因为不需要,如果有需要可以“制造”一根零线。零线是供电系统中和大地等电位的输电线。防爆供电系统,由于供电范围较小,完全可以采用更安全的,供电系统与大地绝缘的供电方式,所以通常不需要零线。
关于变压器的分类及用途,这里有个详细的说明变压器的应用范围十分广泛,类型很多,按用途分类有:(1)电力变压器:这是目前工农业生产上广泛采用的变压器,主要是作为输配电系统上使用的变压器。这类变压器已形成了系列,并已成批生产,从10千伏安到630千伏安容且变压器,一般称做I, I类产品,从800千伏安到6300千伏安为互类,从8000千伏安到63000千伏安为lv类,63000千伏安以上为V类。各类变压器可按各个电压等级组成各种规格的电压组合。电力变压器按发电厂和变电所的用途不同,还可分为升压变压器及降压变压器,其中低压电压为400伏的降压变压器称为配电变压器。目前从发电机所发出的最高电压为千伏,其中千伏和千伏电压最多。这样低的电压要输送到几百公里以外的地区是不可能的,电能将全部消耗在线路上。所以要想将电能从电站输送出去,必须经过变压器将电压升高到千伏,121千伏,242千伏,以及363千伏后再输送出去。高压电到供电区后,还要经过一次变电所(电压降为千伏或“千伏)和二次变电所(电压降为千伏或千伏)变压,再把电直接送到用户区,经过附近的配电变压器降压,以供工厂用电及照明用电。(2)电炉变压器:工业上使用的金属材料和化工原材料都是用电炉冶炼出来的,而电炉所需的电源是由电炉变压器供给的。电炉变压器的特点是二次电压很低(一般由几十伏到几百伏),但电流却是很大,一最大可达几万安培。我国电炉变压器一次侧的电压为10千伏或35千伏,个别的为110千伏级。(3)整流变压器:很多电气设备需要直流供电,如电车、电机车、钢厂的轧机、冶炼厂及化工厂的电解梢等。把交流变成直流是需要经过整流器《水银整流器、硅整流器等)进行,供整流器用的电源变压器,称作整流变压器。整流变压器与电炉变压器不同之处是,二次线圈接成六相或者十二相,以提高整流效率。(4)工预试脸变压器:进行高压电气设备的耐压试验和高电压下物理现象的研究时,箱买一种电压很高的变压器,这种变压器称为工频试验变压器。试验变压器的特点是,二次电压都很高,可达100。千伏甚至更高,而电流一般均为1安培,试验电缆用的,为4安培以上,运行时间都在I小时以下。(5)调压器:有些电气设备需要有能够可以经常改变电压的电源,这就需要通过调压器来实现。调压器的特点是二次侧电压变化范围很大,一般可以从零值调到额定电压。调压器因结构特点不同,又分为自棍式调压器、移圈式调压器、感应调压器及磁饱和调压器等。大容量调压器一般同试验变压器及整流变压器配套使用。(6)矿用变压器:‘专为矿坑下变电所使用的变压器称为矿用变压器,因面制成防止矿石打碎套管和防潮密封式结构。另一种是伸入到掌子面运行的变压器,称为防爆变压器。这种变压器为干式的,箱壳机械强度高,能防止气体姆炸,出线用电缆引出结构。其他特种变压器种类很多,如冲击变压器、电抗器、隔离变压器,电焊变压器,X光变压器,化成变压器,无线电变压器,换相器、增波器、互感器。变压器按结构形式分类时,又可分为单相和三相变压器,按冷却介质分类有千式变压器,汕浸变压器,充气变压器等,按冷却方式分类有自然冷却式、风冷式,水冷式,强迫油循环水冷式,强迫油循环风冷式,水内冷式等,按线圈分类有自耦变压器,双圈变压器,三圈变压器等,按调压方式。分类时,可分为有载调压和无载调压变压器,按中性点绝缘水平分类时,可分为全绝缘变压器(中性点绝缘水平与起头绝缘水平相同)和半绝缘变压器按铁心型式分类时,可分为心式,壳式,辐射式等。
防爆变压器不带零线,也不接地,因为任何一根火线与零线或者大地短路都会产生电弧火花,引起事故。
防爆器材:可以在爆炸性气体或粉尘环境中使用的器材,在使用过程中不产生电气火花、或者产生电气火花能量小于引燃爆炸能量、不会引起燃烧爆炸的器材。1、在爆炸气体环境中产生爆炸必须同时存在下列条件: 一、存在易燃气体、易燃液体的蒸气或薄雾,其浓度在爆炸极限以内; 二、存在足以点燃爆炸性气体混合物的火花、电弧或高温。2、防爆器材主要包括各种防爆电气设备: 一、旋转电机防爆结构; 二、低压变压器防爆结构; 三、低压开关和控制器类防爆结构; 四、灯具类防爆结构; 五、信号报警装置等电气设备防爆结构。防爆电机型号 d 正压型p 增安型e 隔爆型d 正压型p 增安型e 无火花型防爆变压器型号d 正压型p 增安型e 隔爆型d 正压型p 增安型e 充油型防爆 低压开关和控制器型号 ia 本质安全型ia,ib 隔爆型d 正压型p 充油型o 增安型e 本质安全型ia,ib 隔爆型d 正压型p 充油型o 增安型防爆灯具型号d 增安型e 隔爆型d 增安型防爆 信号、报警装置型号ia 本质安全型ia,ib 隔爆型d 正压型p 增安型e 本质安全型ia,ib 隔爆型d 正压型p 增安型3、防爆器材也可包括无撞击火花产生的器材,比如使用铜质工具代替铁质工具(烟花爆竹厂使用)。
沙角C电厂厂用电结线分析1 方案选择沙角C电厂(简称沙角C厂)有3台660MW机组,每台机组发出的电能都是经各自的主变压器升压至500kV,由500kV变电站进入广东省主网。发电机机端电压为19kV,主变压器为Yo/△接线,每台机有2台容量各为44MVA的△/Yo接线高压厂用工作变压器,2台高压厂用工作变压器各带一10kV机组段。全厂设1台容量为44MVA的高压厂用备用变压器及设高压厂用公用段10kV两段。厂用电接线如图1所示。对于这样一种结线,在工程谈判阶段业主和设计院曾就电厂的厂用电结线作了两个方案比较。方案一:全厂设高压厂用起动/备用变压器,而不设发电机开关;方案二:每台机装设发电机开关,而全厂只设1台容量较小的高压厂用备用变压器。方案二的优点是:a)机组正常起、停不需切换厂用电,只需操作发电机开关,厂用电可靠性高。b)机组在发生发电机开关以内故障时(如发电机、汽机、锅炉故障),只需跳开发电机开关,厂用电源不会消失,也不需切换,提高了厂用电的可靠性,同时减轻了操作人员的工作量和紧张度。这一点在沙角C厂的调试过程中,表现非常突出。同时对于国内大型机组采用一机只配一主操作员和一副操作员的值班方式非常有益。c)对保护主变压器、高压厂用工作变压器有利。对于主变压器、高压厂用工作变压器发生内部故障时,由于发电机励磁电流衰减需要一定时间,在发电机-变压器组保护动作切除主变压器高压侧断路器后,发电机在励磁电流衰减阶段仍向故障点供电,而装设发电机开关后由于能快速切开发电机开关,而使主变压器受到更好的保护,这一点对于大型机组非常有利。d)发电机开关以内故障只需跳开发电机开关,不需跳主变压器高压侧500kV开关,对系统的电网结构影响较小,对电网有利。方案一无上述优点。对于方案二,当时我们主要担心发电机开关价格昂贵,增加工程投资,以及发电机开关质量不可靠,增加故障机会。对于工程投资的比较是如果不装设发电机开关,按目前国内大型火力发电厂设计规程要求的2台600MW机组需配2台高压厂用起动/备用变压器的原则,沙角C厂则要配4台较大容量起动/备用变压器,且由于条件所限,起动/备用变压器的电源只能从沙角A厂220kV系统引接。因而,方案一需增加220kVGIS间隔4个,220kV电缆4根,220kV级的较大容量起动/备用变压器4台;方案二需增加33kV电缆1根,33kV级的较小备用变压器1台,发电机开关3台。