首页

> 学术期刊知识库

首页 学术期刊知识库 问题

行列式的论文题目

发布时间:

行列式的论文题目

数学专业毕业论文选题方向如下:

1、并行组合数学模型方式研究及初步应用。

2、数学规划在非系统风险投资组合中的应用。

3、金融经济学中的组合数学问题。

4、竞赛数学中的组合恒等式。

5、概率方法在组合数学中的应用。

6、组合数学中的代数方法。

7、组合电器局部放电超高频信号数学模型构建和模式识别研究。

8、概率方法在组合数学中的某些应用。

9、组合投资数学模型发展的研究。

10、高炉炉温组合预报和十字测温数学建模。

11、基于数学形态学-小波分析组合算法的牵引网故障判定方法。

12、证券组合投资的灰色优化数学模型的研究。

13、一些算子在组合数学中的应用。

14、概率方法在组合数学及混合超图染色理论中的应用。

15、竞赛数学中的组合恒等式。

毕业论文(graduation study),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。

数学专业毕业论文选题方向

1动态规划及其应用问题。

2计算方法中关于误差的分析。

3微分中值定理的应用。

4模糊聚类分析在学生素质评定中的应用。

5关于古典概型的几点思考。

6浅谈数形结合在数学解题中的应用。

7高校毕业生就业竞争力分析。

8最大模原理及其推广和应用。

9 最大公因式求解算法。

10行列式的计算。

代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有 n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。 九章算术线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。向量概念的引入,形成了向量空间的概念。凡是线性问题都可以用向量空间的观点加以讨论。因此,向量空间及其线性变换,以及与此相联系的矩阵理论,构成了线性代数的中心内容。线性代数的含义随数学的发展而不断扩大。线性代数的理论和方法已经渗透到数学的许多分支,同时也是理论物理和理论化学所不可缺少的代数基础知识。

