3d打印技术的发展,给我们的工作生活带来了很大的便利。下文是我整理了3d打印技术论文 总结 范文 ,欢迎大家阅读!3d打印技术论文总结范文篇一:《三维打印快速成形技术及其应用》 摘 要: 文章 对三维打印快速成形技术进行了分析,研究了三维打印快速成形技术的实现方案,并就其系统结构的运行方式做出了说明,最后对三维打印快速成形技术在多个行业领域中应用价值的实现进行了剖析,望能够引起各方人员的关注与重视,促进其进一步发展。 关键词:三维打印;快速成形技术;系统结构;应用 三维打印快速成形技术的核心是:建立在微喷射原理基础之上,通过喷射方式自喷嘴中喷出一定的液态微滴,在此基础之上根据预先设置的路径逐层打印并成形。相对于传统意义上的立体印刷技术或者是叠层实体制造技术而言,三维打印快速成形技术有着非常确切的优势,包括对激光系统要求较低,设备投入资金较少,运行性能可靠,维护工作量少,成本低廉等多个方面。同时,三维打印快速成形技术能够在常温环境下操作,运行安全可靠,可适用的成形材料类型众多,价格均衡,有实践价值。因此,三维打印快速成形技术已成为当前整个快速成形行业中最具综合发展潜力与空间的技术手段之一,有着非常广阔的应用前景。文章即围绕三维打印快速成形技术的实现及其应用要点展开分析,望引起重视。 1.三维打印快速成形技术的实现 从喷射材料上入手,可对三维打印快速成形技术的实现方案进行分类,主要有两种类型:第一是建立在粘结成形基础之上的三维打印快速成形技术,第二是建立在直接成形基础之上的三维打印快速成形技术。具体分析如下: 粘结成形下的三维打印快速成形技术 下图(如图1)为粘结成形下三维打印快速成形技术的基本工作原理。在本技术方案实施下,首先需要在工作台上均匀铺设一层粉末状材料,然后参照零件截面形态,将粘结材料有选择性的打印至粉末层上,使实体区域内的粉末材料完全粘结起来,形成截面对应的轮廓,打印完一层后将工作台向下移动,然后重复以上操作步骤,直至完成整个工件。 直接成形下的三维打印快速成形技术 下图(如图2)为直接成形下三维打印快速成形技术的基本工作原理。在本技术方案实施下,首先需要根据待打印的零件截面形状,控制打印头在截面有实体的区域内打印光固化实体材料,同时需要在可支撑区域内对固化支撑材料进行打印,然后利用紫外灯照射技术,在光固化材料的基础之上同步进行边固化打印工作。逐层进行固化处理直至完成对整个工件的打印工作,最后将支撑材料去除掉,以得到对应的成形工件。 2.三维打印快速成形系统结构 在三维打印快速成形技术实现的过程当中,主要的工作流程为:第一步,采集粉末原料;第二步,将粉末平铺至打印区域当中;第三步,在模型横截面上对打印机喷头进行定位,同时喷涂适当的黏结剂成分;第四步,送粉活塞上升同时实体模型下降,以继续打印;第五步,重复以上操作直至模型打印作业完成;第六步,将多余粉末去除掉,对模型进行固化。建立在该技术基础之上,整个三维打印快速成型系统运行需要完成的动作流程包括:打印喷头沿X轴向以及Y轴向的扫描运动,成型腔活塞沿Z轴向运动,储粉腔活塞沿Z轴向运动,铺粉辊筒转向运动以及平向运动等。其中,喷头X轴向运动采取的是传统喷墨打印机 操作系统 中的字车运动系统,引入光栅技术进行检测,X轴向打印精度可以达到5670dpi单位以上。同时,喷头Y轴向扫描运动能够带动打印机沿与X轴垂直的方向匀速动作,双侧驱动方式为步进电机驱动,光栅检测,闭环控制,三维打印成形中的定位精度可以达到级别。同时,整个三维打印快速成形系统还可以通过应用步进电机的方式为涡轮减速器提供驱动作用力,以驱动丝杆螺母运动,在半闭环条件下实现对铺粉厚度的合理控制(注:铺粉电机运动仅需要控制电机的启停状态,同时配合合理设置转动速度的方式完成工作任务,即应用常规直流电机就能够满足相应的工作要求)。 3.三维打印快速成形技术的实际应用 三维打印快速成形技术在生物工程领域中的应用 生物工程领域研究中对无生物活性支架以及假体的制作一直都是备受关注的工作内容之一,传统技术手段需要对生物活性材料进行激光加热或烧结,对材料的生物活性有不良影响。而通过对三维打印快速成形技术的应用,能够将参与生命体代谢行为且可降解的组织工程材料制成内部结构具有多孔疏松特性的人工骨材料,将活性因子填充于疏松孔内,起到代替人工骨骼的目的。 三维打印快速成形技术在制药工程领域中的应用 当前口服药物制剂的制造 方法 主要有粉末压片以及湿法颗粒这两种类型,无论是哪种制药方法,都存在分解速度过快,难以到达血液,或短时间内血液中药物浓度过高的问题,对人体有非常不良的影响。而通过对三维打印快速成形技术的应用,则能够为药物释放可控性功能的实现提供有力的技术性支持,相信随着单药、多药复合释药性口服可控释放药片以及药物梯度控释给药系统等技术的成功研制与应用,三维打印快速成形技术的应用潜力将得到更进一步的扩大与提升。 三维打印快速成形技术在元件制造领域中的应用 通过对三维打印快速成形技术的应用,能够为产品结构设计检查工作的开展提供非常好的支持,同时,依托该技术能够快速制造产品所对应的功能原型件,从而尽早的展开对产品设计性能的检测工作,缩短设计反馈周期,提高开发有效性,降低开发成本。 4.结束语 结合本文以上分析认为:三维打印快速成形技术作为当前快速成形领域中最具发展潜力的技术手段之一,对比其他快速成形技术而言,有着众多的应用优势,其应用空间也是非常广阔的。特别是在当前快速成形领域学科不断发展与优化的背景之下,三维打印快速成形技术也势必会逐步得到更为广泛与深入的应用。且由于此种技术手段可供选择的材料范围广阔,故而在多个行业的应用价值正逐步显现出来,值得引起重视。本文即围绕三维打印快速成形技术及其应用的相关问题进行分析与探讨,希望以上引起各方人员的高度关注与重视。 参考文献: [1]李晓燕,张曙,余灯广等.三维打印成形粉末配方的优化设计[J].机械科学与技术,2006,25(11):1343-1346. [2]晁艳普,白政民.金属微滴三维打印成形数据处理软件的设计开发[J].机械设计与制造,2014,(8):236-239. [3]庄佩,连芩,李涤尘等.仿生多材料复合增强骨软骨支架的制造及性能研究[J].机械工程学报,2014,(21):133-139. [4]刘厚才,莫健华,叶春生等.三维打印快速成形系统中的数据压缩方法[J].华中科技大学学报(自然科学版),2008,36(5):90-92. 3d打印技术论文总结范文篇二:《三维打印技术的应用与启示》 2013年数字南京 教育 装备工作目标:推进科技实践活动室或技能创造室的装备,全面实现每一所学校拥有一个以上主题鲜明、品质优良,与学校科技实践活动相适应、与学校科技艺体特色发展相适应的实验室;全市创新推进并累计装备建成100个高水平、高品质的机器人、三模科技、农业科技 种植 园等特色实验室,成为南京科技教育的核心与引领基地。评选100个优质科技实验室[1]。 为此,江苏省南京市教育装备与勤工俭学办公室主任后有为带队去山东省济南市历城区观摩三维打印技术培训,参观学校创新实验室,从而了解山东在创新实验室建设方面的一些做法,以及在创新大赛上获得佳绩和向高校输送人才的 经验 。 一、社会为什么需要创新设计和技术应用 《中国玩具制造业利润研究 报告 》显示:以玩具加工业为例,一个芭比娃娃在美国市场上的平均价格为美元,而制作这个芭比娃娃的中国企业只能拿到 美元加工费。中国企业所依赖的是相对低廉的劳动力和原材料成本,对外的竞争力也只是低成本带来的价格优势,所以只能依靠大批量生产,以薄利多销来赚取不多的加工费。我国很多行业产品生产的关键技术大部分来自进口,其中:工程机械高技术产品80%;数控机床70%;石油化工装备76%;集成电路芯片制造设备80%;光纤制造装备100%;通讯、半导体、生物、医药和计算机行业60%~90%;彩电、手机和微机的CPU都是掌握在别人手里[1]。 历史上,中国是人类创新和技术进步的摇篮,世界著名科技史学家李约瑟博士曾经列举了中国传入西方的26项技术,世界科技史上的前27项重要发明中18项来自中国。我国古代科技发明灿若星辰,对世界科技发展做出了巨大贡献。美国学者坦普尔在《中国:发明与发现的国度》一书中详细描述了“中国领先于世界”“西方受惠于中国”的中国古代100项技术发明。以史为鉴,古为今用,技术进步源于创新,创新设计源于服务现实,创造未来。大项目是创意,小改进也是创意,高科技是创意,简约明快也是创意。功能原理是创意,美化外观也是创意。灵感来源于生活,创意让世界更美好。 二、创新设计在初高中技术教学中的应用 我国“十二五”规划提出要深入实施科教兴国战略和人才强国战略,加快建设创新型国家,需要创新型人才,创新型人才培养,教育是基础和前提。