方案一的投资可能超过方案二。对发电机开关质量问题,经调查了解,当时GEC-ALSTHOM公司法国里昂开关厂生产的空气断路器,额定电流,额定开断电流180kA,这种断路器已供应美国、法国许多大型核电站使用,运行良好。因此,我们最终选择了方案二,并选用了GEC-ALSTHOM公司的PKG2C空气断路器。目前这种断路器经在沙角C厂多年的运行,上百次的动作,证明其性能良好。沙角C厂发电机开关的主要技术参数:型号灭弧介质额定电流额定电压额定频率额定对称开断电流额定不对称开断电流额定短路关合电流额定短时承受电流对地工频耐压雷电冲击耐压峰值额定开断时间额定负载下操作顺序正常操作压力最低操作压力 PKG2C压缩空气—30min— 设计原则 高压厂用工作变压器的容量设计GEC-ALSTHOM公司对高压厂用工作变压器容量的设计原则为:a)带单机负荷的一半,加1台电动给水泵再加公用厂用负荷的一半;b)提供单机辅助负荷一半,再加2台电动给水泵。 备用变压器容量设计备用变压器的容量选择同高压厂用工作变压器容量。 10kV厂用电系统运行方式的设计由于受备用变压器容量所限,备用变压器在同一时间内只能带1段10kV公用段及1段10kV机组段,因此要求在正常情况下公用段尽量由某2台正常运行机组的高压厂用工作变压器各带1段。同时为防止不同机组的10kV段ü��枚尾⒘校�诟骰�榛�槎沃凉�枚蔚牧�缈�厣嫌械缙�账�?br> 10kV厂用电源事故切换10kV厂用电源事故切换采用自动慢切换,当正在向1段10kV公用段供电的10kV机组段由电压继电器判断为失压,且保护是反应非10kV母线段上故障时,在确认10kV机组段进线开关已跳开后,将会起动自动慢切换,经5s延时,将备用变压器低压侧10kV开关合上,从而恢复该机组段和原由它供电的公用段的供电。当保护是反应10kV母线段上故障时,则不起动自动慢切换。自动慢切换是采用传统的中间继电器和时间继电器通过硬接线来实现的。虽然备用变压器下接10kV公用段A和10kV公用段B,但由于备用变压器容量有限,在同一时间内备用变压器只能带1段公用段,从备用变压器来的10kV公用段A进线开关和10kV公用段B进线开关之间有电气闭锁,防止2个开关同时合上。同样,虽然各机组的10kV机组段各段与相应的10kV公用段各段都有联络断路器连接,但为防止正常情况下不同机组的10kV机组段通过10kV公用段并列,相互之间设有闭锁,防止同一时间2台机的10kV机组段向同一10kV公用段供电。正常情况下,厂用电源的手动切换及由备用变压器供电转为正常供电时厂用电的短时并列供电,要通过手动经同期装置进行,并经200ms延时自动跳开另一开关。由上可知,由于备用变压器受容量及上述运行方式的限制,在事故情况下只能向1段公用段及当时向该公用段供电的机组段供电,因而事故情况下后备电源只能保证机组50%的负荷。而且,如果当时该机组段未带1段公用段,则后备电源将不能向机组提供厂用电源。如果该机组又失去全部厂用电,则需要靠柴油机组来保障机组的安全。因此,该种接线对柴油机组要求较高,而目前沙角C厂使用的柴油机组质量较好,经受了很多次起动的考验。由上可见,备用变压器主要是作为全厂的1个由系统来供电的用于机组停机或停机后的安全电源,且对其中的1台机组起不到提供后备电源的作用。3 厂用电系统电压等级及切换 厂用电系统电压等级目前沙角C厂厂用电有3个电压等级:10kV电压,3kV电压,380V电压。其中10kV系统、3kV系统为中阻接地,380V系统为不接地系统。380V的照明用电和其他需要中性点接地的380V/220V系统,采用△/Yo的变压器来产生。 各级电压的切换10kV系统如前所述有电源自动慢速切换。3kV系统机组2段之间、3kV系统公用2段之间有联络开关,联络开关之间不带同期和自动切换。当需要切换电源时只能通过手动切换。380V系统机组锅炉、汽机、除尘各有2段,公用段也有2段,2段之间有联络开关,联络开关之间不带同期和自动切换。当需要切换电源时只能通过手动切换。4 开关设备型式10kV系统开关全部采用真空开关,型号HWX。3kV系统的进线开关采用真空开关,馈线采用F-C回路,型号HMC1172。380V系统的进线开关采用空气开关,接触器、熔断器。5 结束语沙角C厂厂用电结线采用装设发电机开关的接线型式,机组正常启停不需要切换厂用电,在遇到发电机开关以内的故障如发电机、汽轮机、锅炉故障时,只须跳开发电机开关,不需要切换厂用电,厂用电扰动小,可靠性提高,减轻运行人员的工作量,特别是故障情况下的工作量,给运行人员带来极大便利,受到电厂运行人员欢迎。尤其是机组在调试过程中,大部分的机组跳机都是来自锅炉和汽机,这一点在沙角C厂表现非常突出。沙角C厂调试过程中上百次的跳机绝大部分都是锅炉和汽厂调试过程中上百次的跳机绝大部分都是锅炉和汽机引起的。沙角C厂由于后备电源作用较组的正确起动要求较高,应选用高可靠起动的柴油机。目前,沙角C厂厂用电结线的缺点是由于只有1台备用变压器且自动投入只对带公用段的机组,而使第3台机的10kV段不能得到后备电源,降低了该台机厂用电的可靠性。在装设发电机出口开关下采用2台机组和1台后备变压器,该台备用变压器容量大于或等于1台高压厂用变压器的容量,或改善备用电源自动切换回路或设专门备用段较为合适。目前台山电厂的评标方案就是采用前一方案的。
电气自动化应用逐渐深入人们日常的工作与生活之中,使人们的生活方式发生了巨大的变化,电气自动化就是电气信息及其自动化工程,常见的家用电器都与电气自动化息息相关。下面是我为大家整理的电气自动化专业 毕业 论文 范文 ,供大家参考。
《 电气自动化技术在电气工程的运用 》
【摘要】所谓电气工程内部自动化应用技术,就是希望透过不同类型自动检测途径,以及专属控制器具,进行远程性电力系统精准调试和监管,进一步确保对周边不同区域企业、居民的电力供应质量,同步处理好内部各项经济、安全类事务。尤其最近阶段,我国不管是经济或是高新技术研发实力,都产生本质性的变化结果,这对于后期一线技术人员专业技能、素质等,更提出较为严格的规范要求。笔者的核心任务,便是依据如今我国电气自动化控制系统设计规范要求和发展态势,进行后期各项全新应用方案筹备,希望能够为相关领域工作人员,提供些许指导性建议。
【关键词】电气工程;自动化;系统功能;应用 措施
电气工程,在当今高新科技领域中的支撑地位毋庸置疑,其主张时刻以计算机网络为主导媒介,透过本质层面上整改基层人员生活、工作模式。而电气自动化涉足行业类型繁多,如电气开关设计和航天科技研究等,毕竟电力才是全方位提升人民生活质量的物质基础,针对电气工程中自动化技术应用细节,加以充分论证解析,绝对是迎合时代发展步伐的必要途径。
1目前我国电气工程内部电气自动化技术设
计规划的核心原则论述(1)其主张利用有限地资源,进行不同产品工艺制备流程电气自动化改造诉求满足。(2)电气自动化应用方案切勿过于复杂,旨在清晰划分处置机械、电气之间的关联特性。截至至今,大多数民用或是高新科技产品,都主张借助电气自动化技术予以改造,不可避免地牵涉到工艺形式创新、制造成本缩减、维护便捷性控制等问题。归根结底,技术人员在进行电气自动化方案布置应用过程中,需要精准地控制不同类型电器部件,确保现场施工的安全可靠状况,以及人工智能操作维护的简单、人性特征。
