1、生活中,数学无处不在。建高楼要画几何图,发射火箭要经过无数的计算。 2、我们一般加减乘除都是由0~9十个数字构成的十进制的算是组成的,而电脑里却用了二进制。 3、我一直都想不明白,直到我做了这道题目:小明有511块糖,分别放在9个盒子里。你只要告诉他糖的块数,(不多于511),他就可将几个盒子里的糖全部拿出,凑成你要的块数,这几个盒子里各有多少块糖? 4、我有些丈二和尚摸不着头脑,怎样也想不出来。我只好一个一个排,排了5个后,我发现是一个很有规律的数列:.都是这个数乘2得到下一个数的。我照着排下去:,刚好为511,原来电脑里面有二进制是因为可以算出所有数呀! 5、我有看到了一种问题-----“牛吃草”。一牧场上的青草匀速的生长,可供27头牛吃6天,工23头牛吃9天,18头牛吃了6天后增加了12头牛,还要几天吃完?牛吃草有原有量和增长量,一部分牛吃原来就有的草,一部分牛吃长出来的草,吃增长量的牛无论什么时候都有的吃,而吃原有量的牛吃完了就没有了,所以应先求原有量和增长量,27×=162(份),(将牛一天吃的草视为一份),23*9=207(份),207-162)÷(9-6)=15(份),增长量为15份,162-6×15=72(份),原有量为72份,18头牛吃6天,共吃72-(18-15)×6=54(份)草,54÷(3+12)=(天),答:还要天吃完。 6、书上也是可以获得知识的。书的页码也有学问。如:甲.乙两册书用了8642个数码,且甲册比乙册多20页,甲书有多少页?首先要知道1~页要1×9=9(个)数码,10~9需要2×90=180(个)数码,100~999需要2700个数码,(2700+180+9)×2 8642个,所以甲乙书都印到了四位数。20页有20×4=80(个)数码,甲书有(86742+80)÷2=4361(个)数码,4361-(9+180+270)=1472(个)数码,1472÷4=368(页),999+368=1367(页),答:甲书有1367页。 7、生活中,数学真是无处不在……
海滩小酒馆。是时间如它所是的时候了。它就写在那里,长青的 树叶间月亮湿淋淋的面庞一根羽毛从修饰着的鸟嘴落下不断走入未曾探索的魅力哈哈
数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。
打的过搞的广告费沟沟壑壑好尴尬飞飞哥vvv现代风格v不会太丰富非常v比较运费搭错车滚滚滚哈哈哈吃的
dmo j l wo
“对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”我国家喻户晓的数学家华罗庚也曾下过这样的结论。的确,正如两位前辈所说,数学与我们的生活息息相关,数学的脚步无处不在。 2006年已经接近尾声了,迎面而来的是新的一年——2007年。行走在繁华的大街上,随处可见商家打出的“满400送400”,“满300送300”的促销招牌。“这真实惠!”消费者们蜂拥而至,商场里人山人海,抢购成风。此情此景,真让人以为回到了物资短缺的年代。实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满400送400元券”只是商家的一种促销手段,其中暗藏着数学问题,暗藏着商业机密,暗藏着许多玄机。 去年,我们一家三口,也在新年之际在商场里“血拼”,当时是满400送400元券。我们先用980元买了一件苹果牌的皮夹克给爸爸,送来了800元购物券。我们并没有过分浪费,花了298元券买了一件藏青色的李宁牌棉袄,又用剩下的500元券中的488买了一件太子龙男装(由于是购物券,不设找零)。到底便宜了多少?298+488+980=1766(元)——这是原来不打折时需要花的钱。980/1776,所打的折扣大约是五五折。 我的姑姑和姑夫从前也做过服装生意,我对服装的进货成本与销售价的关系也有些了解。服装的进价一般只占建议零售价的20%~30%。随着竞争的加剧和商场促销力度越来越大,为了保持利润,商家或厂家还不断地把衣服的建议零售价标高。就如前几天在电视中看见的一位消费者所说,某一品牌同一款式的一条尼料的裤子,三年前建议零售价还只是299元,今年标价变成了999元。这么一算,进价大概只有商场里售价的10%~20%。就算打了五五折,商家还稳赚三至五成的毛利。 广告,广告,便是广而告之。许多人一窝蜂似的赶来抢购、血拼,商场的人流量多了,商品销售量也快速增长。就按人流量是平时的三倍算,这里又出现了一个数学问题。假设平时人流量少时,一件商品按8折销售。8折减去进价2折,标价部分的6成就成了毛利。虽然现在“满400送400元券”时同一件商品可能只赚三至五成,但销量起码是平时的三倍以上。就按三成毛利和三倍销量来计算,3×3=9,与平时的6成毛利相比,一天能多赚50%。虽说这样卖每件单位毛利率有所下降,毛利额却因销售量的增加而增长,更因大量销售而加快了资金周转,带来额外的收益。 商品标价和促销中有数学,购物消费中有数学,装修房子有数学,织毛衣中有数学……总而言之,数学在现实生活中无处不在! 满意吗?``祝你成功!~