同志强调:“要注重从青少年入手培养创新意识和实践能力,积极改革教育体制和改进 教学方法 。” 2011年,奥巴马总统推出的新版《美国创新战略》指出,美国未来的经济增长和国际竞争力取决于其创新能力。“创新教育运动”指引着公共和私营部门联合,以加强创新技术教育。 三维打印技术是专家预测的2013年十大技术革命之一,在打印过程中,打印机将根据计算机设计的模型从底部开始逐层堆积塑料、金属、合金等材料。凭借三维打印技术可以依据数字设计文件制造出固体结构,一旦物品能够在家或办公室远程打印出来,新技术将引发一场制造业革命[2]。三维打印技术在初高中技术教学中的应用,将对培养创新型人才产生重要作用。 1.提高教学效率,发展学生的 创新思维 三维设计软件、结构设计软件在三视图学习中针对学生学习时间少、没有基础等问题提供全新的教学手段,辅助三视图及其画法教学,快速识读技术图。学生进行创新设计时,设计软件提供简单易学的设计手段及完整的设计资源库。直观的三维模型系统教学手段,让设计像搭积木一样简单有趣,对立体模型进行平行移动、旋转、放大、多视窗等操作[3]。 2.降低学习坡度,突破教学难点 从三维设计到二维出图,学生在三维设计软件里轻松完成,快速工程图的生成能使学生做到设计与动手能力的完美结合,促进教育教学改革与学生学习方式的变革,是促进师生共同成长的研究与实践过程。 3.动手动脑结合,强调学生的动手创造 三维打印是一种快速成型技术,它以数字模型文件为基础,通过逐层打印的方式来构造物体,让动手与动脑相结合,让信息技术与通用技术相结合,让三维设计与二维设计相结合,让学生的设计和加工相结合。通过三维动画可以让学生更好地理解弹性碰撞,让机械机构运动的分析更加直观清晰。 三、创新设计帮助学生放飞创新的翅膀 创新设计软件平台在教育信息化中的精确定位是和探究实验室、通用技术实验室、综合实践实验室、信息技术实验室、动漫社相结合。创新软件系列产品及三维打印机将掀起一场教育创新运动。通过创新软件的运用,让我们的孩子和美国的孩子同步学习和发展,学有度、思无界、行无疆,创新设计软件平台及三维打印技术在教育中的促进作用有三: 一是可以引导中学生在生活中发现问题,去主动思考如何解决问题,而不是简单地去抱怨问题,培养学生的人文精神和社会责任感。 创意来源: 在高层楼房擦玻璃是很危险的,有没有既安全又方便的擦窗户方案?窗户有调节风、光的作用,如何利用窗户来改善室内的空气循环和光线照明? 设计原理:百叶窗的结构有可调节性,此类窗户也可以使用类似的结构,即将每扇窗分成若干扇小窗,每扇小窗可以绕轴旋转。这样可以实现调节风和光的作用,并且在雨天也可以开窗。尤其是高层楼房窗户玻璃的擦洗变得十分简便了。 二是可以帮助中学生固化自己生活的直接经验和亲身经历中的“小灵感”,并通过自己的设计―制作―评价,达到“创造”的教学效果。 案例2:可升降课桌椅 创意来源:学校普遍存在着课桌椅不符合学生身材的现象,总会让人觉得或高或低,影响学生的身体健康,于是便想到去设计一种可以升降且更具实用性的课桌椅。 设计原理:把思路定格在齿轮的传动上。在桌腿内部各安装两个齿轮和两条齿条,中间有一根传动轴连动,再在其中一个桌腿的一侧开孔,利用一个把手转动齿轮,这样便能使桌面水平升降 。 图6 利用三维打印技术制作出来的齿轮组 三是可以让中学生高度综合各学科、各方面的知识,并立足于实践,实现“做中学”和“学中做”。 案例3:自动上下楼梯的自助轮椅车 创意来源:家里有残疾人,上下楼梯不方便,有没有可以帮助残疾人自动上下楼梯的自助轮椅车呢? 设计原理:市面上有自动上下台阶的拖车,主要是依靠行星轮系的工作原理。如果把这个原理应用到轮椅上,不就是可以帮助残疾人自动上下楼梯的自助轮椅车吗? 案例4:物理学科中的成像原理 创意来源:来源于初中物理实验凸透镜成像实验。这个实验十分重要,但许多学生只知道概念而不清楚其中的原理与演示的过程。创意的意义在于把生活中的现象用自己的方式表现出来。 设计原理:运用新颖的视觉与动画,让大家耳目一新,将传统的枯燥教学转换为全新的模式,从而调动起大家的学习兴趣和热情。 四、创新设计大赛为学生提供创新实践的平台 为了丰富中小学生学习生活,激发创新精神,培养实践能力,全面推进素质教育,培养有国际竞争力的创新人才,2013年第十四届全国中小学电脑制作活动和第二届中国国际学生信息科技创意大赛专门设立了比赛项目(9)创新未来设计[4]。参赛者参考生活中的常见事物,通过计算机三维立体设计平台创作设计作品。要求首先完成设计 说明书 ,根据设计说明书,通过软件进行三维模型的设计、搭建和零件装配,并制作相关功能演示动画。 作品设计的事物尺寸不超过150 mm×200 mm×200 mm,薄厚不小于2 mm。 初中组设计命题为“未来桥梁”,在保证桥结构稳定的前提下,从功能、外观等方面进行创意设计。桥所应用的情境不做约束,可充分结合自己设定的场景进行设计。 高中组设计命题为“智慧汽车”,从外形、功能等方面加以创意设计。车辆的动力源和工作环境不做约束。 提交文件包括:设计作品,ICS或EXB文件;演示动画,SWF,3GP,MPG,AVI或MOV文件;设计说明书。 作品(含设计作品、演示动画、设计说明书)总大小不超过50 MB。 五、我们的思考 从山东省的创新办学标准来看,他们已经在如下方面做了尝试:创新设计软件和探究实验室相结合(初、高中),和通用技术实验室相结合(高中),和技术教室相结合(初中),和综合实践实验室相结合(小学),和信息技术实验室相结合(通用),和动漫室相结合(通用)。 南京市教育装备与勤工俭学办公室主任后有为说过:我们不一味追求最新的、豪华的、最先进的设备设施,而是选择科学的、实用的、适用的和优质的设备设施。这对于建设创新实验室提供了很好的思路,选择科学的、适用的、适度领先的物质技术及其承载信息,并通过恰当的、优化的、科学的形式整合成能促进教育与学校发展的,能促进教育教学改革与学生学习方式变革的,能促进师生共同成长的研究与实践过程。 组织相关人员调研三维打印应用 参考文献 [1] 张武城.创造创新方略[M] .北京:机械工业出版社,2011. [2] 维克托・巴雷拉.专家预测2013年十大技术革命 包括三维打印技术[EB/OL]. 3d打印技术论文总结范文篇三:《试谈3D打印技术在建筑业应用》 从20世纪80年代起,随着计算机技术、新材料技术的快速发展,3D打印技术不断进步,逐渐走向人们的视野。李晓梅(2014)认为自3D打印机发明30余年来,经历了迅猛发展已成为当今最有生命力的先进制造技术之一[1]。 本文采用文献研究的方法,针对3D打印在建筑行业的应用找出优点及不足,为3D技术在建筑行业的应用提供发展方向和理论参考。 一、3D打印技术在建筑业的应用 (一)3D打印技术概念 江洪(2013)认为3D打印技术是一种增加制造技术,采用分层制造,逐层叠加的方式形成三维实体的技术[2]。李小丽(2014)总结道,3D打印是包括CAD建模、测量、材料、数控等学科[3]。 (二)3D打印技术在建筑业应用优点 李福平(2013)认为3D打印建筑技术优势为速度快;不需要使用模板,可以大幅节约成本,并且具有低碳、绿色、环保的特点[4]。杨健江(2015)认为相较于传统建筑模式,3D打印不仅节约资源,利用废弃物进行制造[5]。丁烈云(2015)认为建筑3D打印数字建造技术满足日益增长的非线性、自由曲面等复杂建筑形式的设计建造要求,是全新的设计建造方法论的革新[6]。 本文将建筑3D打印技术的优点整理如下: 1.基于施工层面。根据图纸以及相关数据,就可制造出建筑墙体、楼板等,大大节约了建筑时间;从设计文件里获得各种指令并进行工作,要求操作业者掌握的操作技能水平要求很低,一方面大大降低了人力成本,另一方面将操作者对产品质量带来的影响因素降到了最低;避免了施工现场存在的安全隐患,保障作业人员的人身安全,减少事故和伤亡。 2.基于经济层面。所需要的材料多可以就地取材,极大节省建造的运输成本;零部件生产一体化成型,既缩短了制造时间,节约了人力成本,又减少了采购及运输成本;仅需更换设计文件和打印材料就可生产不同的零件。 3.基于材料层面。采用增材制造方法,材料利用率高;3D打印技术可打印出高成本曲线建筑;遵照计算机程序,比人工的更加准确,产品质量有保证;打印过程中依据精确的几何计算,采用坚固耐用的材料,质量有保证;墙体是空心的相比钢筋混凝土实心墙体,3D 打印建筑的墙体要轻许多。 4.基于环保层面。原材料可以来源于建筑垃圾、工业垃圾,达到了节能环保、资源再生和改善环境的目标;采用干法施工可避免施工粉尘和噪声影响,生产制造过程中产生的废气、液等有害物质低,减少材料浪费和排污;打印过程几乎不产生噪声和大振动。 (三) 目前建筑3D打印技术存在的问题 3D打印技术虽发展迅速,但仍存在弊端。 1.精度问题。3D 打印技术由于工艺问题导致两层材料之间不能光滑过度,且只能形成样式简单且单一的条纹。影响建筑外立面的美观性。而在一定微观尺度下,如果需要制造的对象表面是圆弧形,那么这种具有一定厚度的条纹,就会造成精度上的偏差。 2.行业规范问题。3D打印建筑在行业内还没有任何相关的规范条例。使用年限和房屋产权等一系列问题都没有权威部门的认可。 3.材料性能问题。3D打印建筑多数为低矮建筑,相较于传统方式,在强度、刚度和加工性上均有不足。且其打印是水平逐层打印,缺少纵向钢筋。 4.设备问题。受限于工作原理,目前3D打印机打印速度较慢,且设备和原材料的价格居高不下在一定程度上阻碍了3D打印技术的发展。 5.伦理安全性问题。伴随着3D打印技术的发展和进步,人体器官的3D打印技术面临着伦理上引起大众质疑的困境。3D打印技术引发的安全风险也收到相应的质疑。 二、结论与展望 本文通过对3D打印技术的相关知识及其在建筑业应用的优缺点、发展前景的梳理和归纳,得到如下结论: 首先,缺少关于适应多元材料的打印设备系统和工艺流程系统的研究,缺少交流和互相融合。 其次,国内外学者研究建筑3D打印研究的初步成果较多,但是缺乏系统、完善的方法体系。 最后,3D打印技术近期发展迅猛,但3D打印的相关专业规定及法律条文并没有得到良好的研究。为避免矛盾与事故的发生,解决由3D打印所造成的冲突,建立公平、公正、完善的相关规定必不可少。 猜你喜欢: 1. 3D打印技术学习心得体会 2. 3d打印必读的10本书 3. 3d打印调研报告 4. 3d打印技术调研报告 5. 3d打印技术学习心得
3d打印技术的发展,给我们的工作生活带来了很大的便利。下文是我整理了3d打印技术论文 总结 范文 ,欢迎大家阅读!3d打印技术论文总结范文篇一:《三维打印快速成形技术及其应用》 摘 要: 文章 对三维打印快速成形技术进行了分析,研究了三维打印快速成形技术的实现方案,并就其系统结构的运行方式做出了说明,最后对三维打印快速成形技术在多个行业领域中应用价值的实现进行了剖析,望能够引起各方人员的关注与重视,促进其进一步发展。 关键词:三维打印;快速成形技术;系统结构;应用 三维打印快速成形技术的核心是:建立在微喷射原理基础之上,通过喷射方式自喷嘴中喷出一定的液态微滴,在此基础之上根据预先设置的路径逐层打印并成形。相对于传统意义上的立体印刷技术或者是叠层实体制造技术而言,三维打印快速成形技术有着非常确切的优势,包括对激光系统要求较低,设备投入资金较少,运行性能可靠,维护工作量少,成本低廉等多个方面。同时,三维打印快速成形技术能够在常温环境下操作,运行安全可靠,可适用的成形材料类型众多,价格均衡,有实践价值。因此,三维打印快速成形技术已成为当前整个快速成形行业中最具综合发展潜力与空间的技术手段之一,有着非常广阔的应用前景。文章即围绕三维打印快速成形技术的实现及其应用要点展开分析,望引起重视。 1.三维打印快速成形技术的实现 从喷射材料上入手,可对三维打印快速成形技术的实现方案进行分类,主要有两种类型:第一是建立在粘结成形基础之上的三维打印快速成形技术,第二是建立在直接成形基础之上的三维打印快速成形技术。具体分析如下: 粘结成形下的三维打印快速成形技术 下图(如图1)为粘结成形下三维打印快速成形技术的基本工作原理。在本技术方案实施下,首先需要在工作台上均匀铺设一层粉末状材料,然后参照零件截面形态,将粘结材料有选择性的打印至粉末层上,使实体区域内的粉末材料完全粘结起来,形成截面对应的轮廓,打印完一层后将工作台向下移动,然后重复以上操作步骤,直至完成整个工件。 直接成形下的三维打印快速成形技术 下图(如图2)为直接成形下三维打印快速成形技术的基本工作原理。在本技术方案实施下,首先需要根据待打印的零件截面形状,控制打印头在截面有实体的区域内打印光固化实体材料,同时需要在可支撑区域内对固化支撑材料进行打印,然后利用紫外灯照射技术,在光固化材料的基础之上同步进行边固化打印工作。逐层进行固化处理直至完成对整个工件的打印工作,最后将支撑材料去除掉,以得到对应的成形工件。 2.三维打印快速成形系统结构 在三维打印快速成形技术实现的过程当中,主要的工作流程为:第一步,采集粉末原料;第二步,将粉末平铺至打印区域当中;第三步,在模型横截面上对打印机喷头进行定位,同时喷涂适当的黏结剂成分;第四步,送粉活塞上升同时实体模型下降,以继续打印;第五步,重复以上操作直至模型打印作业完成;第六步,将多余粉末去除掉,对模型进行固化。建立在该技术基础之上,整个三维打印快速成型系统运行需要完成的动作流程包括:打印喷头沿X轴向以及Y轴向的扫描运动,成型腔活塞沿Z轴向运动,储粉腔活塞沿Z轴向运动,铺粉辊筒转向运动以及平向运动等。其中,喷头X轴向运动采取的是传统喷墨打印机 操作系统 中的字车运动系统,引入光栅技术进行检测,X轴向打印精度可以达到5670dpi单位以上。同时,喷头Y轴向扫描运动能够带动打印机沿与X轴垂直的方向匀速动作,双侧驱动方式为步进电机驱动,光栅检测,闭环控制,三维打印成形中的定位精度可以达到级别。同时,整个三维打印快速成形系统还可以通过应用步进电机的方式为涡轮减速器提供驱动作用力,以驱动丝杆螺母运动,在半闭环条件下实现对铺粉厚度的合理控制(注:铺粉电机运动仅需要控制电机的启停状态,同时配合合理设置转动速度的方式完成工作任务,即应用常规直流电机就能够满足相应的工作要求)。 3.三维打印快速成形技术的实际应用 三维打印快速成形技术在生物工程领域中的应用 生物工程领域研究中对无生物活性支架以及假体的制作一直都是备受关注的工作内容之一,传统技术手段需要对生物活性材料进行激光加热或烧结,对材料的生物活性有不良影响。而通过对三维打印快速成形技术的应用,能够将参与生命体代谢行为且可降解的组织工程材料制成内部结构具有多孔疏松特性的人工骨材料,将活性因子填充于疏松孔内,起到代替人工骨骼的目的。 三维打印快速成形技术在制药工程领域中的应用 当前口服药物制剂的制造 方法 主要有粉末压片以及湿法颗粒这两种类型,无论是哪种制药方法,都存在分解速度过快,难以到达血液,或短时间内血液中药物浓度过高的问题,对人体有非常不良的影响。而通过对三维打印快速成形技术的应用,则能够为药物释放可控性功能的实现提供有力的技术性支持,相信随着单药、多药复合释药性口服可控释放药片以及药物梯度控释给药系统等技术的成功研制与应用,三维打印快速成形技术的应用潜力将得到更进一步的扩大与提升。 三维打印快速成形技术在元件制造领域中的应用 通过对三维打印快速成形技术的应用,能够为产品结构设计检查工作的开展提供非常好的支持,同时,依托该技术能够快速制造产品所对应的功能原型件,从而尽早的展开对产品设计性能的检测工作,缩短设计反馈周期,提高开发有效性,降低开发成本。 4.结束语 结合本文以上分析认为:三维打印快速成形技术作为当前快速成形领域中最具发展潜力的技术手段之一,对比其他快速成形技术而言,有着众多的应用优势,其应用空间也是非常广阔的。特别是在当前快速成形领域学科不断发展与优化的背景之下,三维打印快速成形技术也势必会逐步得到更为广泛与深入的应用。且由于此种技术手段可供选择的材料范围广阔,故而在多个行业的应用价值正逐步显现出来,值得引起重视。本文即围绕三维打印快速成形技术及其应用的相关问题进行分析与探讨,希望以上引起各方人员的高度关注与重视。 参考文献: [1]李晓燕,张曙,余灯广等.三维打印成形粉末配方的优化设计[J].机械科学与技术,2006,25(11):1343-1346. [2]晁艳普,白政民.金属微滴三维打印成形数据处理软件的设计开发[J].机械设计与制造,2014,(8):236-239. [3]庄佩,连芩,李涤尘等.仿生多材料复合增强骨软骨支架的制造及性能研究[J].机械工程学报,2014,(21):133-139. [4]刘厚才,莫健华,叶春生等.三维打印快速成形系统中的数据压缩方法[J].华中科技大学学报(自然科学版),2008,36(5):90-92. 3d打印技术论文总结范文篇二:《三维打印技术的应用与启示》 2013年数字南京 教育 装备工作目标:推进科技实践活动室或技能创造室的装备,全面实现每一所学校拥有一个以上主题鲜明、品质优良,与学校科技实践活动相适应、与学校科技艺体特色发展相适应的实验室;全市创新推进并累计装备建成100个高水平、高品质的机器人、三模科技、农业科技 种植 园等特色实验室,成为南京科技教育的核心与引领基地。