2电气自动化技术在电气工程中灵活拓展沿
用的措施内容解析在电气工程领域内部改良延展自动化应用技术,其优势特征包括:①大幅度提升电气设备全程运行的安全、稳定水准。②全面深入地克制以往定期故障检修方式下遗留的诸多弊端,同步提升电力系统日常工作绩效,获取更多企业的广泛认知和大力推广沿用成就。尤其是透过技术应用层面观察,全新时代背景下的电气工程,有关内部状态检修技术,具体倾向于在电气工程中应用资产管理系统事务,将其在工程状态监测、故障诊断等方面的功能如数发挥,届时提供状态检修过程所需中的状态数据信息;同时,结合相应的数据,准确预测电气工程中各种电气设备的实际运行状态、存在的安全故障以及故障出现的因素等。有关诸多应用控制细节表现为:
电网调度层面
处理电气工程内部的电网调度自动化改造事务,需要快速集合调度中心内的 显示器 、打印装置、计算机网络、服务终端等,其核心动机在于针对电网运营质量加以经济化调度,使得电网运行细节,都能够得到细致地监控、验证解析,方便在任何时间范围内,快速搜集电力生产期间的数据,使得发电控制、电力系统状态科学评估、合理调度、电力负荷预测等工序,都能够自动交接。如若当中衍生任何事故,电气自动化系统会快速追踪发生源,辅助技术人员在当下制定实施合理对策,尽量防止事故扩散,节省合理数目的成本资金。
发电厂分散测控系统应用层面
此类系统主要包括以太网、工程师工作站等分层分布结构单元,可以直接接受热电阻、电气量、开关量,以及脉冲量等信号,经过自行处理过后,针对既有设备运行参数加以实时显示,稳定内部信号输出效率,并将最终结果予以打印,妥善的处理设备与设备,线路与设备,线路与线路之间的关联,长此以往,对于快速贯彻电气生产中各类细节的实时监、保护指标,辅助功效异常深刻。
变电站、配电工程层面
就是说在变电站透过不同类型自动化设备和计算机系统,替代过往复杂的人工作业,顺势提升变电站整体运作实效。透过此类角度观察验证,变电站内部自动化技术,主要是用以多层次、全方位地监控相关设备安全运行状况。技术人员需要全程利用微机设备,进行电磁式装置替代,顺势衔接自动测量、远程监控、事故信息自动记录等设备,完成操作监视图像、智能化改造指标,使得最终变电站能够顺利朝着综合自动化方向过渡扭转。
3结语
按照以上内容论述,电气自动化在电气工程中的应用结果,是一类国家综合式经济、科研实力的象征产物,特别是经过全球化、现代化科学技术发展过后,我国电气工程内部自动化应用功能获得全面新生,开始朝着不同学科领域内自由扩散。今后,相关工作人员要做的便是,主动联合不同实际状况进行思维创新,争取为我国电气自动化技术全面改造沿用,创设应有的支撑辅助贡献。
作者:张诗淋 赵新亚 单位:沈阳职业技术学院电气工程学院
参考文献
[1]王伟.浅谈电气自动化技术在电气工程中的应用[J].黑龙江科技信息,2013,38(36):123~130.
[2]牟佳媛.电气工程中自动化技术的运用[J].科技创新与应用,2013,14(01):88~91.
[3]乔荣耀.电气自动化技术在电气工程中的应用研究[J].黑龙江科技信息,2014,19(17):123~138.
《 电气自动化技术在供电系统中的运用 》
1供电系统中电气自动化技术应用设计的原则
电气自动化技术在我国供电系统中的应用设计占据有重要的地位,极大的提高了我国供电系统技术的现代化水平,增强了其运行的稳定性和可靠性。因此,在对供电系统中电气自动化技术进行应用设计的过程中,要严格遵循以下原则,以提高供电系统中电气自动化技术应用设计的效果。
应用选型原则
选择恰当的自动化设备是确保电气自动化技术在供电系统中有效应用的重要物质性前提。因此,在供电系统电气自动化技术应用设计的过程中,首先要遵循相应的选型原则,即主要从远程调动及自动化系统监控的角度进行自动化设备功能选型,亦要注重自动化设备选型接线的简便性以及性能的稳定性、价格的合理性,以便于日常运行过程中的维护。
应用设计原则
在将自动化技术应用到供电系统的过程中,要遵循以下方面的应用设计原则:一是开关设计原则,即在供电系统中,对于需要远程操控的计算机监控系统开关,必须选用同时具有远程分闸和合闸功能的智能开关,以便于计算机监控系统远程操作功能的顺利实现;二是继电保护原则,即在供电系统规划设计中,要综合考虑变压保护和综合电气自动化技术在机电保护装置中的应用,以便于实现继电保护装置效用发挥的最大化。
2供电系统中电气自动化技术应用设计的重要性
供电系统中电气自动化技术应用设计的重要性主要体现在以下方面。
有利于供电系统电力管理目标的实现
将电气自动化技术应用到供电系统中,不仅可以有效提高供电系统的信息化技术水平,亦可以实现对供电系统运行的连续性、自动化和智能化监控,从而使得相关工作人员可以随时掌握供电系统的运行状态,使整个电力系统形成一个完整的有机整体,从而更好的实行对供电系统的管理控制工作,实现供电系统的电力管理目标。
有利于实现供电系统中设备运行的高效率、低成本
在供电系统规划设计中应用电气自动化技术,不仅可以将无功补偿技术、节能结束等相关技术与电气自动化技术进行有机结合,亦可通过节能机械设备的选用实现供电系统运行的低损耗,并有效对供电系统中的超负荷运行进行调整,实现供电系统中设备运行的高效率、低成本。
3电气自动化技术在供电系统中的应用设计方向
供电系统综合自动化技术与智能保护的应用设计方向
随着我国电气自动化技术以及供电系统自动化保护理论的不断发展,微机技术、综合自动控制技术以及网络通信技术等相关技术在供电系统中的电气自动化保护装置中得到了广泛的应用,不仅实现了供电系统电气自动化保护装置控制的智能化,亦有效提高了供电系统电气自动化保护装置运行的安全性和效用性,而基于综合自动化技术的综合自动化保护装置则在不同电压等级的变电站中得到了广泛应用。
供电系统自动化实时仿真系统的应用设计方向
供电系统自动化实时仿真系统是电气自动化技术在供电系统中应用的重要方向之一,其是在实时仿真建模以及负荷动态特性监测等相关研究的基础上发展起来的,并随着电气自动化技术在供电系统中应用的逐渐成熟而引入了实时数字模拟仿真系统,为供电系统的暂态试验、稳态实验等营造了良好的实验环境,并经过实验提供了更加接近供电系统真实运行状态的实验数据,为新装置的实验测试提供了安全、稳定以及可靠的实验条件。
供电系统人工智能的应用设计方向
专家系统、模糊逻辑等都是供电系统人工智能的应用设计方向,并随着电气自动化技术的逐步发展和完善,并广泛应用在供电系统及其相关元件中,主要包括供电系统的运行分析以及元件故障诊断等;与此同时,随着供电系统中相关智能控制理论研究的日益成熟和完善,人工智能逐渐与机械智能等结合在一起,不仅有效提高了供电系统的智能化和自动化水平,亦大大提高了供电系统的稳定性。
供电系统配电网电气自动化的应用设计方向
电气自动化技术在供电系统配电网中的应用设计相对而言,比较成熟,且截止到目前,已达到国际的标准规范。电气自动化技术是实现供电系统配电网电气自动化的关键性技术,该技术在配电网电气自动化中应用的最大创新之处在于,其将高级现代化软件、配电网信息一体化技术以及数字化技术等相关技术进行有机融合,克服了传统配电网系统技术路由以及载波消耗等技术的缺点,有效提高了供电系统载波接收的精准度。
4供电系统中电气自动化技术主要的应用设计
就目前我国电气自动化技术在供电系统中的应用设计主要体现在以下方面。
