题体现数学问题的形成过程,体现解答对象的实际状态,数学开放题有利于为学生个别探索和准确认识自己提供时空,便于因材施教,可以用来培养学生思维的灵活性和发散性,使学生体会学习数学的成功感,使学生体验到数学的美感。因此数学开放题用于学生研究性学习应是十分有意义的。 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 21、浅谈中学数学中的反证法 22、数学选择题的利和弊 23、浅谈计算机辅助数学教学 24、数学研究性学习 25、谈发展数学思维的学习方法 26、关于整系数多项式有理根的几个定理及求解方法 27、数学教学中课堂提问的误区与对策 28、中学数学教学中的创造性思维的培养 29、浅谈数学教学中的“问题情境” 30、市场经济中的蛛网模型 31、中学数学教学设计前期分析的研究 32、数学课堂差异教学 33、浅谈线性变换的对角化问题 34、圆锥曲线的性质及推广应用 35、经济问题中的概率统计模型及应用 36、通过逻辑趣题学推理 37、直觉思维的训练和培养 38、用高等数学知识解初等数学题 39、浅谈数学中的变形技巧 40、浅谈平均值不等式的应用 41、浅谈高中立体几何的入门学习 42、数形结合思想 43、关于连通性的两个习题 44、从赌博和概率到抽奖陷阱中的数学 45、情感在数学教学中的作用 46、因材施教与因性施教 47、关于抽象函数的若干问题 48、创新教育背景下的数学教学 49、实数基本理论的一些探讨 50、论数学教学中的心理环境 51、以数学教学为例谈谈课堂提问的设计原则 52、不等式证明的若干方法 53、试论数学中的美 54、数学教育与美育 55、数学问题情境的创设 56、略谈创新思维 57、随机变量列的收敛性及其相互关系 58、数字新闻中的数学应用 59、微积分学的发展史 60、利用几何知识求函数最值 61、数学评价应用举例 62、数学思维批判性 63、让阅读走进数学课堂 64、开放式数学教学

递推数列的解法研究论文答辩问题

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

哇,原来你也不知道啊,自己总结嗨。

我从邮箱发给你,你收到了就采纳我啊~~~

这讲不清楚的呀,不过方法有很多的,你只能看书呀,你把问题发上来吧基本数列是等差数列和等比数列一、等差数列一个等差数列由两个因素确定:首项a1和公差d.得知以下任何一项,就可以确定一个等差数列(即求出数列的通项公式):1、首项a1和公差d2、数列前n项和s(n),因为s(1)=a1,s(n)-s(n-1)=a(n)3、任意两项a(n)和a(m),n,m为已知数等差数列的性质:1、前N项和为N的二次函数(d不为0时)2、a(m)-a(n)=(m-n)*d3、正整数m、n、p为等差数列时,a(m)、a(n)、a(p)也是等差数列例题1:已知a(5)=8,a(9)=16,求a(25)解: a(9)-a(5)=4*d=16-8=8a(25)-a(5)=20*d=5*4*d=40a(25)=48 例题2:已知a(6)=13,a(9)=19,求a(12)解:a(6)、a(9)、a(12)成等差数列a(12)-a(9)=a(9)-a(6)a(12)=2*a(9)-a(6)=25二、等比数列一个等比数列由两个因素确定:首项a1和公差d.得知以下任何一项,就可以确定一个等比数列(即求出数列的通项公式):1、首项a1和公比r2、数列前n项和s(n),因为s(1)=a1,s(n)-s(n-1)=a(n)3、任意两项a(n)和a(m),n,m为已知数等比数列的性质:1、a(m)/a(n)=r^(m-n)2、正整数m、n、p为等差数列时,a(m)、a(n)、a(p)是等比数列3、等比数列的连续m项和也是等比数列即b(n)=a(n)+a(n+1)+...+a(n+m-1)构成的数列是等比数列。三、数列的前N项和与逐项差1、如果数列的通项公式是关于N的多项式,最高次数为P,则数列的前N项和是关于N的多项式,最高次数为P+1。(这与积分很相似)2、逐项差就是数列相邻两项的差组成的数列。如果数列的通项公式是关于N的多项式,最高次数为P,则数列的逐项差的通项公式是关于N的多项式,最高次数为P-1。(这与微分很相似)例子:1,16,81,256,625,1296 (a(n)=n^4)15,65,175,369,67150,110,194,30260,84,10824,24从上例看出,四次数列经过四次逐项差后变成常数数列。等比数列的逐项差还是等比数列四、已知数列通项公式A(N),求数列的前N项和S(N)。这个问题等价于求S(N)的通项公式,而S(N)=S(N-1)+A(N),这就成为递推数列的问题。解法是寻找一个数列B(N),使S(N)+B(N)=S(N-1)+B(N-1)从而S(N)=A(1)+B(1)-B(N)猜想B(N)的方法:把A(N)当作函数求积分,对得出的函数形式设待定系数,利用B(N)-B(N-1)=-A(N)求出待定系数。例题1:求S(N)=2+2*2^2+3*2^3+...+N*2^N解:S(N)=S(N-1)+N*2^NN*2^N积分得(N*LN2-1)*2^N/(LN2)^2因此设B(N)=(PN+Q)*2^N则 (PN+Q)*2^N-[P(N-1)+Q)*2^(N-1)=-N*2^N(P*N+P+Q)/2*2^N=-N*2^N因为上式是恒等式,所以P=-2,Q=2B(N)=(-2N+2)*2^NA(1)=2,B(1)=0因此:S(N)=A(1)+B(1)-B(N)=(2N-2)*2^N+2例题2:A(N)=N*(N+1)*(N+2),求S(N)解法1:S(N)为N的四次多项式,设:S(N)=A*N^4+B*N^3+C*N^2+D*N+E利用S(N)-S(N-1)=N*(N+1)*(N+2)解出A、B、C、D、E解法2:S(N)/3!=C(3,3)+C(4,3)+...C(N+2,3) =C(N+3,4)S(N)=N*(N+1)*(N+2)*(N+3)/4