行列式有关的论文题目

考研的数学分为四种,分别是数学一、数学二、数学三、数学四 数学一是一般的理工科要考的,如计算机/材料等理工专业 数学二是对数学要求略微低一点的专业要考的,但他与数学一基本相当。如纺织专业 数学三是偏向于经济类别的考生,如经济管理 偏向概率 数学四是其它对数学要求相对低的学科。 而四种数学出题的题型相同,所占比例也相同,你很容易在网上或者书店找到某一年的考试题看一下每年出的题类型相同的。 大纲见下: 全国硕士研究生入学考试数学三考试大纲 考试科目 微积分、线性代数、概率论与数理统计 微积分 一、函数。极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 反函数、复合函数、隐函数、分段函数 基本初等函数的性质及其图形 初等函数 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小和无穷大的概念及关系 无穷小的基本性质及阶的比较 极限四则运算 极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限 函数连续与间断的概念 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数、反函数、隐函数和分段函数的概念. 4.掌握基本初等函数的性质及其图形,理解初等函数的概念. 5.会建立简单应用问题中的函数关系式. 6.了解数列极限和函数极限(包括左极限与右极限)的概念. 7.了解无穷小的概念和基本性质.掌握无穷小的比较方法.了解无穷大的概念及其与无穷小的关系. 8.了解极限的性质与极限存在的两个准则.掌握极限的性质及四则运算法则,会应用两个重要极限. 9.理解函数连续性的概念(含左连续与右连续). 10. 了解连续函数的性质和初等函述的连续性. 了解闭区间上连续函数的性质(有界性、最大值与最小值定理和介值定理)及其简单应用. 二、一元函数微分学 考试内容 导数的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 导数的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的导数 高阶导数 微分的概念和运算法则 微分中值定理及其应用 洛必达(L'Hospital)法则 函数单调性 函数的极值 函数图形的凹凸性、拐点、浙近线 函数图形的描绘 函数的最大值与最小值 考试要求 1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念). 2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,掌握反函数与隐函数求导法以及对数求导法. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.了解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性,会求函数的微分. 5.理解罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理、柯西(Cauchy)中值定理的条件和结论,掌握这三个定理的简单应用. 6.会用洛必达法则求极限. 7.掌握函数单调性的判别方法及其应用,掌握极值、最大值和最小值的求法(含解较简单的应用题). 8.会用导数判断函数图形的凹凸性和拐点,会求函数图形的渐近线. 9.掌握函数作图的基本步骤和方法,会作某些简单函数的图形. 三、一元函数积分学 考试内容 原函数与不定积分的概念 不定积分的基本性质 基本积分公式 不定积分的换元积分法和分部积分法 定积分的概念和基本性质 定积分中值定理 变上限定积分定义的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 定积分的换元积分法和分部积分法 广义积分的概念和计算 定积分的应用 考试要求 1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握计算不定积分的换元积分法和分部积分法. 2.了解定积分的概念和基本性质,了解定积分中值定理,掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法.了解变上限定积分定义的函数并会求它的导数. 3.会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解简单的经济应用问题. 4.了解广义积分的概念,会计算广义积分,了解广义积分(此处略)的收敛与发散的条件. 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续性 有界闭区域上二元连续函数的性质 多元函数的偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单二重积分的计算 考试要求 1.了解多元函数的概念,了解二元函数的几何意义. 2.了解二元函数的极限与连续的直观意义,了解有界闭区域上二元连续函数的性质. 3.了解多元函数偏导数与全微分的概念,掌握求多元复合函数偏导数和全微分的方法,会用隐函数的求导法则. 4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件。会求二元函数的极值,会用拉格朗日乘数法求条件极值.会求简单多元函数的最大值和最小值,会求解一些简单的应用题. 5.了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法.会计算无界区域上的较简单的二重积分. 五、无穷级数 考试内容 常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数以及它们的收敛性 正项级数收敛性的判别 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 考试要求 1.了解级数的收敛与发散、收敛级数的和的概念. 2.掌握级数的基本性质和级数收敛的必要条件.掌握几何级数及p级数的收敛与发散的条件.掌握正项级数的比较判别法和比值判别法. 3.了解任意项级数绝对收敛与条件收敛的概念,以及它们之间的关系.掌握交错级数的莱布尼茨判别法. 4.会求幂级数的收敛半径、收敛区间及收敛域. 5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项微分和逐项积分),会求简单幂级数在其收敛区间内的和函数. 6.掌提 ex,sinx,cosx,ln(1+x)与(1+x)a幂级数的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展成幂级数. 六、常微分方程与差分方程 考试内容 常微分方程的概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程与差分方程的简单应用 考试要求 1.了解微分方程的阶及其解、通解、初始条件和特解等概念. 2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法. 3.会解二阶常系数齐次线性方程. 4.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程. 5.了解差分与差分方程及其通解与特解等概念. 6.掌握一阶常系数线性差分方程的求解方法. 7.会应用微分方程和差分方程求解简单的经济应用问题. 线性代数 一、行列式 考试内容 行列式的概念和基本性质 行列式按行(列)展开定理 考试要求 1.了解n阶行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵 考试内容 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算 1、理解矩阵的概念,了解单位矩阵、对角矩阵、数量矩阵、三角矩阵的定义和性质,了解对称矩阵和反对称矩阵及正交矩阵等的定义和性质。 2、掌握矩阵的线性运算、乘法,以及他们的运算规律,掌握矩阵转置的性质,了解方阵的幂,掌握方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求矩阵的逆. 