评选100个优质科技实验室[1]。 为此,江苏省南京市教育装备与勤工俭学办公室主任后有为带队去山东省济南市历城区观摩三维打印技术培训,参观学校创新实验室,从而了解山东在创新实验室建设方面的一些做法,以及在创新大赛上获得佳绩和向高校输送人才的 经验 。 一、社会为什么需要创新设计和技术应用 《中国玩具制造业利润研究 报告 》显示:以玩具加工业为例,一个芭比娃娃在美国市场上的平均价格为美元,而制作这个芭比娃娃的中国企业只能拿到 美元加工费。中国企业所依赖的是相对低廉的劳动力和原材料成本,对外的竞争力也只是低成本带来的价格优势,所以只能依靠大批量生产,以薄利多销来赚取不多的加工费。我国很多行业产品生产的关键技术大部分来自进口,其中:工程机械高技术产品80%;数控机床70%;石油化工装备76%;集成电路芯片制造设备80%;光纤制造装备100%;通讯、半导体、生物、医药和计算机行业60%~90%;彩电、手机和微机的CPU都是掌握在别人手里[1]。 历史上,中国是人类创新和技术进步的摇篮,世界著名科技史学家李约瑟博士曾经列举了中国传入西方的26项技术,世界科技史上的前27项重要发明中18项来自中国。我国古代科技发明灿若星辰,对世界科技发展做出了巨大贡献。美国学者坦普尔在《中国:发明与发现的国度》一书中详细描述了“中国领先于世界”“西方受惠于中国”的中国古代100项技术发明。以史为鉴,古为今用,技术进步源于创新,创新设计源于服务现实,创造未来。大项目是创意,小改进也是创意,高科技是创意,简约明快也是创意。功能原理是创意,美化外观也是创意。灵感来源于生活,创意让世界更美好。 二、创新设计在初高中技术教学中的应用 我国“十二五”规划提出要深入实施科教兴国战略和人才强国战略,加快建设创新型国家,需要创新型人才,创新型人才培养,教育是基础和前提。同志强调:“要注重从青少年入手培养创新意识和实践能力,积极改革教育体制和改进 教学方法 。” 2011年,奥巴马总统推出的新版《美国创新战略》指出,美国未来的经济增长和国际竞争力取决于其创新能力。“创新教育运动”指引着公共和私营部门联合,以加强创新技术教育。 三维打印技术是专家预测的2013年十大技术革命之一,在打印过程中,打印机将根据计算机设计的模型从底部开始逐层堆积塑料、金属、合金等材料。凭借三维打印技术可以依据数字设计文件制造出固体结构,一旦物品能够在家或办公室远程打印出来,新技术将引发一场制造业革命[2]。三维打印技术在初高中技术教学中的应用,将对培养创新型人才产生重要作用。 1.提高教学效率,发展学生的 创新思维 三维设计软件、结构设计软件在三视图学习中针对学生学习时间少、没有基础等问题提供全新的教学手段,辅助三视图及其画法教学,快速识读技术图。学生进行创新设计时,设计软件提供简单易学的设计手段及完整的设计资源库。直观的三维模型系统教学手段,让设计像搭积木一样简单有趣,对立体模型进行平行移动、旋转、放大、多视窗等操作[3]。 2.降低学习坡度,突破教学难点 从三维设计到二维出图,学生在三维设计软件里轻松完成,快速工程图的生成能使学生做到设计与动手能力的完美结合,促进教育教学改革与学生学习方式的变革,是促进师生共同成长的研究与实践过程。 3.动手动脑结合,强调学生的动手创造 三维打印是一种快速成型技术,它以数字模型文件为基础,通过逐层打印的方式来构造物体,让动手与动脑相结合,让信息技术与通用技术相结合,让三维设计与二维设计相结合,让学生的设计和加工相结合。通过三维动画可以让学生更好地理解弹性碰撞,让机械机构运动的分析更加直观清晰。 三、创新设计帮助学生放飞创新的翅膀 创新设计软件平台在教育信息化中的精确定位是和探究实验室、通用技术实验室、综合实践实验室、信息技术实验室、动漫社相结合。创新软件系列产品及三维打印机将掀起一场教育创新运动。通过创新软件的运用,让我们的孩子和美国的孩子同步学习和发展,学有度、思无界、行无疆,创新设计软件平台及三维打印技术在教育中的促进作用有三: 一是可以引导中学生在生活中发现问题,去主动思考如何解决问题,而不是简单地去抱怨问题,培养学生的人文精神和社会责任感。 创意来源: 在高层楼房擦玻璃是很危险的,有没有既安全又方便的擦窗户方案?窗户有调节风、光的作用,如何利用窗户来改善室内的空气循环和光线照明? 设计原理:百叶窗的结构有可调节性,此类窗户也可以使用类似的结构,即将每扇窗分成若干扇小窗,每扇小窗可以绕轴旋转。这样可以实现调节风和光的作用,并且在雨天也可以开窗。尤其是高层楼房窗户玻璃的擦洗变得十分简便了。 二是可以帮助中学生固化自己生活的直接经验和亲身经历中的“小灵感”,并通过自己的设计―制作―评价,达到“创造”的教学效果。 案例2:可升降课桌椅 创意来源:学校普遍存在着课桌椅不符合学生身材的现象,总会让人觉得或高或低,影响学生的身体健康,于是便想到去设计一种可以升降且更具实用性的课桌椅。 设计原理:把思路定格在齿轮的传动上。在桌腿内部各安装两个齿轮和两条齿条,中间有一根传动轴连动,再在其中一个桌腿的一侧开孔,利用一个把手转动齿轮,这样便能使桌面水平升降 。 图6 利用三维打印技术制作出来的齿轮组 三是可以让中学生高度综合各学科、各方面的知识,并立足于实践,实现“做中学”和“学中做”。 案例3:自动上下楼梯的自助轮椅车 创意来源:家里有残疾人,上下楼梯不方便,有没有可以帮助残疾人自动上下楼梯的自助轮椅车呢? 设计原理:市面上有自动上下台阶的拖车,主要是依靠行星轮系的工作原理。如果把这个原理应用到轮椅上,不就是可以帮助残疾人自动上下楼梯的自助轮椅车吗? 案例4:物理学科中的成像原理 创意来源:来源于初中物理实验凸透镜成像实验。这个实验十分重要,但许多学生只知道概念而不清楚其中的原理与演示的过程。创意的意义在于把生活中的现象用自己的方式表现出来。 设计原理:运用新颖的视觉与动画,让大家耳目一新,将传统的枯燥教学转换为全新的模式,从而调动起大家的学习兴趣和热情。 四、创新设计大赛为学生提供创新实践的平台 为了丰富中小学生学习生活,激发创新精神,培养实践能力,全面推进素质教育,培养有国际竞争力的创新人才,2013年第十四届全国中小学电脑制作活动和第二届中国国际学生信息科技创意大赛专门设立了比赛项目(9)创新未来设计[4]。参赛者参考生活中的常见事物,通过计算机三维立体设计平台创作设计作品。要求首先完成设计 说明书 ,根据设计说明书,通过软件进行三维模型的设计、搭建和零件装配,并制作相关功能演示动画。 作品设计的事物尺寸不超过150 mm×200 mm×200 mm,薄厚不小于2 mm。 初中组设计命题为“未来桥梁”,在保证桥结构稳定的前提下,从功能、外观等方面进行创意设计。桥所应用的情境不做约束,可充分结合自己设定的场景进行设计。 高中组设计命题为“智慧汽车”,从外形、功能等方面加以创意设计。车辆的动力源和工作环境不做约束。 提交文件包括:设计作品,ICS或EXB文件;演示动画,SWF,3GP,MPG,AVI或MOV文件;设计说明书。 作品(含设计作品、演示动画、设计说明书)总大小不超过50 MB。 五、我们的思考 从山东省的创新办学标准来看,他们已经在如下方面做了尝试:创新设计软件和探究实验室相结合(初、高中),和通用技术实验室相结合(高中),和技术教室相结合(初中),和综合实践实验室相结合(小学),和信息技术实验室相结合(通用),和动漫室相结合(通用)。 南京市教育装备与勤工俭学办公室主任后有为说过:我们不一味追求最新的、豪华的、最先进的设备设施,而是选择科学的、实用的、适用的和优质的设备设施。这对于建设创新实验室提供了很好的思路,选择科学的、适用的、适度领先的物质技术及其承载信息,并通过恰当的、优化的、科学的形式整合成能促进教育与学校发展的,能促进教育教学改革与学生学习方式变革的,能促进师生共同成长的研究与实践过程。 组织相关人员调研三维打印应用 参考文献 [1] 张武城.创造创新方略[M] .北京:机械工业出版社,2011. [2] 维克托・巴雷拉.专家预测2013年十大技术革命 包括三维打印技术[EB/OL]. 3d打印技术论文总结范文篇三:《试谈3D打印技术在建筑业应用》 从20世纪80年代起,随着计算机技术、新材料技术的快速发展,3D打印技术不断进步,逐渐走向人们的视野。李晓梅(2014)认为自3D打印机发明30余年来,经历了迅猛发展已成为当今最有生命力的先进制造技术之一[1]。 本文采用文献研究的方法,针对3D打印在建筑行业的应用找出优点及不足,为3D技术在建筑行业的应用提供发展方向和理论参考。 