供电系统电气自动化集中监控的应用设计
电气自动化技术在供电系统中应用的最大优势在于其具有操作灵敏性、远程跨界操作方便等方面的特点,且以电气自动化技术为基础的供电系统电气自动化集中监控系统设计相对较为简单。但值得注意的是,电气自动化集中监控系统是由统一处理器对相关数据进行搜集和整理,这就导致处理器的功能处理任务较为繁重,且速度较为缓慢;与此同时,由于要对供电系统运行过程中的电气设备运行状态进行全面的监控,不仅会造成主机冗余下降,亦会导致电缆数量的增加,加大投资成本;此外,长距离电缆亦会影响影响到电气自动化集中监控效用的发挥。因此,在供电系统电气自动化集中监控系统设计的过程中,要考虑到相关因素对系统功能发挥的影响,以便于保障电气自动化集中监控系统运行的稳定性、可靠性以及安全性。基于此,电气自动化集中监控系统被常用在小型电气自动化监控中,并没有在全场供电系统中得到广泛的应用。
外电缆设计和电力监控器的选择
基于电气自动化技术在供电系统应用的逐渐成熟,变配电站中的外部电缆设计越来越简便,不仅能满足变配电站的功能需求,亦降低了设计成本。就目前我国变配电站外部电缆线的设计来讲,一般只有两部分构成:一是额定电源为220V的交流电源线;二是通信电缆,常用的主要有两种类型,即屏蔽电缆和双芯屏蔽双绞线。值得注意的是,在进行选型的过程中,一般每种类型的通信电缆都需要选用两对,其中一对正常使用,而另一对则用于备用,以备不时之需。而在对电力监控器进行选择的过程中,要着重考虑两方面的因素:一是电力监控器的抗干扰性;二是电力监控器运行的稳定性和可靠性;此外,在供电系统电力监控器具体选型的过程中,要根据供电系统的电源类型进行选型,具体表现在:一是当供电系统为220V的直流电源时,一般选择直流屏作为电力监控器,以便于供电系统进行集中供电;二是当供电系统为10kV以下时,在进行电力监控器选型的过程中,既要考虑到供电的集中性,亦要考虑到设备的监控功能。
变压电站综合电气自动化系统的选用
就目前电力市场的生产状况来看,存在众多变压电站综合电气自动化系统设备的生产商,且各生产商所设计和生产出的电气自动化系统设备标准、参数等各有不同,如国外比较好的西门子等。但是值得注意的是,在进行电气自动化系统设备选型的过程中,一定要考虑到我国供电系统的具体情况以及其对电气自动化系统设备的功能性需求以及相关参数要求,以便于所选用的设备能够正常应用在我国供电系统中,满足网络互联、数据库建设等方面的功能需求,以为供电系统中电气自动化技术的进一步应用提供相应的参考和支持。
5电气自动化技术在供电系统中应用设计的发展前景
随着电气自动化技术在我国供电系统中应用设计的逐渐成熟以及领域的不断扩大,其具有广阔的发展前景,体现出以下方面的发展趋势:一是电气自动化技术在我国供电系统中应用设计的国际标准化,如IED在我国供电系统中应用的兼容性和信息共享性等已达到国家标准;二是以太网技术的应用,该技术具有数据传播速度快、数据载量大等方面的特点,其在满足供电系统通信实时性方面具有较大的优势,在供电系统中的应用前景较为广阔;三是电气自动化技术与数字化、信息化等相关技术的有机结合,并在基于大量信息的基础之上,组合成由多维空间信息、动态变化信息以及高分率信息共同构成的电气自动化数字地球,创新了电气自动化技术在供电系统中的应用。
6结语
综合上述可知,电气自动化技术在供电系统中占据着重要地位,极大的提高了供电系统运行的智能化和自动化,推动我国供电系统技术与国际的接轨。因此,在进行供电系统规划设计的过程中,要 种植 电气自动化技术在其中的应用,并在遵循相关应用原则的前提下,将人工智能、仿真设计、实时监控等电气自动化技术应用在供电系统的配电网、变电站等中,提高供电系统运行的稳定性、可靠性和安全性。
《 电气自动化控制在建筑工程中的应用 》
1现代建筑中电气技术的应用特点
电气自动化应用于现代建筑的背景
改革开放以来,随着国民经济的发展,以及人们生活水平的不断提高,生活质量有了很大的飞跃,生活环境的舒适度、信息交流的简便性、服务设备的完善性等等,备受人们的关注和青睐。这就给建筑设施的健全性以及电气设备的功能带来了巨大的挑战。除此之外,随着建筑物高度的不断增加,给照明控制系统,供配电系统,以及消防控制系统等的管理和运行带来了严峻的考验。在这种情况下,以电气自动化技术为支撑的智能建筑设计是我国建筑行业发展的必经途径。
电气自动化控制的特点与技术优势
电气自动化控制系统是由电力、空调、防灾、防盗、运输设备等构成综合系统。智能楼宇自动化是自动化技术应用在现代化楼宇方面的技术,其子系统之间相辅相成,缺一不可,通过子系统之间的相互作用,可以对建筑整体的进行楼宇温度控制、湿度控制、电梯控制、照明电气控制等。随着全球智能化的发展,可以预见,楼宇建筑的自动化性将会越来越高。电气自动化技术主要包括电力电子技术和微机控制技术等高新技术,广泛用于供配电、各种电气设备、电气控制及自动化系统的安装调试、方案设计、设备维护、技术改进、产品的开发及管理中。主要具有以下几方面的优势:首先,联动性较高。电气自动化控制技术采用电子传感技术、计算机与现代通讯技术对包括采暖、通风、电梯、空调监控,给排水监控,配变电与自备电源监控,火灾自动报警与消防联动,安全保卫等系统实行全自动的综合管理,各个子系统之间可以通过信息进行沟通和互动。其次,有很强的安全性。由于电气系统本身就具有危险性,设备出现故障、操作不规范,以及环境突变等都可能是导致系统产生严重安全风险的原因。通过自动化控制可以使系统在发生危险时快速发现并解决,另外,在一定程度上通过远程遥控还可避免故障对维修工作人员产生直接的危害。最后,具有健全的数据以及精准的计算。自动化系统可以根据自身的操作流程、故障处理等数据建立完善健全的数据库以及精准的计算,为后期进行信息优化决策提供条件。
2现代智能建筑中自动化系统的组成及其功能的实现
现代智能建筑中自动化系统的工作原理如下:实时的数据采集;实时的控制决策;实时的控制输出。其系统包括自控给排水系统、照明控制系统、供配电系统以及消防安全系统等。其中,给排水系统包含生活给水系统、生活排水系统、市政给排水管网系统、市政水处理(包括给水处理以及废水处理)建筑给排水、 雨水 系统、消火栓系统、喷淋系统等。照明控制系统能够满足和实现不同的灯光效果,而且还能改善工作环境,提高工作效率,节约能源,延长灯具寿命,减少用户维护费用等等。供配电系统先从发电厂发出经过升压变压器(升压)到线路,中枢变电所这一部分为供电系统从中枢变电所经线路到用户变压器,开关柜这一部分完成大的配电系统从用户变电所到各个厂区或用电负荷,最后完成全部的配电。消防控制系统是指接到火警后,发出信号,相关设备自动转到到消防状态。例如电梯,在接到火警信号后,电梯自动关门转为下行至首层,由进入轿厢的消防员控制运行。除了以上所说的控制系统之外,为了满足不同人群对不同功能的需求,可以相应的根据建筑环境设置一些特定的子系统,如停车场管理系统、智能家居服务系统、物业管理应用系统等,实现个性化的自动管理。在现实生活中,为了实现现代智能建筑电气自动化系统功能的丰富性,必须建立一套完善健全的数字化控制体系,这是实现控制技术应用的基本条件,与此同时,建立远程控制管理中心,这样可以对本地控制台出现的故障及时进行处理,以此提高数字控制体系的安全性与可靠性。
3电气自动化控制在智能楼宇中的应用