4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,会用初等变换求矩阵的逆和秩. 5.了解分块矩阵的概念,掌握分块矩阵的运算法则. 三、向量 考试内容 向量的概念 向量的线性组合与线性表示 向量组线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 考试要求 1.了解向量的概念,掌握向量的加法和数乘运算法则. 2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大无关组的概念,掌握求向量组的极大无关组的方法. 4.了解向量组等价的概念,理解向量组的秩的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系,会求向量组的秩. 四、线性方程组 考试内容 线性方程组的克莱姆(Cramer)法则 线例方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系 非齐次线性方程组的通解 考试要求 1.会用克莱姆法则解线性方程组. 2.掌握线性方程组有解和无解的判定方法. 3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.掌握非齐次线性方程组的通解的求法,会用其特解及相应的导出组的基础解系表示齐次线性方程组的通解. 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵 考试要求 1、理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法. 2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法. 3.掌握实对称矩阵的特征值和特征向量性质. 六、二次型 考试内容 二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准报和规范形 正交变换 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性 考试要求 1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念. 2.理解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理的条件和结论,会用正交变换和配方法化二次型为标准形. 3.理解正定二次型、正定矩阵的概念,掌握正定矩阵的性质. 概率论与数理统计 一、随机事件和概率 考试内容 随机事件与样本空间 事件的关系与运算 完全事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求 1.了解样本空间(基本时间空间)的概念,理解随机事件的概念,掌握事件的关系及运算. 2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、乘法公式、全概率公式以及贝叶斯公式等基本公式. 3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念. 二、随机变量及其概率分布 考试内容 随机变量及其概率分布 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的概率分布 随机变量函数的概率分布 考试要求 1.理解随机变量及其概率分布的概念,理解分布函数F(x)=P{X<=x}(负无穷2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、超几何分布、泊松(Poisson)分布及其应用. 3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布. 4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布N(μ,σ2)、指数分布及其应用,其中参数为λ(λ>0)的指数分布的密度函数为f(x)=(此处略). 5.会根据自变量的概率分布求其简单函数的概率分布. 三、随机变量的联合概率分布 考试内容 随机变量联合分布函数 离散型随机变量的联合概率分布、边缘分布和条件分布 连续型随机变量的联合概率密度、边缘密度和条件密度 随机变量的独立性和相关性 常见二维随机变量的联合分布 两个及两个以上随机变量的函数的概率分布 考试要求 1.理解随机变量的联合分布函数的概念和基本性质. 2.理解随机变量的联合分布的概念、性质及其两种基本表达式:离散型联合概率分布和连续型联合概率密度.掌握两个随机变量的联合分布的边缘分布和条件分布. 3.理解随机变量的独立性及相关性的概念,掌握随机变量独立的条件;理解随机变量的不相关性与独立性的关系. 4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义. 5.会根据两个随机变量的联合概率分布求其函数的概率分布,会根据多个独立随机变量的概率分布求其函数的概率分布. 四、随机变量的数字特征 考试内容 随机变量的数学期望(均值)、方差和标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 矩、协方差和相关系数及其性质 考试要求 1.理解随机变量数字特征(数学期望、方差、标准差、协方差、相关系数)的概念,并会运用数字特征的基本性质计等具体分布的数字特征,掌握常用分布的数字特征. 2.会根据随机变量的概率分布求其函数的数学期望;会根据两个随机变量联合概率分布求其函数的数学期望. 3.掌握切比雪夫不等式. 五、大数定律和中心极限定理 考试内容 切比雪夫(Chebyshev)大数定律 伯努利(Bernonlli)大数定律 辛钦(Khinchine)大数定律 棣莫弗一拉普拉斯( De Moivre- Laplace)定理(二项分布以正态分布为极限分布) 列维一林德伯格(Levy-Lindberg)定理(独立同分布随机变量列的中心极限定理) 考试要求 1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)成立的条件及结论. 2.掌握棣莫弗—拉普拉斯中心极限定理、列维—林得伯格中心极限定理的结论和应用条件,并会用相关定理近似计算有关事件的概率. 六、数理统计的基本概念 考试内容 总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 χ2分布 t分布 F分布 分位数 正态总体的常用抽样分布 考试要求 1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.其中样本方差定义为:S2=(此处略) 2.了解产生χ2变量、t变量和F变量的典型模式;理解标准正态分布、χ2分布、t分布和F分布的分位数,会查相应的数值表. 3.掌握正态总体的抽样分布. 七、参数估计 考试内容 点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值的区间估计 单个正态总体方差和标准差的区间估计 两个正态总体的均值差和方差比的区间估计 考试要求 1.理解参数的点估计、估计量与估计值的概念;了解估计量的无偏性、有效性(最小方差性)和相合性(一致性)的概念,并会验证估计量的无偏性;会利用大数定律证明估计量的相合性. 2.掌握矩估计法(一阶、二阶矩)和最大似然估计法. 3.掌握建立未知参数的(双侧和单侧)置信区间的一般方法;掌握正态总体均值、方差、标准差、矩以及与其相联系的数字特征的置信区间的求法. 4 掌握两个正态总体的均值差和方差比及相关数字特征的置信区间的求法. 八、假设检验 考试内容 显著性检验的基本思想和步骤 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验 考试要求 1.理解“假设”的概念和基本类型;理解显著性检验的基本思想,掌握假设检验的基本步骤;会构造简单假设的显著性检验. 2.理解假设检验可能产生的两类错误,对于较简单的情形,会计算两类错误的概率. 3.了解单个和两个正态总体参数的假设检验. 试卷结构 (一)内容比例 微积分 约50% 线性代数 约25% 概率论与数理统计 约 25% (二)题型比例 境空题与选择题约 30% 解答题(包括证明题) 约70% 由于这里回答问题限制字数,所以数学四的考纲无法贴上,请你自己去查找,网上有