一、3D打印技术在建筑业的应用 (一)3D打印技术概念 江洪(2013)认为3D打印技术是一种增加制造技术,采用分层制造,逐层叠加的方式形成三维实体的技术[2]。李小丽(2014)总结道,3D打印是包括CAD建模、测量、材料、数控等学科[3]。 (二)3D打印技术在建筑业应用优点 李福平(2013)认为3D打印建筑技术优势为速度快;不需要使用模板,可以大幅节约成本,并且具有低碳、绿色、环保的特点[4]。杨健江(2015)认为相较于传统建筑模式,3D打印不仅节约资源,利用废弃物进行制造[5]。丁烈云(2015)认为建筑3D打印数字建造技术满足日益增长的非线性、自由曲面等复杂建筑形式的设计建造要求,是全新的设计建造方法论的革新[6]。 本文将建筑3D打印技术的优点整理如下: 1.基于施工层面。根据图纸以及相关数据,就可制造出建筑墙体、楼板等,大大节约了建筑时间;从设计文件里获得各种指令并进行工作,要求操作业者掌握的操作技能水平要求很低,一方面大大降低了人力成本,另一方面将操作者对产品质量带来的影响因素降到了最低;避免了施工现场存在的安全隐患,保障作业人员的人身安全,减少事故和伤亡。 2.基于经济层面。所需要的材料多可以就地取材,极大节省建造的运输成本;零部件生产一体化成型,既缩短了制造时间,节约了人力成本,又减少了采购及运输成本;仅需更换设计文件和打印材料就可生产不同的零件。 3.基于材料层面。采用增材制造方法,材料利用率高;3D打印技术可打印出高成本曲线建筑;遵照计算机程序,比人工的更加准确,产品质量有保证;打印过程中依据精确的几何计算,采用坚固耐用的材料,质量有保证;墙体是空心的相比钢筋混凝土实心墙体,3D 打印建筑的墙体要轻许多。 4.基于环保层面。原材料可以来源于建筑垃圾、工业垃圾,达到了节能环保、资源再生和改善环境的目标;采用干法施工可避免施工粉尘和噪声影响,生产制造过程中产生的废气、液等有害物质低,减少材料浪费和排污;打印过程几乎不产生噪声和大振动。 (三) 目前建筑3D打印技术存在的问题 3D打印技术虽发展迅速,但仍存在弊端。 1.精度问题。3D 打印技术由于工艺问题导致两层材料之间不能光滑过度,且只能形成样式简单且单一的条纹。影响建筑外立面的美观性。而在一定微观尺度下,如果需要制造的对象表面是圆弧形,那么这种具有一定厚度的条纹,就会造成精度上的偏差。 2.行业规范问题。3D打印建筑在行业内还没有任何相关的规范条例。使用年限和房屋产权等一系列问题都没有权威部门的认可。 3.材料性能问题。3D打印建筑多数为低矮建筑,相较于传统方式,在强度、刚度和加工性上均有不足。且其打印是水平逐层打印,缺少纵向钢筋。 4.设备问题。受限于工作原理,目前3D打印机打印速度较慢,且设备和原材料的价格居高不下在一定程度上阻碍了3D打印技术的发展。 5.伦理安全性问题。伴随着3D打印技术的发展和进步,人体器官的3D打印技术面临着伦理上引起大众质疑的困境。3D打印技术引发的安全风险也收到相应的质疑。 二、结论与展望 本文通过对3D打印技术的相关知识及其在建筑业应用的优缺点、发展前景的梳理和归纳,得到如下结论: 首先,缺少关于适应多元材料的打印设备系统和工艺流程系统的研究,缺少交流和互相融合。 其次,国内外学者研究建筑3D打印研究的初步成果较多,但是缺乏系统、完善的方法体系。 最后,3D打印技术近期发展迅猛,但3D打印的相关专业规定及法律条文并没有得到良好的研究。为避免矛盾与事故的发生,解决由3D打印所造成的冲突,建立公平、公正、完善的相关规定必不可少。 猜你喜欢: 1. 3D打印技术学习心得体会 2. 3d打印必读的10本书 3. 3d打印调研报告 4. 3d打印技术调研报告 5. 3d打印技术学习心得
3D打印又称为增材制造,近年来得到了快速发展,应用领域不断增加。我整理了浅谈3d打印技术论文,欢迎阅读!
3D打印技术
摘 要:3D打印又称为增材制造,近年来得到了快速发展,应用领域不断增加。本文对3D打印的原理及应用现状进行了分析,对3D打印在教学领域的应用模式进行了探讨。
关键词:3D打印;应用现状;教学领域
1 引言
3D打印,又称为增材制造,是快速成型技术的一种,被誉为 “第三次工业革命的重要标志”,以其 “制造灵活”和“节约原材料”的特点在制造业掀起了一股浪潮。近年来,随着3D打印技术的逐步成熟、精确,打印材料种类的增加,打印价格的降低,3D打印得到了快速发展,应用领域不断增加,不仅在机械制造、国防军工、建筑等领域得到广泛应用,也逐渐进入了公众视野,走进学校、家庭、医院等大众熟悉的场所,在教育、生物医疗、玩具等行业也得到了广泛关注及应用,作为教育工作者,本文将在介绍3D打印的原理、优势、应用现状的基础上,重点探讨3D打印在教育领域的角色及应用模式。
2 3D打印概述
3D打印原理
3D打印(3D printing,又称三维打印),是利用设计好的3D模型,通过3D打印机逐层增加塑料、粉末状金属等材料来制造三维产品的技术[1]。一般来说,通过3D打印获得物品需要经历建模、分割、打印、后期处理等四个环节[2],其中3D虚拟模型,可以是利用扫描设备获取物品的三维数据,并以数字化方式生成三维模型,或者是利用AutoCAD等工程或设计软件创建的3D模型,有些应用程序甚至可以使用普通的数码照片来制作3D模型,比如123D Catch[3]。
3D打印的优势
与传统制造技术相比,3D打印不需事先制模,也不必铸造原型,大大缩短了产品的设计周期,减少了产品从研发到应用的时间,降低了企业因开模不当可能导致的高成本风险,使得特殊和复杂结构的模型的制作也变得相对简单,产品也更能凸显个性化。另外,3D打印是增材制造,使用金属粉或其他材料,使部件从无到有制造出来,大大减少了原材料和能源的消耗,生产上实行了结构优化。
3D打印的应用现状
近年来,3D打印得到了快速发展,几乎应用于各个领域。在模具加工和机械制造领域,使用3D打印相对快速地进行模具的设计与定制,打印复杂形状的各种零件,打印具有足够强度的个性化几何造型的物件。在航空航天、国防军工领域,3D打印应用于外形验证、关键零部件的原型制造、直接产品制造等方面。如空客公司从打印飞机小部件开始,逐步发展,计划在2050年左右打印出整架飞机。生物医疗领域,医学工作者利用3D打印技术打印出患者的心脏模型,缺损下颌骨模型,患者外伤性脑内血肿颅脑模型等,用于辅助诊断并制定术前手术方案,降低了手术难度,减少了手术时间,为患者带来了精准化的治疗。人工椎体和人体气管软骨的打印让人体器官的3D打印成为可能。3D打印的处方药产品SPRITAM(左乙拉西坦)片剂可用于各种癫痫疾病的治疗。建筑工程领域,3D打印建筑不需使用模板,打印的建筑物重量轻,强度大,时间短,产生的建筑垃圾及建筑粉尘少,且可以循环使用,绿色环保。3D打印在首饰、食品、玩具和日常用品的设计和生产中也有广泛应用,可以很好地彰显用户的个性化特点和需求。3D打印在太阳能电池板和特殊材料的制造方面的应用也有突破。
3 3D打印在教学领域的应用
3D打印在教学方面的探索性活动也已经展开,并应用在数学、航空、电子、设计、机电工程、生物医学、天文等大部分学科中,取得了良好的教学效果。基于3D打印的快速生成能力,使得数字化模型能快速转化为立体实物,借助立体实物的生成过程及使用可以提高教学效果,增强学生合作、设计、创新等能力。
打印三维教具学具辅助教学
在课程教学中,借助于多媒体教学手段,一些抽象的图像可以相对直观的显示出来,但针对的是群体,形成的是暂时的视觉感受,印象并不是很深刻,也不易理解。借助3D打印,可以把数字化的图像转化成实物的教具和学具,每个同学都有机会亲手感受,而且还可以亲自设计、策划,无疑对知识点的理解,知识的掌握及应用有很大的促进作用。比如:数学课可以打印出几何曲面、剖面立体实物;动画设计可以打印出3D人物,动物角色模型,且可以根据实效及时修改;语文课可以把要讲解的地域打印出来,如北京的胡同,同学们可以拿着模型理解胡同的特点,体验胡同文化,讲述胡同的来龙去脉;机械制造课可以根据课程内容打印相关的零件、齿轮、连杆等。
实习实践过程中辅助创新设计
职业学校实习实践教学活动较多,钳工实习、数控机床实习、电子电工实习、动画设计、物联网设计等,都需要借助相应的模型,并设计出一定的模型。借助于3D打印,同学们对需要设计的模型有一个大体的认识,然后经过集体分组的讨论、设计、修改等过程,不仅能增加学生的学习兴趣,促进学生交互学习,协作学习,且能提高学生的设计水平、思维能力和实践能力。比如在模具设计实习中,采用项目式教学法,应用3D打印,学生分组设计、分组打印,学生在亲眼目睹自己的设计零件打印成型的过程及成品后,学习兴趣大增,多次讨论修改的过程也大大提升学生的设计水平。在CAD课程实践环节中,使用3D打印机,可以根据教学需要来设计教学内容,对学生的设计作品3D打印出来进行评比并组装,不仅使学生熟练掌握设计软件建模的基本思路和流程,而且对如何从设计作品到具体的实物的生成有一个明确的认识,有利于日后学生进一步的学习和发展。