有关数列的毕业论文

极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,教学中让学生深刻理解极限理论对学好整门课程起到至关重要的作用.作者就自己多年教授数学分析课程的经验,谈谈数列极限与函数极限的联系与本质区别.1.关于数列极限数列初等数学中对数列这样定义:按照一定顺序排列的一列数称为数列.数学分教材[1]关于数列的定义:若函数f的定义域是全体正整数集N,则称f:N→R或f(n),n∈N为数列.正因为正整数集的元素可按从小到大的顺序排列,所以数列f(n)也可写作a,a,…a…,或简单地记作{a},其中a是该数列的通项.看得出来,数列就是一正整数集为定义域的函数,即所有数列的定义域都是正整数集.数列的极限的定义定义1设{a}为数列,a为定数.若对任给的正数?藓,总存在正整数N,使得当n>N时,有|a-a|<?藓,则称数列{a}收敛于a,定数a为数列{a}的极限,并记作a=.关于函数极限→∞时函数极限定义2设f为定义[a,+∞)在上的函数,A为定数,若对任给的正数?藓,存在正数M(≥a),使得当x>M时有|f(x)-A|<?藓,则称函数当x→+∞时以A为极限,记作f(x)=A.现设f为定义在U(-∞)或U(∞)上的函数,当x→-∞或x→∞时,若函数值无限地接近某定数A,则称f当x→-∞或x→∞时以A为极限,f(x)=A或f(x)=→x时函数极限定义3(函数极限的?藓-δ定义)设函数f在点x的某个空心邻域U(x;δ′)内有定义,A为定数,若对任给的正数ε,存在正数δ(<δ′),使得当0<|x-x|<δ时有|f(x)-A|<0ε,则称函数f当x→x时以A为极限,记作f(x)=A.类似可定义f(x)=A及f(x)=.数列极限与函数极限的异同及根本原因从以上定义可以看出,数列极限与函数极限有相同点也有不同点,研究二者的方法大同小异,相同点是数列极限与函数极限中当x→+∞时的类型完全相似,因此可以用相同的方法研究.二者的不同点在于,数列极限只有一种类型,就是n→∞时的极限;而函数极限细分有六种类型x→+∞;x→-∞;x→∞;x→x;x→x;x→x的极限,分类的标准是根据的趋向的不同来分类.二者的相同点源自二者都是函数,数列可以认为是特殊情况的函数,任何一个不同的数列都以正整数集为定义域;而通常意义下的函数在数学分析课程中是定义在实数范围的,其定义域可以是实数集也可以是实数集的某个子集.正因为将二者同看成函数的情况下,由于二者的定义域范围不同,导致二者极限类型的不同.数列的定义域是正整数集,那自变量的取值为1、2、3……,自变量的最小取1,因此不可能趋向于-∞,又因为数列各项必须取整数,所以它不可能趋近于某个定数,自变量n只可能有一种趋向于+∞;而通常意义下的函数是在实数范围内的讨论,因此,自变量x既可以趋近于+∞,又可以趋近于-∞;如果自变量x同时趋近于+∞和-∞时函数极限存在,则称x→∞时函数极限存在.同理,因为实数集的稠密性,自变量x会趋近于某个定数x,根据自变量x趋近于x的方向不同又可以分为x点处的左极限和右极限,于是某定点处有三种类型x→x;x→x;x→x函数极限.综上,数列是特殊的函数,正因为数列作为函数的特殊性,使数列极限相对简单并且具有相对理想的性质,收敛数列的所有性质都具有整体性;而收敛函数的所有性质都只能满足局部性质.导致二者性质差别的真正原因也在于二者作为函数定义域的范围不同.笔者认为,还要真正学透极限,一定要从本质上研究导致他们不同的原因,相同的理论完全可以通过类比的方式学习,而学习的重点应该放在二者的不同上,弄懂有什么不同,为什么不同,只有懂得了“为什么”,才能真正学懂相应知识.

数学中,数列的教学思想是一座桥梁,能够将复杂的问题巧妙地转化成简单的解题方法,让教师在教学中和学生学习的过程中更清晰、更简洁。下面是我为你整理的高中数学数列论文,一起来看看吧。

【摘要】随着新课标在我国的全面实施,高中数学教学中心课改的理念如何体现,才能适应新课改的要求?成为高中数学教学实践的重点目标。高中数学数列方面的内容,是高中数学的基础内容,很多重要的数学问题通过数列都可得到圆满解决。因此教好数列、学好数列对提高学生未来解决数学问题的能力有重要的实践意义。从教师角度看,优良的数列教学课堂设计对教学目标和教学效果的实现举足轻重。

【关键词】高中数学;数列;课堂教学

高中数学中,数列占有很重要的教学地位,数列在数学领域隶属于离散函数的范畴,是解决现实中很多数学问题的重要工具。数列问题是高二年级数学教学的基础。数列问题学习可以培养学生对数学问题的思考、分析和归纳的能力。并对以后阶段的数学知识有启蒙作用。数学教师必须重视数列教学实践对学生的启发作用。

一、数列部分教学内容概述

数列这一部分主要介绍了数列的概念,并对数列根据其特点进行了分类。接着引出了数列通项的概念。高中二年级主要学习等差、等比数列的概念,通项公式,前n项和。并对数列在现实生活中的意义进行了介绍,主要有分期付款等储蓄问题。本章介绍的数学公式较多,主要涉及数列的通项公式和前n项和公式。教学中,对公式的推导过程和变形种类要重点讲解。以便让学生从数学原理的角度对数列的相关概念做深入理解。如何灵活的运用数列的性质来对综合性题目进行解答是本章的重点教学任务。数列的相关问题的认识,要贯穿函数的思想来向学生传递。

二、数列教学的有效性策略简析

数列的教学应该遵循有效性原则来进行。我们在教学中应该用先进的教学理念来指导教学。数学的思维模式主要是逻辑性思维为主,因此有效的方式方法一旦为学生所领会,那教学的过程会变得相当的容易。

1.对比数学问题,归纳共性特点,培养探究习惯和能力

在认识数列时,应该同时引入函数的动态认识数列的方法,利用对函数的研究方法来类比到数列问题中来。对于数列的表示法的讲解,可通过函数的表示方法引申过来。而对等差数列,等比数列的单调性性质,也可通过以往学过的函数的相关性质来类比讲解;在求和问题的最值研究中,可从抛物线等二次函数中的变量演化过程类比讲解求函数最值。等差数列和等比数列的概念、性质、通项等,我们可通过两个类型数列的异同点来进行研究。如:从数列的特点来说,前一项与后一项的之间的差异对等差数列来说,两项间是加减法的关系,每两项之间都相差一个固定的数值,而对等比数列来说,则是乘除法的关系,每相邻两项之间是倍数的关系。对中项的概念来说,等差中项概念与相邻项的关系同样的加减法的规则,而等比数列的中项则是插入一个固定比例的关系。而两个等差数列,仍然为等差数列。而两个等比数列的对应项的乘积也为等比数列。这种数列之间的项与项的数量关系的实质要为学生开解明白。

2.与其他数学知识相综合,建立数学知识体系的网络化综合化

数学中任何一个概念都不了独立的,在整个的数学知识体系里面,每个知识点都与其他的结点有关联性,因此在数列教学中,要把数列、函数、不等式、解析几何等概念有机的结合起来进行讲解。数列其实是函数的特殊化,研究函数有普遍性的意义,而研究数列是研究函数的特殊化。因此在数列教学中建立函数的概念,有助于改变学生的静态思维。另外还有,数列与不等式,数列与导数,数列与算法等的综合运用,都要在数列教学中对学生加以讲解。