从行列式方向写

数学专业毕业论文选题方向

1动态规划及其应用问题。

2计算方法中关于误差的分析。

3微分中值定理的应用。

4模糊聚类分析在学生素质评定中的应用。

5关于古典概型的几点思考。

6浅谈数形结合在数学解题中的应用。

7高校毕业生就业竞争力分析。

8最大模原理及其推广和应用。

9 最大公因式求解算法。

10行列式的计算。

行列式的论文开题报告

范德蒙行列式的国内外正处于研究中。行列式是一个重要的数学工具,它不仅有着悠久的历史,更具有广泛的应用.范德蒙行列式是数学家范德蒙在1772年提出的,作为一种特殊的行列式--范德蒙行列式不仅结构独特、形式优美,而且具有十分广泛的应用.正确的掌握使用范德蒙行列式解题可以达到事半功倍的效果,利用范德蒙行列式解题的本质在于化复杂为简单,化繁琐为简便然而要正确、适当的构造和应用范德蒙行列式去有效解决问题绝非易事.因此,本毕业论文从计算行列式、求解n阶k循环行列式、解决多项式的求根问题、解答向量的线性相关性问题、解答整除问题和解答微积分问题六个方面较为系统的探讨了范德蒙行列式的应用,并对方法和技巧作了一点总结,希望帮助初学者更好的理解和掌握范德蒙行列式及其广泛的应用。

代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有 n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。 九章算术线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。向量概念的引入,形成了向量空间的概念。凡是线性问题都可以用向量空间的观点加以讨论。因此,向量空间及其线性变换,以及与此相联系的矩阵理论,构成了线性代数的中心内容。线性代数的含义随数学的发展而不断扩大。线性代数的理论和方法已经渗透到数学的许多分支,同时也是理论物理和理论化学所不可缺少的代数基础知识。

我也是差不多这个课题啊,我的是 矩阵可对角化的条件及对角化方法,有资料互相参考啊,是写开题报告么 ,从别处拷过来的 矩阵对角化在国内外已有一定的研究。早在十九世纪末,人们在研究行列式的性质和计算时,提出了对角矩阵的概念,由于计算机的发展,更是为矩阵对角化的应用开辟了广阔的前景,它经常出现在诸如可用于求解微分方程组,用于研究数理统计量的分布,还有用于研究集合曲面的标准形等不同的科技领域中,这就使得对角矩阵成为计算数学中应用及其广泛的矩阵。