就业创业指导
近年来,大学毕业生人数急剧增加,就业压力增大,国家大力提倡大学生创业,整个社会也兴起了一股自主创业的热潮。对于职业学校的学生来说,有一定的专业知识,有较强的动手操作能力,有创业的热情与激情。借助于3D打印设备,创业指导老师可以指导学生创办创意设计3D打印工作室,利用所学的专业知识,设计出相关产品并打印出来进行销售,同时也可为社会客户提供DIY服务,收取一定的培训费和制作费,也可以在校企合作的基础上为合作企业提供设计和3D打印服务。通过3D打印的上述创业实践活动,加深学生对专业知识的巩固、对设计过程的了解,并培养创新创业意识和能力。
图书馆应用
图书馆引入3D打印服务是图书馆从文献服务走向创新服务的途径。国外很多图书馆都开展3D打印服务,国内的综合图书馆,如上海图书馆、苏州图书馆也开展3D打印服务,高校中的上海交通大学图书馆也开展3D打印服务,并且通过举办3D打印设计大赛积极推广此项服务,通过比赛普及3D打印知识,让同学们了解3D打印前沿科技,启发学生们用创新思维发现问题、智慧解决问题。学校图书馆可以配备一两台3D打印机,并在保证健康和安全的基础上,充分考虑费用、提交步骤、等待和筛选时间等、制定详细的3D打印制度或政策,并鼓励学生打印原创作品,以发挥学生的专业特长,激发学生的创造力和想象力。
4 结束语
3D打印正从工业领域,走向各个应用领域。不久的将来,也会像电脑、手机、互联网一样进入我们的社会和每个家庭。教育工作者应积极利用这项新技术,促进教学模式和教学活动的创新,更好地提高教学质量和教学效果,提高学生的实践能力和创新水平。
参考文献
[1] 张飞相. 3D打印技术的发展现状及其商业模式研究[J]. 新闻传播, 2016(2): 51-53.
[2] 李青,王青. 3D打印―一种新兴的学习技术[J]. 远程教育杂志2013(4):29-35.
点击下页还有更多>>>浅谈3d打印技术论文
3D打印技术在工业设计的应用论文
摘要 :3D打印技术是一项具有工业革命意义的先进制造技术,可推动工业设计模式发生变革,拓展工业设计的内涵,促使工业设计思维的解放,缩短设计周期,节省研发成本,降低企业风险。本文阐述了3D打印的技术体系,探讨了3D打印技术在工业设计上的应用,分析了3D打印技术对工业设计的影响。
关键词 :3D打印;工业设计;应用;影响
一、3D打印技术
(一)3D打印技术原理。3D打印技术最早称为快速成形技术或快速原型制造技术,是在当代CAD/CAM技术、机械工程、分层制造技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的一种先进制造技术。它是以计算机三维数字模型为蓝本,用软件将其分解成若干层平面切片,然后由数控成型系统利用激光束、热熔喷嘴等方式将可粘合材料进行逐层堆积黏结,最终叠加成型,制造出产品。
(二)3D打印技术的常见细分类别及可使用材料。常见的3D打印技术根据成型技术的不同可以分为下表几个类别:
(三)3D打印的优势。3D打印技术是大批量生产形式向小批量、个性化生产形式发展的引领技术,其突出优势在于生产结构、外观复杂的物品而不增加成本、多样化不增加成本,在于无须组装、零时间交付、设计空间无限、零技能制造、不占空间、便携制、减少废弃副产品、材料无限组合及精确的实体复制。
二、3D打印在工业设计中的应用
(一)概念模型、功能原型的制作。在工业设计的流程中,需要反复制作不同作用和类型的零件、模型,传统的方法有着制作周期长、劳动强度高、精度差、成本高等诸多缺点,而使用3D打印技术可以快速、轻松、精准的得到所需的零件、模型。
(二)工业设计过程中所需工具的制作。工业设计是一个充满创造力活动,不同的产品、不同的设计师在设计过程中需要用到各种各样的器材和工具来辅助,这些工具大多数都是设计师根据需要自行制作。这时,可以通过3D打印机完成,而不是耗费大量的时间、精力通过各种加工方式去制作。3D打印设备在工具制作上不仅可以缩短时间,降低成本,还可以构造出结构更加精密、质量更加轻盈、更加符合人体工程学的产品,大幅度提高设计的效率。
(三)小批量产品生产。随着3D打印技术的发展,其打印成本和打印时间进一步下降,可以打印的材料、方式不断丰富,使其在小批量产品生产上与传统加工制造工艺相比,有着生产流程短、时间少、成本低等巨大优势,而且不受时间、空间、机床、模具的限制,只要有需要便可以随时暂停生产,对设计进行修改,解除了传统制造业的技术、成本、工期等限制,这样,设计的产品不但快速而且灵活的得以生产。
三、3D打印对工业设计的.影响
(一)解放束缚,改变设计理念。传统的设计造型受产品的生产、组装等工艺制约,使得设计师的创造力、想象力受到束缚。而随着3D打印技术的发展和成熟,结构、外观再复杂的产品都能通过3D打印机打印出来,且浑然一体。如此,设计师可以将精力集中在产品形态、外观创意和功能创新、改进上,使产品的造型设计多元化、结构设计一体化、使用人性化趋势逐渐显现,在其技术、经济、美学、环境、人机等属性因素中,人机属性和美学属性因素所占的比例得到提高。传统的工业设计是建立在传统的大批量生产方式之上的,这就要求设计是根据一个模型来进行的,即使是所谓的个性化设计也只是将模型的生成范围缩小了。这意味着使用者的心理、生理及使用时间、环境等差异性在设计过程中难以体现。如鼠标设计就是这种典型的设计方式:传统设计模式是让使用者手掌的大小、使用的习惯、个性需求等去适应有限的规格、型号,而3D打印技术则可根据使用者的手形、习惯、个性需求等设计、生产出与其完全匹配的产品。3D打印技术使产品的个性化设计与生产成为可能,利用3D打印技术可以实现产品的量身定做,真正实现以人为本。
(二)3D打印技术对工业设计流程及成本的影响。在设计过程中,顺畅而高效的设计交流是工业设计开发取得成功的重要保证。其中各种类型的模型是交流的重要手段之一,手工制作的模型在精度、质感、触感等方面与概念的设计预期都存在较大偏差,而3D打印能克服这些缺点,使设计团队中的每个成员及用户都能够直观地看到和触摸这些概念模型,比较它们之间的结构、外形和功能的差别与优劣。另外,工业设计过程中的模型如果用手工制作的话将耗费相当长的时间,是缩短产品上市时间的最大障碍,采用3D打印可大大缩短概念模型和产品原型的制作时间,从以往的几天乃至几个星期缩短到几小时。近年来,随着产品复杂化和个性化的发展趋势,设计过程中模型加工和制造的成本非常高,复杂模型甚至要求制作专用模具和加工工艺以保证模型的精度和真实效果,而3D打印技术可实现模型随时、随地制作,大幅度降低设计成本。
(三)3D打印技术对设计产业的影响。传统的工业设计模式受到固有减式生产方式所制约,由专业设计师主导。但随着3D打印技术的日趋成熟,独立设计师对于传统加工业的依赖性将越来越小。对于那些具有较强的创新意识,具备一定的设计、研发能力的消费者很可能变成设计师和生产商。随着3D打印技术所带来的社会化制造,独立设计师和品牌也将崛起。
四、3D打印在工业设计中所面临的问题
3D打印由设计师、设计软件、设备、材料等共同作用,相互影响。在工业设计领域,3D打印技术解放了设计束缚,激发了设计师的创作灵感,但用于3D打印技术的设计软件、模型输出格式等方面依然需要进一步发展与完善。目前,3D打印技术可以与设计完美地结合在一起已经在诸多产品上得以证实,并获得了广泛的认可,但是如何让其在更多的产品生产中发挥应有的作用,仍是一个需要不断探讨的问题。同时,3D打印技术其本身又存在先天性不足,例如:打印尺寸受技术和打印机的限制、产品打印时间过长及大批量生产时无成本优势等,这些原因使3D打印仍不能代替传统制造工艺。结论:3D打印技术在工业设计领域已经获得了重大的发展和应用。在工业设计领域,3D打印技术不仅可以满足当下人们对个性化、订制化产品的要求,还可以实现结构、外观复杂产品的制造,提高设计制造精度,大大缩短设计周期,降低设计成本,激发了设计师的创作灵感,为产品设计带来新的生命力,同时催生了大量独立设计师及设计品牌,有良好的发展前景。同时,3D打印技术也存在一些技术和推广上的缺点与不足,但随着3D打印技术的发展、成熟及设计人员的不懈努力,一定会在工业设计领域得到越发广泛的应用。
参考文献:
[1]蔺薛菲.3D打印技术对制造业产品设计的影响研究[J].艺术与设计(理论),2015,08:103-105.