数学小论文:年龄问题四年级300字今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄是小华的3倍?我百思不得其解。后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸爸和小华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关系,画张图试试。我们俩就开始画了起来。画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是24岁。再根据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。解是:26-2=24(岁)24÷(3-1)=12(岁)12-2=10(年)答:10年后爸爸的年龄是小华的3倍。妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。(26+10)÷(2+10)=36÷12=3耶!我答对了。看来做题先得画图,画了图就能就一目了然了。
赛车之谜我买回红、黄、蓝……等不同颜色的赛车各一辆。我把它们放在圆形的跑道上,排成一长队。突然,我发现一个有趣的问题:红色赛车的后面有7辆,前面也有7辆。那么我一共买回几辆赛车呢?我决定要考考我们班上的同学。第二天就把这个问题带到学校,让王老师给大家出题。同学们听完题目,脑子都快速地运转起来。李鹏鹏脱口而出:“15辆!”马上就有几个同学连连点头。爱动脑筋的朱浩然摇摇手说:“不对不对,应该是8辆!”好多同学迷惑地看着他。朱浩然解释说:“因为是在圆形跑道上,向前看和向后看其实看到的是同样的7辆车。不信你们画画图。”同学们真的画了起来。这下,同学们全明白了!王老师看着我们笑眯眯地说:“老师发现我们班同学真不错,陈宇阳在玩的时候能够看出里面隐藏的数学知识,有一双会发现的眼睛。其他同学想问题很全面,而且主动动手去验证。真为你们感到高兴。”同学们听了脸上都展开了笑容,不过心里最乐的要算是我吧!同学们,请记住哟:你的身边处处都可能藏着数学,关键是你是不是有一双会发现的眼睛,嘿嘿!先找规律再解答每天早上,我都和妈妈去河边跑步。河边种着一排柳树,我们约定从第1棵树跑到第60棵树就往回跑。一天回来后,妈妈说:“欣彤,我们天天跑步,你知道我们每天跑多少米吗?我告诉你每相邻两棵树之间相距5米。”“这还不容易?一算不就知道了吗?”我爽快地回答道。我拿出纸和笔,三下五除二就算好了:去时走:5×60=300(米),来回走:300×2=600(米)妈妈摸着我的头笑着说:“孩子,你做题目速度很快,这是好的,但是,要正确地理解题意才对呀!”我疑惑了,难道理解得不对吗?我又仔细看了看题目,还是没明白自己错在哪儿。妈妈说:“来,我画图给你看。”于是妈妈耐心地边画图边讲给我听。如下:棵数 相距Y—Y 2棵树 1个5米Y—Y—Y 3棵树 2个5米Y—Y—Y—Y 4棵树 3个5米Y—Y—Y—Y—Y 5棵树 4个5米…… …… ……Y—Y—Y—Y—Y …… Y 60棵树 ( )个5米听妈妈这么一讲,我恍然大悟:原来,有这样一个规律,就是树中间间隔的段数比树的棵树少1。60棵树中间相距不是60个5米,而是59个5米。.于是,我把刚才的解法改为:段数: 60-1=59去时走:5×59=295(米)来回走:2×295=590(米) .妈妈看了直点头,还夸我头脑灵活呢!由此,我明白了一个道理,就是解决有些问题不可以草率,应该先试着找一找规律再解答。人民币中的数学问题 有一天,我跟妈妈去逛商场。妈妈进了超市买东西,让我站在付钱的地方等她。我没什么事,就看着营业员阿姨收钱。看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。”我定下心,仔细地想了起来。过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。”这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服。 在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!
fdaewdwddddddwwd
某车间每天能生产甲种零件120个,或乙种零件100个,或丙种零件200个,甲,乙,丙三种零件分别取3个,2个,1个可配成一套。现要求在30天内生产出最多的成套产品,甲,乙,丙三种零件应该各安排生产多少天? 一、小数一步加、减法应用题 1、一本数学读物元,一本语文读物元。两本书一共要多少钱? 2、一个西瓜重千克,一个哈密瓜重千克。一个西瓜比一个哈密瓜重多多少千克? 二小数一步乘除法应用题1一种毛线每千克元,买3千克应付多少元?买千克呢? 2、一个养蚕专业组养春蚕21张,一共产茧1240千克。平均每张大约产茧多少千克? 三、含有三个已知条件的两步计算应用题1、小红看一本故事书,看了5天,每天看12页,还有38页没有看。这本书一共有多少页?(画一画线段图) 2、食堂运来面粉和大米各3袋。面粉每袋重25千克,大米每袋重50千克。运来面粉和大米一共多少千克? 3、民兵打靶,第一次用子弹250发,第二次用子弹320发,第三次比前两次的总和少180发,第三次用子弹多少发? 四、含有两个已知条件的两步计算应用题 1、学校买彩色粉笔45盒,买的白粉笔比彩色粉笔多15盒。一共买多少盒粉笔? 2、一个空筐重2千克,往筐里放入32千克花生。装着花生的筐的重量是空筐的多少倍? 五、连乘应用题 1、粮店运来两车面粉,每车装80袋,每袋25千克。这个粮店运来多少千克面粉?(用两种方法解答) 2、三年级同学到菜园收白菜,分成4组,每组11人,平均每人收45千克。一共收白菜多少千克? 1.化肥厂计划生产7200吨化肥,已经生产了4个月,平均每月生产化肥1200吨,余下的每月生产800吨,还要生产多少个月才能完成? 2. 塑料厂计划生产1300件塑料模件,6天生产了780件。照这样计算,剩下的还要生产多少天才能完成? 3.李师傅上午4小时生产了252个零件,照这样的速度下午又工作3小时。李师傅这一天共生产零件多少件? 4. 水泥厂计划生产水泥3600吨,用20天完成。实际每天比计划多生产20吨,实际多少天完成任务? 5.一堆煤吨,计划可以烧10天,改进炉灶后,每天比原计划节约吨,这堆煤现在可以烧多少天? 6. 甲、乙两地相距420千米,一辆客车从甲地到乙地计划行使7小时。实际每小时比原计划多行使10千米,实际几小时到达? 7.小强从家回校上课,如果每分钟走50米,12分钟回到学校,如果每分钟多走10米,提前几分钟可以回到学校? 8. 筑一条长千米的公路,前3个月平均每月筑千米,剩下的每月修千米,还要几个月完成? 9.小明用元买文具,买了6支铅笔,每支元,余下的钱买圆珠笔,每支元,可以买多少支? 10. 服装厂原计划做120套西服,每套西服用布米,改进裁剪方法后。每套节约用布米,原来用的布现在可做西服多少套? 11.一本故事书,原来每页排576字,排了25页。再版时字改小了,只需排18页。现在每页比原来多排多少个字? 12. 一列客车和一列货车同时从甲、乙两地相对开出,客车每小时行使80千米,货车每小时行使60千米,经过5小时两车相遇。甲、乙两地的铁路长多少千米? 13.两个工程队同时合开一条1500米的隧道,甲工程队在一端开工,每天挖14米,乙工程队在另一端开工,每天挖16米,多少天后隧道可以挖通? 14. 甲、乙两人同时合打一份7000字的稿件,甲每小时打600字,乙比甲每小时多打200字,经过几小时可以完成任务? 15.小明和小强放学后在学校门口向相反的方向行走,小明每分钟走70米,小强每分钟走68米,5分钟后两人相距多少米? 16、 甲、乙两地的路程是630千米,客车从甲地开出2小时后,货车从乙地相向开出,已知客车每小时行使65千米,货车每小时行使60千米。货车开出几小时后与客车相遇?
这写的也太弱智了吧
丁立一下子想不出来,就说:“笔和草稿纸呢?”我想:即使现在有笔和草稿纸你也未必做得出来呢!于是,我对丁立说:“其实这到题的解题方法很简单:先算出小红和小丁平均几分钟踢进一球?再算出踢进90个球要几分钟?最后把所需时间加上一点十分,就能算出什么时候一共踢进90个球。丁立笑了,反问我:“是不是因为你平时注意观察生活,在生活中学习数学,所以才被称为“数学小王子”?” 没想到一个小小的数学题竟和生活有着联系。看来生活是离不开数学的。生活中无时无刻不与数学打交道,足球场上也不例外。例如,足球场的大小就有严格的数字规定:长90—120米,宽45—90米,球门宽7. 32米,高米,中圈半径为米等。把足球场与数学联系起来,.确实是一件有趣的事。
这么些、::你们。你是否会有所?你要去找 gfufyìyytx四个地方需要懂gdajòdfkryeymsj人不够敢说出的话就不知道仍然坚持✊!你的手机没有信号?在线的
1、生活中,数学无处不在。建高楼要画几何图,发射火箭要经过无数的计算。 2、我们一般加减乘除都是由0~9十个数字构成的十进制的算是组成的,而电脑里却用了二进制。 3、我一直都想不明白,直到我做了这道题目:小明有511块糖,分别放在9个盒子里。你只要告诉他糖的块数,(不多于511),他就可将几个盒子里的糖全部拿出,凑成你要的块数,这几个盒子里各有多少块糖? 4、我有些丈二和尚摸不着头脑,怎样也想不出来。我只好一个一个排,排了5个后,我发现是一个很有规律的数列:.都是这个数乘2得到下一个数的。我照着排下去:,刚好为511,原来电脑里面有二进制是因为可以算出所有数呀! 5、我有看到了一种问题-----“牛吃草”。一牧场上的青草匀速的生长,可供27头牛吃6天,工23头牛吃9天,18头牛吃了6天后增加了12头牛,还要几天吃完?牛吃草有原有量和增长量,一部分牛吃原来就有的草,一部分牛吃长出来的草,吃增长量的牛无论什么时候都有的吃,而吃原有量的牛吃完了就没有了,所以应先求原有量和增长量,27×=162(份),(将牛一天吃的草视为一份),23*9=207(份),207-162)÷(9-6)=15(份),增长量为15份,162-6×15=72(份),原有量为72份,18头牛吃6天,共吃72-(18-15)×6=54(份)草,54÷(3+12)=(天),答:还要天吃完。 6、书上也是可以获得知识的。书的页码也有学问。如:甲.乙两册书用了8642个数码,且甲册比乙册多20页,甲书有多少页?首先要知道1~页要1×9=9(个)数码,10~9需要2×90=180(个)数码,100~999需要2700个数码,(2700+180+9)×2 8642个,所以甲乙书都印到了四位数。20页有20×4=80(个)数码,甲书有(86742+80)÷2=4361(个)数码,4361-(9+180+270)=1472(个)数码,1472÷4=368(页),999+368=1367(页),答:甲书有1367页。 7、生活中,数学真是无处不在……
关于数学的小论文:
数学,是一门有趣而又很有学问的学科。生活中存在着无穷的数学故事,与你我的生活息息相关,也是一个游戏的宝塔。
记得,刘老师曾经说:四年一闰,百年不闰,四百年又闰。开始不是太明白,后来听刘老师讲过才知道其中的意思:就是说,四年中只有一个闰年,等到一百年的那年就不是闰年了,等到400年整的时候又是闰年。因为只有在用年除以四商是整数,没有余数的时候才是闰年。听了刘老师的讲解,我终于知道该怎么去推算平年闰年了。
还记得刘老师讲过的一个有趣的数学问题:明明等8人,明明和8人的问题,其中只有一个字的差别,等就表示8个人包括了明明自己。和呢,表示8个人加明明自己就是9个人了。我开始怎么都没有弄明白,后来一个字一个字的读,去想其中的意思,才终于明白过来。
在生活中,我们只要肯钻研,肯发现,我们就会明白很多的道理的。
这么些、::你们。你是否会有所?你要去找 gfufyìyytx四个地方需要懂gdajòdfkryeymsj人不够敢说出的话就不知道仍然坚持✊!你的手机没有信号?在线的
数学小论文:年龄问题四年级300字今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄是小华的3倍?我百思不得其解。后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸爸和小华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关系,画张图试试。我们俩就开始画了起来。画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是24岁。再根据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。解是:26-2=24(岁)24÷(3-1)=12(岁)12-2=10(年)答:10年后爸爸的年龄是小华的3倍。妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。(26+10)÷(2+10)=36÷12=3耶!我答对了。看来做题先得画图,画了图就能就一目了然了。
生活中的数学平安夜,妈妈带我去逛商场.到了商场一看,今天商场里到处都在搞活动.妈妈对我说;“今天在搞活动,商场的东西一定比平时便宜,看看我们有没有什么想买的.”在商场逛了一圈,我看中了一双鞋子,标价318元,这个柜台搞的活动时满166减61元,妈妈对我说:“平时不搞活动时这种鞋打8折.”营业员告诉我们今天搞活动买鞋可划算了,说完就要帮我们按照活动价开票,这时妈妈突然说:“等一下.”转身又对我说:“你算一下按照活动价到底有没有便宜.”我心想:搞活动嘛肯定比平时要便宜,还要算什么呢?但是妈妈让我算,我只能勉为其难,算一下呗.按照活动价算,满166减61元,318元里只有一个166,也就是只能减一个61元,318-61=257(元),按照平时的价格打8折计算,318*80%=(元).一算真的还是平时不搞活动时的价格便宜,于是妈妈对营业员说还是按照平时的价格开票吧.付过钱后,我们就拿了鞋走开了.离开了柜台,妈妈就对我说:“我们平时做什么事情都要认真考虑,别被一些表面现象所迷惑了.”看来数学在生活中还真是无处不在啊.
小学四年级学生的特点天真,活泼、好动,爱表现,爱好广泛,求知欲旺盛,但注意力的时间相对较短,也让许多的数学老师头疼。我在此整理了四年级数学论文范文,供大家参阅,希望大家在阅读过程中有所收获!
一、转换教师角色
师者,所以传道,解惑者也。在现代教育中,教师究竟该扮演什么样的角色呢?随着“应试教育”逐步向“素质教育”的转轨,多年来由于“应试教育”的影响而形成的一套传统、滞后的教育教学模式显然已不适应教育发展的需要。特别是作为一位小学低年级数学教师,我认为小学数学的课堂教学要进行创新,教师必须改变已经形成的老一套以知识为核心的观念和行为,改变那种把注意力集中在课堂知识教学目标上,而忽视能力、态度和创新精神的培养。切实改掉过去一味的教师“讲”一味学生的“听”注入式的教学方式;真正体现教学形式多样化,让学生自己探讨、讨论、实际操作、合作学习、交流体会、互相帮助,使得教学气氛和谐,学生能活泼地、愉快地进行学习,真正实现把数学的课堂还给学生,切实让学生多"想一想", 让学生多“看一看”, 让学生多“做一做”, 让学生多“说一说”。 因此,我认为教师角色应该定位为学生学习上的指导者,要大胆地放手让学生从感知中领悟到知识,从而达到化教师的教为学生的学,还学生主体的地位。充分让他们在学中玩,在玩中学,促进学生得到全面发展。
二、注重学生的实践操作能力的培养
实践活动是儿童发展成长的主要途径之一,也是学生形成实践能力的载体。针对低年级学生的年龄特点,在数学教学中,我认为应重视通过实践操作的方式,培养学生的思维能力,主动参与意识和勇于探索创新的学习能力,使学生初步学会运用所学知识和方法解决一些简单的实际问题。在教学过程中,为每一个学生提供摆、弄直观材料的机会,让学生在动手操作中自己去发现规律、概括特征、掌握方法,在体验中领悟数学、学会想象、学会创造,让学生摆脱数学的枯燥乏味,从而促进学生主动学习数学的兴趣。《三角形三边的关系》一课中,学生们都准备了三根木棒,我先让他们自己摆一一个三角形,然后再让他们逐一说说自己摆的是三角形,为什么?从而引出三角形的概念,并让他们通过比较两根木棒一另一根木棒的长短,自己进行发现、总结。在“你说我来做”这个环节中,当一个学生说出一种三角形的时候,其他学生都争先恐后摆弄,根本没有空闲去做小动作。整节课,学生们注意力集中,兴趣昂然,表现活跃积极,取得了很好的教学效果。
三、运用多媒体教学,让数学课堂生动起来
新课程改革对教学手段的运用提出更高、更新的要求,充分让计算机等现代化教学工具走进教学,肯定会给课堂带来无限生机。同时,教师在教学中运用现代化的教学工具是实施素质教育的需要,是时代的需要。多媒体集声音、文字、图像和视频于一体,具有很强的表现力,大大弥补了自制教具的局限。当我在运用多媒体进行教学时,鲜艳的色彩,可爱的形象,逼真的动感,迅捷的切换吸引了学生,集中了他们的注意力,大大提高了学生学习的兴趣,提高了课堂教学的效果。主要就是提高了学生对数字的兴趣,对数学兴趣。
四、猜测是不可缺少的环节
科学家牛顿有句名言:“没有大胆的猜想,就不可能有伟大的发明和发现。”将猜想引入数学教学之中,将有助于学生开阔视野、活跃思维、培养创新意识、促进能力的提高。有时我故意将课讲得留有余地,让学生们自己去探讨、去猜想,然后再进行归纳总结。结果下来,我发现,学生们的想法多了,答案也多了,课堂也更活跃了。因此,我又不失时机地给学生设计灵活、开放性的练习,让他们用猜想的结论去解决实际问题,使学生已有的知识得到巩固、深化和发展,有利于调动学生的思维,激发学生的学习兴趣,培养学生运用知识的能力,让学生沉浸于猜想的成功之中。
总之,以上几种教学方法能很好的促进了小学四年级学生的学习兴趣,引导学生在学习中发挥其主体地位,使学生从“乐学”到“要学”,从“要学”到“会学”,最终达到会创新。同时也有利于教师的教学,能让教师以最好的教学效果完成教学任务。
看了《听名师讲课》一书对特级老师的两节数学课,受益匪浅。他的课堂真正做到了以学生为主体,让学生去说、去做,最大限度地去挖掘学生的思维与创造能力。特别是他视学生如朋友,平易、谦和,尊重学生,相信学生的教学作风,与他本人朴实无华却又庄重典雅的气质,贯穿始终的妙语连珠融为一体,展示了他渊博的知识底蕴,使我记忆深刻。
杜老师讲的是小数的初步认识。课前,他和学生做了几分钟的交流。他先告诉学生自己的姓名,从北京来,然后问小朋友:“你们还想问老师点什么呢?”孩子们有的问:“老师,您在哪儿教学?”有的问:“老师,您几岁?”他全都亲切地作了回答。在这融洽亲和的气氛中,学生倾刻之间和老师亲近了许多,对陌生老师的害怕、疑虑全烟消云散了。为下一步顺利地教学做了很好的铺垫,增强了学生的学习兴趣和信心。
讲课中,他让学生用自己准备的长方形、正方形、圆形纸对折,再用阴影画出一部分,说出这是几分之几,又让他们贴在黑板上。孩子们折呀、画呀,说出了等。贴的时候个子小,够不着,他把孩子一个个抱起来让他们贴。每发现有孩子说出一个新分数,他都要夸奖一番:“你真聪明。”“你真了不起!”虽是一声很平常的赞语,但却极大地激励了孩子的自信心。我真切地感到:这不是装饰门面的造作,这是一种爱护学生的真情的自然流露!
讲分数各部分名称时,他不是肤浅、生硬地去讲分数线、分子、分母。而是生动地打比方:我们开头把一个大圆月饼从中间切开,平均分成两份,这一刀啊就代表平均分,用一横表示,咱把它叫分数线。分两份的"2"写在下面叫“分母”。这一半月饼是两份中的一份,就写在上面。它和下面的分母关系密切,该起个什么名呢?学生天真地说:“叫分儿。”“叫分女。”他微笑着告诉孩子:“你们想象得很好,等你们长大了也许会创造出新的数学公式,命名为‘分儿’‘分女’,咱们今天先叫它分子,同意吗?”我感到:这不是无足轻重的儿戏之举,它体现了对学生的尊重,点燃的是智慧与创造的点点火花。
教学过程有这样一个环节,他让学生在黑板上画出各自所想象的“平均分”。引出分数后,他问学生:用数字表示和用画、折纸表示哪个简便?你同意用数字来表示就把你的画和贴纸擦掉或拿掉,不同意可以保留。有一位小朋友不愿擦他画的"D"(表示1/2),杜老师便用方框圈起来。接着,他启发学生说更多更大的分数。刚才保留自己画的同学说了一个“百分之一”,老师让他上讲台画出这个百分之一,这个孩子画了几分钟,跑来告诉老师:太难了,画不出来。“那咱用分数表示该怎么写?”孩子写出了"1/100"。经过实践,这个学生自愿又心悦诚服地擦掉了自己的画图。这一环节看似简单,其实,那是在点拨孩子实践、比较、认知,比一遍又一遍地讲术语名词,效果好得多。这就体现了杜老师独具匠心的教学艺术。
下课铃声响了。孩子们缠着老师再讲一会儿,不愿让老师下课。在依依不舍地停止了授课后,孩子们一个个争着告诉老师:“老师,你的教材好。”“老师,我爱您!”这充满稚气又带着真挚情感的童言,打动了每一位听课者的心。朴素的感情是最美的,它是孩子对老师的最高奖赏。吴老师激动地说:“孩子们,我也爱你们。”我相信,这群孩子会把这节课和这位老师永远铭记在心,终生难忘。
什么是师生平等、民主讨论,什么是激发学生的积极性、创造性和学习兴趣最佳方式,从这节课里我们找到了答案。那就是真诚地爱学生,尊重学生,一切为了孩子获取知识,设法培养孩子的创新意识和兴趣。爱心是敬业的根本,博学是付出的源泉。把讲台让给学生,把学习、思维的更大空间留给学生,这样,也就把成功,把美好未来交给了学生。
一、改革教法,为学生的学习指路导航
1、课堂前置
将课堂上要学习的知识提前让学生知道、了解、学习,也就是预习,虽然三年级时,我们已开始了预习,效果还是不错,到了四年级有所放松,甚至停滞。一个原因是老师没有把预习作为学习的重要内容,没有在思想上放在重要位置上,总是担心同学没有预习或预习不透彻,总是放不开手,课堂上还是要从前到后完完整整的讲解,这样预习的作用只是让认真预习的学生重复学习了一遍,不认真预习的同学应付一下,这样在孩子的心目中就势必形成预习不预习一个样,反正老师上课还要讲的,因此,预习时个别学生来说就流于形式。另一个原因是没有有效及时的检查形式。对于预习作业只限于预习本上的检查批改等,只能了解会的人有多少,不能了解不会的有多少,对于孩子到底自学会了多少。还存在哪些问题疑难还是未知,所以,对课堂的指导意义不大,所以,本期打算重视预习,改变预习方式,将课堂知识前置,每天新课预习要求有三,其一,阅读数学教材,将例题读通、读清、读懂,其二,谈谈我们的收获,我知道了要写出答案,其三,要试着做后面配套的习题,其四,我的疑问困惑是什么?检测方式:先出几道本课的检测题,让学生试做,有多少人作对,有多少人做错一目了然,问题处在和地方也暴露出来了,针对问题以及预习中学生的疑难才进行知识的讲解,这样才能在错误中找到根源,在疑难处点拨达到画龙点睛之效,也给学生留下深刻牢固的印象,并且不仅知道什么样是正确的,还能知道什么样就会错误,从而达到举一反三,触类旁通之效,同时,当堂纠正预习中的错误以加深理解,巩固强化知识。课堂的精讲,势必会给学生留下多练的课堂空间,所以增加课堂容量将是我的改革教法的第二步。