这种老掉牙的课题写了干什么?前人已经研究的透彻不能再透彻了。既然写文章,搞研究就要真的做了点实质性的东西出来,否则只是浪费时间。

行列式论文文献

范德蒙行列式的国内外正处于研究中。行列式是一个重要的数学工具,它不仅有着悠久的历史,更具有广泛的应用.范德蒙行列式是数学家范德蒙在1772年提出的,作为一种特殊的行列式--范德蒙行列式不仅结构独特、形式优美,而且具有十分广泛的应用.正确的掌握使用范德蒙行列式解题可以达到事半功倍的效果,利用范德蒙行列式解题的本质在于化复杂为简单,化繁琐为简便然而要正确、适当的构造和应用范德蒙行列式去有效解决问题绝非易事.因此,本毕业论文从计算行列式、求解n阶k循环行列式、解决多项式的求根问题、解答向量的线性相关性问题、解答整除问题和解答微积分问题六个方面较为系统的探讨了范德蒙行列式的应用,并对方法和技巧作了一点总结,希望帮助初学者更好的理解和掌握范德蒙行列式及其广泛的应用。

1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。

行列式是个数,可以是任意数;一个行向量和一个列向量的乘积(如果维数合适的话)也是一个数,可以是任意数。两个数相等当然是可以的啊。 如果是矩阵,我觉得应该可以,不过我没证明过。矩阵的分解是一个挺复杂的东西,我到现在还没看到过有人把矩阵分解成两个向量的乘积,一般都是分解成两个矩阵的乘积,两个有特殊形式的矩阵,方便数值计算的。

代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有 n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。 九章算术线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。向量概念的引入,形成了向量空间的概念。凡是线性问题都可以用向量空间的观点加以讨论。因此,向量空间及其线性变换,以及与此相联系的矩阵理论,构成了线性代数的中心内容。线性代数的含义随数学的发展而不断扩大。线性代数的理论和方法已经渗透到数学的许多分支,同时也是理论物理和理论化学所不可缺少的代数基础知识。

行列式的论文文献综述

简介在线性代数,行列式是一个函数,其定义域为的矩阵A,值域为一个标量,写作det(A).在本质上,行列式描述的是在n维空间中,一个线性变换所形成的“平行多面体”的“体积”.行列式无论是在微积分学中(比如说换元积分法中),还是在线性代数中都有重要应用.行列式概念的最初引进是在解线性方程组的过程中.行列式被用来确定线性方程组解的个数,以及形式.随后,行列式在许多领域都逐渐显现出重要的意义和作用.于是有了线性自同态和向量组的行列式的定义.行列式的特性可以被概括为一个n次交替线性形式,这反映了行列式作为一个描述“体积”的函数的本质.若干数字组成的一个类似于矩阵的方阵,与矩阵不同的是,矩阵的表示是用中括号,而行列式则用线段.行列式的值是按下述方式可能求得的所有不同的积的代数和,既是一个实数:求每一个积时依次从每一行取一个元因子,而这每一个元因子又需取自不同的列,作为乘数,积的符号是正是负决定于要使各个乘数的列的指标顺序恢复到自然顺序所需的换位次数是偶数还是奇数.也可以这样解释:行列式是矩阵的所有不同行且不同列的元素之积的代数和,和式中每一项的符号由积的各元素的行指标与列指标的逆序数之和决定:若逆序数之和为偶数,则该项为正;若逆序数之和为奇数,则该项为负.[编辑本段]垂直线记法矩阵A的行列式有时也记作|A|.绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆.不过矩阵范数通常以双垂直线来表示(如:),且可以使用下标.此外,矩阵的绝对值是没有定义的.因此,行列式经常使用垂直线记法(例如:克莱姆法则和子式).例如,一个矩阵:行列式det(A)也写作|A|或明确的写作:即矩阵的方括号以细长的垂直线取代.[编辑本段]定义一个矩阵A的行列式有一个乍看之下很奇怪的定义:其中sgn(σ)是排列σ的符号差.对于比较小的矩阵,比如说二阶和三阶的矩阵,行列式表达如下,有些像是主对角线(左上至右下)元素的乘积减去副对角线(右上至左下)元素的乘积(见图中红线和蓝线).2阶:3阶:.但对于阶数较大的矩阵,行列式有n!项,并不是这样的形式.二维向量组的行列式行列式是向量形成的平行四边形的面积设P是一个二维的有向欧几里得空间,即一个所谓的欧几里得平面.两个向量X和X’的行列式是:经计算可知,行列式表示的是向量X和X’形成的平行四边形的有向面积.并有如下性质:行列式为零当且仅当两个向量共线(线性相关),这时平行四边形退化成一条直线.如果以逆时针方向为正向的话,有向面积的意义是:平行四边形面积为正当且仅当向量X和X’逆时针排列(如图).行列式是一个双线性映射.也就是说,,并且.