3.通过练习和小测试来巩固课堂教学的效果

传统教学模式中,有一项是“题海战术”,可见习题在数学教学中的作用是不容忽视的。尽管目前的教育模式不支持教师对学生施以题海战术,但选取具有代表性的习题,开拓学生的数学思想和知识点延伸,是有极大好处的。首先通过习题,可以巩固学生的基础知识结构,加强知识点之间的有机结合,从而提高学生对数学问题的分析能力。举个简单的例子,求数列an-n。通过前面的知识的学习,我们可以知道,这道题目,分为两部分数列的综合计算而成。前半部分是一个等比数列,而后半部分,我们可以看成负自然数的数列。等比数列的求和公式是形成的,而自然数的和在初中的高斯定理就已学过,通过这样的拆解,为学生解答综合性的问题提供了行之有效的途径。其次,同样一个题目如果能,应当鼓励学生用更多的方法来进行解答,这样可以培养学生的发散性思维,在考试中碰到的问题即使一时想不出来,至少学生能够想到很多种解题的方案,这其中说不定就有通往正确答案的途径。第三,公式的变形要加强练习,只有这样,学生才能够触类旁通,同一类问题的解决途径往往稍加变形,但其解法本质上是殊途同归的,通过这种锻炼,学生解题的能力得到了很大的提高,学到的知识体系也进一步得到巩固。第四,题目解决了,并不是学习的终结,要培养学生“回头看题”的习惯。这种习惯的养成有助于学生对题目的知识点进行全面把握。

三、高中数学数列部分课堂教学设计要点

课堂教学设计是高中教学中的重中之重,课堂教学设计的水平在某种意义上决定了课堂教学的效果和学生学习的成果。在课堂教学方案的设计中,笔者通过多年的教学经验和实践认为应该包括以下要素:

1.要细致了解学生在数列学习和解决数列问题中的切身体验

应该说,学生之间对数学问题的认知和理解能力确实存在着差异性。到了高中阶段,学生们都经历了近十年的数学学习经历,长期的学习中会对某一类知识点相当的敏感,而对另外的一些知识点却有盲点。有的学生在逻辑思维方面有特长,而另外的一些学生对计算情有独钟,对知识点掌握程度的不同会造成学生解题习惯和解题思路的差异。教师在课堂教学设计中也充分考虑大部分学生的群体差异。

2.要注重数列部分概念本质的强化记忆和理解,对基础知识的传授要夯实,避免短板

数学中,不仅仅是数列,其他的概念也如此,其描述的方式,往往通过文字性的描述来说明。这种方式比较抽象,我们在设计课堂教学时,对概念性的东西要注意辅以实例来讲解。以便激发学生的猎奇心理和探索问题的欲望。

3.重视数学史渗透和用数学工具解决实际问题的能力

数学的发展史源远流长,每种数学问题的提出和最后的解决都有其历史的背景。数列教学中穿插数学史知识的传授,有利于学生对知识的来龙去脉在熟稔中学习。另外数学问题的提出往往有其实践的背景,或者是人民集体智慧的结晶,或者是某一时期特殊问题的解决之道,教师在课堂教学的过程中要努力挖掘现实问题的应用。学以致用,当学生认识到自己学习的数列知识在现实生活中确实能解决很多问题的时候,学习的欲望和学习的效果自然而然就出来了。

4.重视数列学习中组合学习的魅力

人以群分,物以类聚。在数学学习的过程中,教师应该将不同层次的学生进行分组,这种分组的教学行为,可以让学生在相同的起点上进行学习。通过对班级内不同的学生的特点和能力进行分析,对其学习的目标,任务等精心设置,发挥团队学习的效用。

5.教师应该注重自我提高,从别人的课堂教学中汲取营养

老师在教学中不能固步自封,应该走出去,在同事中加强听课和学习。完善自我的课程教学缺陷,在不断的学习中,但课堂教学方案日趋完美。

四、结束语

高中数学中数列的教学内容虽然比较少,但其教学思想却在高中数学中占有很重要的地位,数学教学,应当立足于学生对数学知识的学习特点,以先进的教学理论为指导,对课堂教学方案设计精益求精,才能获得应有的教学效果。

摘要:数列是高中数学教学中重要的内容,其在高中数学中占据着重要的地位,同时在生活中也具有非常大的应用价值。本文介绍了高中数学学习数列的重要性及新时期如何提高高中数学数列教学质量和学习能力。

关键词:高中数学;数列;教学

一、引言

在高中数学的数列教学的过程中,教师不但要让学生懂得数列问题的知识点,还要让学生能够根据掌握的相关知识熟练地解决数学问题。困此教师要以生为本,以学定教,让学生在不同的数学环境巾积极思考,推进能力的提升,并让学生在各种数学数列问题的训练中学会自主学习数学的能力。

二、高中数学数列教学体会

1、以生为本,以学定教

1)以生为本,实时掌握在数学教学过程中学生的基本的数学能力在高中数学数列教学的过程中不但每一个班的综合数学能力不同,而且就是同一个班级中的学生的数学能力也不尽相同。在这种条件下,教师不论是在新接手班级还是在教学的过程中,都要通过各种有效的数学考查方式掌握学生的实际能力,确定学生的数学层次。在这个基础上教师将不同的数学层次的学生组合成组,方便学生进行合作交流的学习。

2)以学定教,采用适合本班同学的数学教学方式进行有效教学

在高中数学数列教学的过程中,教师在选择教学方法以及教学策略的时候,要能根据本班同学的不同数学层次特点进行确定,教师要紧紧把握住学生旧知与新知的链接点,寻找能够激发学生主动思维的教学方式进行教学。同时教师还要善于选择学生喜欢的教学模式,引发学生主动探究、合作交流,并在教学的过程中要巧妙使用课堂生成,使教学能够在师生之间、生生之间的思维碰撞中引领学生对数学知识的掌握。

2、善用多媒体课件辅助教学,促使学生能够更好地理解数学知识

1)多媒体课件辅助教学具有传统的课堂教学所无法比拟的教学优势,在数列教学的过程中,很多数列问题如数列与不等式综合问题中的放缩问题、解决递推数列问题等数学问题,单凭教师一张嘴,一支粉笔并不容易将抽象的数学知识让学生透彻地理解。而在这个过程中随着信息时代的到来,计算机以及互联网络的使用让多媒体课件走入了高中数列教学的课堂。