2、提升课堂
就像作文一样结尾处的升华将会使文章大增色彩,所以每堂课基本联系已在预习中解决了,剩下的时间,就要给孩子增加习题的难度变化题型,提升知识的容量,以增强孩子的灵活应变能力,和举一反三应用能力,这样才能提升课堂,提升知识容量,达到学一而应千变之效,避免课堂上知识看似学会了,而考试考不了好成绩,总觉的没有学过这类题,其实真正是没有学透、学活、学用。
3、激活课堂
课堂要活起来,则要有新意,所以在教学中要将问题情境化,将规律法则幽默化(搬家交换、四则混和运算),风趣化,将题中的数量关系直观化(画线段图),将问题情景化等多种形式,使课堂充满活力,充满情趣,以活灵活现的方式呈现给孩子,让孩子从直观形象深刻理解其中的道理、内涵。
二、创新学法,为提高学习成绩指路引航
自古以来,都认为数学是理性的思考,其实不全对,数学中也充满着表现的感知和做题的技巧,它是一个读—思—做三者的有机结合,所以在学法上,我本期打算从三个方面去做:
1、读数学
语文书是读出来,其实数学也是读出来的,首先,读数学书,所有的知识,内涵都包容在数学书里面,可过去我们有谁仔细的去阅读过,去思考过。书中的每一句话都是编者对知识的重点概括,每一个问题都是点睛之笔。如果孩子仔细去品读,读通每一句话,读懂每一个知识点,读清每一个逻辑关系,那么你一定能学会、学好。引导孩子去仔细认真的去读数学书、多读数学书,是引导学生学习的一个改变,要体现在课堂上,体现在预习中。其次是读数学题,题读三遍,其义自见,读是思的前提,题都读不懂,头脑中就没有一个清晰的印象,无从下手,所以,读题三遍是我以前的解决问题的要求,今后要扩展范围,填空题,判断题,选择题都要多读,要读出重点,读出出题的意图(如:250÷8这个算式中余数最大为几?),读出答案(259除以45与36的和,商是多少)那么你绝对不会做错。
2、做数学
数学知识应用于习题才能称得上是真正的学会了,而好多孩子往往是单一的知识点都学会了,而变为习题则不会做了,或做错了,就是因为他们没有掌握做题的能力,做数学题是有技巧的,填空题,找准关键字词。判断题,看重点词是否有,(如:在同一平面内,两条不相交直线互相平行),举特殊的例子,举反例。找理由,选择题,推理法,排除法。文字题,分段法。解决问题,数量关系分析法,画线段图法等,让学生逐渐掌握做题的技巧和策略,那么学生不仅将学会知识点更能将知识串成线,练成面,拼成体,综合运用,灵活运用。
3、思数学
理性的思考仍是数学学习的主旋律,所以要想让孩子真正的学会学习,就得让孩子学会思考,自己去发动脑筋,发动思维,想每一句话的含义,理清题中的来龙去脉,为促进孩子思考,本期我将以“讲数学,争当小老师”活动为契机,每天做完作业后,将作业完成好向老师或组长讲解一遍,自己的做题方法和思路,训练思维,巩固理解,达到真正的理解学会。
三、强化习惯,为数学学习保驾护航。
习惯好坏对孩子的学习起着重要的作用,好习惯小到取得一个好成绩,达到受益终生,坏习惯则开领孩子走向懒散,马虎的深渊,越陷越深,所以,良好的计算习惯,作业习惯,补错习惯,做题习惯,等仍需不断加强,巩固,使孩子从细节做起,从基础做起,为学好数学取得好成绩打好基础,保驾护航。