我也是差不多这个课题啊,我的是 矩阵可对角化的条件及对角化方法,有资料互相参考啊,是写开题报告么 ,从别处拷过来的 矩阵对角化在国内外已有一定的研究。早在十九世纪末,人们在研究行列式的性质和计算时,提出了对角矩阵的概念,由于计算机的发展,更是为矩阵对角化的应用开辟了广阔的前景,它经常出现在诸如可用于求解微分方程组,用于研究数理统计量的分布,还有用于研究集合曲面的标准形等不同的科技领域中,这就使得对角矩阵成为计算数学中应用及其广泛的矩阵。

4. 行列式的性质:

①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

④行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

5. 注意区分行列式与矩阵

矩阵定义:由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。

矩阵样式:

主要书写区别便是行列式使用竖线,矩阵使用括号(通常使用中括号)。同时行列式一个数,而矩阵是数的集合。

行列式

行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。

行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

数学定义

n阶行列式

是由排成n阶方阵形式的n²个数aij(i,j=1,2,...,n)确定的一个数,其值为n!项之和

式中k1,k2,...,kn是将序列1,2,...,n的元素次序交换k次所得到的一个序列,Σ号表示对k1,k2,...,kn取遍1,2,...,n的一切排列求和,那末数D称为n阶方阵相应的行列式.例如,四阶行列式是4!个形为

的项的和,而其中a13a21a34a42相应于k=3,即该项前端的符号应为

(-1)3.

若n阶方阵A=(aij),则A相应的行列式D记作

D=|A|=detA=det(aij)

若矩阵A相应的行列式D=0,称A为奇异矩阵,否则称为非奇异矩阵.

标号集:序列1,2,...,n中任取k个元素i1,i2,...,ik满足

1≤i1

i1,i2,...,ik构成{1,2,...,n}的一个具有k个元素的子列,{1,2,...,n}的具有k个元素的满足(1)的子列的全体记作C(n,k),显然C(n,k)共有  个子列.因此C(n,k)是一个具有个元素的标号集,C(n,k)的元素记作σ,τ,...,σ∈C(n,k)表示

σ={i1,i2,...,ik}

是{1,2,...,n}的满足(1)的一个子列.若令τ={j1,j2,...,jk}∈C(n,k),则σ=τ表示i1=j1,i2=j2,...,ik=jk。

性质

①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

④行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

什么是行列式

行列式是数学中的一个函数,将一个的矩阵A映射到一个纯量,记作det(A)或 | A | 。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n维度空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。

行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和向量组的行列式的定义。

行列式的特性可以被概括为一个多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数

行列式的竖直线记法

矩阵A的行列式有时也记作|A|。绝对值和范数|矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如:),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵:

行列式det(A)也写作 | A | ,或明确的写作:

即把矩阵的方括号以细长的垂直线取代

行列式的历史

行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德•莱布尼茨各自独立得出,时间大致相同。

行列式的早期研究

关孝和在《解伏题之法》中首次运用行列式的概念。1545年,卡当在著作《大术》中给出了一种解两个一次方程组的方法。他把这种方法称为“母法”。这种方法和后来的克莱姆法则已经很相似了,但卡当并没有给出行列式的概念。

1683年,日本数学家关孝和在其著作《解伏题之法》中首次引进了行列式的概念。书中出现了、乃至的行列式,行列式被用来求解高次方程组。

1693年,德国数学家莱布尼茨开始使用指标数的系统集合来表示有三个未知数的三个一次方程组的系数。他从三个方程的系统中消去了两个未知量后得到一个行列式。这个行列式不等于零,就意味着有一组解同时满足三个方程。[5]由于当时没有矩阵的概念,莱布尼茨将行列式中元素的位置用数对来表示:代表第i行第j列。莱布尼茨对行列式的研究成果中已经包括了行列式行列式的展开和克莱姆法则,但这些结果在当时并不为人所知。