2)多媒体课件辅助教学可以让学生更加直观地理解数学知识

教师巧妙利用多媒体课件进行教学,使原有的抽象的数学问题变得可观可感,能够最大限度地调动学生多种感官的有效参与,极大地提高了学生学习的积极性,使得学生能够在课堂上跟着教师的引导积极思维、主动探究。如:在人教版高中数学数列教学“等差数列的前n项和”的教学过程中,教师通过多媒体课件出尔:“有一堆钢管,最底下放了15根,上一层是14根,再上一层是13根,……最顶层是3根。这堆钢管共有多少根?”这个问题,同时教师出示钢管的图像,并在和学生讨论思考的过程中将讨论的结果逐步出示,或者将学生解决问题的不同方案通过多媒体课件有效地呈现出来,引发学生的积极思考,让学生能够更直观地看到不同的解题方法的过程,并在这个过程中获得数学能力的不断提升。如果教师只是采用传统的教学方式进行讲解的话,那么学生也许很难理解教师的教学思路。多媒体课件辅助教学大大提高了教师的教学效率,解决了学生对抽象的数学知识无法理解的难题,并促使学生能够在这个过程中,形成数学架构的时间的缩短。

3、高中数学数列教学的创新

数列、一般数列、等差数列、等比数列是高中数学数列教学的主要内容。其中,等差数列和等比数列是数列教学内容中的重点。主要包括对数列的定义、基本特点、通项公式、分类方法、具体应用等知识点的学习。传统的教学观念中,教学设计作为一种系统化过程,是用系统的教学方法将数列教学理论,同学习理论原理进行转换,使之成为教学活动和教学资料的具体计划。创新理念的数列教学设计解决了“教学成果”、“教学方法”、“教学目的”等问题,通过教学设计来解决教学问题,探究总结问题的解决方法和步骤,形成新的教学方案。并在新的教学方案实施以后及时的对教学效果进行分析,规划操作其过程程序,判断其实施的价值。这一过程也是教学优化的的过程,能够提高教学成果,创造出更加合理高效的教学方案。

(一)数列教学应注重问题情境的创设

为调动学生主动、合作、探索学习的积极性,实现师生互动,我们教师营造自主、合作、探索的学习环境显得很重要。在数列的教学中首先要注重数学问题情境的创设。我们创设问题情况可以考虑以下方面:学生的已有知识与生活经验及数学的趣味性、教学内容、新旧知识的衔接点以及自身的教学特色。

(二)创新理念下的“数学概念”

对数学对象本质属性进行反映的思维方式,是数列的数学概念。我们知道数列的概念是按一定次序排列的一列数称为数列。对一个数学概念的学习,应记住其名称、了解其涉及到的范围、简述其本质属性并运用其概念进行判断。数学概念包括等差数列、等比数列、通项公式和数列。

在对这些陈述性概念进行设计时,设计者应对上述概念体现的概念特点进行描述。并且在高中数学数列教学中,为了能够激发学生对数列学习的兴趣,体会数列实际应用的价值,则可以通过将生活中实际的问题引入到课程教学中,从而将抽象的数学知识转变为实际需要解决的问题,使学生学生对所要研究的内容有所认识。并且在数列学习中可以结合其他知识点进行学习。比如数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列,这样不仅能够引导学生通过多方面解决问题,而且对提高学生运用知识的能力也具有重要的意义。我们还以等差数列的定义教学为例,如:增加判断某数列是否成等差数列的题目来促进概念理解。再如:把一次函数和等差数列通项公式相联系,利用函数概念同化等差数列的概念,凸显函数思想;让学生自己列表、画图象,用“形”感受函数与数列之间联系;用方程与等差数列基本量的运算相结合来加深了对概念的理解和巩固。此外我们在教学中还要明理强化,实践探究,注重激励评价,引申探究。

数列在生活中的应用在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。 与此同时,数列在艺术创作上也有突出的作用! 数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。这是对数学与生活关系的精彩描述。 首先, 我重点分析等差数列、等比数列在实际生活和经济活动中的应用。 (一)按揭货款中的数列问题 随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。 众所周知,按揭货款(公积金贷款)中都实行按月等额还本付息。这个等额数是如何得来的,此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这一问题的解决办法。 若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a元.设第n月还款后的本金为an,那么有: a1=a0(1+p)-a, a2=a1(1+p)-a, a3=a2(1+p)-a, ...... an+1=an(1+p)-a,.........................(*) 将(*)变形,得 (an+1-a/p)/(an-a/p)=1+p. 由此可见,{an-a/p}是一个以a1-a/p为首项,1+p为公比的等比数列。日常生活中一切有关按揭货款的问题,均可根据此式计算。 (二)有关数列的其他经济应用问题 数列知识除在个人投资理财方面有较为广泛的应用外,在企业经营管理上也是不可或缺的。一定做过大量的应用题吧!虽然这些应用题是从实际生活中抽象出的略高于生活的问题,但他们是数学习题中最能反映数学知识与实际生活密切关系的一类问题。因此,解答应用问题有助于我们对数学在日常生活中广泛应用的理解和认识。(三)数列在艺术中的广泛应用把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是[5^(1/2)-1]/2,取其前三位数字的近似值是。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以来近似,通过简单的计算就可以发现: 1/ ()/ 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。 让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做“菲波那契数列”,这些数被称为“菲波那契数”。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。 菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。不仅这个由1,1,2,3,5....开始的“菲波那契数”是这样,随便选两个整数,然后按照菲波那契数的规律排下去,两数间比也是会逐渐逼近黄金比的。 一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我国的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。 黄金分割三角形还有一个特殊性,所有的三角形都可以用四个与其本身全等的三角形来生成与其本身相似的三角形,但黄金分割三角形是唯一一种可以用5个而不是4个与其本身全等的三角形来生成与其本身相似的三角形的三角形。 黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最可宝贵的算法”。这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法。 其实有关“黄金分割”,我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为“黄金分割”。 接下来讲体系黄金律形式美法则的应用。(黄金律两点重要内容:1、典型的美的比例;2、由多次分割同一比值造成的重复的节奏。有比例的重复,这是对艺术形式规律最本质的概况。)“根号2矩形”,纸的长宽比例,如果宽边为1,则长边为根号2,这个矩形使得整开纸以任何对开裁法,都能保持同一比例,大大方便了作为文化载体的纸的利用。相似的还有三合板600乘以900cm的比例,以及相关家具、建筑材料、构件具有的相似的比例。 书法中一笔三转、一波三折等要诀,三横三点、三竖的互相联系——形状、距离、长短、方向角度等的处理。书法中“二”字一长一短,“十”字竖笔被分为2∶3的两段,“口”、“田”则上宽下窄,“吕”、“炎”、“林”、“羽”则将本身是等大的两半部分分成一大一小,“品”、“森”则将本是等大的三部分写成三种大小,以上规律在行书中更为清晰。中国书法美学的规律是与黄金比原则一致的。 西文中“S”、“B”等字母及阿拉伯“3”、“8”的上下两半比例适度。拉丁文26个字母中,下行的是5个,上行8个,中行13个,所以连写数行,参差错落,比例适中,再加上大小写的比例差别,在视觉上也具有书法艺术的整体美感。 音乐与诗 油画中的“三色法”,在一个有固定主调的色彩背景中配置三色(或三个笔触),一色是相对暖色,一色相对冷,第三色则是中性色,这个中性色绝不该是绝对值的“中间”色。中性色稍有偏向,就拉近了或拉大了对两色的色距,对两个色距比例的选择,就是色彩的优选法。 素描的虚实、明暗程度、色块面积、复线排列的交叉穿插角度等,都可发现数的比值规律的运用,不详细讲。 中国画,画面都是“自一至万,自万法以治一”(石涛《画语录》),由“一条线”开始,以后的许多线都是这第一条线的相反相成的铺陈,以至完成全画。 “一笔”中的粗细、曲直、方圆、浓淡、干湿、虚实…… 美的线条:“蛇形曲线或称波状曲线”、“S形线”。…… …… …… (无所不在、说不尽的生活奥妙)

与数列相关的毕业论文

摘要本文主要讨论线性素变数方程的可解性问题,这是经典解析数论研究的重要问题之一本文考虑Gofbd‘卜vinogrdaov定理在算术数列中的推广,我们的结果是:设人,,七2,无3是任意正整数,11,12,13是整数,满足(l,,枯)=1,1兰J三3,再设N是充分大的奇数,满足N三l,+12+13(mod(k,,kZ,k3)),(l‘+lj一N,权,kj)=i,1三乞<夕三3,则存在一个实效常数。<占<1,使得当K三N占时,方程N=pi+脚+p3,岛三勺(饥Od勺),J=1,2,3有素数解pl,脚,仍,其中K=mxa{2,无1,k2,无3}.我们的结果包括了解析数论中的两个重要的经典结论:一是的三素数定理:每个充分大的奇数可表示为三个奇素数的和;二是关于算术数列中最小素数上界估计的结果:存在绝对常数。使得可k,O《kc,p=+lkn,n=1,2,·…事实上,在我们的定理中取无1=k:=无3==1,即得前者;取k卜kZ,k3>1,即得后者.本文结果的证明使用了Hardy一Littelwodo圆法.为此,对余区间上积分的处理,我们使用算术数列中素变数线性三角和的vinogrdaov形式的结果.对主区间上积分的处理,我们使用了关于素数分布的显式结果,广义Guass和,以及DirihcetlL函数密度估计等方面的深刻结果.

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

数学中,数列的教学思想是一座桥梁,能够将复杂的问题巧妙地转化成简单的解题方法,让教师在教学中和学生学习的过程中更清晰、更简洁。下面是我为你整理的高中数学数列论文,一起来看看吧。

【摘要】随着新课标在我国的全面实施,高中数学教学中心课改的理念如何体现,才能适应新课改的要求?成为高中数学教学实践的重点目标。高中数学数列方面的内容,是高中数学的基础内容,很多重要的数学问题通过数列都可得到圆满解决。因此教好数列、学好数列对提高学生未来解决数学问题的能力有重要的实践意义。从教师角度看,优良的数列教学课堂设计对教学目标和教学效果的实现举足轻重。

【关键词】高中数学;数列;课堂教学

高中数学中,数列占有很重要的教学地位,数列在数学领域隶属于离散函数的范畴,是解决现实中很多数学问题的重要工具。数列问题是高二年级数学教学的基础。数列问题学习可以培养学生对数学问题的思考、分析和归纳的能力。并对以后阶段的数学知识有启蒙作用。数学教师必须重视数列教学实践对学生的启发作用。

一、数列部分教学内容概述

数列这一部分主要介绍了数列的概念,并对数列根据其特点进行了分类。接着引出了数列通项的概念。高中二年级主要学习等差、等比数列的概念,通项公式,前n项和。并对数列在现实生活中的意义进行了介绍,主要有分期付款等储蓄问题。本章介绍的数学公式较多,主要涉及数列的通项公式和前n项和公式。教学中,对公式的推导过程和变形种类要重点讲解。以便让学生从数学原理的角度对数列的相关概念做深入理解。如何灵活的运用数列的性质来对综合性题目进行解答是本章的重点教学任务。数列的相关问题的认识,要贯穿函数的思想来向学生传递。

二、数列教学的有效性策略简析

数列的教学应该遵循有效性原则来进行。我们在教学中应该用先进的教学理念来指导教学。数学的思维模式主要是逻辑性思维为主,因此有效的方式方法一旦为学生所领会,那教学的过程会变得相当的容易。

1.对比数学问题,归纳共性特点,培养探究习惯和能力

在认识数列时,应该同时引入函数的动态认识数列的方法,利用对函数的研究方法来类比到数列问题中来。对于数列的表示法的讲解,可通过函数的表示方法引申过来。而对等差数列,等比数列的单调性性质,也可通过以往学过的函数的相关性质来类比讲解;在求和问题的最值研究中,可从抛物线等二次函数中的变量演化过程类比讲解求函数最值。等差数列和等比数列的概念、性质、通项等,我们可通过两个类型数列的异同点来进行研究。如:从数列的特点来说,前一项与后一项的之间的差异对等差数列来说,两项间是加减法的关系,每两项之间都相差一个固定的数值,而对等比数列来说,则是乘除法的关系,每相邻两项之间是倍数的关系。对中项的概念来说,等差中项概念与相邻项的关系同样的加减法的规则,而等比数列的中项则是插入一个固定比例的关系。而两个等差数列,仍然为等差数列。而两个等比数列的对应项的乘积也为等比数列。这种数列之间的项与项的数量关系的实质要为学生开解明白。

2.与其他数学知识相综合,建立数学知识体系的网络化综合化

数学中任何一个概念都不了独立的,在整个的数学知识体系里面,每个知识点都与其他的结点有关联性,因此在数列教学中,要把数列、函数、不等式、解析几何等概念有机的结合起来进行讲解。数列其实是函数的特殊化,研究函数有普遍性的意义,而研究数列是研究函数的特殊化。因此在数列教学中建立函数的概念,有助于改变学生的静态思维。另外还有,数列与不等式,数列与导数,数列与算法等的综合运用,都要在数列教学中对学生加以讲解。

3.通过练习和小测试来巩固课堂教学的效果

传统教学模式中,有一项是“题海战术”,可见习题在数学教学中的作用是不容忽视的。尽管目前的教育模式不支持教师对学生施以题海战术,但选取具有代表性的习题,开拓学生的数学思想和知识点延伸,是有极大好处的。首先通过习题,可以巩固学生的基础知识结构,加强知识点之间的有机结合,从而提高学生对数学问题的分析能力。举个简单的例子,求数列an-n。通过前面的知识的学习,我们可以知道,这道题目,分为两部分数列的综合计算而成。前半部分是一个等比数列,而后半部分,我们可以看成负自然数的数列。等比数列的求和公式是形成的,而自然数的和在初中的高斯定理就已学过,通过这样的拆解,为学生解答综合性的问题提供了行之有效的途径。其次,同样一个题目如果能,应当鼓励学生用更多的方法来进行解答,这样可以培养学生的发散性思维,在考试中碰到的问题即使一时想不出来,至少学生能够想到很多种解题的方案,这其中说不定就有通往正确答案的途径。第三,公式的变形要加强练习,只有这样,学生才能够触类旁通,同一类问题的解决途径往往稍加变形,但其解法本质上是殊途同归的,通过这种锻炼,学生解题的能力得到了很大的提高,学到的知识体系也进一步得到巩固。第四,题目解决了,并不是学习的终结,要培养学生“回头看题”的习惯。这种习惯的养成有助于学生对题目的知识点进行全面把握。