[2]付航,李鹏.3D打印技术在产品设计中的应用概况[J].美与时代(城市版),2015,10:85-87.
《3D打印技术的应用与发展探究》。《3D打印技术的应用与发展探究》是3d打印论文的提纲,因此是《3D打印技术的应用与发展探究》。3D打印(3DP)即快速成型技术的一种,又称增材制造,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料。
论文原文:
YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:
如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:
每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:
其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。
每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)
举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:
在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:
等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。
得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。
1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。
2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。
3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。
4、损失函数公式见下图:
在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:
解决方法:
只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。
作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为(ImageNet2012 validation set),与GoogleNet模型准确率相当。
然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。
作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}= 。
作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为,学习速率延迟为。Learning schedule为:第一轮,学习速率从缓慢增加到(因为如果初始为高学习速率,会导致模型发散);保持速率到75轮;然后在后30轮中,下降到;最后30轮,学习速率为。
作者还采用了dropout和 data augmentation来预防过拟合。dropout值为;data augmentation包括:random scaling,translation,adjust exposure和saturation。
YOLO模型相对于之前的物体检测方法有多个优点:
1、 YOLO检测物体非常快
因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。
2、 YOLO可以很好的避免背景错误,产生false positives
不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。
3、 YOLO可以学到物体的泛化特征
当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。
尽管YOLO有这些优点,它也有一些缺点:
1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。
2、YOLO容易产生物体的定位错误。
3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。
YOLO v1:You Only Look Once: Unified, Real-Time Object Detection YOLO v2:YOLO9000:Better,Faster,Stronger YOLO v3:YOLOv3: An Incremental Improvement
近几年来,目标检测算法取得了很大的突破。比较流行的算法可以分为两类,一类是基于Region Proposal的R-CNN系算法(R-CNN,Fast R-CNN, Faster R-CNN),它们是two-stage的,需要先使用启发式方法(selective search)或者CNN网络(RPN)产生Region Proposal,然后再在Region Proposal上做分类与回归。而另一类是Yolo,SSD这类one-stage算法,其仅仅使用一个CNN网络直接预测不同目标的类别与位置。第一类方法是准确度高一些,但是速度慢,但是第二类算法是速度快,但是准确性要低一些。这里我们谈的是Yolo-v1版本算法,其性能是差于后来的SSD算法的,但是Yolo后来也继续进行改进,产生了Yolo9000、YOLO v3算法。
传统方法常采用滑动窗口法,滑动窗口的目标检测算法思路非常简单,它将检测问题转化为了图像分类问题。其基本原理就是采用不同大小和比例(宽高比)的窗口在整张图片上以一定的步长进行滑动,然后对这些窗口对应的区域做图像分类,这样就可以实现对整张图片的检测了,如 DPM 就是采用这种思路。但是这个方法有致命的缺点,就是你并不知道要检测的目标大小是什么规模,所以你要设置不同大小和比例的窗口去滑动,而且还要选取合适的步长。但是这样会产生很多的子区域,并且都要经过分类器去做预测,这需要很大的计算量,所以你的分类器不能太复杂,因为要保证速度。解决思路之一就是减少要分类的子区域,这就是R-CNN的一个改进策略,其采用了 selective search 方法来找到最有可能包含目标的子区域(Region Proposal),其实可以看成采用启发式方法过滤掉很多子区域,这会提升效率。
如果你使用的是CNN分类器,那么滑动窗口是非常耗时的。但是结合卷积运算的特点,我们可以使用CNN实现更高效的滑动窗口方法。这里要介绍的是一种全卷积的方法,简单来说就是网络中用卷积层代替了全连接层,如图所示。输入图片大小是16x16,经过一系列卷积操作,提取了2x2的特征图,但是这个2x2的图上每个元素都是和原图是一一对应的,如图上蓝色的格子对应蓝色的区域,这不就是相当于在原图上做大小为14x14的窗口滑动,且步长为2,共产生4个字区域。最终输出的通道数为4,可以看成4个类别的预测概率值,这样一次CNN计算就可以实现窗口滑动的所有子区域的分类预测。这其实是overfeat算法的思路。之所可以CNN可以实现这样的效果是因为卷积操作的特性,就是图片的空间位置信息的不变性,尽管卷积过程中图片大小减少,但是位置对应关系还是保存的。这个思路也被R-CNN借鉴,从而诞生了Fast R-cNN算法。
上面尽管可以减少滑动窗口的计算量,但是只是针对一个固定大小与步长的窗口,这是远远不够的。Yolo算法很好的解决了这个问题,它不再是窗口滑动了,而是直接将原始图片分割成互不重合的小方块,然后通过卷积最后生产这样大小的特征图,基于上面的分析,可以认为特征图的每个元素也是对应原始图片的一个小方块,然后用每个元素来可以预测那些中心点在该小方格内的目标,这就是Yolo算法的朴素思想。
整体来看,Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测,整个系统如图所示:首先将输入图片resize到448x448,然后送入CNN网络,最后处理网络预测结果得到检测的目标。相比R-CNN算法,其是一个统一的框架,其速度更快,而且Yolo的训练过程也是end-to-end的。
具体来说,Yolo的CNN网络将输入的图片分割成 网格,然后每个单元格负责去检测那些中心点落在该格子内的目标,如图所示,可以看到狗这个目标的中心落在左下角一个单元格内,那么该单元格负责预测这个狗。每个单元格会预测B个边界框(bounding box)以及边界框的 置信度 (confidence score)。所谓置信度其实包含两个方面,一是这个边界框含有目标的可能性大小,二是这个边界框的准确度。前者记为 ,当该边界框是背景时(即不包含目标),此时 。而当该边界框包含目标时, 。边界框的准确度可以用预测框与实际框(ground truth)的 IOU (intersection over union,交并比)来表征,记为 IOU 。因此置信度可以定义为 。
很多人可能将Yolo的置信度看成边界框是否含有目标的概率,但是其实它是两个因子的乘积,预测框的准确度也反映在里面。边界框的大小与位置可以用4个值来表征:(x,y,h,w),其中(x,y)是边界框的中心坐标,而w和h是边界框的宽与高。还有一点要注意,中心坐标的预测值(x,y)是相对于每个单元格左上角坐标点的偏移值,并且单位是相对于单元格大小的,单元格的坐标定义如图所示。而边界框的w和h预测值是相对于整个图片的宽与高的比例,这样理论上4个元素的大小应该在[0,1]范围。这样,每个边界框的预测值实际上包含5个元素:(x,y,w,h,c),其中前4个表征边界框的大小与位置,而最后一个值是置信度。