随着我国综合国力以及经济实力的迅猛发展,建筑智能化在我国得到了全面的推广,它的出现为人们的生活和工作带来了极大的便利,这就加快了智能楼宇进程的日新月异。智能楼宇主要包括安防系统、计算机网络、通讯系统、楼宇自控系统等等,在很大程度上满足了人们的需求,电气自动化控制是智能楼宇功能发挥的技术保障,在智能楼宇中有着不可替代的地位。
建筑电气设备自动化系统安装前,制定科学的计划
建筑电气设备自动化系统质量的好坏直接不仅影响建筑物功能是否正常运行,而且还影响该建筑的环境效益与经济效益。因此,在施工前,相关工作人员不能盲目地按照图纸进行施工,全面了解设计方案,及时对设计图纸中的不足提出改进建议,避免工程返工的情况。此外,还要依照业主的需求及利益,制定出科学合理的安装计划,严格按照操作程序进行施工,以此满足建筑本身以及业主的相关需求。
电气设备的安装
电气设备的正常运行是保证建筑电气设备自动化系统功能充分发挥的前提。电气设备的安装调试是保证其正常运行的基本条件,需进行以下步骤:首先,一定要理解整个设备的工艺流程、控制流程,熟练掌握电气设备要用到的各种仪表。其次,仔细研究设计方案及施工图纸。最后,根据设计图纸对电气设备内部的接线了解清晰,接着就可以对设备进行实际的接线。在所有设备调试完毕后,再对其进行安装施工。在设备安装时,必须严格根据设备的安装要求与规范进行安装。这里需要注意的是,在接线前一定要先进行校线,在确定设备外观完好、接线正确、外来信号正常的基础上,方可让使用方开始带电调试,在送电之前,要将所有断路器保持断电状态。
4结束语
众所周知,世界经济一体化、全球化是当今世界经济发展的主流,要想增强我国的综合国力,就要大力发展作为支柱性产业之一的建筑行业。然而,由于人们对建筑设计的要求逐渐增加,以往的传统性建筑已经满足不了人们的需求,于是智能楼宇出现在人们的视野之中,其带来的高品质生活享受,令人们向往不已。而智能建筑的建立又离不开电气自动化控制技术的支持。换句话说,智能建筑的出现,给电气自动化工程的发展带来了很好的平台,被广泛应用于很多领域及专业,其技术具有更新速度快,复杂程度高等特点,因此,需要相关工作人员不断地学习及积累 经验 ,与时俱进。
有关电气自动化专业毕业论文范文推荐:
1. 电气自动化毕业论文范文
2. 电气工程自动化毕业论文范文
4. 电气自动化论文精选范文
5. 电气自动化毕业论文
6. 电力系统自动化论文范文
能提供低成本风电的新型风力机 - 【摘要】第一代商用扩散体增强型风力机(DAWT)在新西兰刚开始两年试运行,如果开发者的预期结果得以实现,这种新设计的风力机可促使风电成本大幅度降低。 在距新西兰奥克兰南约100km的Waikaretu的一座小山顶上,一台革命性的新型风力机正在进行为期两年的试运行。这座风力机的外观与常规风力机相比完全不同,其高度为17m,很象一巨物蹲在山顶上,而常规风力机则为一细长体,高高地矗立在山顶上。 这是投入运行的第一代商用扩散体增强型风力机(DAWT: diffuser augmented wind turbine),如果开发者的预期结果得以实现,将导致风力发电成本大幅度降低。在试验新的风力机技术的同时,也可以试验扩散体环罩的新材料、高强钢丝纤维加强的钢筋混凝土。此种风力机在当地被称为"混凝土风力机"。在商业上,它被称为Vortec7型风力机,因为它有一个7m直径的转子。 风力机由近100家小型投资商组建的私人公司-Vortec能源有限公司负责设计和建设,该公司筹集了350万美元开发原型机。Vortec能源有限公司目前正在进一步筹集约700万美元,拟建设两台转子直径为20m的机组。其中一台新机组将在高风速地区试验,很可能在新西兰的惠灵顿附近,另一台在平均风速区。南澳大利亚州政府已对设计表示了很大的兴趣并将在Adelaide附近加速安装平均风速机组,因为州政府认为风力是一种少有的可再生能源,需要从技术上突破来带动州内占优势的较低平均风速资源的开发。 两台新型的转子直径20m的机组成功地运行后,Vortec能源有限公司将考虑在Nasdaq股票交易所上市的可能性。Vortec7机组的性能数据表明,转子直径20m的设计能够以低于美元/kWh的价格上网,它将使风力发电可与新西兰现有的电厂相竞争,与其它新的发电方式相比,更具竞争力。如果Vortec型风力机能以这种价格水平发电,在风电开发中它将迅速成为一股强大的新生力量。 Vortec能源有限公司的后盾是企业家Robin Johannink,他成功地经营着一系列业务,也是Pacific Lithium公司(一家从海水中提取锂的公司)的后盾。Johannink先生讲Vortec技术是一项国际产品,但该技术在新西兰股票市场上所获得的认可和重视还不太高,难以在此上市。因此Vortec能源有限公司正在考虑在纽约的Nasdaq交易所上市,很可能在1999年实现。 1 扩散体技术 美国的航天巨头Grumman空间公司(现在的Northrop Grumman公司)花费了8年时间开发扩散体技术并拥有扩散体增强型风力机技术的专利。它进行了扩散体流体动力学的详细分析,并使用一5m的模型在风洞中证实了分析结果。扩散体位于风力机转子的下游,其作用就象一个机翼,在转子后部产生低压部位。这种"抽吸效应"有效地使转子周围的风速成倍增加。常规的风力机只能有效地利用转子周围风速的60%左右。<图01>示出了扩散体的流态。 扩散体经济性的关键在于以最低成本获得最大的尺寸。风洞研究表明在45度扩散体结构中,内壁附面流可由两级风槽射流所维持。在该原型中,扩散体的总尺寸进一步减少,通过采用总长与出口直径比为30%的弧形结构,环罩硬度增强。使已选择的设计以最低的材料用量获得了最大的扩散体尺寸。 Vortec能源有限公司获得了Northrop Grumman公司颁发的拥有扩散体技术、为期20年的全球专利权及此后20年专利更新权的许可证。Northrop Grumman公司保留了它们自己内部使用扩散体增强技术而不用于风能商业市场的权利。Kenneth Foreman,原Grumman空间公司研究小组的领导者,为Vortec Energy公司的技术咨询,Vortec能源有限公司获得了Grumman空间公司研究小组8年研究的所有记录、试验报告及专利。 2 材料技术 Grumman空间研究小组在开发扩散体增强技术中所遇到的一个问题是商业规模风力机材料必须具有强度高、寿命长、成本低的特点。曾对铝、玻璃纤维、钢和传统钢筋混凝土进行过评估和核算,但都不能满足风力机经济开发的要求。在所有评估的材料中,最可取的是钢筋混凝土,但使用传统的钢筋混凝土,扩散体尺寸使风力机额定出力只能达到70kW。由于机组规模太小无法对扩散体增强技术进行商业开发。 新西兰在使用钢筋混凝土建造水塔和远洋快艇之类设备方面有悠久历史。在此基础上,结构工程师Alexander和Associates在20年中开发了一种新型的产品-高强钢丝纤维加强的钢筋混凝土。这种新材料的抗弯强度是低碳钢的3倍,基本上不需要维修。这种新材料可以经济地建造较大的扩散体,从而使风力机有足够的出力和常规风力机相竞争。 原型机转子直径为7m,高度为17m,最高出力为1MW。将要建设的两台机组使用20m直径的转子,高52m,出力为3MW。 扩散体使用两层3m×1m×30mm的高强钢丝纤维加强的钢筋混凝土板复合而成。第一层板沿着复杂的框架弯成所需的双向曲面,并固定就位。第二层板放在顶部,弯曲成形,然后在基础板上灌浆锁定双向曲面。再将这些曲面板粘结到一起,并对其边缘进行硬化处理构成扩散体扇形段。完整的扩散体装配好之前,在奥克兰大学工程院对单块板和装配好的扩散体扇形段样品进行了应力测试。 3 设备平衡 除了扩散体增强技术和材料技术外,风力机全部是常规的。转子配备有定节距的4个叶片,该叶片内为焊接钢架构,表面材料为玻璃纤维。转子通过一David Brown升速变速箱驱动一常规的1 200min-1、400V的ABB公司生产的同步发电机,发电机变频运行。转子、变速箱和发电机(<图02>)由美国的新世界电力公司(New World Power)提供。 变频交流电先整流成直流电,然后逆变为50Hz的交流电,经升压变压器送入当地电力公司的11kV电网。整流器/换流器设备由奥克兰公司Santon技术有限公司设计和制造,该公司对电池充电器和变速驱动器的制造有多年经验。 考虑到扩散体的尺寸,需要一大型稳定的地基防止在大风载荷下和地震时倒伏。设备被安装到一大直径环行轨道上,风力机可以沿它旋转360度,轨道上的旋转装置装有迎风控制系统的电动装置(<图03>)。这种布置提供了稳定的基础。 由于该种风力机可以避开大风且扩散体罩具有保护转子不受大风影响的能力,因而转子设计简单不需要控制叶片节距。这使得该种风力机非常适合在大风地区使用,且维修量很小。 4 设计的优点 扩散体增强型风力机与常规风力机相比有许多优点,包括: 噪音低。常规风力机噪音来自速度最高的转子顶部,并通过叶片传向支柱。在Vortec机组中,转子被一种高密度材料所覆盖(扩散体),它防止了噪音从转子末端向外辐射,因此没有像用常规设备时大的支柱产生的噪音。 用地少。就同样的能源输出而言,Vortec机组与常规风力机相比需要较少的用地,减少了土地购置和租用费用。 不影响景观。Vortec机组很容易地涂上各种颜色,当从远距离观看时能与各种背景相融合,设备蹲坐的外形与起伏的山村很协调。 可衰减阵风。扩散体在增加出力的同时,也作为阻风门,衰减阵风的峰值,因而减少了转子所承受的转距波动和驱动器上的应力。 鸟类撞击少。尽管风力机能涂上不同的颜色降低了视觉影响,但对于飞到附近的鸟类却很醒目,不会出现鸟类撞击快速旋转的风力机叶片的事故。 基建费用和发电成本低。风力机使用了非常简单的定节距叶片,不需要节距控制制动器或控制系统。这将大幅度降低维修费用,特别是在新西兰的大风地区,并将确保很高的设备可用率。 5 发展前景 转子直径为7m的原型风力机将要进行6个月的试运行,对控制系统进行仔细调试并验证设计参数。初步测量数据表明,风力机转子风速增强了约倍,这与Grumman空间公司研究小组的计算和它们在模型上进行的风洞试验结果相吻合。 Vortec Energy公司已获得新西兰科学与技术研究基金业务发展部的资助约350000美元,用以支付6个月试验期的费用。 监视和试验方案的技术支持由工业研究有限公司(Industrial Research Ltd.)和奥克兰大学咨询小组(Auckland Uniservices)提供,另外还邀请了英国国际风能咨询专家Garrad Hassan独立检验和监督Vortec7机组的试运行计划。 表1给出了Vortec机组未来的开发方案。 如果试验方案产生的结果与预期的相吻合,将来扩散体增强型风力机将成为全球风电开发方案的一个主要部分,可广泛用于其它待开发的地区。支持该技术的投资者虽承受高风险,但它可能获得高的回报。
600MW的机组直接连到升压变,就是发电机——升压变压器组接线
升压变压器高压侧一般是3/2接线
一般所说的进出线,进线是电源线、出线是负荷线
2×600MW,那就是2回进线了,出线要看你是几回线路接入电力系统
3、 [电气工程与自动化]电力变压器的差动保护 论文+答辩ppt摘 要电力变压器是电力系统普遍使用的重要电气设备,它的安全运行直接关系到电力系统供电和稳定运行,特别是大容量变压器。同时差动保护是变压器非常重要的保护,因此,必须根据变压器的容量和参... 类别:毕业论文 大小:650 KB 日期:2008-09-24 4、 [电气工程与自动化]电力变压器电流保护 论文+答辩ppt摘 要电力变压器是电力系统中普遍使用的重要电气设备,他的安全运行直接关系到电力系统供电和稳定运行,因此,必须根据变压器的容量和重要程度装设性能良好的、动作可靠的保护元件。本次毕业设计... 类别:毕业论文 大小:725 KB 日期:2008-09-24 5、 [电气工程与自动化]35KV工厂电源变压器保护设计 论文+答辩ppt摘 要变压器是工厂供配电系统中不可缺少的重要电能转换设备,它的故障给供电可靠性和系统的正常运行带来严重的后果,同时大容量变压器也是非常贵重的元件。所以必须根据变压器的容量和重要程度装... 类别:毕业论文 大小: MB 日期:2008-09-24
电源变压器设计原则要求和程序电源变压器的功能是功率传送、电压变换和绝缘隔离,作为一种主要的软磁电磁元件,在电源技术中和电力电子技术中得到广泛的应用。根据传送功率的大小,电源变压器可以分为几档:10kVA以上为大功率,10kVA~为中功率,~25VA为小功率,25VA以下为微功率。传送功率不同,电源变压器的设计也不一样,应当是不言而喻的。有人根据它的主要功能是功率传送,把英文名称“Power Transformers”译成“功率变压器”,在许多文献资料中仍然在使用。究竟是叫“电源变压器”,还是叫“功率变压器”好呢?有待于科技术语方面的权威机构来选择决定。同一个英文名称“PowerTransformer”,还可译成“电力变压器”。电力变压器主要用于电力输配系统中起功率传送、电压变换和绝缘隔离作用,原边电压为6kV以上的高压,功率最小5kVA,最大超过上万kVA。电力变压器和电源变压器,虽然工作原理都是基于电磁感应原理,但是电力变压器既强调功率传送大,又强调绝缘隔离电压高,无论在磁芯线圈,还是绝缘结构的设计上,都与功率传送小、绝缘隔离电压低的电源变压器有显著的差别,更不能将电力变压器设计的优化设计条件生搬硬套地应用到电源变压器中去。电力变压器和电源变压器的设计方法不一样,也应当是不言而喻的。高频电源变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。按工作频率高低,可分为几个档次:10kHz~50kHz、50kHz~100kHz、100kHz~500kHz、500kHz~1MHz、1MHz以上。传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较高。这样,既有工作频率的差别,又有传送功率的差别,工作频率不同档次的电源变压器设计方法不一样,也应当是不言而喻的。如上所述,作者对高频电源变压器的设计原则、要求和程序不存在错误概念,而是在2003年7月初,阅读《电源技术应用》2003年第6期特别推荐的2篇高频磁性元件设计文章后,产生了疑虑,感到有些问题值得进一步商讨,因此才动笔写本文。正如《电源技术应用》主编寄语所说的那样:“具体地分析具体的情况”,写的目的,是尝试把最难详细说明和选择的磁性元件之一的高频电源变压器的设计问题弄清楚。如有说得不对的地方,敬请几位作者和广大读者指正。
电力变压器预防性试验都有那些?