三、高中数学数列部分课堂教学设计要点

课堂教学设计是高中教学中的重中之重,课堂教学设计的水平在某种意义上决定了课堂教学的效果和学生学习的成果。在课堂教学方案的设计中,笔者通过多年的教学经验和实践认为应该包括以下要素:

1.要细致了解学生在数列学习和解决数列问题中的切身体验

应该说,学生之间对数学问题的认知和理解能力确实存在着差异性。到了高中阶段,学生们都经历了近十年的数学学习经历,长期的学习中会对某一类知识点相当的敏感,而对另外的一些知识点却有盲点。有的学生在逻辑思维方面有特长,而另外的一些学生对计算情有独钟,对知识点掌握程度的不同会造成学生解题习惯和解题思路的差异。教师在课堂教学设计中也充分考虑大部分学生的群体差异。

2.要注重数列部分概念本质的强化记忆和理解,对基础知识的传授要夯实,避免短板

数学中,不仅仅是数列,其他的概念也如此,其描述的方式,往往通过文字性的描述来说明。这种方式比较抽象,我们在设计课堂教学时,对概念性的东西要注意辅以实例来讲解。以便激发学生的猎奇心理和探索问题的欲望。

3.重视数学史渗透和用数学工具解决实际问题的能力

数学的发展史源远流长,每种数学问题的提出和最后的解决都有其历史的背景。数列教学中穿插数学史知识的传授,有利于学生对知识的来龙去脉在熟稔中学习。另外数学问题的提出往往有其实践的背景,或者是人民集体智慧的结晶,或者是某一时期特殊问题的解决之道,教师在课堂教学的过程中要努力挖掘现实问题的应用。学以致用,当学生认识到自己学习的数列知识在现实生活中确实能解决很多问题的时候,学习的欲望和学习的效果自然而然就出来了。

4.重视数列学习中组合学习的魅力

人以群分,物以类聚。在数学学习的过程中,教师应该将不同层次的学生进行分组,这种分组的教学行为,可以让学生在相同的起点上进行学习。通过对班级内不同的学生的特点和能力进行分析,对其学习的目标,任务等精心设置,发挥团队学习的效用。

5.教师应该注重自我提高,从别人的课堂教学中汲取营养

老师在教学中不能固步自封,应该走出去,在同事中加强听课和学习。完善自我的课程教学缺陷,在不断的学习中,但课堂教学方案日趋完美。

四、结束语

高中数学中数列的教学内容虽然比较少,但其教学思想却在高中数学中占有很重要的地位,数学教学,应当立足于学生对数学知识的学习特点,以先进的教学理论为指导,对课堂教学方案设计精益求精,才能获得应有的教学效果。

摘要:数列是高中数学教学中重要的内容,其在高中数学中占据着重要的地位,同时在生活中也具有非常大的应用价值。本文介绍了高中数学学习数列的重要性及新时期如何提高高中数学数列教学质量和学习能力。

关键词:高中数学;数列;教学

一、引言

在高中数学的数列教学的过程中,教师不但要让学生懂得数列问题的知识点,还要让学生能够根据掌握的相关知识熟练地解决数学问题。困此教师要以生为本,以学定教,让学生在不同的数学环境巾积极思考,推进能力的提升,并让学生在各种数学数列问题的训练中学会自主学习数学的能力。

二、高中数学数列教学体会

1、以生为本,以学定教

1)以生为本,实时掌握在数学教学过程中学生的基本的数学能力在高中数学数列教学的过程中不但每一个班的综合数学能力不同,而且就是同一个班级中的学生的数学能力也不尽相同。在这种条件下,教师不论是在新接手班级还是在教学的过程中,都要通过各种有效的数学考查方式掌握学生的实际能力,确定学生的数学层次。在这个基础上教师将不同的数学层次的学生组合成组,方便学生进行合作交流的学习。

2)以学定教,采用适合本班同学的数学教学方式进行有效教学

在高中数学数列教学的过程中,教师在选择教学方法以及教学策略的时候,要能根据本班同学的不同数学层次特点进行确定,教师要紧紧把握住学生旧知与新知的链接点,寻找能够激发学生主动思维的教学方式进行教学。同时教师还要善于选择学生喜欢的教学模式,引发学生主动探究、合作交流,并在教学的过程中要巧妙使用课堂生成,使教学能够在师生之间、生生之间的思维碰撞中引领学生对数学知识的掌握。

2、善用多媒体课件辅助教学,促使学生能够更好地理解数学知识

1)多媒体课件辅助教学具有传统的课堂教学所无法比拟的教学优势,在数列教学的过程中,很多数列问题如数列与不等式综合问题中的放缩问题、解决递推数列问题等数学问题,单凭教师一张嘴,一支粉笔并不容易将抽象的数学知识让学生透彻地理解。而在这个过程中随着信息时代的到来,计算机以及互联网络的使用让多媒体课件走入了高中数列教学的课堂。

2)多媒体课件辅助教学可以让学生更加直观地理解数学知识

教师巧妙利用多媒体课件进行教学,使原有的抽象的数学问题变得可观可感,能够最大限度地调动学生多种感官的有效参与,极大地提高了学生学习的积极性,使得学生能够在课堂上跟着教师的引导积极思维、主动探究。如:在人教版高中数学数列教学“等差数列的前n项和”的教学过程中,教师通过多媒体课件出尔:“有一堆钢管,最底下放了15根,上一层是14根,再上一层是13根,……最顶层是3根。这堆钢管共有多少根?”这个问题,同时教师出示钢管的图像,并在和学生讨论思考的过程中将讨论的结果逐步出示,或者将学生解决问题的不同方案通过多媒体课件有效地呈现出来,引发学生的积极思考,让学生能够更直观地看到不同的解题方法的过程,并在这个过程中获得数学能力的不断提升。如果教师只是采用传统的教学方式进行讲解的话,那么学生也许很难理解教师的教学思路。多媒体课件辅助教学大大提高了教师的教学效率,解决了学生对抽象的数学知识无法理解的难题,并促使学生能够在这个过程中,形成数学架构的时间的缩短。