任意阶数的行列式

1730年,苏格兰数学家科林•麦克劳林在他的《论代数》中已经开始阐述行列式的理论,记载了用行列式解二元、三元和四元一次方程的方法,并给出了四元一次方程组的一般解的正确形式,尽管这本书直到麦克劳林逝世两年后(1748年)才得以出版。

1750年,瑞士的加布里尔•克拉默首先在他的《代数曲线分析引论》给出了n元一次方程组求解的法则,用于确定经过五个点的一般二次曲线的系数,但并没有给出证明。[8]其中行列式的计算十分复杂,因为是定义在置换的奇偶性上的。

此后,关于行列式的研究逐渐增多。1764年,法国的艾蒂安•贝祖的论文中关于行列式的计算方法的研究简化了克莱姆法则,给出了用结式来判别线性方程组的方法[10]同是法国人的亚历山德•西奥菲勒•范德蒙德则在1771年的论着中第一个将行列式和解方程理论分离,对行列式单独作出阐述。这是数学家们开始对行列式本身进行研究的开端。

1772年,皮埃尔-西蒙•拉普拉斯在论文《对积分和世界体系的探讨》中推广了范德蒙德著作里面将行列式展开为若干个较小的行列式之和的方法,发展出子式的概念。一年后,约瑟夫•拉格朗日发现了的行列式与空间中体积的联系。他发现:原点和空间中三个点所构成的四面体的体积,是它们的坐标所组成的行列式的六分之一。

行列式在大部分欧洲语言中被称为“determinant”(某些语言中词尾加e或o,或变成s),这个称呼最早是由卡尔•弗里德里希•高斯在他的《算术研究》中引入的。这个称呼的词根有“决定”意思,因为在高斯的使用中,行列式能够决定二次曲线的性质。在同一本着作中,高斯还叙述了一种通过系数之间加减来求解多元一次方程组的方法,也就是现在的高斯消元法。

行列式的现代概念

进入十九世纪后,行列式理论进一步得到发展和完善。奥古斯丁•路易•柯西在1812年首先将“determinant”一词用来表示十八世纪出现的行列式,此前高斯只不过将这个词限定在二次曲线所对应的系数行列式中。柯西也是最早将行列式排成方阵并将其元素用双重下标表示的数学家(垂直线记法是阿瑟•凯莱在1841年率先使用的)柯西还证明了行列式行列式的性质(实际上是矩阵乘法),这个定理曾经在雅克•菲利普•玛利•比内的书中出现过,但没有证明。

十九世纪五十年代,凯莱和詹姆斯•约瑟夫•西尔维斯特将矩阵的概念引入数学研究中[12]。行列式和矩阵之间的密切关系使得矩阵论蓬勃发展的同时也带来了许多关于行列式的新结果,例如阿达马不等式、正交行列式、对称行列式等等。

与此同时,行列式也被应用于各种领域中。高斯在二次曲线和二次型的研究中使用行列式作为二次曲线和二次型划归为标准型时的判别依据。之后,卡尔•魏尔斯特拉斯和西尔维斯特又完善了二次型理论,研究了解析失败 (PNG 转换失败; 请检查是否正确安装了 latex, dvips, gs 和 convert): \lambda 矩阵的行列式以及初等因子。行列式被用于多重函数的积分大约始于十九世纪三十年代。1832年至1833年间卡尔•雅可比发现了一些特殊结果,1839年,欧仁•查尔•卡塔兰发现了所谓的雅可比行列式。1841年,雅可比发表了一篇关于函数行列式的论文,讨论函数的线性相关性与雅可比行列式的关系

