参考文献是毕业论文中的一个重要构成部分,它的引用是对论文进行引文统计和分析的重要信息来源。下文是我为大家搜集整理的关于数学论文参考文献的内容,欢迎大家阅读参考!数学论文参考文献(一) [1]李秉德,李定仁,《教学论》,人民教育出版社,1991。 [2]吴文侃,《比较教学论》,人民教育出版社,1999 [3]罗增儒,李文铭,《数学教学论》,陕西师范大学出版社,2003。 [4]张奠宙,李士 ,《数学教育学导论》高等教育出版社,2003。 [5]罗小伟,《中学数学教学论》,广西民族出版社,2000。 [6]徐斌艳,《数学教育展望》,华东师范大学出版社,2001。 [7]唐瑞芬,朱成杰,《数学教学理论选讲》,华东师范大学出版社,2001。 [8]李玉琪,《中学数学教学与实践研究》,高等教育出版社,2001。 [9]中华人民共和国教育部制订,《全日制义务教育数学课程标准(实验稿)》,北京:北京师范大出版社,2001. [10] 高中数学课程标准研制组编,《普通高中数学课程标准》,北京:北京师范大出版社,2003. [11]教育部基础教育司,数学课程标准研制组编,《全日制义务教育数学课程标准解读(实验稿)》,北京:北京师范大出版社,2002. [12]教育部基础教育司组织编写,《走进新课程——与课程实施者对话》,北京:北京师范大出版社,2002. [13]新课程实施过程中培训问题研究课题组编,《新课程与学生发展》,北京:北京师范大出版社,2001. 数学论文参考文献(二) [1]新课程实施过程中培训问题研究课题组编,《新课程理念与创新》,北京:北京师范大出版社,2001. [2][苏]AA斯托利亚尔,《数学教育学》,北京:人民教育出版社,1985年。 [3][苏]斯涅普坎,《数学教学心理学》,时勘译,重庆:重庆出版社,1987年。 [4]张奠宙,《数学教育研究导引》,南京:江苏教育出版社,1998年。 [5]丁尔升,《中学数学教材教法总论》,北京:高等教育出版社,1990年。 [6]马忠林,等,《数学教育史简编》,南宁:广西教育出版社,1991年。 [7]魏群,等,《中国中学数学教学课程教材演变史料》,北京:人民教育出版 社,1996年。 [8]张奠宙,等,《数学教育学》,南昌:江西教育出版社,1991年。 [9]严士健,《面向21世纪的中国数学教育》,南京:江苏教育出版社,1994年。 [10]傅海伦,《数学教育发展概论》,北京:科学出版社,2001年。 [11]李求来,等,《中学数学教学论》,长沙:湖南师范大学出版社,1992年。 [12]章士藻,《中学数学教育学》,南京:江苏教育出版社,1996年。 [13]十三院校协编组,《中学数学教材教法》,北京:高等教育出版社,1988年。 [14][美]美国国家研究委员会,方企勤等译,《人人关心数学教育的未来》,北 京:世界图书出版公司,1993年。 [15]潘菽,《教育心理学》,北京:人民教育出版社,1980年。 数学论文参考文献(三) [1]孙艳蕊,张祥德.利用极小割计算随机流网络可靠度的一种算法[J],系统工程学报,2010,25(2),284-288. [2]孔繁甲,王光兴.基于容斥原理与不交和公式的一个计算网络可靠性方法,电子学报,1998,26(11),117-119. [3]王芳,侯朝侦.一种计算随机流网络可靠性的新算法[J],通信学报,2004,25(1),70-77. [4][J],Networks,1987,17(2):227-240. [5]],(1):46-49. [6][J],(4):325-334. [7](3):389-395. [8]. [9]封国林,鸿兴,魏凤英.区域气候自忆预测模式的计算方案及其结果m.应ni气象学报,1999,10:470. [10]达朝究.一个可能提高GRAPES模式业务预报能力的方案[D].兰州:兰州人学,2011 [11]符综斌,干强.气候突变的定义和检测方法[j].大气科学,1992,16(4):482-492. [12]顾震潮.天数值预报屮过去资料的使用问题[J].气象学报,1958,29:176. [13]顾震潮.作为初但问题的天气形势数值预报由地而天气历史演变作预报的等值性[J].气象学报,1958,29:93. [14]黄建平,H纪范.海气锅合系统相似韵现象的研究[J].中NI科学(B),1989,9:1001. [15]黄建平,王绍武.相似-动力模式的季节预报试验[J].国科学(B)1991,21:216. 猜你喜欢: 1. 统计学论文参考文献 2. 关于数学文化的论文免费参考 3. 关于数学文化的论文优秀范文 4. 13年到15年参考文献论文格式 5. 浅谈大学数学论文范文
2017大学数学论文范文
由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。但是特殊函数往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。下面是我整理的关于几类特殊函数的性质及应用的数学论文范文,欢迎大家阅读。
几类特殊函数的性质及应用
【摘要】本文将对数学分析中特殊函数,诸如伽玛函数、贝塔函数贝塞尔函数等超几何数列函数,具有特殊的性质和特点,在现实中得到大量的运用的函数。本文主要以简单介绍以上三种特殊函数性质,及其在其它领域的应用,诸如利用特殊函数求积分,利用特殊函数解相关物理学问题。本文首先以回顾学习几类常见特殊函数概念、性质,从而加深读者理解,然后以相关实例进行具体分析,从而达到灵活应用的目的。
【关键词】特殊函数;性质;应用;伽马函数;贝塔函数;贝塞尔函数;积分
1.引言
特殊函数是指一些具有特定性质的函数,一般有约定俗成的名称和记号,例如伽玛函数、贝塔函数、贝塞尔函数等。它们在数学分析、泛函分析、物理研究、工程应用中有着举足轻重的地位。许多特殊函数是微分方程的解或基本函数的积分,因此积分表中常常会出现特殊函数,特殊函数的定义中也经常会出现积分。传统上对特殊函数的分析主要基于对其的数值展开基础上。随着电子计算的发展,这个领域内开创了新的研究方法。
由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。本文归纳出特殊函数性质、利用特殊函数在求积分运算中的应用、特殊函数在物理学科方面的应用,利用Matlab软件画出一些特殊函数的图形,主要包含内容有:定义性质学习,作积分运算,物理知识中的应用,并结合具体例题进行了详细的探究和证明。
特殊函数定义及性质证明
特殊函数学习是数学分析的一大难点,又是一大重点,求特殊函数包含很多知识点,有很多技巧,教学中可引导学生以探究学习的方式进行归纳、总结;一方面可提高学生求函数极限的技能、技巧;另一方面也可培养学生的观察、分析、归类的能力,对学生的学习、思考习惯,很有益处。
特殊函数性质学习及其相关计算,由于题型多变,方法多样,技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。解决这个问题的途径主要在于熟练掌握特殊函数的特性和一些基本方法。下面结合具体例题来探究特殊函数相关性质及应用。
2.伽马函数的性质及应用
伽马函数的定义:
伽马函数通常定义是:这个定义只适用于的区域,因为这是积分在t=0处收敛的条件。已知函数的定义域是区间,下面讨论Г函数的两个性质。
Г函数在区间连续。
事实上,已知假积分与无穷积分都收敛,则无穷积分在区间一致收敛。而被积函数在区间D连续。Г函数在区间连续。于是,Г函数在点z连续。因为z是区间任意一点,所以Г函数在区间连续。
,伽马函数的递推公式
此关系可由原定义式换部积分法证明如下:
这说明在z为正整数n时,就是阶乘。
由公式(4)看出是一半纯函数,在有限区域内的奇点都是一阶极点,极点为z=0,-1,-2,...,-n,....
用Г函数求积分
贝塔函数的性质及应用
贝塔函数的定义:
函数称为B函数(贝塔函数)。
已知的定义域是区域,下面讨论的三个性质:
贝塔函数的性质
对称性:=。事实上,设有
递推公式:,有事实上,由分部积分公式,,有
即
由对称性,
特别地,逐次应用递推公式,有
而,即
当时,有
此公式表明,尽管B函数与Г函数的定义在形式上没有关系,但它们之间却有着内在的联系。这个公式可推广为
由上式得以下几个简单公式:
用贝塔函数求积分
例
解:设有
(因是偶函数)
例贝塔函数在重积分中的应用
计算,其中是由及这三条直线所围成的闭区域,
解:作变换且这个变换将区域映照成正方形:。于是
通过在计算过程中使用函数,使得用一般方法求原函数较难的问题得以轻松解决。
贝塞尔函数的性质及应用
贝塞尔函数的定义
贝塞尔函数:二阶系数线性常微分方程称为λ阶的贝塞尔方程,其中y是x的未知函数,λ是任一实数。
贝塞尔函数的'递推公式
在式(5)、(6)中消去则得式3,消去则得式4
特别,当n为整数时,由式(3)和(4)得:
以此类推,可知当n为正整数时,可由和表示。
又因为
以此类推,可知也可用和表示。所以当n为整数时,和都可由和表示。
为半奇数贝塞尔函数是初等函数
证:由Г函数的性质知
由递推公式知
一般,有
其中表示n个算符的连续作用,例如
由以上关系可见,半奇数阶的贝塞尔函数(n为正整数)都是初等函数。
贝塞尔函数在物理学科的应用:
频谱有限函数新的快速收敛的取样定理,.根据具体问题,利用卷积的方法还可以调节收敛速度,达到预期效果,并且计算亦不太复杂。由一个函数的离散取样值重建该函数的取样定理是通信技术中必不可少的工具,令
称为的Fourier变换。它的逆变换是
若存在一个正数b,当是b频谱有限的。对于此类函数,只要取样间隔,则有离散取样值(这里z表示一切整数:0,)可以重建函数,
这就是Shannon取样定理。Shannon取样定理中的母函数是
由于Shannon取样定理收敛速度不够快,若当这时允许的最大取样间隔特征函数Fourier变换:
以下取样方法把贝塞尔函数引进取样定理,其特点是收敛速度快,且可根据实际问题调节收敛速度,这样就可以由不太多的取样值较为精确地确定函数。
首先建立取样定理
设:
其中是零阶贝塞尔函数。构造函数:
令
经计算:
利用分部积分法,并考虑到所以的Fourier变换。
通过函数卷积法,可加快收敛速度,使依据具体问题,适当选取N,以达到预期效果,此种可调节的取样定理,计算量没有增加很多。取:
类似地
经计算:
经计算得:
则有:设是的Fourier变换,
记则由离散取样值
因为,故该取样定理收敛速度加快是不言而喻的,通过比较得,计算量并没有加大,而且N可控制收敛速度。
例,利用
引理:当
当
因为不能用初等函数表示,所以在求定积分的值时,牛顿-莱布尼茨公式不能使用,故使用如下计算公式
首先证明函数满足狄利克雷充分条件,在区间上傅立叶级数展开式为:
(1)
其中
函数的幂级数展开式为:
则关于幂级数展开式为: (2)
由引理及(2)可得
(3)
由阶修正贝塞尔函数
其中函数,且当为正整数时,取,则(3)可化为
(4)
通过(1)(4)比较系数得
又由被积函数为偶函数,所以
公式得证。
3.结束语
本文是关于特殊函数性质学习及其相关计算的探讨,通过对特殊函数性质的学习及其相关计算的归纳可以更好的掌握特殊函数在日常学习中遇到相关交叉学科时应用,并且针对不同的实例能够应用不同的特殊函数相关性质进行证明、计算,从而更加简洁,更加合理的利用特殊函数求解相关问题。有些特殊函数的应用不是固定的,它可以通过不止一种方法来证明和计算,解题时应通过观察题目结构和类型,选用一种最简捷的方法来解题。
参考文献:
[1] 王竹溪.特殊函数概论[M].北京大学出版社,,90-91.
[2] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.
[3] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.
[4]王坤.贝塔函数在积分计算中的应用.[J]科技信息,2012(34)
[5] 王纪林.特殊函数与数学物理方程[M].上海交通大学出版社,2000,96-98.
[6] 陶天方.由特殊函数表达的快速取样定理 [J]. 上海大学学报(自然科学版),1997,8(4):368-371.
[7]饶从军,王成.让数学建模活动促进数学教学改革[J].中央民族大学学报(自然科学版),2004,2.
[8]赵宜宾.一类特殊函数定积分的求解[J].防灾技术高等专科学校学报,2010,1(3):38-39.
[9]董林.降次公式的探究—兼论一个猜想的证明[J].教学通报,.
[10] 李德新.利用对称原理计算定积分的三种方法[J].高等数学研究,2004,7(6):41—42.
[11]翟忠信,龚东山.高等数学的教与学[J].高等理科教育,2004(6):29—34.
[12]胡淑荣. 函数及应用[J]. 哈尔滨师范大学学报.2002,18(4):12~15.
这是一个学生的毕业论文后的参考文献[1] 裴礼文.数学分析中的典型问题与方法究(第二版)[M].北京:高等教育出版社,2006[2] 陈纪修等.数学分析第二版[M].北京:高等教育出版社,[3] 翟连林,姚正安.数学分析方法论[M].北京:北京农业大学出版社,1992[4] 龚冬保.高等数学典型题解法、技巧、注释[M].西安:西安交通大学出版社,2000[5] 郭乔.如何作辅助函数解题[J].高等数学研究, (5),48- 49[6] Patrick M.Fitzpatrick.AdvancedCalculus: A Course in Mathematical Analysis [M].北京:中国工业出版社,2003[7] 林远华.浅谈辅助函数在数学分析中的作用[J].河池师范高等专科学校学报,[8] 肖平.辅助函数的构造方法探寻.西昌师范高等专科学校学报[J],供参考。
函数教学论文【1】
摘 要:初中数学中的函数知识非常重要,搞好这部分内容的教学,必须要理解基本概念,理清知识结构,树立“运动变化”的理念,渗透数形结合的思想。
关键词:初中数学 函数教学 数形结合
初中数学中变量与函数概念的引入,标志着数学由常量数学向变量数学的迈进。
尽管初中函数内容只是讲述了函数的一些最基本、最初步的知识,但是其中蕴含的数学思想和方法,对培养学生观察、研究、解决问题的能力是十分有益的。
不仅如此,函数概念还是高中代数的核心部分,学好初中函数的有关知识,可以为研究高中数学中的各种初等函数奠定一定的基础。
因而,初中函数概念的基础性作用是显而易见的。
在教学中应从四个方面引导学生正确理解函数的概念,进而掌握函数的特征和性质。
一、正确理解三组关系,系统把握函数概念
点的坐标的定义与点与坐标的一一对应关系;函数定义中某一变化过程和自变量与函数的对应关系;函数图象定义中的自变量值。
函数值→有序数对→点的坐标→点→图象,加强这三组关系的理解,有利于把函数的解析式、点的坐标和函数图象结合起来,建立起较完整的函数概念。
二、理清知识结构,构建知识体系
用这样一个知识结构图,可以把平面直角坐标系、点、图象和解析式有机地结合起来,并从中可以找到相互之间的联系和问题的转化方式。
三、树立运动变化的观点
函数概念的核心意义是反映在某一变化过程中两个变量之间的依赖关系,即一个量的变化随着另一个量的变化而变化。
这就使得原本静止的数的概念之间产生了一种动感的联系。
在教学过程中,应引导学生通过寻找、发现身边的事例来体会这种变量关系。
例如,生长期的身高随着年龄的变化而变化;一天中的气温随着时间的变化而变化;工厂的收入随着产量的增加而增加;二元一次方程的无数解,在方程3x-2y=1中,当x的取值发生变化时,y的值随着x的变化而变化……
在阐述这种运动关系的同时,还应该用式子、表格、图示的方法来举例描述,以加深学生对这种抽象的运动关系的直观认识,这样就可以逐步地帮助学生树立一种“运动变化”的观点。
四、培养数形结合的思想
数学教学过程应该体现明暗两条线:一条是明线,即数学知识内容的教学;另一条是暗线,即数学思想方法的形成。
由于数学思想方法既是数学的基础知识,又是将知识转化成能力的桥梁,用好了数学思想就是发展了数学能力。
因此,在教学中老师要注重培养学生对数学思想方法的渗透、概括和总结、应用能力的提升。
数形结合的思想方法是初中数学中一种重要的思想方法。
何为数形结合的思想方法?我们知道,数学是研究现实世界的数量关系和空间形式的科学,数和形是数学知识体系中两大基础概念,把刻画数量关系的数和具体直观的图形有机结合,将抽象思维和形象思维有机结合,根据研讨问题的需要,把数量关系的比较转化为图象性质或其位置关系的讨论,或把图形间的待定关系转化为相关因素的数量计算,即数与形的灵活转换、相互作用,进而探求问题的解答,就是数形结合的思想方法。
在函数这部分内容中,蕴含着丰富的数学思想,如坐标的思想、数形结合的思想等,其中最重要的是数形结合的思想。
那么在函数的教学过程中如何渗透与应用数形结合的思想方法,就显得尤为重要。
例如,一次函数就是一条直线,这条直线上的点的坐标无论怎样变化都满足解析式。
直线是由点组成的,点可以用数来描述。
反过来,直线就反映了数的变化特征。
一个函数可以用图形来表示,而借助这个图形又可以直观地分析出函数的一些性质和特点,这为数学的研究与应用提供了很大的帮助,教学时老师若注重了数形结合思想方法的渗透,将会收到事半功倍的效果。
在初中数学教学中常见的体例有:(1)数与数轴的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)集合元素和几何条件为背景建立起来的概念;(5)所给的等式或代数式的结构有明显的几何意义。
当然,以上谈及的几点内容仅仅是本人在教学实践中的一点体会,事实上,初中函数部分的内容及要求是极其丰富的,培养学生的思维能力以及能够灵活地应用知识才是我们学习的最终目的,在讨论社会问题、经济问题、跨学科综合等问题时,越来越多的运用到了数学的思想、方法,其中函数的内容占有相当重要的地位。
因此,我们一定要在教与学的过程中认真钻研教材,深入挖掘教材中蕴含的思想、方法和观点,以达到提高学生的思维能力、应用能力和认知水平的目的。
初中函数教学【2】
【摘要】数学思想方法乃是数学规律与本质,学生掌握了数学思想方法,就能更快捷的获取知识,更透彻地理解知识。
初中函数教学应教给学生掌握学习函数的思想方法。
本文仅对初中函数教学作初步探索.
【关键词】函数教学
一、认识函数思想,引领教学方向
函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律,函数的思想方法就是提取问题的数学特征,用联系变化的观点提出数学对象,抽象其数学特征,建立函数关系,并利用函数的性质研究解决问题的一种数学思想方法。
尽管内容不多,但函数的思想已经有所体现,它仍占据着重要地位。
二、理清初中函数概念,系统掌握初等函数知识
1、理解概念的逻辑性。
数学概念可分为两个重要方面:一是概念的'质',也就是概念的内涵(概念的本质属性);二是概念的'量'也就是概念的外延(概念所有对象的和)概念的外延还有大小之分,外延大的概念叫做种概念,外延小的概念叫做属概念,一个属概念与其他属概念本质上的差别又称为属差,要想给某一个概念下定仪,首先应给学生指出被定义的概念最接近的概念是什么,再紧接着指出被定义概念的属差,既概念定义 = 种概念 + 属查。
2、明确概念的层次性。
一般的概念都是通过对实验现象或对某中具体事物分析经过抽象概括而导出的,他是一个形成过程,中学中的许多概念,是从几个原始概念和公理出发,通过一番的推理而扩展成为一系列的定义和公里,而每一个新出现的概念都依赖着旧的概念来表达,或是由旧概念推倒出来的。
3、掌握概念的抽象性。
初中学数学中的许多原始概念,都是对具体的数和形的感知而形成表象,再从表象经过抽象概括而形成的。
概念是人们对感性材料进行抽象的产物,感性认识是形成概念的基础。
如果学生没有感性认识或感性认识不怎么完备时,我们就应该借助与实物、模型、多媒体课件、或形象的语言进行较直观的教学,使学生从中获得感性认识。
三、绘制初等函数图象 ,理解初等函数性质
著名数学家华罗庚先生说:"数缺形时少直观,形缺数时难入微"。
因此要想绘制初等函数图象,理解其性质,首先要了解"数形结合"的思想。
数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。
我们要抽象复杂的数量关系,通过形的形象、直观揭示出来,以达到形帮数的目的。
四、运用函数同其他学科和实际的联系,培养学生学习函数的兴趣
函数是这样定义的,"设在某变化过程中的两个变量x和y,若对于x在某一范围内的每一确定的值,y都有唯一确定的值与它对应,那么,就把y称为x的函数 ,x是自变量,y是因变量"。
如图1⑴中,在矩形ABCD中,AB=10cm,BC=8cm。
点P从点A出发,沿路线A→B→C→D运动,到点D停止;点Q从点D出发,沿D→C→B→A路线运动,到点A停止。
若P、Q两点同时出发,点P的速度为1厘米/秒,点Q的速度为2厘米/秒。
a秒时,P、Q两点同时改变速度,点P的.速度变为b厘米/秒,点Q的速度变为d厘米/秒。
图1第2个图是点P出发x秒后△APD的面积S1(平方厘米)与x(秒)的函数关系图象。
图1第3个图是点Q出发x秒后△AQD的面积S2(平方厘米)与x(秒)的函数关系图象。
2、函数与市场经济
例2、某化工材料销售公司购进了一种化工原料共7000千克,购进价格为每千克30元。
物价部门规定其销售单价不得高于每千克70元,也不得低于30元。
市场调查发现:单价定为70元时日均销售60千克;单价每低1元日均多售出2千克。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算)。
设销售单价为x元,日均获利y元。
顶点坐标为(65,1950)。
二次函数的草图(如图2)所示。
观察草图可知,当单价定为65元时,日均获利最多,是1950元。
⑶、当日均获利最多时,单价为65元,日均销售60+2×(70-65)=70千克,那么总获利为1950×(7000÷70)=195000元
当销售单价最高时,单价为70元日均销售60千克,将这种化工原料全部售完需700÷60≈117天。
那么总获利为(70-30)×7000-117×500=221500元
∵ 221500>195000,且221500 - 195000 = 26500
∴销售单价最高时获总利最多,且多获利26500。
可见,函数的应用非常广泛,它与其它学科有着密切的联系,是解决实际问题的重要工具,因此可以提高和培养学生学习初等函数的兴趣。
当今世界科技发展一日千里,科学知识急剧增加,学生在今后的工作生活和进一步学习中有许多需要认识、探讨、分析和解决的纷繁复杂的问题,我们要把函数的思想方法作为一把金光闪闪的钥匙来交给学生,让他们运用这把金钥匙来开启知识的宝库,迎接新生活的挑战!
中学函数教学【3】
【摘要】从数学自身的发展过程来看,变量与函数概念的引入,标志着数学由常量数学向变量数学的迈进,尽管初中函数内容只是讲述了函数的一些最基本、最初步的知识,但是其中蕴含的数学思想和方法,对培养学生观察问题、研究问题和解决问题的能力都是十分有益的。
【关键词】学习兴趣 情境教学
函数是初中数学里重要的数学知识,函数学习的好坏对于学生的继续学习影响深远,特别是现在新的课程标准提出研究性学习,更多地注重学生识图能力的培养,并尝试用数形结合思想和函数思想解决问题。
笔者结合多年的中学数学教学,就如何搞好中学函数教学,浅谈如下思考。
一、明确学习函数的重要性,培养学生学习函数的兴趣
函数概念在初中数学关于式、方程、不等式等主要内容中起到了横向联系和纽带作用,从本质上看:代数式可看作函数的解析式或值;两个代数式A与B恒等等价于函数y=A-B恒等于零;方程的根可看作函数图像与x轴的交点的横坐标;在不等式的证明中,函数的性质经常是有力的工具。
由于函数应用十分广泛,而函数的概念的形成和发展是中学数学中从常量到变量的一个认识上的飞跃,理解和掌握函数的思想方法无疑会有助于实现这一飞跃。
在初中阶段我们学习的函数是比较简单的,属于函数启蒙,但是它是高中数学乃至整个数学体系的主要内容,所以初中阶段是函数概念和函数思想形成的关键阶段,这一阶段教学的成败,直接关系到学生进入高中、大学的数学学习乃至一生的数学造诣。
让学生充分认识到函数的重要性,有利于提高他们学习函数的兴趣。
二、进行情境教学
教师可以把数学知识点以问题的形式提出,激发学生的学习欲望,在思考的过程中加深对知识点的思考,同时创设情境为其提供思考空间,使其思维从形象过渡到抽象,完成思维的转换.进行课堂教学, 很多问题都是要靠学生自己想象出来的, 但是如果每个问题都让学生去室外感受也是不可能的,这就需要我们很好地加强学生的抽象思维能力. 尤其是在学习函数的时候,就更需要学生一定的理解能力与思维水平。
学习函数知识的最终目的是要能够用于实际生活中. 因此教师在进行函数教学时,将具体情境中的材料作为启发学生的思考的材料,通过相互交流、合作学习、独立思考等形式来讲,加强学生对知识点的理解.
当学生在一个问题情境中,则更能够把握问题的理解,在问题情境中,教师要给予一定的指导和帮助. 教师遵守循序渐进、逐渐理解的方式,为学生创设问题情境,创设学习的机会. 在问题情境中邀游,学生能够沐浴在数学活动中. 问题情境是一种加强数学理解与问题解决的有效方式.
三、坚持相互联系、运动发展的观点进行教学
函数表现出两个变量之间的相互依存关系,一个变量会随着另一个变量的变化而发生变化,两者处于相互牵制、共同变化发展的秩序之中,看似静止的数的概念之间存在着运动的联系。
在初中函数教学中,教师应带领学生在学习函数基础知识以及解题过程中,培育学生们树立相互联系、运动发展的数学理念,在动态的思维模式中掌握函数知识的基本要领。
两个变量间的相互影响关系,对于刚刚接触函数知识的学生来说不太容易理解。
初中函数教师可以根据“一个量随另一个量的变化而变化”这一关系,让学生结合熟悉的数学知识以及日常生活实际来举例,比如“汽车的汽油消耗量随着行车路程的变化而变化”,或者“圆形的面积随着半径长的变化而变化”等等。
这样,便使学生更迅速地理解自变量与变量的定义,并能在活跃的思维环境中锻炼分析、解决问题的能力。
函数中的变量关系,与数学知识体系中的很多领域都存在着融会贯通的关系,比如求路程问题“距离=速度*时间”等,体现出函数的重要性。
学习函数知识,实际上也打开了更多数学领域的视角。
另外,函数同其他学科的联系也十分紧密,是解决实际问题的重要工具。
初中数学教师可以利用函数的广泛联系性,在广征博引中激发学生的学习热情,从而达到真正的教学实效。
四、讲解中注意类比法的运用
在讲解一次函数的图像时,我们一般由特例导出。
例如:在同一直角坐标系中画出下列函数的图像:(1)y=2x+3(2)y=2x+5 (3)y=2x-3;(4)y=-2x+3(5)y=-2x-3
然后由学生归纳出一次函数的图像是一条直线,并让学生由上述图像得出:当(1)k>0,b>0 ;
(2)k>0, b<0;(3)k<0, b>0;(4)k<0, b<0时函数图像所经过的象限及单调性,最后老师总结,学生理解记忆。
这套程序很一般化,学生也难以记忆。
不如先让学生回忆正比例函数(1)y=2x;(2)y=-2x的图像与性质,再画出以上函数图像,借助类比的方法得出一次函数的图像及性质。
向学生演示正比例函数图像的平移变化即得到一次函数图像,这样可以避免学生把二者割裂开,把握它们的共性,区分正比例函数的特殊性。
通过类比,培养学生知识迁移能力。
五、加强学科之间的相互沟通,增强学生运用数学的意识
当前教育改革的方向之一是加强各学科知识间的综合运用。
数学作为一门基础学科,不仅服务于其他学科,而且在研究数学的应用时,若能结合别的学科特点,运用别的学科知识解释其基本原理,无疑对数学应用的理解也有很大的帮助,进而对学生的综合能力的培养也将有极大的好处。
例3、一根弹簧原长15cm,已知在20公斤内弹簧的长度与所挂的质量成一次函数关系。
现测得当挂重4公斤时,弹簧的长度为17cm,问当弹簧的长度为22cm时,挂重多少公斤?
分析:由已知条件弹簧的长度与挂重成一次函数关系,则可用待定系数法求出函数关系。
再通过计算即能求得问题的解答。
解:设挂重x(kg)(0≤x≤20)时,弹簧长度为y(cm),依题意可设,y=kx+b (k≠0)由条件:x=0时,y=15 即b=15
当 x=4时,y=17 即4k+15=17 所以K=
故函数解析式为:y= x+15 (0≤x≤20)
所以当y=22时,由 x+15=22,得x=14
答:当弹簧长为22cm时,挂重14公斤。
对于物理问题,必须根据物理概念,物理知识列出函数关系式,把它转化为数学问题,再运用数学方法进行运算,其它学科也如此。
总之,中学函数学得如何,将直接影响到学生今后数学学习兴趣和成绩的好坏,因此广大中学数学老师肩负着关键的职责,一定要引起我们的高度重视。
以上几点是笔者的拙见,希望能给同行一点帮助,并敬请同行斧正。
【参考文献】
[1]张凤林.浅谈初中函数教学[J].学问, 2009(15).
[2]徐德本.初中函数教学要把握好“四个一”[J].中学数学教学参考.2008,(18).
[3]王学海;探究初中生学习函数困难及教学策略[J];成功(教育);2011年18期
函数是这些高等数学课程的一条主线,在数学系课程中,尤显突出,例如,数学分析、复变函数、实变函数、常微分方程、偏微分方程、泛函分析等等,这些课程都是把函数作为研究对象。
一、函数的起源(产生) 十六、十七世纪,欧洲资本主义国家先后兴起,为了争夺霸权,迫切需要发展航海和军火工业。为了发展航海事业,就需要确定船只在大海中的位置,在地球上的经纬度;要打仗,也需知道如何使炮弹打的准确无误等问题, 这就促使了人们对各种“运动”的研究,对各种运动中的数量关系进行研究,这就为函数概念的产生提供了客观实际需要的基础。 十七世纪中叶,笛卡儿(Descartes)引入变数(变量)的概念,制定了解析几何学,从而打破了局限于方程的未知数的理解;后来,牛顿( Newton)、莱布尼兹(Leibniz)分别独立的建立了微分学说。这期间,随着数学内容的丰富,各种具体的函数已大量出现,但函数还未被给出一个一般的定义。牛顿于 1665年开始研究微积分之后,一直用“流量”( fluent)一词来表示变量间的关系。 1673年,莱布尼兹在一篇手稿里第一次用“函数”( fluent)这一名词,他用函数表示任何一个随着曲线上的点的变动而变动的量。(定义1)这可以说是函数的第一个“定义”。例如,切线,弦,法线等长度和横、纵坐标,后来,又用这个名词表示幂,即表示 x , x2, x3,…。显然,“函数”这个词最初的含义是非常的模糊和不准确的。 人们是不会满足于这样不准确的概念,数学家们纷纷对函数进行进一步讨论。 二、函数概念的发展与完善⒈以“变量”为基础的函数概念 在 1718年,瑞士科学家,莱布尼兹的学生约翰·贝奴里(Bernoulli,Johann)给出了函数的明确定义:变量的函数是由这些变量与常量所组成的一个解析表达式。(定义2)并在此给出了函数的记号φx。这一定义使得函数第一次有了解析意义。 十八世纪中叶,著名的数学家达朗贝尔 (D’Alembert)和欧拉( Euler)在研究弦振动时,感到有必要给出函数的一般定义。达朗贝尔认为函数是指任意的解析式,在 1748年欧拉的定义是:函数是随意画出的一条曲线。(定义 3)在此之前的 1734年,欧拉也给出了一种函数的符号f(x),这个符号我们一直沿用至今。 实际上,这两种定义(定义 1和定义 2)就是现在通用的函数的两种表示方法:解析法和图像法。后来,由于富里埃级数的出现,沟通了解析式与曲线间的联系,但是用解析式来定义函数,显然是片面的,因为有很多函数是没有解析式的,如狄利克雷函数。 1775年,欧拉在《微分学原理》一书的前言中给出了更广泛的定义:如果某些变量,以这样一种方式依赖与另一些变量,即当后面这些变量变化时,前面这些变量也随之而变化,则将前面的变量称为后面变量的函数。(定义 4)这个定义朴素地反映了函数中的辨证因素,体现了“自变”到“因变”的生动过程 ,但未提到两个变量之间的对应关系,因此它并未反映出真正意义上的科学函数概念的特征,只是科学的定义函数概念的“雏形”。 函数是从研究物体运动而引出的一个概念,因此前几种函数概念的定义只是认识到了变量“变化”的关系,如自由落体运动下降的路程,单摆运动的幅角等都可以是看成时间的函数。很明显,只从运动中变量“变化”观点来理解函数,对函数概念的了解就有一定的局限性。如对常值函数 ,不解释 十九世纪初,拉克若斯( Lacroix)正式提出只要有一个变量依赖另一个变量,前者就是后者的函数。 1834年 ,俄国数学家罗巴契夫斯基(Лобачевский)进一步提出函数的定义: x的函数是这样的一个数,它对于每一个 x都有确定的值,并且随着 x一起变化,函数值可以由解析式给出,这个条件提供了一种寻求全部对应值的方法,函数的这种依赖关系可以存在,但仍然是未知的。(定义 5)这实际是“列表定义”,好像有一个“表格”,其中一栏是 x值,另一栏是与它相对应的 y值。这个定义指出了对应关系(条件)的必要性,把函数的“对应”思想表现出来,而“对应”概念正是函数概念的本质与核心。 十九世纪法国数学家柯西( Cauchy)更明确的给出定义:有两个互相联系的变量,一个变量的数值可以在某一范围内任意变化,这样的变量叫做自变量,另一个变量的数值随着自变量的数值而变化,这个变量称为因变量,并且称因变量为自变量的函数。(定义 6) 1829年 ,狄利克雷( Dirichlet)给出了所谓狄利克雷函数: y=1 当 x为有理数时; y=0 当 x为无理数时。这个函数并不复杂,但不能用解析式来表示,这一思想的提出,正是数学由过去的研究“算”到以后研究“概念、性质、结构”的转变的开端。 1837年他对函数下的定义是:在某个变化过程中,有两个变量 x和 y。如果对于 x在某一范围内的每一个确定的值,按照某个对应关系, y都有唯一确定值和它对应,则 y称为 x的函数; x称为自变量。(定义 7)这个定义的优点是直截了当地强调与突出了“对应”关系,抓住了概念的本质属性,只须有一个法则存在,使得这个函数定义域中的每一个值有一个确定的 y值和它对应就行了,不管这个法则是公式或图像或表格或其他形式;其缺点是把生动的函数变化思想省略和简化掉了。 ⒉以“集合”为基础的函数概念 函数的概念是随着数学的发展而发展的。函数的定义在数学的发展过程中,不断的改进,不断的抽象,不断的完善。十九世纪七十年代,德国数学家康托( )提出了集合论。进入二十世纪后,伴随着集合论的发展,函数的概念也取得了新的进展,它终于摆脱了数域的束缚向更广阔的研究领域扩大,使概念获得了现代化。 二十世纪初美国数学家维布伦( Weblan)给出了函数的如下定义:若在变量 y的集合与另一变量 x的集合之间,有这样的关系成立,即对 x的每一个值,有完全确定的 y值与之对应,则称 y是变量 x的函数。(定义 8)从这个定义开始,函数概念已把基础建立在集合上面,而前七个定义则是把基础建立在变量(数)上的。 随着时间的推移,函数便被明确的定义为集合之间的对应关系,其定义是: A和 B是两个集合,如果按照某种对应关系,使 A的任何一个元素在 B中都有唯一的元素和它对应,这样的对应关系成为从集合 A到集合 B的函数。(定义 9)此定义根据映射的概念,用“映射”观点建立函数概念,其又可叙述为:从集合 A到集合 B的映射 f: A→ B称为集合 A到集合 B的函数,简称函数 f 。(定义 10)以上三个定义,已打破数域的束缚,将集合中的元素改为抽象的,可以是数,也可以不是数,而是其它一切有形或无形的东西,如 X是所有三角形的集合, Y是所有圆的集合,则 f 可以是把每一个三角形映射成它的外接圆的映射。 对新函数定义可以这样理解:函数是一个对应(规则),对于某一范围(集合)的元素,按照这个对应(规则)确定另一个元素。这样函数概念从狭义的“变化”观点转化到较广义的“对应”观点,函数即是一个对应(规则)。 对函数概念用“对应”(“规则”)来理解比起最初阶段虽然揭示出了函数概念的实质,但它还不符合我们最低限度地使用未被定义的术语的意图。因为什么叫“对应”和怎样理解“规则”还需要定义,例如规则不同,那么是否函数也不同呢?如f(x)=x与f(x)=(1+x)-1当然是不同的规则但却定义了同一函数。 为了解决这一矛盾,二十世纪初,特别是在六十年代以后,广泛采用只涉及“集合”这一概念的函数定义,而集合作为原始概念是不予定义的,这样的定义是:设 A、 B是任意两个集合, f是笛卡儿集 A× B的一个子集,满足:①对任意的 a ∈ A,存在一个 b∈B,使得 (a,b)∈ f,②若 (a,b)∈ f, (a,c)∈ f则 b=c。则称 f为 A到 B的一个函数。记作 f:A→B。(定义11)这个定义利用“关系”这个概念,便给出了只涉及原始概念“集合”的函数的一般定义,即不需要用到“对应”,又避免了对“规则”的解释,只要集合理论适用一切数学领域,这样给出的函数定义总是适用的。它可称的上是最现代的定义了。 到此,“函数”最完善的定义(定义 11)已给出,作为数学中最基本的概念之一,已把基础直接建立在集合上面,即把函数看作是从一个集合到另一个集合的对应,它和“映射”实际上是一回事。 三、新旧两种定义的比较 比较新定义(把以集合为基础的函数定义称为新的定义方式,而以变量(数)为基础的定义称为旧的定义方式。)和旧定义,它们之间有两个重要的区别: ⑴旧定义是建立在“变量”这个基本概念上的,而新定义则建立在“集合”这个基本概念上。什么是变量呢?通常把它理解为在选定一个单位以后,可加以度量的东西,如长度、质量、时间之类,这种理解一方面太疏于笼统,只能通过举例来说明,而难于加以精确化;另一方面,由于涉及大小关系,嫌过于狭窄,无法体现应用上的普遍性。其次,即使什么是“量”的问题不存在,作为变量,它须在某一范围取值(不一定是数值),这一定范围实际上就是事先得假定的一个集合 A(它构成函数的定义域),所谓“变量取值 a”,实质上就是“ a属于 A”的一种变相迂回的说法。可见,在变量的概念中已蕴含集合的思想。 ⑵旧定义中以“因变量”为函数,而新定义中则以“对应关系”为函数。函数概念的实质,主要的并不是因变量要随自便量“变”,而是两集合之间存在某种确定的对应关系。显然,新定义更能直接地揭示出函数的实质。
数学这门古老而又充满生命力同时兼顾理论性和应用性的课程,被誉为“思维的 体操 ”,其中无论是理论(纯数学)还是实践(应用数学),都包含丰富的知识和思维的技巧。下文是我为大家搜集整理的关于数学论文的内容,欢迎大家阅读参考!
浅析小学数学学习特点对教学的影响
小学数学是知识学习的起始点,与人类的学习比起来,小学数学的学习更有具体性。小学生对数量关系和空间形式知识的学习,具有抽象性,需要学生认真思考。要从学生的实际情况出发,分析学生在学习小学数学前在知识、能力、情感态度价值观等方面所达到的水平,使教师根据小学数学学习特点策划教学方案,为教学提供理论依据。本文从学习内容、学习过程以及学习方式三点来论述小学数学学习特点对教学的影响。
一、学习内容的抽象性与形象性
1.抽象性和形象性的特点
教材编写人员将富有抽象的数学知识转变为 儿童 易理解的形象化数学知识,通过转化,它不但没有失去数学学科的抽象性、逻辑性和严密性,而且更加形象生动。大大提高了学生的学习兴趣。教材通过丰富多样的图片和 故事 ,把数学知识以多种方式呈现在学生面前。使学生想学爱学。虽然小学数学学习内容很抽象,但经过多种方式的呈现,使知识更形象生动。这种 方法 解决了数学知识特点与小学生思维之间的矛盾问题。
2.抽象性和形象性特点对小学数学教学的影响
教师在讲解小学数学时要使形象性与抽象性相结合,通过各种教学方式把抽象的数学知识形象化。因此教师需恰当地解决具体与抽象之间的联系,即要解决以下四个问题:第一,怎样将学习内容的形象性与数学的本质结合起来;第二怎样进行抽象概括;第三,怎样对数学知识的理解深入到学生心中;第四,使学生学会用自己的语言来描述数学问题。
二、学习过程的渐进性和系统性
1.渐进性和系统性的特点
教学模式开发和应用的过程,是一个随着 教育 理论和教学实践不断发展的过程。它具有渐进性和系统性。这两种特性遵循了小学生的发展规律,对知识的学习是一个循环渐进的过程。在教学中要充分考虑学生的年龄特点和小学数学学习的特点,在具体活动中引导学生多动手、动脑和动口,调动各种感官参与活动,提高学习效率。渐进性和系统性是学生学习过程中的特点,它主要表现在,数学知识的逻辑性和系统性,数学知识具有扩展性,每个知识点要相互渗透,形成全面系统的知识。学会举一反三。对小学数学循序渐进学习。
2.渐进性和系统性特点对小学数学学习的影响
根据小学数学渐进性和系统性的特点,合理地选择教学方式。在教学过程中遵循学生发展的规律。将小学数学学习的渐进性和系统性恰当的结合起来,从而制定有效的教学方案,使得小学数学的教学有计划、高效的开展。适应这个特点需要满足以下两个方面:第一个方面,按照教科书为学生制定的数学学习顺序进行学习;第二个方面,在学习原理的基础上,使小学数学学习过程具有系统性。
三、学习方式的接受性和探索性
1.接受性和探索性在小学数学学习活动中的体现
小学数学的学习方式分为接受学习和发现学习两种。无论是哪种学习方式,都是学生将已存在的数学知识转化为自己知识的过程,来提高数学水平。转化知识的过程既是学生自己发现探索的过程,也是接受原有知识的过程。通过学生对数学学习方式的探索,小学数学的学习是在接受性和探索性及两者统一的基础上表现出来的。而对数学知识的再发现决定了小学数学学习的探索性,对数学知识的传递决定了其学习的接受性。接受性和探索性是小学数学学习的必要条件。
在教学过程中,教师要正确地认识和承认学生的差异,通过独立思考和小组合作交流,使学生能在不同的基础上得到发展,并能从教师对每一种方法的肯定中获得成功的喜悦。可以让学生选择自己喜欢的计算方法与同学交流,增加本节课学习的兴趣,提高教学效率。
2.接受性和探索性特点对小学数学教学的影响
接受性和探索性特点是通过教与学的方式对小学数学教学产生影响。教师要以学生为主体,在小学数学的教学过程中起引导作用,教师要采用多种教学方式引导学生思考,且根据学生接受的程度和讲授的数学知识恰当地选择教授方法,这样学生既能运用多种方法学习数学,又能掌握知识,小学数学教学过程的进步需要靠多样的学习方式和先进的 教学方法 来完成,使学生能够在玩中学,提高学习兴趣,达到教学目的。在教学过程中需要关注以下三点:第一,以多种多样的学习方式指导学生;第二,在教学过程中,要注重培养学生自己探索发现数学问题及解决数学问题的能力;第三,根据小学数学的学习特点采用多种教学方式提高学生学习的主动性和积极性。
四、结语
小学数学教学过程中必须要关注小学生学习数学的特点,根据其特点采用多种教学方法进行教学。教学内容应生动形象而不缺抽象,教授过程中要把系统性与渐进性相结合,接受性与探索性相结合,遵循小学数学学习的特点,循环渐进地掌握知识,达到期望的教学目标。小学数学学习的特点对教学既有指导性,也有探索性,只要充分理解其特点,才能使小学数学的教学向着有利于学生接受的方向迅速前进,从而提高教学效率,达到教学目标。
浅析新课改下高中数学导数教学的发展
最近几年来,伴随着我国市场经济的飞速发展,社会也在不断的发生着变化,同期我国的科学技术水平也迈上了一个新的台阶。为了能够更好的发展,同期也需要我们的自然学科进行相应的发展,这样可以更好的适应社会发展的需要。众所周知,数学学科是高中素质教育中不可或缺的重要组成部分之一,自从我国教育体制开始形成之时,数学科目就开始存在,所以说数学在素质教育中占据的地位非常重要,而导数作为帮助学生解决函数、数列等难点的工具,同时又能紧密联系其他学科,更是有着十分重要的地位。在实行新课改后,微积分作为教学内容而列入高中数学教材,这对学生的导数知识掌握能力提出了更高的要求。因此本文对新课改实施背景下,如何通过教学方法的改进来提高学生导数掌握能力进行研究。
一.现阶段高中数学导数教学的现状
(1)教学模式单一,对学生 学习方法 引导不够
在文理分科的背景下,导数在高中数学学科中是作为一门选修课程来学的,这造成了文科学生由于对导数的应用了解不深而不能很好地掌握,利用导数求解函数参数问题也就无从谈起。同时由于实行新课改后,数学学科的课时被压缩,很多教师为了在短时间内完成大纲规定的内容,在教学过程中一般来说都是采取的教师讲授或者板书,毫无疑问,在整个教学的过程中学生都是被动听课的方式进行教学的,这种教学方式在一定程度上大大压制了学生思维的活跃性和课堂参与的积极性。这就造成了学生由于导数内容太难而失去学习激情,这更加不利于导数知识的掌握,不利于教学活动的开展。
(2)应试教育观念导致的教学僵化
一直以来,我国的应试教育体制在教育体系中的地位都比较稳固,甚至到现在为止还没有得到完全的消除。即使实行了新课改,很多教师由于教学观念没有转换过来,在教学过程中过于重视考试题型的讲解和练习,而忽视了帮助学生对数学思想和内涵进行正确认识,这导致了学生在导数学习中纯粹以考试为目的,机械式地背诵公式,无法将所学导数知识运用于生活和其他学科的内容学习中,这与新课改提倡的素质教育理念是不相符的。导数教学的难点在于学生对于导数的认识不足,难以理解导数概念,这需要老师利用物理学科或者生活中的场景进行深入了解,而不是用纯粹的理论化的数学概念来对学生进行“填鸭教育”。
二、新课改下提高数学导数教学质量的 措施
(1)帮助不同的学生制定不同的 学习计划
总的来说,学习方法是学生进行有效学习的基础,而且在一定程度上对学生的学习起着举足轻重的作用。正确的学习方法是学生有效掌握所学知识的保证,这就要求数学教师在课堂教学中除了对学生进行课堂内容讲解外,还需要通过一定的测试和沟通来了解学生的导数内容掌握情况,对于掌握不足的学生应该帮助制定相应的学习计划,测试的目的不是为了成绩,而是为了掌握学生的学习情况,同时针对学生的学习情况对教学计划进行适当的调整,如果后续的学习计划制定没有跟上,那么测试也就失去了意义。
(2)借助案例帮助学生加深对导数的理解
导数由于其对于高中学生来说过强的理论性,造成了学生对于导数的理解和应用往往掌握不够,这种情况下纯粹的理论教学只会造成学生进一步的不理解,这十分不利于学生的学习效率和老师的课堂效率,所以在导数的课堂教学中,老师要注意借助导数应用案例来激发学生的学习热情,比如物理运动的速度变化问题、加速度变化问题等,这样不仅能够帮助学生更好地理解导数内涵,而且能够使学生在加强对其他学科知识的理解的同时主动思考导数知识在生活中的应用,大大提高了教学质量和效率。
(3)加强导数技巧性和应用训练
在平时的教学中应该多鼓励学生应用导数内容求解函数等相关问题,这样可以进一步提高学生对导数的理解程度和应用水平。同时老师也可以针对导数的应用多出一些技巧性的题目对学生进行训练,比如利用导数知识来画出二阶、三阶函数的图像等,学生要做出这种题目就需要一定的技巧,随着解答的技巧性题目数量的增多,学生对于导数的应用也就更熟练。同时在导数的初学阶段,由于学生对于导数理解不够,老师可以出一些含有生活案例的题目让学生来解答,比如将学生骑车时速度变化的问题加入到导数题目中,这样可以促使学生主动思考导数知识,加深对导数的理解,为以后的导数深入学习打下基础。
三、结语
综上所述,我们可以知道,高中数学的导数教学具有其一定的独特性,究其原因是因为在一定程度上不但具有数学学科严密的逻辑性,而且同时还具有初中数学不具备的抽象性,所以在教学中需要教师根据高中数学的特点进行相应的教学。高中导数的有效教学不但需要教师采用积极引导的教学,同时还需要学生培养出数学思维进行学习,只有通过教师和学生共同努力,这样才能在新课改的情况下,让高中数学导数教学得到稳定可持续的发展。
浅谈初中生数学问题意识的培养
一、初中生问题意识培养的意义
问题意识即在学科学习过程中能够主动思考、认真探究,从而针对某个方面提出问题的思想准备。在数学课堂上,学生常常不敢或不愿回答课堂提问,不能或不善提出问题,能够经常积极回答问题的只有少数学生,能够在课堂中提出问题的学生更是少之又少。学生缺少问题意识,不能提出问题,不利于学生思维的发展,不利于学习能力的进一步提升。朱永新关于新课程的核心理念之一:教给学生一生有用的东西。而学生自主学习、勤学好问的习惯一定是学生一辈子受益的。心理学研究表明,意识到问题的存在是思维的起点,学生没有问题本身就是大问题.被称为现代科学之父的爱因斯坦曾指出:“提出一个问题往往比解决一个问题更重要。”初中生数学问题意识的培养,是学习习惯和学习能力培养的重要方面,是新课程改革的需要。
二、初中生问题意识培养策略
如何培养学生问题意识呢?我们通过教学实践进行了相关探索,并初步形成了一些策略。
1、改变评价方式,鼓励提问
造成学生问题意识缺失的原因是多方面的。我们的评价导向不利于学生问题意识的培养是原因之一,多数时候我们对回答问题对、考试分数高大加赞赏,对于学习有困难的学生缺少鼓励指导。大批循规蹈矩的学生,不敢也不会去质疑。学生学习中的问题本应该由学生主动提出,而实际教学中常常是学生被老师问。如何改变这一现状?我们可以采用多种方式鼓励学生提问。(1)注意运用表扬或激励性语言,逐步使学生感受到课堂中能提出问题和敢于回答问题一样都是值得肯定和鼓励的。(2)把学生课堂提问是否积极作为对学生评价的一个重要方面。(3)有目的进行一些提问竞赛等活动。
2、夯实学习基础,让学生能问
教学实践中我们体会到学生能否提出问题与学生学习基础有密切关系,学习基础较好的学生更容易提出问题。因此,教师要注重夯实学习基础、培养学生勤学好问的品质,让学生坚实的学习基础成为产生问题的土壤.
3、营造轻松学习氛围,使学生敢问
数学课堂上学生没有提出问题,并不是没有问题,更多时候是因为紧张等原因导致有问题不敢提出。学生只有在宽松、和谐的氛围中,思维潜力才会得到最大限度的开启。为了消除学生在课堂上的紧张和害怕的情绪,教师需要尽可能营造轻松、和谐、民主的学习氛围,可以先让学生在学习小组内交流、质疑,再让学生在全班内提出或解答问题。教师以微笑、平和、宽容、鼓励的心态指导学生,与学生交流探讨,帮助学生树立自信,拉近师生情感距离,使学生做到想问就问。
数学教学应教会学生会思考。让学生经历观察、猜想、操作、实验、合情推理的过程,不仅有利于培养学生的独立性、能动性和创新精神,而且学生在轻松学习氛围中能够 消除紧张 因素,有问题时敢于提出。
4、教师示范引领,诱导学生善问
如果一个人没有问题,就不会有新的发现,就不会有真正的成长。学生没有问题意识就会学得被动低效,教师没有问题意识就会阻碍专业成长。教师要让学生有问题意识,就首先自己具有问题意识。教师强烈的问题意识能起到很好的示范作用,能促进学生的问题意识发展。
案例2.三角形三边关系教学
(1)让生拿出课前准备好的三根长度不一样的塑料吸管。
(2)把这三根吸管“首尾顺次连结”你有何发现?这时学生发现有的能构成三角形,有的却不能。
(3)教师再继续提出三个问题:①你的三根吸管的长度各是多少?②三根吸管的长度具有怎样关系时能“首尾顺次连结”组成三角形?③是否具有任何长度的三条线段都能“首尾顺次连结”构成三角形?
在上述探究过程中,正是教师不断追问诱导,集中学生的思维,引发了学生的不断质疑,思考层层深入,结果不断涌现,惊喜不断。长此以往,学生就会善于提问。
5、利用现代媒体技术,促学生提问
《义务教育课程标准(2011版)》(以下简称《标准》)指出:数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程的整合。把信息技术作为学生学习数学和解决问题的有力工具,有效地改进教和学的方式,使学生乐意投入到现实的、探索性的数学活动中。现代信息技术应用于数学教学能达到其他方式无法比拟的效果,有力于学生在“问题空间”自主探究。教师为学生设置环境,提供他们需要使用的工具与资源,促使学生提出问题并进行探索,激发学生解答问题,实现学生自己建构知识。
现代信息技术为数学活动的开展提供了广阔的天地,只要学生投入到运用媒体软件做数学的活动过程中,必然发现或提出各种问题、引发自主探究。
三、结语
总之,真正的教育应该是以学生的发展为本,老师不仅关注如何教,更应该关心学生如何学.我们要求学生创造出能够提出问题、敢于提出问题、善于提出问题的学习环境,从而培养学生的问题意识和创新精神.
2017大学数学论文范文
由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。但是特殊函数往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。下面是我整理的关于几类特殊函数的性质及应用的数学论文范文,欢迎大家阅读。
几类特殊函数的性质及应用
【摘要】本文将对数学分析中特殊函数,诸如伽玛函数、贝塔函数贝塞尔函数等超几何数列函数,具有特殊的性质和特点,在现实中得到大量的运用的函数。本文主要以简单介绍以上三种特殊函数性质,及其在其它领域的应用,诸如利用特殊函数求积分,利用特殊函数解相关物理学问题。本文首先以回顾学习几类常见特殊函数概念、性质,从而加深读者理解,然后以相关实例进行具体分析,从而达到灵活应用的目的。
【关键词】特殊函数;性质;应用;伽马函数;贝塔函数;贝塞尔函数;积分
1.引言
特殊函数是指一些具有特定性质的函数,一般有约定俗成的名称和记号,例如伽玛函数、贝塔函数、贝塞尔函数等。它们在数学分析、泛函分析、物理研究、工程应用中有着举足轻重的地位。许多特殊函数是微分方程的解或基本函数的积分,因此积分表中常常会出现特殊函数,特殊函数的定义中也经常会出现积分。传统上对特殊函数的分析主要基于对其的数值展开基础上。随着电子计算的发展,这个领域内开创了新的研究方法。
由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。本文归纳出特殊函数性质、利用特殊函数在求积分运算中的应用、特殊函数在物理学科方面的应用,利用Matlab软件画出一些特殊函数的图形,主要包含内容有:定义性质学习,作积分运算,物理知识中的应用,并结合具体例题进行了详细的探究和证明。
特殊函数定义及性质证明
特殊函数学习是数学分析的一大难点,又是一大重点,求特殊函数包含很多知识点,有很多技巧,教学中可引导学生以探究学习的方式进行归纳、总结;一方面可提高学生求函数极限的技能、技巧;另一方面也可培养学生的观察、分析、归类的能力,对学生的学习、思考习惯,很有益处。
特殊函数性质学习及其相关计算,由于题型多变,方法多样,技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。解决这个问题的途径主要在于熟练掌握特殊函数的特性和一些基本方法。下面结合具体例题来探究特殊函数相关性质及应用。
2.伽马函数的性质及应用
伽马函数的定义:
伽马函数通常定义是:这个定义只适用于的区域,因为这是积分在t=0处收敛的条件。已知函数的定义域是区间,下面讨论Г函数的两个性质。
Г函数在区间连续。
事实上,已知假积分与无穷积分都收敛,则无穷积分在区间一致收敛。而被积函数在区间D连续。Г函数在区间连续。于是,Г函数在点z连续。因为z是区间任意一点,所以Г函数在区间连续。
,伽马函数的递推公式
此关系可由原定义式换部积分法证明如下:
这说明在z为正整数n时,就是阶乘。
由公式(4)看出是一半纯函数,在有限区域内的奇点都是一阶极点,极点为z=0,-1,-2,...,-n,....
用Г函数求积分
贝塔函数的性质及应用
贝塔函数的定义:
函数称为B函数(贝塔函数)。
已知的定义域是区域,下面讨论的三个性质:
贝塔函数的性质
对称性:=。事实上,设有
递推公式:,有事实上,由分部积分公式,,有
即
由对称性,
特别地,逐次应用递推公式,有
而,即
当时,有
此公式表明,尽管B函数与Г函数的定义在形式上没有关系,但它们之间却有着内在的联系。这个公式可推广为
由上式得以下几个简单公式:
用贝塔函数求积分
例
解:设有
(因是偶函数)
例贝塔函数在重积分中的应用
计算,其中是由及这三条直线所围成的闭区域,
解:作变换且这个变换将区域映照成正方形:。于是
通过在计算过程中使用函数,使得用一般方法求原函数较难的问题得以轻松解决。
贝塞尔函数的性质及应用
贝塞尔函数的定义
贝塞尔函数:二阶系数线性常微分方程称为λ阶的贝塞尔方程,其中y是x的未知函数,λ是任一实数。
贝塞尔函数的'递推公式
在式(5)、(6)中消去则得式3,消去则得式4
特别,当n为整数时,由式(3)和(4)得:
以此类推,可知当n为正整数时,可由和表示。
又因为
以此类推,可知也可用和表示。所以当n为整数时,和都可由和表示。
为半奇数贝塞尔函数是初等函数
证:由Г函数的性质知
由递推公式知
一般,有
其中表示n个算符的连续作用,例如
由以上关系可见,半奇数阶的贝塞尔函数(n为正整数)都是初等函数。
贝塞尔函数在物理学科的应用:
频谱有限函数新的快速收敛的取样定理,.根据具体问题,利用卷积的方法还可以调节收敛速度,达到预期效果,并且计算亦不太复杂。由一个函数的离散取样值重建该函数的取样定理是通信技术中必不可少的工具,令
称为的Fourier变换。它的逆变换是
若存在一个正数b,当是b频谱有限的。对于此类函数,只要取样间隔,则有离散取样值(这里z表示一切整数:0,)可以重建函数,
这就是Shannon取样定理。Shannon取样定理中的母函数是
由于Shannon取样定理收敛速度不够快,若当这时允许的最大取样间隔特征函数Fourier变换:
以下取样方法把贝塞尔函数引进取样定理,其特点是收敛速度快,且可根据实际问题调节收敛速度,这样就可以由不太多的取样值较为精确地确定函数。
首先建立取样定理
设:
其中是零阶贝塞尔函数。构造函数:
令
经计算:
利用分部积分法,并考虑到所以的Fourier变换。
通过函数卷积法,可加快收敛速度,使依据具体问题,适当选取N,以达到预期效果,此种可调节的取样定理,计算量没有增加很多。取:
类似地
经计算:
经计算得:
则有:设是的Fourier变换,
记则由离散取样值
因为,故该取样定理收敛速度加快是不言而喻的,通过比较得,计算量并没有加大,而且N可控制收敛速度。
例,利用
引理:当
当
因为不能用初等函数表示,所以在求定积分的值时,牛顿-莱布尼茨公式不能使用,故使用如下计算公式
首先证明函数满足狄利克雷充分条件,在区间上傅立叶级数展开式为:
(1)
其中
函数的幂级数展开式为:
则关于幂级数展开式为: (2)
由引理及(2)可得
(3)
由阶修正贝塞尔函数
其中函数,且当为正整数时,取,则(3)可化为
(4)
通过(1)(4)比较系数得
又由被积函数为偶函数,所以
公式得证。
3.结束语
本文是关于特殊函数性质学习及其相关计算的探讨,通过对特殊函数性质的学习及其相关计算的归纳可以更好的掌握特殊函数在日常学习中遇到相关交叉学科时应用,并且针对不同的实例能够应用不同的特殊函数相关性质进行证明、计算,从而更加简洁,更加合理的利用特殊函数求解相关问题。有些特殊函数的应用不是固定的,它可以通过不止一种方法来证明和计算,解题时应通过观察题目结构和类型,选用一种最简捷的方法来解题。
参考文献:
[1] 王竹溪.特殊函数概论[M].北京大学出版社,,90-91.
[2] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.
[3] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.
[4]王坤.贝塔函数在积分计算中的应用.[J]科技信息,2012(34)
[5] 王纪林.特殊函数与数学物理方程[M].上海交通大学出版社,2000,96-98.
[6] 陶天方.由特殊函数表达的快速取样定理 [J]. 上海大学学报(自然科学版),1997,8(4):368-371.
[7]饶从军,王成.让数学建模活动促进数学教学改革[J].中央民族大学学报(自然科学版),2004,2.
[8]赵宜宾.一类特殊函数定积分的求解[J].防灾技术高等专科学校学报,2010,1(3):38-39.
[9]董林.降次公式的探究—兼论一个猜想的证明[J].教学通报,.
[10] 李德新.利用对称原理计算定积分的三种方法[J].高等数学研究,2004,7(6):41—42.
[11]翟忠信,龚东山.高等数学的教与学[J].高等理科教育,2004(6):29—34.
[12]胡淑荣. 函数及应用[J]. 哈尔滨师范大学学报.2002,18(4):12~15.
一、函数内容处理方式的分析在整个中学阶段,函数的学习始于义务教育阶段,而系统的学习则集中在高中的起始年级。与以往相比,课程标准关于函数内容的要求发生了比较大的变化。 1. 强调函数背景及对其本质的理解无论是引入函数概念,还是学习三类函数模型,课程标准都要求充分展现函数的背景,从具体实例进入知识的学习。以往教材中,将函数作为一种特殊的映射,学生对于函数概念的理解建立在对映射概念理解的基础上。学生既要面对同时出现的几个抽象概念:对应、映射、函数,还要理清它们之间的关系。实践表明,在高中学生的认知发展水平上,理解这些抽象概念及其相互之间的关系存在很大困难。而从函数的现实背景实例出发,加强概念的概括过程,更有利于学生建立函数概念。一方面,丰富的实例既是概念的背景又是理解抽象概念的具体例证;另一方面,在实例营造的问题情境下,学生能充分经历抽象概括的过程,理解概念内涵。2.加强函数思想方法的应用函数是刻画现实世界变化规律的重要数学模型。因此,函数在现实世界中有着广泛的应用。加强函数的应用,既突出函数模型的思想,又提供了更多的应用载体,使抽象的函数概念有更多的具体内容支撑。比如,新增加的内容“不同函数模型的增长”和“二分法”,前者通过比较函数模型的增长差异,使学生能够更深刻地把握不同函数模型的特点,在面对简单实际问题时,能根据它们的特点选择或建立恰当的函数模型反映实际问题中变量间的依赖关系;后者充分体现了函数与方程之间的联系,它是运用函数观点解决方程近似解问题的方法之一,通过二分法的学习,能使学生加深对函数概念本质的理解,学会用函数的观点看待和解决问题,逐渐形成在不同知识间建立联系的意识。二、函数内容编写的基本想法函数的内容包括:函数概念及其性质,基本初等函数(Ⅰ),函数与方程,函数模型及其应用。以理解函数概念本质为线索,既可以将这些内容有机地组织为一个整体,又可以让学生以它们为载体,逐步深入地理解函数概念1.内容组织的线索:函数概念本质的理解函数概念并非直接给出,而是从背景实例出发采用归纳式的教材组织形式引入。由于函数概念的高度抽象性,学生真正理解函数概念需要一个漫长的过程,需要在不同层次上、从不同角度给学生提供理解和巩固函数概念的机会。首先,在分析典型实例的共同特征的基础上概括出函数定义后,通过讨论函数的表示、基本性质初步理解函数。它们分别是从函数的表现形式和变化规律两个方面丰富对函数概念的认识。然后,以三类基本初等函数为载体巩固函数概念,在学习了函数定义、基本性质之后,从一般概念的讨论进入到具体函数的学习。指数函数、对数函数和幂函数的概念及其性质都是一般函数概念及性质的具体化。以一类具体函数为载体,在一般函数概念的指导下对其性质进行研究,体现了“具体──抽象──具体”的过程,是函数概念理解的深化。最后,从应用的角度再一次巩固并提升对函数的理解。对一个概念真正理解的一个判断标准就是看看是否可以运用概念解决问题。教材最后安排函数的应用,包括二分法、不同函数模型的增长差异以及建立函数模型解决实际问题,就是期望学生能在“用”的过程中提高对函数概念的理解。2.突破难点的主要方法:显化过程,加强联系函数概念的理解贯穿了函数内容学习的始终,同时它也是教与学的一个难点,在教材编写中应采用什么方法突破这个难点,帮助学生更好地理解函数概念?对于形成函数这样抽象的概念,应该让学生充分经历概括的过程。概括就是把对象或关系的某些共同属性区分和固定下来。这就要求我们在编写教材时充分展示概括过程,并要充分调动学生的理性思维,引导他们积极主动地观察、分析和概括。教材选择了三个有一定代表性的实例,先运用集合与对应的语言详细地分析前两个实例中变量间的依赖关系,给学生以如何分析函数关系的示范,然后要求学生仿照着自己给出第三个实例的分析,最后通过“思考”提出问题,引导学生概括三个实例的共同属性,建立函数的概念。在这样一个从具体(背景实例)到抽象(函数定义)的过程中,学生通过自己的思考从分析单个实例上升到概括一类实例具有的共同特征,更能理解概念内涵。作为中学数学的核心概念,函数与中学数学的许多概念都有内在联系,这种联系性为理解函数概念提供了众多的角度和机会,因此加强函数与其他数学知识的联系是函数概念教学的内在要求。例如,函数有多种表示方法,加强不同表示法之间的联系和转换,使学生学会在面临一个具体问题时能根据问题的特点灵活选择表示的方法,就是促进理解的一个手段。教材通过例题给出高一某班三位同学在六次测试中的成绩及相应的班平均分的数据,要求分析三位同学的学习情况。解决这个问题的关键就是根据函数的表格表示法与图象表示法的特点,将表格表示转化为图象表示。又如,函数与现实生活有着密切的联系,所以在编写教材时注重加强函数与现实生活的联系,像由背景实例引入概念,在例题和习题中安排一定量的应用问题(碳14的衰减,地震震级,溶液的酸度等)都体现了函数与实际生活的外部联系。再如,从运用函数观点解决方程问题的角度介绍二分法,体现出函数与方程间的联系等等。三、函数内容编写中的几个关键问题1.实例如何选择无论是加强概念背景,还是突出知识的联系与应用,能达到很好效果的重要因素就是要选择合适的实例。那么,如何选择实例才能有助于学生的学习呢?对于起到不同作用的背景实例和应用实例,标准并不完全相同。但总的来说,一是实例的背景知识应该尽量简单,这样可以避免因背景的复杂性而影响对数学知识本身的理解;二是实例应丰富,这样有利于全面、准确地理解知识,不会产生偏差;三是实例应贴近学生生活、具有一定的时代性,这样才会引起学生的共鸣,激发学习的兴趣。比如,介绍函数概念时,教材选择了用解析式表示炮弹飞行的问题、用图象表示南极臭氧空洞的问题、用表格表示恩格尔系数的问题,第一个问题是学生在物理中就很熟悉的,后两个问题是日常生活中经常提及的,背景相对来说比较简单,学生就不会因为需要了解过多的背景知识而冲淡对函数概念的学习。而且重要的是,这样的三个问题包括了不同的函数表现形式,利用它们概括函数概念,就可以消除初中学习中可能存在的一些认识偏差,使学生认识到无论表示形式如何,只要对于每一个x,都有一个y与之对应,就是函数,而这正是函数的本质特征。再如,根据汽车票价制定规则写出票价和里程间的解析式,并利用解析式为售票员制作出我们在汽车上经常看到的“阶梯形票价表”这类问题,贴近学生生活并具有现实的应用价值,能引发学生的兴趣和学习的积极性。2.概念如何展开对于突破函数概念这个难点,可以在整段函数内容的学习中采用显化过程、加强联系的方法。那么具体地,在从三个方向巩固函数概念理解时,如何展开像函数的单调性、二分法这些概念,才能让学生掌握它们,从而达到巩固理解函数概念的目的呢?函数的性质就是研究函数的变化规律,这种规律最直观的获得来自于图象,图象的上升、下降就是单调性。问题在于如何帮助学生从几何直观上升到严格的数学定义。同样地,二分法也需要经历一个由直观认识到数学定义的过程。为此,就需要将直观到严格数学定义的过程划分成几个层次,为学生搭建认识的台阶,使他们逐步地获得概念。比如,介绍函数单调性时,首先给出一次函数和二次函数的图象,观察它们的图象特征,即上升或下降;然后用问题“如何描述函数图象的‘上升’‘下降’呢”引导学生用自然语言描述出图象特征;最后思考“如何利用解析式f(x)=x2描述‘随着x的增大,相应的f(x)随着减小’……”,将自然语言的描述转化成数学符号语言的描述,并一般化得到单调性的数学定义。通过这样的三步,利用数形结合的方法展开单调性的概念,既有助于学生通过自己的努力获得概念,而且也从数和形两个方面理解了概念。3.函数内容中使用信息技术的点及方式在数学课程中使用信息技术已经毋庸置疑,同样地,信息技术的使用也是教材编写中最为关注的问题之一。那么,在函数中有哪些适合使用信息技术的内容,如何使用,以及在教材中使用的方式是怎样的?信息技术具有强大的图象功能、数据处理功能和良好的交互环境,利用这些优势,在函数这部分内容中可以使用信息技术的点主要有:求函数值、做函数图象、研究函数性质、拟和函数等。运用常见的一些软件,如excel、几何画板等就可以轻松地作出函数图象,这在讨论不同函数模型增长差异时发挥很大作用,从几幅图就能直观发现增长的差异;运用计算器可以解决二分法中计算量大的问题,从而将更多精力关注到二分法的思想上,认识到函数和方程间的联系;而计算机的交互环境则为学生的自主探究提供了强有力的平台,丰富了学习方式,如讨论指数、对数函数性质时,可以充分演示出图象的动态变化过程,这样就能在变化中寻求“不变性”,发现函数具有的性质。教材编写时一方面在适合使用信息技术的地方给予提示,如“可以用计算机……”等;另一方面通过拓展栏目详细地介绍一些信息技术应用的专题,如“用计算机绘制函数图象”重点介绍使用常用软件做函数图象的方法,“借助信息技术探究指数函数的性质”给出探究的情境,要求学生亲自利用信息技术发现规律,“收集数据并建立函数模型”介绍了如何用信息技术拟合函数,等等。通过这些方式,可以为教师和学生提供使用信息技术的机会和空间。
本学期,我们学习了许许多多的数学知识。从“几何”到“代数”再到“数形结合”。太多太多了。8个单元,分门别类,让我们看到了数学的精彩!其中我个人认为最有趣的就是第六单元“一次函数”。 一开始接触“函数”这个概念时还是非常陌生的。因为转眼望去,前面的单元基本是“小学”和“初一”接触过得。而对于“函数”来说确是几乎“一无所知”。只知道初一老师说过“可能性”和“函数”有着密切的关系。翻开这个单元时,真的有点“丈二和尚摸不着头脑”。 上面说了种种对“函数”概念的无知。所以自然在一开始学习的过程中会遇到“困难”。这单元的第一章从生活实际出发讲了“函数”的定义等等。这是一个比较“浮浅”的类容(从我现在的角度来说)。从这里我真正接触到了“函数”,但也许是学习没有完全进入。当时给我的印象就是:“函数好像是一个可有可无的好不重要的知识,甚至不明白为什么要学他。”第二章类容可以说就是对第一章的一个“浓缩”。好比第一章是个“橙子”,第二章就是把它榨成汁,然后就可以提高价值贩卖出去。学完后我对函数的印象还是那样,就像“橙子”和“橙汁”虽然“物态”不同,但味道还是差不多。真正的困难出现在第三章,谈到了“一次函数的图象”。可以老实说这章听得差不多是我本学期听的最累的一节课。老师发下来讲义,我那节课觉得您讲的奇快。我还没反应过来你就讲完了。我想班上大多数同学的感受也是如此吧!我终于意识到“函数”不是那么好学的。于是我就开始多做练习,慢慢的我对“函数”渐渐熟悉,随着课程的继续尤其是“函数的实际运用”这节课也使我对函数的印象大大改变。觉得“函数”好像是我们所学课程中与实际生活最紧密的一个单元了。 以上就是我学习“一次函数”的经历。下面我们在来分析一下“一次函数”。从类别上讲,“一次函数”是一个“数形结合”的“典范”。它体现了“代数”和“几何”的“互利”关系,说明二者“缺一不可”。使我们对“代数”“几何”有了全新认识,觉得他们的界线渐渐模糊了。其次“一次函数”我认为是一个有趣,神奇的类容。它有趣在千变万化的图象,它神奇在只用几笔简捷的线条就可以表达出需要“长篇大论”的文字所表达的变化规律。不能不觉得“一次函数”充满了“魔力”。此外这章的编排也是十分“成功”的,与前一章“位置的确定”联系紧密,可以使学过的知识由此得到“巩固”,更可以“由此及彼,举一反三,一通百通”。我想2章的联合编排更是教会我们“复习整理”的学习方法。所以由“一次函数”可以看出,北师大教材的编派不仅注重“知识”还注重“方法”。“一次函数”也使我对这本教材有了全新的认识和看法。 “一次函数”不仅有趣而且更是“历届”中考的“重中之重”。所以无论从“素质教育”和“应试教育”的角度来说“一次函数”都是一节非常好的类容。 以上就是我的这篇“数学小论文-一次函数”,所有观点只是我个人之见,谢谢!
数学思想是人脑对现 /a>思想是人脑对现实世界的空间形式和数量关系的本质的反映,是思维加工的产物。函数思想是数学思想的重要组成部分,在高中数学中起到横向联系和纽带连结的主干作用。用变量和函数来思考问题的方法就是函数思想。这是一种考虑运动变化、相依关系,以一种状态确定地刻划另一种状态过渡到研究变化过程的思想方法。函数思想是函数概念、性质等知识更高层次的提炼和概括,是在知识和方法反复学习运用中抽象出的带有观念性的指导方法。 所谓函数思想的运用,就是对于一个实际问题或数学问题,构建一个相应的函数,从而更快更好地解决问题。构造函数是函数思想的重要体现,运用函数思想要善于抓住事物在运动过程中那些保持不变的规律和性质。下面简单介绍一下运用函数思想来解决方程、不等式、数列、参数的取值范围等问题。一、运用函数思想求解方程问题 函数与方程既是两个不同的概念,又存在着密切的联系。一个函数若能用一个解析式表达,则这个表达式就可看成一个方程;一个二元方程的两个未知数间存在着对应关系,如果这个对应关系是单值的,那么这个方程也可以看成一个函数。一个方程的两端可以分别看成函数,方程的解就是这两个函数图象交点的横坐标。因此,许多有关方程的问题都可用函数思想来解决。例1 求证:不论 a取什么实数,方程x2 - ( a2 + a ) x + a - 2=0必有两个不相等的实根。分析:此题若用常规解法,求出判别式△是一个关于a的一元四次多项式,符号不易判断。若用函数思想去分析题意,设函数f(x)=x2-(a2+a)x+a-2,要证明命题成立,只需证明函数y=f(x)的图象与x轴有两个交点,由于它的开口向上,只要找到一个实数X0,使f(x0)<0即可。比如f(1)=1-(a2+a)+a-2= - a2-1<0。故函数y=f(x) 的图象与x轴有两个交点,因此命题成立。例2 已知关于x的实系数二次方程x2+ax+b=0 有两个实数根α,β,证明:(I)如果 |α|< 2,|β |< 2,那么2| a |< 4+b且| b | < 4;(II)如果2| a |< 4+b且 | b | < 4,那么|α|< 2,|β| < 2;分析:本题表面上看是方程问题,方程的根的分布与参数a,b之间满足的关系式,如果用纯方程理论处理则十分繁琐;如果用函数思想来分析,将方程根的分布问题转化为函数图像与x轴交点问题,则可抓往本质。解:本题(I)(II)的结果是2 | a | < 4+b{ <==> α,β ∈(-2,2)| b | < 4可设函数f(x)=x2+ax+b( I )由二次函数的图像知f(2)>0α,β∈(-2,2) ==>{ f(-2)>0|b|=|α�6�1β|< 44+2a+b>0 2a> - (4+b)==>{ ==> {4-2a+b>0 2a< 4+b==> 2|a| <4+b且|b| < 42 |a| <4+b 4+2a+b>0 f(2)>0(Ⅱ) 如果{ ==> { ==>{ 则| b | < 4 4-2a+b>0 f(-2)>0α,β在(-2,2)之内或在(-2,2)之外,若α,β在(-2,2)之外,则 |α�6�1β| = b > 4,这与| b | < 4相矛盾,故α,β∈(-2,2)。二 、运用函数思想证明不等式例3 设 a , b , c 均为正数,且a+b>c,a b c求证:----- + ------ > -------1+a 1+b 1+ca b c分析:不等式左右两边,结构相似: -----, ------, -------,因1+a 1+b 1+c此可以联想函数f(x)=x / (1+x) (x>0)的单调性。证明:先证函数f(x)=x / (1+x) (x>0)的单调性。任取x1>0 , x2>0,不妨设x1
参考1邓小荣.高中数学的体验教学法〔J〕.广西师范学院学报,2003(8)2黄红.浅谈高中数学概念的教学方法〔J〕.广西右江民族师专学报,2003(6)3胡中双.浅谈高中数学教学中创造性思维能力的培养〔J〕.湖南教育学院学报,2001(7)4竺仕芳.激发兴趣,走出误区———综合高中数学教学探索〔J〕.宁波教育学院学报,2003(4)5杨培谊,于鸿.高中数学解题方法与技巧〔M〕.北京:北京学院出版社,19931、《计算机教育应用与教育革新——’97全球华人计算机教育应用大会论文集》李克东何克抗主编北京师范大学出版社19972、《教育中的计算机》全国中小学计算机教育研究中心(北京部)19983、林建详编:《CAI的理论与实践——迎接21世纪的挑战》全国CBE学会第六次学术会议论文集1993北京北京大学出版社。[1]参见。此书是一本从巴门尼德到怀特海的著作选集,按形而上学中的问题分类。[2]参见。此书正文的第一句话是:“要讨论形而上学,唯一正派的、当然也是聪明的方式就是从亚里士多德开始。”[3]《形而上学》,982b14-28。[4]引自《古希腊悲剧经典》,罗念生译,北京:作家出版社,1998年,49页。[5]亚里士多德:《形而上学》,985b-986a,昊寿彭译,北京:商务印书馆,1981年,12-13页。[6]参见若-弗·马泰伊:《毕达哥拉斯和毕达哥拉斯学派》,管震湖译,北京:商务印书馆,1997年,90页以下;《古希腊哲学》,苗力田主编,中国人民大学出版社,1989年,78页;汪子嵩等:《希腊哲学史》第1卷,人民出版社,1997年,290页以下。[7]《古希腊哲学》,78页。[8]《毕达哥拉斯和毕达哥拉斯学派》,115页以下。[9]同上书,125页。译文稍有改动。[10]《希腊哲学史》第1卷,290页。[11]亚里士多德:《论天》,引自〈希腊哲学史〉第1卷,283页。[12]《毕达哥拉斯与毕达哥拉斯学派》,107页以下。[13]巴门尼德的话可以简略地表述为:“是是,它不能不是”,因为“存在”与“是”在古希腊和大多数西方语言中从根子上是一个词,如英文之“being”与“be”。相关性:毕业论文,免费毕业论文,大学毕业论文,毕业论文模板够不够我在给你找
参考文献那么多,也要看你是写哪一方面的。
函数教学论文【1】
摘 要:初中数学中的函数知识非常重要,搞好这部分内容的教学,必须要理解基本概念,理清知识结构,树立“运动变化”的理念,渗透数形结合的思想。
关键词:初中数学 函数教学 数形结合
初中数学中变量与函数概念的引入,标志着数学由常量数学向变量数学的迈进。
尽管初中函数内容只是讲述了函数的一些最基本、最初步的知识,但是其中蕴含的数学思想和方法,对培养学生观察、研究、解决问题的能力是十分有益的。
不仅如此,函数概念还是高中代数的核心部分,学好初中函数的有关知识,可以为研究高中数学中的各种初等函数奠定一定的基础。
因而,初中函数概念的基础性作用是显而易见的。
在教学中应从四个方面引导学生正确理解函数的概念,进而掌握函数的特征和性质。
一、正确理解三组关系,系统把握函数概念
点的坐标的定义与点与坐标的一一对应关系;函数定义中某一变化过程和自变量与函数的对应关系;函数图象定义中的自变量值。
函数值→有序数对→点的坐标→点→图象,加强这三组关系的理解,有利于把函数的解析式、点的坐标和函数图象结合起来,建立起较完整的函数概念。
二、理清知识结构,构建知识体系
用这样一个知识结构图,可以把平面直角坐标系、点、图象和解析式有机地结合起来,并从中可以找到相互之间的联系和问题的转化方式。
三、树立运动变化的观点
函数概念的核心意义是反映在某一变化过程中两个变量之间的依赖关系,即一个量的变化随着另一个量的变化而变化。
这就使得原本静止的数的概念之间产生了一种动感的联系。
在教学过程中,应引导学生通过寻找、发现身边的事例来体会这种变量关系。
例如,生长期的身高随着年龄的变化而变化;一天中的气温随着时间的变化而变化;工厂的收入随着产量的增加而增加;二元一次方程的无数解,在方程3x-2y=1中,当x的取值发生变化时,y的值随着x的变化而变化……
在阐述这种运动关系的同时,还应该用式子、表格、图示的方法来举例描述,以加深学生对这种抽象的运动关系的直观认识,这样就可以逐步地帮助学生树立一种“运动变化”的观点。
四、培养数形结合的思想
数学教学过程应该体现明暗两条线:一条是明线,即数学知识内容的教学;另一条是暗线,即数学思想方法的形成。
由于数学思想方法既是数学的基础知识,又是将知识转化成能力的桥梁,用好了数学思想就是发展了数学能力。
因此,在教学中老师要注重培养学生对数学思想方法的渗透、概括和总结、应用能力的提升。
数形结合的思想方法是初中数学中一种重要的思想方法。
何为数形结合的思想方法?我们知道,数学是研究现实世界的数量关系和空间形式的科学,数和形是数学知识体系中两大基础概念,把刻画数量关系的数和具体直观的图形有机结合,将抽象思维和形象思维有机结合,根据研讨问题的需要,把数量关系的比较转化为图象性质或其位置关系的讨论,或把图形间的待定关系转化为相关因素的数量计算,即数与形的灵活转换、相互作用,进而探求问题的解答,就是数形结合的思想方法。
在函数这部分内容中,蕴含着丰富的数学思想,如坐标的思想、数形结合的思想等,其中最重要的是数形结合的思想。
那么在函数的教学过程中如何渗透与应用数形结合的思想方法,就显得尤为重要。
例如,一次函数就是一条直线,这条直线上的点的坐标无论怎样变化都满足解析式。
直线是由点组成的,点可以用数来描述。
反过来,直线就反映了数的变化特征。
一个函数可以用图形来表示,而借助这个图形又可以直观地分析出函数的一些性质和特点,这为数学的研究与应用提供了很大的帮助,教学时老师若注重了数形结合思想方法的渗透,将会收到事半功倍的效果。
在初中数学教学中常见的体例有:(1)数与数轴的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)集合元素和几何条件为背景建立起来的概念;(5)所给的等式或代数式的结构有明显的几何意义。
当然,以上谈及的几点内容仅仅是本人在教学实践中的一点体会,事实上,初中函数部分的内容及要求是极其丰富的,培养学生的思维能力以及能够灵活地应用知识才是我们学习的最终目的,在讨论社会问题、经济问题、跨学科综合等问题时,越来越多的运用到了数学的思想、方法,其中函数的内容占有相当重要的地位。
因此,我们一定要在教与学的过程中认真钻研教材,深入挖掘教材中蕴含的思想、方法和观点,以达到提高学生的思维能力、应用能力和认知水平的目的。
初中函数教学【2】
【摘要】数学思想方法乃是数学规律与本质,学生掌握了数学思想方法,就能更快捷的获取知识,更透彻地理解知识。
初中函数教学应教给学生掌握学习函数的思想方法。
本文仅对初中函数教学作初步探索.
【关键词】函数教学
一、认识函数思想,引领教学方向
函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律,函数的思想方法就是提取问题的数学特征,用联系变化的观点提出数学对象,抽象其数学特征,建立函数关系,并利用函数的性质研究解决问题的一种数学思想方法。
尽管内容不多,但函数的思想已经有所体现,它仍占据着重要地位。
二、理清初中函数概念,系统掌握初等函数知识
1、理解概念的逻辑性。
数学概念可分为两个重要方面:一是概念的'质',也就是概念的内涵(概念的本质属性);二是概念的'量'也就是概念的外延(概念所有对象的和)概念的外延还有大小之分,外延大的概念叫做种概念,外延小的概念叫做属概念,一个属概念与其他属概念本质上的差别又称为属差,要想给某一个概念下定仪,首先应给学生指出被定义的概念最接近的概念是什么,再紧接着指出被定义概念的属差,既概念定义 = 种概念 + 属查。
2、明确概念的层次性。
一般的概念都是通过对实验现象或对某中具体事物分析经过抽象概括而导出的,他是一个形成过程,中学中的许多概念,是从几个原始概念和公理出发,通过一番的推理而扩展成为一系列的定义和公里,而每一个新出现的概念都依赖着旧的概念来表达,或是由旧概念推倒出来的。
3、掌握概念的抽象性。
初中学数学中的许多原始概念,都是对具体的数和形的感知而形成表象,再从表象经过抽象概括而形成的。
概念是人们对感性材料进行抽象的产物,感性认识是形成概念的基础。
如果学生没有感性认识或感性认识不怎么完备时,我们就应该借助与实物、模型、多媒体课件、或形象的语言进行较直观的教学,使学生从中获得感性认识。
三、绘制初等函数图象 ,理解初等函数性质
著名数学家华罗庚先生说:"数缺形时少直观,形缺数时难入微"。
因此要想绘制初等函数图象,理解其性质,首先要了解"数形结合"的思想。
数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。
我们要抽象复杂的数量关系,通过形的形象、直观揭示出来,以达到形帮数的目的。
四、运用函数同其他学科和实际的联系,培养学生学习函数的兴趣
函数是这样定义的,"设在某变化过程中的两个变量x和y,若对于x在某一范围内的每一确定的值,y都有唯一确定的值与它对应,那么,就把y称为x的函数 ,x是自变量,y是因变量"。
如图1⑴中,在矩形ABCD中,AB=10cm,BC=8cm。
点P从点A出发,沿路线A→B→C→D运动,到点D停止;点Q从点D出发,沿D→C→B→A路线运动,到点A停止。
若P、Q两点同时出发,点P的速度为1厘米/秒,点Q的速度为2厘米/秒。
a秒时,P、Q两点同时改变速度,点P的.速度变为b厘米/秒,点Q的速度变为d厘米/秒。
图1第2个图是点P出发x秒后△APD的面积S1(平方厘米)与x(秒)的函数关系图象。
图1第3个图是点Q出发x秒后△AQD的面积S2(平方厘米)与x(秒)的函数关系图象。
2、函数与市场经济
例2、某化工材料销售公司购进了一种化工原料共7000千克,购进价格为每千克30元。
物价部门规定其销售单价不得高于每千克70元,也不得低于30元。
市场调查发现:单价定为70元时日均销售60千克;单价每低1元日均多售出2千克。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算)。
设销售单价为x元,日均获利y元。
顶点坐标为(65,1950)。
二次函数的草图(如图2)所示。
观察草图可知,当单价定为65元时,日均获利最多,是1950元。
⑶、当日均获利最多时,单价为65元,日均销售60+2×(70-65)=70千克,那么总获利为1950×(7000÷70)=195000元
当销售单价最高时,单价为70元日均销售60千克,将这种化工原料全部售完需700÷60≈117天。
那么总获利为(70-30)×7000-117×500=221500元
∵ 221500>195000,且221500 - 195000 = 26500
∴销售单价最高时获总利最多,且多获利26500。
可见,函数的应用非常广泛,它与其它学科有着密切的联系,是解决实际问题的重要工具,因此可以提高和培养学生学习初等函数的兴趣。
当今世界科技发展一日千里,科学知识急剧增加,学生在今后的工作生活和进一步学习中有许多需要认识、探讨、分析和解决的纷繁复杂的问题,我们要把函数的思想方法作为一把金光闪闪的钥匙来交给学生,让他们运用这把金钥匙来开启知识的宝库,迎接新生活的挑战!
中学函数教学【3】
【摘要】从数学自身的发展过程来看,变量与函数概念的引入,标志着数学由常量数学向变量数学的迈进,尽管初中函数内容只是讲述了函数的一些最基本、最初步的知识,但是其中蕴含的数学思想和方法,对培养学生观察问题、研究问题和解决问题的能力都是十分有益的。
【关键词】学习兴趣 情境教学
函数是初中数学里重要的数学知识,函数学习的好坏对于学生的继续学习影响深远,特别是现在新的课程标准提出研究性学习,更多地注重学生识图能力的培养,并尝试用数形结合思想和函数思想解决问题。
笔者结合多年的中学数学教学,就如何搞好中学函数教学,浅谈如下思考。
一、明确学习函数的重要性,培养学生学习函数的兴趣
函数概念在初中数学关于式、方程、不等式等主要内容中起到了横向联系和纽带作用,从本质上看:代数式可看作函数的解析式或值;两个代数式A与B恒等等价于函数y=A-B恒等于零;方程的根可看作函数图像与x轴的交点的横坐标;在不等式的证明中,函数的性质经常是有力的工具。
由于函数应用十分广泛,而函数的概念的形成和发展是中学数学中从常量到变量的一个认识上的飞跃,理解和掌握函数的思想方法无疑会有助于实现这一飞跃。
在初中阶段我们学习的函数是比较简单的,属于函数启蒙,但是它是高中数学乃至整个数学体系的主要内容,所以初中阶段是函数概念和函数思想形成的关键阶段,这一阶段教学的成败,直接关系到学生进入高中、大学的数学学习乃至一生的数学造诣。
让学生充分认识到函数的重要性,有利于提高他们学习函数的兴趣。
二、进行情境教学
教师可以把数学知识点以问题的形式提出,激发学生的学习欲望,在思考的过程中加深对知识点的思考,同时创设情境为其提供思考空间,使其思维从形象过渡到抽象,完成思维的转换.进行课堂教学, 很多问题都是要靠学生自己想象出来的, 但是如果每个问题都让学生去室外感受也是不可能的,这就需要我们很好地加强学生的抽象思维能力. 尤其是在学习函数的时候,就更需要学生一定的理解能力与思维水平。
学习函数知识的最终目的是要能够用于实际生活中. 因此教师在进行函数教学时,将具体情境中的材料作为启发学生的思考的材料,通过相互交流、合作学习、独立思考等形式来讲,加强学生对知识点的理解.
当学生在一个问题情境中,则更能够把握问题的理解,在问题情境中,教师要给予一定的指导和帮助. 教师遵守循序渐进、逐渐理解的方式,为学生创设问题情境,创设学习的机会. 在问题情境中邀游,学生能够沐浴在数学活动中. 问题情境是一种加强数学理解与问题解决的有效方式.
三、坚持相互联系、运动发展的观点进行教学
函数表现出两个变量之间的相互依存关系,一个变量会随着另一个变量的变化而发生变化,两者处于相互牵制、共同变化发展的秩序之中,看似静止的数的概念之间存在着运动的联系。
在初中函数教学中,教师应带领学生在学习函数基础知识以及解题过程中,培育学生们树立相互联系、运动发展的数学理念,在动态的思维模式中掌握函数知识的基本要领。
两个变量间的相互影响关系,对于刚刚接触函数知识的学生来说不太容易理解。
初中函数教师可以根据“一个量随另一个量的变化而变化”这一关系,让学生结合熟悉的数学知识以及日常生活实际来举例,比如“汽车的汽油消耗量随着行车路程的变化而变化”,或者“圆形的面积随着半径长的变化而变化”等等。
这样,便使学生更迅速地理解自变量与变量的定义,并能在活跃的思维环境中锻炼分析、解决问题的能力。
函数中的变量关系,与数学知识体系中的很多领域都存在着融会贯通的关系,比如求路程问题“距离=速度*时间”等,体现出函数的重要性。
学习函数知识,实际上也打开了更多数学领域的视角。
另外,函数同其他学科的联系也十分紧密,是解决实际问题的重要工具。
初中数学教师可以利用函数的广泛联系性,在广征博引中激发学生的学习热情,从而达到真正的教学实效。
四、讲解中注意类比法的运用
在讲解一次函数的图像时,我们一般由特例导出。
例如:在同一直角坐标系中画出下列函数的图像:(1)y=2x+3(2)y=2x+5 (3)y=2x-3;(4)y=-2x+3(5)y=-2x-3
然后由学生归纳出一次函数的图像是一条直线,并让学生由上述图像得出:当(1)k>0,b>0 ;
(2)k>0, b<0;(3)k<0, b>0;(4)k<0, b<0时函数图像所经过的象限及单调性,最后老师总结,学生理解记忆。
这套程序很一般化,学生也难以记忆。
不如先让学生回忆正比例函数(1)y=2x;(2)y=-2x的图像与性质,再画出以上函数图像,借助类比的方法得出一次函数的图像及性质。
向学生演示正比例函数图像的平移变化即得到一次函数图像,这样可以避免学生把二者割裂开,把握它们的共性,区分正比例函数的特殊性。
通过类比,培养学生知识迁移能力。
五、加强学科之间的相互沟通,增强学生运用数学的意识
当前教育改革的方向之一是加强各学科知识间的综合运用。
数学作为一门基础学科,不仅服务于其他学科,而且在研究数学的应用时,若能结合别的学科特点,运用别的学科知识解释其基本原理,无疑对数学应用的理解也有很大的帮助,进而对学生的综合能力的培养也将有极大的好处。
例3、一根弹簧原长15cm,已知在20公斤内弹簧的长度与所挂的质量成一次函数关系。
现测得当挂重4公斤时,弹簧的长度为17cm,问当弹簧的长度为22cm时,挂重多少公斤?
分析:由已知条件弹簧的长度与挂重成一次函数关系,则可用待定系数法求出函数关系。
再通过计算即能求得问题的解答。
解:设挂重x(kg)(0≤x≤20)时,弹簧长度为y(cm),依题意可设,y=kx+b (k≠0)由条件:x=0时,y=15 即b=15
当 x=4时,y=17 即4k+15=17 所以K=
故函数解析式为:y= x+15 (0≤x≤20)
所以当y=22时,由 x+15=22,得x=14
答:当弹簧长为22cm时,挂重14公斤。
对于物理问题,必须根据物理概念,物理知识列出函数关系式,把它转化为数学问题,再运用数学方法进行运算,其它学科也如此。
总之,中学函数学得如何,将直接影响到学生今后数学学习兴趣和成绩的好坏,因此广大中学数学老师肩负着关键的职责,一定要引起我们的高度重视。
以上几点是笔者的拙见,希望能给同行一点帮助,并敬请同行斧正。
【参考文献】
[1]张凤林.浅谈初中函数教学[J].学问, 2009(15).
[2]徐德本.初中函数教学要把握好“四个一”[J].中学数学教学参考.2008,(18).
[3]王学海;探究初中生学习函数困难及教学策略[J];成功(教育);2011年18期