3、高中数学数列教学的创新

数列、一般数列、等差数列、等比数列是高中数学数列教学的主要内容。其中,等差数列和等比数列是数列教学内容中的重点。主要包括对数列的定义、基本特点、通项公式、分类方法、具体应用等知识点的学习。传统的教学观念中,教学设计作为一种系统化过程,是用系统的教学方法将数列教学理论,同学习理论原理进行转换,使之成为教学活动和教学资料的具体计划。创新理念的数列教学设计解决了“教学成果”、“教学方法”、“教学目的”等问题,通过教学设计来解决教学问题,探究总结问题的解决方法和步骤,形成新的教学方案。并在新的教学方案实施以后及时的对教学效果进行分析,规划操作其过程程序,判断其实施的价值。这一过程也是教学优化的的过程,能够提高教学成果,创造出更加合理高效的教学方案。

(一)数列教学应注重问题情境的创设

为调动学生主动、合作、探索学习的积极性,实现师生互动,我们教师营造自主、合作、探索的学习环境显得很重要。在数列的教学中首先要注重数学问题情境的创设。我们创设问题情况可以考虑以下方面:学生的已有知识与生活经验及数学的趣味性、教学内容、新旧知识的衔接点以及自身的教学特色。

(二)创新理念下的“数学概念”

对数学对象本质属性进行反映的思维方式,是数列的数学概念。我们知道数列的概念是按一定次序排列的一列数称为数列。对一个数学概念的学习,应记住其名称、了解其涉及到的范围、简述其本质属性并运用其概念进行判断。数学概念包括等差数列、等比数列、通项公式和数列。

在对这些陈述性概念进行设计时,设计者应对上述概念体现的概念特点进行描述。并且在高中数学数列教学中,为了能够激发学生对数列学习的兴趣,体会数列实际应用的价值,则可以通过将生活中实际的问题引入到课程教学中,从而将抽象的数学知识转变为实际需要解决的问题,使学生学生对所要研究的内容有所认识。并且在数列学习中可以结合其他知识点进行学习。比如数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列,这样不仅能够引导学生通过多方面解决问题,而且对提高学生运用知识的能力也具有重要的意义。我们还以等差数列的定义教学为例,如:增加判断某数列是否成等差数列的题目来促进概念理解。再如:把一次函数和等差数列通项公式相联系,利用函数概念同化等差数列的概念,凸显函数思想;让学生自己列表、画图象,用“形”感受函数与数列之间联系;用方程与等差数列基本量的运算相结合来加深了对概念的理解和巩固。此外我们在教学中还要明理强化,实践探究,注重激励评价,引申探究。

有关数列收敛的毕业论文

浅谈数学中的研究性学习 (转,供参考)找个自己感兴趣的题目去写,参考范文! 现代社会知识更新的速度不断加快,在高中阶段,对学生传授的知识是有限的,学校教育不可能让学生学的知识用上一辈子。人们在获得生存与发展中所面临的问题越来越具有社会性、复杂性和不可预见性,人们所必需的知识范围与能力素养的范围急剧扩大。而作为一名数学教师我们有责任引导学生从数学的角度分析社会生活和实践活动中的问题、开展探究活动,让学生在获得必要的数学知识与技能的同时,认识知识探究与问题探索的基本方法和途径,提高参与社会生活的探究、发现和改造等一切活动中进行决策的基本能力。 一、 正确的认识是开展数学研究性学习的基础 弄清概念:什么是数学研究性学习 数学研究性学习是培养学生在数学教师指导下,从自身的数学学习和社会生活、自然界以及人类自身的发展中选取有关数学研究专题,以探究的方式主动地获取数学知识、应用数学知识解决数学问题的学习方式。它同社会实践等教育活动一样,从特定的数学角度和途径让学生联系社会生活实例,通过亲身体验进行数学的学习。数学研究性学习强调要结合学生的数学学习和社会生活实践选择课题,学生从自身数学学习实践出发,找到他们感兴趣的、有探究价值的数学问题。开展数学研究性课题学习将会转变学生的数学学习方式,变传统的“接受性、训练性学习”为新颖的“研究性学习”,它有利于克服当前数学教学中注重教师传授而忽视学生发展的弊端,有利于调动学生的研究热情,激发学生的求知欲和进取精神,从而有效提高学生对数学的探究性学习能力、实践能力、创造能力和创新意识。 数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学和现实问题的一种有意义的主动学习,是以学生动手动脑,主动探索实践和相互交流为主要学习方式的学习研究活动。 二、如何进行数学研究性学习 数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学的和现实的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和相互交流为主要学习方式的学习研究活动。它能营造一个使学生勇于探索争论和相互学习鼓励的良好氛围,给学生提供自主探索、合作学习、独立获取知识的机会。古希腊哲学家德谟克利特曾经指出:“教育力图达到的目标不是完备的知识,而是充分的理解。”我国古代教育家说得更精辟且形象:教学中应“授之以‘渔’”,而不仅是“授之以‘鱼’”。数学研究性学习更加关注学习过程,然而老师又如何让学生在数学课堂上进行研究性学习呢? (一) 从教材切入让学生在数学家探索数学规律的研究思维过程中体验研究性学习 ?在高中数学教材中有大量的材料可切入研究性学习的探索。在课堂教学中,教师应把握住“遵循大纲、教材,但又不拘泥于大纲、教材”的原则,结合生产、生活实际适当地加深、加宽,选出探究的切入点,对学生创新意识和能力进行初步培养。如:在讲复数的概念的引入时,告诉学生数的发展是由生产与生活的需要和解方程的需要推动的,是科学实际和生产、生活相结合的产物,然后要学生:解方程: 。学生一定会说无解或无实数解,教师引导学生分析“无解”和“无实数解”的区别,要学生探讨是不是有什么新的东西?如果有应该是怎样的?学生会通过探求及讨论发现此方程的解有但不是实数从而就会想到是虚的,教师要求学生用已有的方法求出方程的解,学生往往会感觉困难,教师就要问学生为什么困难?学生会说无法求,教师要求学生探求一个新的东西出来解决。 通过问题的层层揭示,并通过联系数的开方知识、解方程知识等手段来突破难点。这一过程使学生亲历数学研究之中,是学生主动地获取知识、应用知识、解决问题的学习活动。这一过程能充分调动学生的参与意识,培养学生的探索精神,启迪学生的思维,使学生能自然地掌握知识。 教师引导学生把提出的新东西进行归纳、总结,上升到理论。然后提出新的问题。如上面这节课对要求学生:解方程:x3-1=0.这样处理能再次将理论和实践结合起来,使学生感悟到在数学学研究中理论和实践之间的辩证关系。课后教师可以再布置几个探究性思考题,让学生在课外进一步巩固课堂上的探究方法和思路,拓展和活跃学生思维。 指导学生进行一题多解和一题多变也是一种研究性学习的方法。 这样以数学教材为载体渗透研究性学习,有一定的灵活性能更好的培养学生探求规律的能力。数学知识探索是数学学习的核心,用类似科学的研究方式,让学生置于探索和研究的气氛之中,亲身参与研究,体会知识及规律的探索方法,提高学生发现和解决问题的能力。 (二) 把握教材例、习题的潜在功能,有效培养学生的研究性学习能力 数学知识由纷繁复杂的客观世界抽象而来,研究性学习能力是学习数学知识的必要条件。很多教师都有一个发现:在学习单个知识时,学生似乎学得不错,但学完了多个知识或一个系统后,却变成简单的题目都不会,这除了综合能力不高外,还与平时没有养成研究性学习有关。像二倍角公式的理解就不能只知道2α是α的二倍角,类似的:4α是2α的二倍,α是的二倍, 例如:已知Sin= ,? ?, 求4的三角函数值。 分析:由,两次运用二倍角公式;又如:Cosα=2Cos 2? ?- 1 = 1 – 2Sin2 ???????? ?Cos 2? ??=? ,? Sin2 ?= ?????? ????tan2 ?= 这实际上是二倍角公式的逆向运用,得到的半角公式(或降幂公式)。有了对例题的深刻理解和研究性学习就能解决一类问题,如求的值;化简等。 通过变式、逆用、一题多解等训练思维的深度,引导学生不满足表面知识,能深入钻研问题,探求各种知识的联系,从而找到解决问题的本质和规律。 在教学上要鼓励学生敢于主动、独立的发现问题、探讨问题,敢于提问,敢于发表自己的不同观点,例如:在△ABC中 ,,求CosC值,可我在批改作业时,没有考究教材参考资料提供的答案(实际上只有),结果把正误答案颠倒。发现错误后,我主动向全班同学道歉,并表扬了善于研究思考、敢于坚持真理的同学。并及时提出新问题:(1)在△ABC中若 ,,求CosC值。有几个解?(2)在△ABC中,成立吗?作为留给学生的课外研究性学习题。学习了正弦定理后,再回头证明。通过这一问题的深刻探讨,不但使学生牢固掌握知识,更大大提升了学习的自信心和学习的热情,在潜移默化中培养了学生的科学态度和研究性学习精神。在学习等比数列前n项和知识时,有一题是:在等比数列中:已知 。在求解过程中学生得到了:? ,进一步发现:成等比数列 ,这就是研究性学习所得的成果,继续引导这一结论并推广就就可完成下面一题。证明:等比数列的也成等比数列。学生们总结前面的学习也较顺利地完成了证明,心理充满了成功的喜悦。真的没有漏洞吗?鼓励学生进行研究性学习探讨其严谨性,有学生举出了反例:数列 1,-1,1,-1……是公比q= -1等比数列,但 ,并不是等比数列;这一发现令人吃惊,因为在课本和其他所有的课外书都没有此说法。从理论上讨论:当,显然当n为偶数且q= -1时, ,不可能为等比数列。由此可见数学研究性学习的重要。 (三) 数学开放题与研究性学习 ??? 研究性学习的开展需要有合适的载体,即使是学生提出的问题也要加以整理归类。作为研究性学习的载体应有利于调动学生学习数学的积极性,有利于学生创造潜能的发挥。实践证明,数学开放题用于研究性学习是合适的。 自70年代日本、美国在中小学教学中较为普遍地使用数学开放题以来,数学开放题已逐渐被数学教育界认为是最富有教育价值的一种数学问题,因为数学开放题能够激起学生的求知欲和学习兴趣,而强烈的求知欲望浓厚的学习兴趣是创新能力发展的内在动力。80年代介绍到我国后,在国内引起了广泛的关注,各类刊物发表了大量的介绍、探讨开放题的理论文章或进行教学实验方面的文章,并形成了一个教育界讨论研究的亮点。 高考命题专家也敏锐地觉察到开放题在考查学生创新能力方面的独特作用,近几年在全国和各地的高考试题中连续出现具有开放性的题目。 数学开放题体现数学研究的思想方法,解答过程是探究的过程,数学开放题体现数学问题的形成过程,体现解答对象的实际状态,数学开放题有利于为学生个别探索和准确认识自己提供时空,便于因材施教,可以用来培养学生思维的灵活性和发散性,使学生体会学习数学的成功感,使学生体验到数学的美感。因此数学开放题用于学生研究性学习应是十分有意义的。 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 21、浅谈中学数学中的反证法 22、数学选择题的利和弊 23、浅谈计算机辅助数学教学 24、数学研究性学习 25、谈发展数学思维的学习方法 26、关于整系数多项式有理根的几个定理及求解方法 27、数学教学中课堂提问的误区与对策 28、中学数学教学中的创造性思维的培养 29、浅谈数学教学中的“问题情境” 30、市场经济中的蛛网模型 31、中学数学教学设计前期分析的研究 32、数学课堂差异教学 33、浅谈线性变换的对角化问题 34、圆锥曲线的性质及推广应用 35、经济问题中的概率统计模型及应用 36、通过逻辑趣题学推理 37、直觉思维的训练和培养 38、用高等数学知识解初等数学题 39、浅谈数学中的变形技巧 40、浅谈平均值不等式的应用 41、浅谈高中立体几何的入门学习 42、数形结合思想 43、关于连通性的两个习题 44、从赌博和概率到抽奖陷阱中的数学 45、情感在数学教学中的作用 46、因材施教与因性施教 47、关于抽象函数的若干问题 48、创新教育背景下的数学教学 49、实数基本理论的一些探讨 50、论数学教学中的心理环境 51、以数学教学为例谈谈课堂提问的设计原则 52、不等式证明的若干方法 53、试论数学中的美 54、数学教育与美育 55、数学问题情境的创设 56、略谈创新思维 57、随机变量列的收敛性及其相互关系 58、数字新闻中的数学应用 59、微积分学的发展史 60、利用几何知识求函数最值 61、数学评价应用举例 62、数学思维批判性 63、让阅读走进数学课堂 64、开放式数学教学

1、数列收敛与存在极限的关系:

数列收敛则存在极限,这两个说法是等价的;

2、数列收敛与有界性的关系:

数列收敛则数列必然有界,但是反过来不一定成立!

如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。

相互关系

收敛数列与其子数列间的关系。

子数列也是收敛数列且极限为a恒有|Xn|

若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。

收敛一定有界,有界当然不一定收敛。单调有界序列收敛在实数列时是成立的,因为这需要利用实数的连续性。一般的度量空间中不成立,比如有理数列就不成立。

根据heine定理,函数极限数列极限是可以转化的:f(x)一>a(x一>xo)的充要条件为对任何以xo为极限的数列xn!xn不等于xo,都有f(xn)一>a(n一>无穷)

相关百科

热门百科

首页
发表服务