现代的行列式概念最早在19世纪末传入中国。1899年,华蘅芳和英国传教士傅兰雅合译了《算式解法》十四卷,其中首次将行列式翻译成“定准数”。1909年顾澄在著作中称之为“定列式”。1935年8月,中国数学会审查各种术语译名,9月教育部公布的《数学名词》中正式将译名定为“行列式”。其后“行列式”作为译名沿用至今。

行列式的直观定义

一个n阶方块矩阵A的行列式可直观地定义如下:

其中,Sn是集合{1,2,...,n}上置换的全体,即集合{1,2,...,n}到自身上的一一映射(双射)的全体;

表示对S全部元素的求和,即对于每个σ∈S,在加法算式中出现一次;对每一个满足1≤i,j≤n的数对(i,j),ai,j是矩阵A的第i行第j列的元素。

σ表示置换σ∈Sn的置换的奇偶性,具体地说,满足1≤iσ(j)的有序数对(i,j)称为σ的一个逆序。

如果σ的逆序共有偶数个,则sgn(σ) = 1,如果共有奇数个,则sgn(σ) = − 1。

举例来说,对于3元置换σ=(2,3,1)(即是说σ(1)=2,σ(2)=3,σ(3)=1而言,由于1在2后,1在3后,所以共有2个逆序(偶数个),因此sgn(σ) = 1,从而3阶行列式中项a1,2a2,3a3,1的符号是正的。但对于三元置换σ=(3,2,1)(即是说σ=3,σ=2,σ=1)而言,可以数出共有3个逆序(奇数个),因此sgn(σ) = − 1,从而3阶行列式中项a1,3a2,2a3,1的符号是负号。

注意到对于任意正整数n,S_n共拥有n个元素,因此上式中共有n个求和项,即这是一个有限多次的求和。

对于简单的2阶和3阶的矩阵,行列式的表达式相对简单,而且恰好是每条主对角线(左上至右下)元素乘积之和减去每条副对角线(右上至左下)元素乘积之和(见图1中红线和蓝线)。

σ表示置换σ∈Sn的置换的奇偶性,具体地说,满足1≤iσ(j)的有序数对(i,j)称为σ的一个逆序。

如果σ的逆序共有偶数个,则sgn(σ) = 1,如果共有奇数个,则sgn(σ) = − 1。

举例来说,对于3元置换σ=(2,3,1)(即是说σ(1)=2,σ(2)=3,σ(3)=1而言,由于1在2后,1在3后,所以共有2个逆序(偶数个),因此sgn(σ) = 1,从而3阶行列式中项a1,2a2,3a3,1的符号是正的。但对于三元置换σ=(3,2,1)(即是说σ=3,σ=2,σ=1)而言,可以数出共有3个逆序(奇数个),因此sgn(σ) = − 1,从而3阶行列式中项a1,3a2,2a3,1的符号是负号。

注意到对于任意正整数n,S_n共拥有n个元素,因此上式中共有n个求和项,即这是一个有限多次的求和。

对于简单的2阶和3阶的矩阵,行列式的表达式相对简单,而且恰好是每条主对角线(左上至右下)元素乘积之和减去每条副对角线(右上至左下)元素乘积之和(见图1中红线和蓝线)。

2阶矩阵的行列式:

3阶矩阵的行列式:

但对于阶数n≥4的方阵A,这样的主对角线和副对角线分别只有n条,由于A的主、副对角线总条数 = 2n < (n − 1)n < n! = Sn的元素个数

因此,行列式的相加项中除了这样的对角线乘积之外,还有其他更多的项。例如4阶行列式中,项a1,2a2,3a3,1a4,4就不是任何对角线的元素乘积。不过,和2、3阶行列式情况相同的是,n阶行列式中的每一项仍然是从矩阵中选取n个元素相乘得到,且保证在每行和每列中都恰好只选取一个元素,而整个行列式恰好将所有这样的选取方法遍历一次。

另外,n×n矩阵的每一行或每一列也可以看成是一个n元向量,这时矩阵的行列式也被称为这n个n元向量组成的向量组的行列式

相关百科

热门百科

首页
发表服务