1、绝缘油试验或SF6气体试验;2、测量绕组连同套管的直流电阻;3、检查所有分接头的电压比;4、检查变压器的三相接线组别和单相变压器引出线的极性;5、测量与铁芯绝缘的各紧固件(连接片可拆开者)及铁芯(有外引接地线的)绝缘电阻;6、非纯瓷套管的试验;7、有载调压切换装置的检查和试验;8、测量绕组连同套管的绝缘电阻、吸收比或极化指数;9、测量绕组连同套管的介质损耗角正切值tan ;10、测量绕组连同套管的直流泄漏电流;11、变压器绕组变形试验;12、绕组连同套管的交流耐压试验;13、绕组连同套管的长时感应电压试验带局部放电试验;14、额定电压下的冲击合闸试验;15、检查相位;16、测量噪音;17、变压器空载损耗及空载电流的测量;18、变压器负载及阻抗电压测量。
目前电气设备预防性试验存在哪些问题,对电气设备实施状态检测的必要性和意义如下:
变压器(包括电抗器)和油浸互感器变压器油中总竖、氢和乙炔超标问题。
由于变压器油只有在局部放电(温度可达3000C以上)或局部过热(温度可达1 000℃以上)时才能分解出氢、乙炔和其它碳氢化合物。
所以通过定期预防性试验发现总竖、氢或乙炔超标,或未超标但有上升趋势时,说明设备内部可能已出现局部放电或过热故障了,应给予足够的注意。一般单位对这项试验都能按原部颁《电力设备预防性试验规程》(以下简称"预试规程")执行,但对测试数值的分析和处理往往注意不够,主要表现在以下两个方面:认为测试数值不超标就平安无事。
如有的单位在定期试验时突然出现乙炔,但不超过标准5 ppm,就认为没有问题,让设备继续运行,实际上乙炔的出现即说明设备内部可能出现局部放电或局部高温过热。如某厂一台互感器在预试中出现乙炔,在安排吊芯检查前一天发生爆炸;某厂一台互感器出现微量乙炔,通过及时吊芯检查,发现了局部放电点。110 kV及以上电压等级电流互感器氢气超标比较普遍。
有的供电局氢气超标的电流互感器多达几十台,甚至上百台,大都未采取措施及时处理。部分单位对氢气超标问题有不同看法。如某省电力试验研究所规定,若其它各项试验合格,仅单一的氢气超标可当成一级绝缘使用。但在国外制造厂中有的却把产生氢气作为掌握和控制设备内部故障的唯一指标。
因为变压器油中的溶解气体色谱分析是目前掌握和控制变压器类设备内部故障的—项非常重要的技术措施,既是定期试验,又是检查性试验。为此建议,在试验中若发现总经、氢、乙炔超标,或虽未超标但有不断增加的趋势时,应给予足够的重视。一般可采取以下措施:
(1)用"三比值"法分析故障类型。
(2)对已超标或虽未超标但情况比较严重的设备如产气速率较快等,应创造条件进行吊芯检查和对变压器油进行脱气处理。经上述处理后的设备还应缩短试验周期,加强跟踪、试验、分析,直到气体不再产生或产气平稳不再增加为止。
(3)电流互感器如产生氢气,若确认是因变压器油质量不合格,应及时更换,更换后仍应继续跟踪试验分析。若产氢的原因无法确定,应在跟踪试验分析的基础上进行脱气处理,然后再继续跟踪试验分析。情况严重的应创造条件吊芯检查。
通过对电力变压器预防性试验,如绝缘、直流电阻测量、介质损耗因数、局部放电试验、油中含水量等,可以发现变压器设备的隐患、预防发生事故或设备损坏。它是判断电力变压器能否继续投入运行并保证安全运行的重要措施。1、变压器绕组直流电阻的测量(简称直流电阻测试)使用仪器直流电阻测试仪。 试验目的:检查绕组接头的焊接质量和绕组有无匝间短路;分接开关的各个位置接触是否良好以及分接开关的实际位置与指示位置是否相符;引出线有无断裂;多股导线并绕的绕组是否有断股的情况;2、变压器变比的测量 测量变比目的:验证变压器的电压变换是否符合规定值,达到设计值;开关各引出线的接线是否正确,可初步判断变压器是否再匝间短路现象等。3、绕组绝缘电阻、吸收比、极化指数及铁芯的绝缘电阻的测量(2500V、5000V兆欧表) 试验目的是测量变压器的绝缘电阻,是检查其绝缘状态最简便的辅助方法,测量绝缘电阻、吸收比能有效发现绝缘受潮及局部缺陷,如瓷件破裂,引出线接地等。4、测试绕组连同套管的介质损耗因素tanδ 及其电容量(自动介损测试仪) 测量tanδ是一种使用较多而且对判断绝缘较为有效的方法,通过测量tanδ可以反映出绝缘的一系列缺陷,如绝缘受潮、油或浸渍物脏污或劣化变质,绝缘中有气隙发生放电等。5、直流泄漏电流测试(直流发生器、微安表) 直流泄漏试验的电压一般那比兆欧表电压高,并可任意调节,因而它比兆欧表发现缺陷的有效性高,能灵敏地反映瓷质绝缘的裂纹、夹层绝缘的内部受潮及局部松散断裂绝缘油劣化、绝缘的沿面炭化等。6、绕组所有分接的电压比(变压器变比综合测试仪) 利用变比电桥能够很方便的测量出被试变压器的变压比。7、校核三相变压器的组别和单相变压器的极性(万用表或直流毫伏表、电压表、相位表) 由于变压器的绕组在一次线圈、二次线圈间存在着极性关系,当几个绕组互相连接组合时,无论接成串联或并联,都必须知道极性才能正确进行。 变压器接线组别是并列运行的重要条件之一,若参加并列运行的变压器接线组别不一致,将出现不能允许的环流。8、分接开关试验(QJ44型双臂电桥、有载分接开关特性测试仪) 进行分接开关的试验,以确定分接开关各档是否正常9、套管试验(电动兆欧表,自动介损测试仪) 进行套管安装前的试验,确保套管安装后可正常使用10、额定电压下的冲击合闸试验 在额定电压下对变压器的冲击合闸试验,应进行5次,每次间隔时间5min,应无异常现象,其中750KV变压器在额定电压下,第一次冲击合闸后的带电运行 时间不应少于30min,其后每次合闸后带电运行时间可依次缩短,但应不少于5min。 冲击合闸宜在变压器高压侧进行,对中性点接地的电力系统试验时,变压器中性点应接地。 注意:在变压器初次投运时要做全压冲击合闸试验,对电缆变压器共进行五次冲击,然后进行24小时到的变压器空载运行。 其它:对于大容量的变压器还要做绝缘套管基油的介质损失角试验,如有特种变压器和对变压器有特种要求时,按交接验收规范标准规定项目进行变压器试验。11、局部放电试验(简称局放试验) 电压等级220KV及以上变压器在新安装时,应进行现场局放试验,,电压等级为110KV的变压器当对绝缘有怀疑时,应进行局放试验。 局放试验的方法及判断方法应按现行国家标准中的有关规定执行。 12、变压器的组别试验 方法一:双电压法 做法:将电源接入变压器,通过测一、二次电压来判断变压器的组别。要求:a要求三相电压基本上平衡的,不平衡度不应超过2%,否则测量误差太大甚至造成无法判断连接组别。b所采用的电压表要有足够的准确度,一般采用级或1级的电压表 方法二:直流法 做法:一般在现场不进行试验,经大修后的变压器可采用此方法进行 方法三:多功能的变压器变比、组别、极性自动数字式电桥 电气设备的常规试验是保证电气设备安全运行的重要措施,但试验过程中往往潜伏着各种风险,只有熟练掌握各种高压试验技能,并严格遵守各种标准及规程,提高自身安全意识,杜绝违章操作,才能保证高压试验安全,确保人身和设备的安全。
论文浅析电气试验安全措施
摘要:电气试验的宗旨就是检测电气设备质量,从各种技术参数中判断电气设备的好坏,保证人身和设备安全。可在试验工作中往往由于工作人员的疏忽大意,造成人身伤亡事故或者电力设备和试验设备的损坏事故。文章对电气试验安全措施进行了讨论。
关键词:电气试验;安全技术;措施
中图分类号:TV 文献标识码: A
电气试验是一项庞大而繁杂的工作,有许多复杂的程序和设备,工作人员必须认真的操作好每一项措施,以防止出现安全威胁。电气试验是避免发生电力事故的一项重要的手段。电气试验工作的质量好坏影响到整个电网能否安全运行,更关系到工作人员的生命安全,所以必须做好电气试验的安全措施。
一、电气试验的分类
1、破坏性试验
破坏性试验,多指能对电气设备性能、质量造成损坏的电气试验,常见类型有直流耐压试验、交流耐压试验两种。相比非破坏性试验,破坏性试验的工作要求更高,实施时必须采用高电压,这便进一步增大了试验的危险性与危害性。在破坏性电气试验中,工作人员一定要重视安全保护工作,要注意做好人身安全和财产安全保护,以免受到试验工作的危害。
2、非破坏性试验
非破坏性试验,指低电压条件下实施,不会对电气设备基本性能产生危害的电气试验。分析该试验的特点,其最大优势在于不会破坏电气设备性能,试验危险性较低,一般不会对试验人员人身安全、财产安全产生影响。电气试验工作中常用的两种试验方法为:泄露电流试验、开关的动作特性试验。
二、安全技术在电气试验工作中的具体操作流程
电气工作中,安全性是工作宗旨,安全问题备受关注。一方面,安全能保证电气设备的质量、性能不受损坏,另一方面,安全能让电气设备的功能、应用价值得到充分发挥。所以不管是在电气工作中,还是在电气试验中,安全都是控制要点。为了保证电气试验工作的安全性,建议将安全技术引进其中,坚持安全性原则实施工作。电气试验中安全技术的具体应用流程如下:
1、高压试验
高压试验的对象是高压设备,试验内容为检测高压设备在高压条件下的运行状态,看设备是否存在功能受损、质量缺陷以及意外漏电等问题。在开展高压试验工作时,工作人员必须严格控制好电力系统以及高压设备的电压值;设备加压之前,要先检查设备的各类接线,看接线是否正确;另,要在试验之前通知现场人员撤离,现场人员要全退离到设备加压范围之外,等到人员全部退离之后,再实施加压。
2、保护试验
这里的保护实验主要指继电保护。在开展继电保护试验时,要结合线路流程,有序展开操作,避免线路连接错误,影响电气设备实用功能的发挥。要提及的是,保护试验中若遇到不熟悉的回路或设备,不要乱动,以免发生触电等安全事故。
3、绝缘试验
该试验的主要目的是对某一段线路的绝缘能力进行判断,试验时可采用调整电气设备运行状态这一方式来增强线路的绝缘性。正式开展绝缘试验工作时,试验人员要和值班人员取得联系,确定事故范围内无人靠近之后再实施试验,以免引发试验安全事故。
4、模拟试验
当所有试验操作完成后,对已经选定的电气安全技术方案还要经过模拟调试,以观察正式运用于电气控制系统后是否会发生异常情况。比较常用的模拟方案,把电气设备与计算机操控系统相连接,经过数字模拟信号传输以掌握设备的功能特性,指导技术人员在使用阶段控制好设备的运行。
三、电气试验中的危害分析
1.危险识别
将电气试验工作分为几个环节,制作一个表格,对每一个环节容易产生的安全威胁一一列出来,做好相应的预案工作,有利于及时的排除危险和威胁,并且方便管理者一目了然。应对各个环节容易出现的危险进行识别,在试验进行中可能会产生各种问题,比如触电事故、试验人员从高空摔下来、设备出现故障等,所以必须做好安全保护设施的识别工作。
2.耐压试验
交流工频耐压试验是一种破坏性的试验,试验电压下会引起绝缘内部的累积效应。因此,对试验电压值的选择是十分慎重的,对于同一设备的新旧程度和不同的设备所取的数值是不同的,应按照《电力设备预防性试验规程》的有关规定执行。当试验的电气电压较高时,补偿电抗器的调节可通过多台小电抗的串联、并联及改变分接头位置来实现。若被试品击穿,则谐振终止,高压消失;当试验变压器的额定电压能满足试验电压的要求,但电流达不到被试品所需的试验电流时,可采用并联谐振对电流加以补偿,以解决容量不足的问题。当采用串联补偿时,当回路达到XL=XC,且回路电阻很小,试品则可能出现危险的过电压,因此采用串联补偿,应注意避免产生谐振,并且采用补偿电抗器最好采用空心绕组的,因为有铁心的`电抗器容易造成非线性的谐振。
3.风险评估
发电机的耐压试验,一定要严格监督不要升高到规定值以上。实验中若发现表针摆动或被试设备、实验设备发出异常响声、冒烟、冒火等,应立即降下电压,在高压侧挂上地线后,查明原因。特别是对危害事件进行分析与评估,预测危害事件出现的概率,用科学的方法来分析它的严重程度,以及能够造成的损失,并且及时的采取有效的措施来减小它出现的概率。
四、电气试验的安全措施
1.试验之前的安全工作
进行实验的时候,一定要穿上指定的工作服、戴上安全帽。如果有需要高空操作的部分,还需要系上安全带。为防止伤害到行人或者路人,还应该在实验现场的周围设置警告牌,警告牌上应该写上“危险,禁止靠近”之类的标语,还可以请专人守在附近,防止闲杂人等进入。另外,还需要检查现场设备,保证整个工作现场内都已经排除掉了妨碍安全的因素,并且查看所有的机械设备是否完全到位了,如果完全到位了,即可进行试验工作了。
2.试验之中的安全工作 首先一定要保证试验设备和被试验设备的外壳接地,然后在查看接地线是否牢靠稳当,必须要将接地线接在安全可靠的地方,而不是自来水管旁边。加压过程中,工作人员应该集中精力,不得与他人闲聊,随时警惕异常事故的发生。电气设备进行耐压试验的时候,需要事先测定其绝缘阻值,防止触电事故发生,测定绝缘阻值时还必须要保证设备与电源断开,试验结束后才能对设备进行放电操作。
3.试验结束后的安全工作
电气试验结束后,工作人员要及时的对试验中出现的问题进行详细的记录,并且交由相关单位进行备案,因为这是作为分析和判断设备状态的依据。另外,实验完成后,工作人员还要对现场进行必要的检查,将自装的接地短路线进行拆除,并且要保证现场无遗留物品,所有人员已安全退出试验现场。
4.掌握试验的技巧和技能
对电气试验人员进行的安全教育工作,必须要满足实际,符合电气试验的实际需要。从安全规程、电气设备、操作方法、风险评估、异常情况紧急处理等方面下手,对工作人员进行培训与教育,提高工作人员的安全意识,让他们树立“安全第一”的理念,并且掌握更多的应对技巧和技能,按照正常程序来操作,这样才会减小危害发生的几率。
5.做好对试验中危险点的控制分析
平常的日常工作中,应鼓励每一位员工结合各自实际的工作经验,集思广益,认真讨论可能出现在电气试验中的每一个危险点,并将其进行细分。在这样的基础之上,为每一个实验项目都制定其各自的过程控制卡,在这张控制卡中,实验前的预备工作以及试验后现场的清理工作都应被一一添加到其中,使整张卡涵括每一个试验环节,并且在控制卡中将每一个危险点都标出来。在试验开始前,所有工作人员都应将控制卡与工作票结合,认真填写相应内容,防范危险点有可能带来的安全隐患。
结语
电气试验工作是电气运行维护中不可或缺的,电气工作运行离不开安全性。而安全措施应当在整个电气试验过程都有所体现,作为电气管理人员也要把安全作为一项工作常抓不懈。工作的重点要做到防患于未然,做好预防工作,各级管理人员和操作人员都要在思想上予以重视,切实保障电气试验工作的顺利进行。
启备变就是普通的变压器,只不过用于电厂机组启动时所需的电源,启备变还是启动变的备用变压器。整流变属于特种变压器,主要是用来提供整流电源的。一般是低压大电流工作较多,与普通变压器用途不同。
不知你用在哪里,一般根据具体要求、环境确定,现为你介绍一下变压器的分类按容量可以分为小型,大型,超大型,但一般不是这样的。通常按照以下方式分类:1、按冷却方式分类:有自然冷式、风冷式、水冷式、强迫油循环风(水)冷方式、及水内冷式等。2、按防潮方式分类:开放式变压器、灌封式变压器、密封式变压器。3、按铁芯或线圈结构分类:芯式变压器(插片铁芯、c型铁芯、铁氧体铁芯)、壳式变压器(插片铁芯、c型铁芯、铁氧体铁芯)、环型变压器、金属箔变压器、辐射式变压器等。4、按电源相数分类:单相变压器、三相变压器、多相变压器。5、按用途分类:有电力变压器、特种变压器(电炉变、整流变、工频试验变压器、调压器、矿用变、音频变压器、中频变压器、高频变压器、冲击变压器、仪用变压器、电子变压器、电抗器、互感器等)。6、按冷却介质分类:有干式变压器、液(油)浸变压器及充气变压器等。7、按线圈数量分类:有自耦变压器、双绕组、三绕组、多绕组变压器等。8、按导电材质分类:有铜线变压器、铝线变压器及半铜半铝、超导等变压器。9、按调压方式分类:可分为无励磁调压变压器、有载调压变压器。10、按中性点绝缘水平分类:有全绝缘变压器、半绝缘(分级绝缘)变压器。其中干式变压器、液(油)浸变压器、自然冷式、风冷式、水冷式这几种是最常用的
1 电厂的启备变一般高压侧的电压都比较高,大型电厂中甚至有从500KV电网直接引接电源的,主要为发电机提供启动电源及备用电源。发电机正常运行时期辅机由发电机高压厂用变压器供电,机组启动及厂用变压器故障时,由启备变通过电网反馈提供电源。该变压器一般采用有载调压,变压器的阻抗根据电厂使用的高压开关柜参数及高压电动机启动电压的计算值有不同的要求,但都比一般变压器要高。2 电厂整流变用于为发电机提供励磁电源,一般容量比较小,满足励磁容量即可。如果是小容量发电机,采用电缆将整流变压器与发电机连接,而大容量发电机采用励磁共箱母线来连接整流变与发电机。整流变的阻抗较小,一般采用无调压分接头的干式变压器,大部分装在铁外壳内,并在上部设有通风机。3 一般变压器用于工业及民用电源供给,其的阻抗较上述两种变压器都要大一些,采用油誛冷却、无载调压方式,也有部分企业采用干式变压器的。
电原部分 做电器的工厂用的多啊