值得注意的是,不管一个单元格预测多少个边界框,其只预测一组类别概率值,这是Yolo算法的一个缺点,在后来的改进版本中,Yolo9000是把类别概率预测值与边界框是绑定在一起的。同时,我们可以计算出各个边界框类别置信度(class-specificconfidence scores):
边界框类别置信度表征的是该边界框中目标属于各个类别的可能性大小以及边界框匹配目标的好坏。后面会说,一般会根据类别置信度来过滤网络的预测框。
总结一下,每个单元格需要预测 个值。如果将输入图片划分为 网格,那么最终预测值为 大小的张量。整个模型的预测值结构如下图所示。对于PASCALVOC数据,其共有20个类别,如果使用S=7,B=2,那么最终的预测结果就是 大小的张量。在下面的网络结构中我们会详细讲述每个单元格的预测值的分布位置。
Yolo采用卷积网络来提取特征,然后使用全连接层来得到预测值。网络结构参考GooLeNet模型,包含24个卷积层和2个全连接层,如图所示。对于卷积层,主要使用1x1卷积来做channle reduction,然后紧跟3x3卷积。对于卷积层和全连接层,采用Leaky ReLU激活函数:max(x,0)。但是最后一层却采用线性激活函数。除了上面这个结构,文章还提出了一个轻量级版本Fast Yolo,其仅使用9个卷积层,并且卷积层中使用更少的卷积核。
可以看到网络的最后输出为 大小的张量。这和前面的讨论是一致的。这个张量所代表的具体含义如图所示。对于每一个单元格,前20个元素是类别概率值,然后2个元素是边界框置信度,两者相乘可以得到类别置信度,最后8个元素是边界框的(x,y,w,h)。大家可能会感到奇怪,对于边界框为什么把置信度c和(x,y,w,h)都分开排列,而不是按照(x,y,w,h,c)这样排列,其实纯粹是为了计算方便,因为实际上这30个元素都是对应一个单元格,其排列是可以任意的。但是分离排布,可以方便地提取每一个部分。这里来解释一下,首先网络的预测值是一个二维张量P,其shape为 。
采用切片,那么 就是类别概率部分; 是置信度部分; 是边界框的预测结果。这样,提取每个部分是非常方便的,这会方面后面的训练及预测时的计算。
在训练之前,先在ImageNet上进行了预训练,其预训练的分类模型采用图中前20个卷积层,然后添加一个average-pool层和全连接层。预训练之后,在预训练得到的20层卷积层之上加上随机初始化的4个卷积层和2个全连接层。由于检测任务一般需要更高清的图片,所以将网络的输入从224x224增加到了448x448。整个网络的流程如下图所示:
损失函数计算如下:
其中第一项是边界框中心坐标的误差项, 指的是第i个单元格存在目标,且该单元格中的第j个边界框负责预测该目标。第二项是边界框的高与宽的误差项。第三项是包含目标的边界框的置信度误差项。第四项是不包含目标的边界框的置信度误差项。而最后一项是包含目标的单元格的分类误差项, 指的是第i个单元格存在目标。
在说明Yolo算法的预测过程之前,这里先介绍一下非极大值抑制算法(non maximum suppression, NMS),这个算法不单单是针对Yolo算法的,而是所有的检测算法中都会用到。NMS算法主要解决的是一个目标被多次检测的问题,如图中人脸检测,可以看到人脸被多次检测,但是其实我们希望最后仅仅输出其中一个最好的预测框,比如对于美女,只想要红色那个检测结果。那么可以采用NMS算法来实现这样的效果:首先从所有的检测框中找到置信度最大的那个框,然后挨个计算其与剩余框的IOU,如果其值大于一定阈值(重合度过高),那么就将该框剔除;然后对剩余的检测框重复上述过程,直到处理完所有的检测框。
下面就来分析Yolo的预测过程,这里我们不考虑batch,认为只是预测一张输入图片。根据前面的分析,最终的网络输出是 ,但是我们可以将其分割成三个部分:类别概率部分为 ,置信度部分为 ,而边界框部分为 (对于这部分不要忘记根据原始图片计算出其真实值)。然后将前两项相乘可以得到 类别置信度值为 ,这里总共预测了 边界框。
所有的准备数据已经得到了,那么先说第一种策略来得到检测框的结果。首先,对于每个预测框根据类别置信度选取置信度最大的那个类别作为其预测标签,经过这层处理我们得到各个预测框的预测类别及对应的置信度值,其大小都是[7,7,2]。一般情况下,会设置置信度阈值,就是将置信度小于该阈值的box过滤掉,所以经过这层处理,剩余的是置信度比较高的预测框。最后再对这些预测框使用NMS算法,最后留下来的就是检测结果。一个值得注意的点是NMS是对所有预测框一视同仁,还是区分每个类别,分别使用NMS。Ng在中讲应该区分每个类别分别使用NMS,但是看了很多实现,其实还是同等对待所有的框,可能是不同类别的目标出现在相同位置这种概率很低吧。
上面的预测方法应该非常简单明了,但是对于Yolo算法,其却采用了另外一个不同的处理思路(至少从C源码看是这样的),其区别就是先使用NMS,然后再确定各个box的类别。其基本过程如图所示。对于98个boxes,首先将小于置信度阈值的值归0,然后分类别地对置信度值采用NMS,这里NMS处理结果不是剔除,而是将其置信度值归为0。最后才是确定各个box的类别,当其置信度值不为0时才做出检测结果输出。这个策略不是很直接,但是貌似Yolo源码就是这样做的。Yolo论文里面说NMS算法对Yolo的性能是影响很大的,所以可能这种策略对Yolo更好。
总结一下Yolo的优缺点。首先是优点,Yolo采用一个CNN网络来实现检测,是单管道策略,其训练与预测都是end-to-end,所以Yolo算法比较简洁且速度快。第二点由于Yolo是对整张图片做卷积,所以其在检测目标有更大的视野,它不容易对背景误判。另外,Yolo的泛化能力强,在做迁移时,模型鲁棒性高。
Yolo的缺点,首先Yolo各个单元格仅仅预测两个边界框,而且属于一个类别。对于小物体,Yolo的表现会不如人意。这方面的改进可以看SSD,其采用多尺度单元格。也可以看Faster R-CNN,其采用了anchor boxes。Yolo对于在物体的宽高比方面泛化率低,就是无法定位不寻常比例的物体。当然Yolo的定位不准确也是很大的问题。
参考链接 YOLO算法的原理与实现
sci论文查重只需要找到论文查重平台,例如,上学吧论文查重,再把论文提交,系统就直接把查重结果发到邮箱了,还可以根据提示把重复率高的地方改一下就好。建议选用知网查重。
一.准确得体要求论文题目能准确表达论文内容,恰当反映所研究的范围和深度。常见毛病是:过于笼统,题不扣文。如:'金属疲劳强度的研究'过于笼统,若改为针对研究的具体对象来命题。效果会好得多,例如'含镍名牌的合金材料疲劳强度的研究',这样的题名就要贴切得多。再如:'35Ni-15Cr型铁基高温合金中铝和钛含量对高温长期性能和组织稳定性能的影响的研究'这样的论文题目,既长又不准确,题名中的35Ni-15Cr是何含义,令人费解,是百分含量?是重量比?体积比?金属牌号?或是其它什么,请教不得而知,这就叫题目含混不清,解决的办法就是要站在读者的角度,清晰地点示出论文研究的内容。假如上面的题目中,指的是百分含量,可放在内文中说明,不必写在标题中,标题中只需反映含Ni和Cr这一事实即可。可参考的修改方案为:'Ni、Cr合金中Al和Ti含量对高温性能和组织稳定性的影响'。关键问题在于题目要紧扣论文内容,或论文内容民论文题目要互相匹配、紧扣,即题要扣文,文也要扣题。这是撰写论文的基本准则。二.简短精炼力求题目的字数要少,用词需要精选。至于多少字算是合乎要求,并无统一的'硬性'规定,一般希望一篇论文题目不要超出20个字,不过,不能由于一味追求字数少而影响题目对内容的恰当反映,在遇到两者确有矛时,宁可多用几个字也要力求表达明确。常见了繁琐题名如:'关于钢水中所含化学成分的快速分析方法的研究'。在这类题目中,像'关于'、'研究'等词汇如若舍之,并不影响表达。既是论文,总包含有研究及关于什么方面的研究,所以,上述题目便可精炼为:'钢水化学成分的快速分析法'。这样一改,字数便从原21个安减少为12个字,读起来觉得干净利落、简短明了。若简短题名不足以显示论文内容或反映出属于系列研究的性质,则可利用正、副标题的方法解决,以加副标题来补充说明特定的实验材料,方法及内容等信息,使标题成为既充实准确又不流于笼统和一般化。如?quot;(主标题)有源位错群的动力学特性--(副标题)用电子计算机模拟有源位错群的滑移特性'。三.外延和内涵要恰如其分'外延'和'内涵'属于形式逻辑中的概念。所谓外延,是指一个概念所反映的每一个对象;而所谓内涵,则是指对每一个概念对象特有属性的反映。命题时,若不考虑逻辑上有关外延和内涵的恰当运用,则有可能出现谬误,至少是不当。如:'对农村合理的全、畜、机动力组合的设计'这一标题即存在逻辑上的错误。题名中的'人',其外延可能是青壮年,也可以是指婴儿、幼儿或老人,因为后者也?quot;人',然而却不是具有劳动能力的人,显然不属于命题所指,所以泛用'人',其外延不当。同理,'畜'可以指牛,但也可以指羊和猪,试问,哪里见到过用羊和猪来犁田拉磨的呢?所以也属于外延不当的错误。其中,由于使用'劳力'与'畜力',就不会分别误解成那些不具有劳动能力和不能使役的对象。论文题目虽然居于首先映入读者眼帘的醒目位置,但仍然存在题目是否醒目的问题,因为题目所用字句及其所表现的内容是否醒目,其产生的效果是相距甚远的。正文是一篇论文的本论,属于论文的主体,它占据论文的最大篇幅。论文所体现的创造性成果或新的研究结果,都将在这一部分得到充分的反映。因此,要求这一部分内容充实,论据充分、可靠,论证有力,主题明确。为了满足这一系列要求,同时也为了做到层次分明、脉络清晰,常常将正文部分人成几个大的段落。这些段落即所谓逻辑段,一个逻辑段可包含几个自然段。每一逻辑段落可冠以适当标题(分标题或小标题)。
进入paperrater官网,注册直接检测,首次免费检测两万字。
论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :