首页

> 学术期刊知识库

首页 学术期刊知识库 问题

图像检测和分割哪个好发论文

发布时间:

图像检测和分割哪个好发论文

图像分割是指将特定的影像分割成区域内部属性一致而区域间不一致的技术。一般图像分割方法分为基于阈值的方法,基于边缘的方法,基于区域的方法和基于特定理论的方法,基于边缘的方法就是首先进行边缘提取,认为边缘内的区域就是同一属性的,然后进行边缘连接把边缘闭合起来形成区域。因此可以说边缘处理只是图像分割的一种。

哎血泪教训一定要根据课题组现有基础和可以提供的平台决定,比如你师兄师姐在做什么,组里是否有GPU硬件和数据支持等。如果组里有传承是最好不过了,师兄师姐做过或在做的东西你选择的肯定不会错的,毕竟有人带头和指导~ 如果组里这两个方向都有人在做的话,建议和他们当面聊哈哈哈,利弊你自然就知道啦

数据科学专业的表示NLP需要的训练集太大了,也不好找。只能拿预训练模型针对特殊应用做二次开发,而且对硬件要求很高。图像/视频较NLP来说开放的训练集也好找,而且主题也很多,而且你自己编一个好实现又很实际的商用需求就比较好结题。

这个还是比较好区分的。首先说边缘检测,边缘检测是通过图像的梯度变化将图像中梯度变化明显的地方检测出来,针对的是边缘信息。图像分割是将目标分割出来,针对的是目标对象,边缘检测是空间域图像分割的一种方法,属于包含关系

图像的边缘检测与分割的论文

我的也是这个题目 还没开始做呢 主要是对算法的介绍与比较,然后用其中某两种算法进行编程用软件处理出结果 在对结果进行分析 大概流程就是这样

图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!

图像分割技术研究

摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。

关键词:图像分割、阈值、边缘检测、区域分割

中图分类号: 文献标识码: A

1引言

随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。

2图像分割方法

图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。

基于灰度特征的阈值分割方法

阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。

这类方法主要包括以下几种:

(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。

(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。

(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。

边缘检测分割法

基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。

基于区域的分割方法

基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。

区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。

结合特定工具的图像分割技术

20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。

基于数学形态学的分割算法

分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。

基于模糊数学的分割算法

目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。

这类方法主要有广义模糊算子与模糊阈值法两种分割算法。

(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。

(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。

基于遗传算法的分割方法

此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。

基于神经网络分割算法

人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。

图像分割中的其他方法

前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。

(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。

(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的

(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。

(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。

3图像分割性能的评价

图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。

4图像分割技术的发展趋势

随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。

参考文献

[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003

[2] 章毓晋.图像分割[M].北京:科学出版社,2001.

[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.

[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.

点击下页还有更多>>>图像分割技术论文

国内外现状常用的经典边缘检测算法你的改进算法总结附注你的关键代码

发表论文检测哪个好

论文查重软件排行榜以下三个好。

1、知网论文查重软件数据库比较强大,并且可以分类对论文进行检测,有本科论文查重入口,硕博论文查重入口,职称论文查重入口,初稿论文查重入口等。

是目前高校使用最多的软件。对于本科毕业论文检测拥有独特的大学生联合对比数据库。检测结果基本上跟学校一致。

2、万方、维普是这几年兴起的论文查重软件,数据库没有知网齐全。版本也没有知网多,如果学校要求使用这两个查重,大家就可以去选择,如果没有要求选择这两个系统,大家就不要存在侥幸心理。

3、paperfree论文查重软件,是比较长久的论文查重软件,仅次于知网论文查重,在市场上得到了很多学校和毕业生的认可,也是很多学校要求使用的论文查重系统,查重速度快,查重结果准确,费用非常的低。

知网、turnitin查重、PaperPass检测系统、蚂蚁查重网、PaperOK论文检测系统都是不错的论文查重软件

1、知网:知网的查重范围广,查重结果权威。凭借优质的内容资源、领先的技术和专业的服务,中国知网在业界享有极高的声誉,在2007年,中国知网旗下的《中国学术期刊网络出版总库》获首届“中国出版政府奖”,《中国博士学位论文全文数据库》、《中国年鉴网络出版总库》获提名奖。这是中国出版领域的最高奖项。

2、turnitin查重:该检测系统主要针对外文文献进行查重,如果同学们撰写的是外文论文,还是使用turnitin较为合适。通过用户上传文稿与Turnitin海量的云端数据库和网页进行相似性的比对,并注明抄袭来源供评审者参考。

3、PaperPass检测系统是北京智齿数汇科技有限公司旗下产品,网站诞生于2007年,运营多年来,已经发展成为国内可信赖的中文原创性检查和预防剽窃的在线网站。 系统采用自主研发的动态指纹越级扫描检测技术,该项技术检测速度快、精度高,市场反映良好。

4、蚂蚁查重网自提供论文检测服务以来是国内领先自助论文查重网站,直连高校使用的官方论文检测系统入口,即学生自己提交论文,自己下载查重报告,全程均由学生自己完成。可供个人进行本科论文查重检测、学位论文查重检测、硕士论文查重检测、博士论文查重检测和已发表小论文查重检测,检测结果与学校一致。

5、PaperOK论文检测系统:湖南学搜科技有限公司旗下品牌,基于大数据海量学术文献资源及互联网资源,坚持客观、公正、精准、全面的原则,对学术不端行为进行管理,为用户提供客观详实的查重报告,为出版、科研、学术等提供支持。

1、知网论文查重系统:知网查重系统应当是不少人都有所了解的一个查重网站,它具备的优势也十分突出,如数据库庞大、文章、资料更新及时,可以为使用者提供十分可靠的查重结果;知网查重系统还具备了批量上传、下载测试结果等功能,操作起来也十分的方便快捷,便于保障使用者的查重效率,节省查重时间。2、PaperPass检测系统: PaperPass采用 了自主研发的动态指纹越级扫描检测技术,具备查重速度快、精度高的优点,高度的准确率可以为使用者提供精确的查重报告,有利于使用者及时的对论文进行修改、调整。3、万方论文查重系统:万方查重系统采用的检测技术十分先进科学,能够为使用者提供多版本、多维度的论文查重报告;万方查重系统还可同时为科研管理、教育教学、人事管理等多个领域的学术机构提供学术成果相似性检测服务。4、维普论文查重系统:该论文查重系统采用了国际领先的海量论文动态语义跨域识别加指纹比对技术,能够快捷准确的检测论文是否存在抄袭问题;中文期刊论文库、硕博学位论文库、高校特色论文库、互联网数据资源等多个数据库的存在,也使得维普论文查重系统能够高效的比对文本数据。一、论文查重标准是什么?我国大部分高校要求本科论文重复率不高于30%。当然,学历越高,对论文的要求就越严格。对于大学硕士生和博士生教育来说,他们对论文的查重要求一般不高于20%和10%。然而,不同的大学对查重率有不同的要求。例如,一些严格的学校要求本科生的论文不超过20%。除了学生论文外,期刊论文检查权重率的要求也与期刊的等级有关。核心期刊论文查重率要求更高,不能超过15%,高级期刊论文查重率要求小于20%,普通期刊论文查重率小于30%才能发表。二、论文查重到底怎么查的?论文查重是借助论文查重系统进行的,论文作者只需要把论文上传到查重系统,系统会根据论文目录进行分段查重。查重系统会根据连续出现13个字符的重复来计算论文的整体查重率。由于不同系统的数据库包含不同的文献和算法,查重结果会有所不同。在选择论文查重系统是,尽量选择跟大学或者大学要求一致的查重系统,或者企业选择一个安全、可靠、准确的第三方查重系统设计进行管理自查。

知网论文查重软件:知网在资源丰富方面具有突出的优势,其科学算法也使得论文的查重结果具有很高的权威性。万方论文查重软件:维普论文查重拥有优秀的自主研发算法,在数据库上也有突出的优势,比较资源可以用海量来形容。维普论文查重软件:维普论文检测系统是目前国内论文查重平台之一,采用AI智能比对技术,拥有丰富的本地文本资源库,致力于维护学术诚信,杜绝学术不端。paperfree论文查重软件:PaperFree论文查重软件通过海量数据库对提交论文进行对比分析,准确地查到论文中的潜在抄袭和不当引用,实现了对学术不端行为的检测服务。请点击输入图片描述

图像分割论文参考文献

在经济学的论文中引用参考文献,具有重要的标志功能、评价功能、保护功能和链接功能,可以反映经济学论文的研究基础和科学依据,可供进一步检索有关资料,共享资源。下面我将为你推荐经济学论文参考文献的内容,希望能够帮到你!

[1]刘思华.生态马克思主义经济学原理[M].北京:人民出版社.2006

[2]叶耀丹.马克思主义生态自然观对中国生态文明建设的启示[D].成都:成都理工大学.2012

[3]陆畅.我国生态文明建设中的政府职能与责任研究[D].长春:东北师范大学.2012

[4]俞可平.科学发展观与生态文明[M].上海:华东师范大学出版社.2007:18

[5]朴光诛等.环境法与环境执法[M].北京:中国环境科学出版社.2004:23

[6]罗能生.非正式制度与中国经济改革和发展[M].北京:中国财政经济出版社.2002: 19

[7]党国英.制度、环境与人类文明一关于环境文明的观察与思考[N].新京报.2005-2-13

[8]张婷婷.生态文明建设的科技需求及政策研究[D].锦州:渤海大学.2012

[9]秦书生.生态文明视野中的绿色技术[J].科技与经济.2010(3): 82-85

[10]陈池波.论生态经济的持续协调发展[J].长江大学学报(社会科学版)2004(1):97-102

[11]张首先.社会主义与生态文明[J].理论与现代化.2010(1): 23-26

[12]黄光宇.陈勇.生态城市理论与规划设计 方法 [M].北京:科学出版社.2002

[13]张首先.生态文明研究[D].成都:西南交通大学.2010

[14]马仁忠.地理环境对种族、民族特征的影响[J].宿州 教育 学院学报.2002(4):

[15]冒佩华.王宝珠.市场制度与生态逻辑[J].教学与研究.2014(8):37-43.

[1]陈凌.应丽芬.代际传承:家族企业继任管理和创新〔J〕.管理世界.2003 ( 6): 89-9

[2]伯纳德‘萨拉尼着.陈新平、王瑞泽、陈宝明、周宗华译.税收经济学〔M〕.北京:中国人民大学出版社.2009:143-144.

[3]彼德·德鲁克.大变革时代的管理〔M〕.上海:上海译文出版社.1999版.

[4]陈凌.信息特征、交易成本和家族式组织〔J〕.经济研究.1998(7):27-33.

[5]. Toward an Economic Theory of Income Distribution〔 C〕.Cambridge, MA: MITPress, 1974,123:137-139.

[6]. The Wealth of Nations ( 1776 )〔M〕.Chicago: University of Chicago Press,1976(reprint): 391.

[7]沈建法.城市化与人口管理[M].北京:科学出版社.1999

[8]张志强.徐中民.程国栋.生态足迹的概念及计算模型[J].生态经济.2000(10) : 8-10

[9]张恒义.刘卫东.林育欣.等.基于改进生态足迹模型的浙江省域生态足迹分析[J].生态学报.2009(5):2738-2748

[10]贺成龙.吴建华.刘文莉.改进投入产出法在生态足迹中的应用[J].资源科学.2008 (12) : 1933-1939,2008 (2) : 261-266

[11]郭军华.幸学俊.中国城市化与生态足迹的动态计量分析[J].华东交通大学学报.2009 (5) : 131-134.

[1] 刘毅. 现代性语境下的正当性与合法性:一个思想史的考察[D]. 中国政法大学 2007

[2] 刘毅. 树突状细胞在兔动脉粥样硬化模型中作用的研究[D]. 南方医科大学 2009

[3] 刘毅. 硅基微环谐振腔光信号处理与布里渊光纤激光器的理论和实验研究[D]. 天津大学 2014

[4] 刘毅. 未来移动通信系统中的协作传输技术研究[D]. 北京邮电大学 2010

[5] 刘毅. 基于图割的交互式图像分割算法研究[D]. 南京理工大学 2013

[6] 刘毅. 基于iTRAQ技术对HBV相关性肝癌血浆差异蛋白的鉴定及功能学研究[D]. 重庆医科大学 2014

[7] 刘毅. 整体性治理视角下的县级政府社会管理体制创新研究[D]. 华中师范大学 2014

[8] 刘毅. 几类切换模糊系统的镇定控制设计[D]. 东北大学 2009

[9] 刘毅. 区域循环经济发展模式评价及其路径演进研究[D]. 天津大学 2012

[10] 刘毅. β-抑制蛋白2对哮喘小鼠CD4~+T细胞表达和产生IL-17的影响及其机制研究[D]. 中南大学 2011

[11] 刘毅. SIRT3在原发性肝癌中的表达及其抑瘤作用的研究[D]. 中南大学 2012

[12] 刘毅. 南中国海与东南极中晚全新世气候环境变化记录与研究方法探索[D]. 中国科学技术大学 2012

[13] 刘毅. 晚期糖基化终产物对心肌微血管内皮细胞及糖尿病心肌缺血再灌注损伤的影响及机制[D]. 第四军医大学 2012

[14] 刘毅. 华喦花鸟画研究[D]. 南京艺术学院 2012

[15] 刘毅. 三甲基芹菜素阻断多种心脏钾通道与增加迟钠电流的作用研究[D]. 华中科技大学 2012

[16] 刘毅. 面向人群的并行多目标疏散模型研究[D]. 武汉理工大学 2012

[17] 刘毅. 采用外周血进行肿瘤分子诊断的转化医学研究[D]. 中国人民解放军军事医学科学院 2012

猜你喜欢:

1. 会计毕业论文参考文献

2. 人力资源会计论文参考文献

3. 国际贸易论文

4. 经济学论文参考文献

5. 有关经济学论文参考文献

原文链接: 一、写在前面: 网络架构的设计主要是基于 CNN 结构延伸出来的。主要的改进方式有两点:新神经架构的设计(不同深度,宽度,连接性或者拓扑结构)或设计新的组件(或者层)。下面我们逐个去分析了解。 本文涉及到的论文范围如下图: 二、网络架构的改进 FCN 传统的 CNN 分割,为了对一个像素分类,使用该像素周围的一个图像块作为 CNN 的输入用于训练和预测。缺点很多:比如存储开销大,计算效率低,像素块大小也限制了感知域的大小。基于存在的这些问题,由 Long 等人在 2015 年提出的 FCN 结构,第一个全卷积神经网络的语义分割模型。我们要了解到的是,FCN 是基于 VGG 和 AlexNet 网络上进行预训练,然后将最后两层全连接层改为的卷积层。 FCN 具体处理过程是怎么样的?从 pool1 开始,每个 pool 后图像都会变为上个池化后图像的 1/2。Pool1 为原图的 1/2,以此类推,pool5 后为原图的 1/2^5,conv6,和 conv7 之后的图像保持不变,进行 stride=32 的反卷积,得到 FCN-32s。也就是直接对 pool5 进行 32 倍上采样获得 32 upsampled feature,再对 32 upsampled feature 每个点做 softmax prediction,就可以获得 32*upsampled prediction(分割图)。 FCN 这三个创新点有哪些? 全卷积 :用于解决逐像素的预测问题。通过将基础网络最后面几个全连接层换成卷积层,可实现任意大小的图像输入,并且输入图像大小与输入相对应。 反卷积 :端到端的像素级语义分割需要输出大小和输入图像大小一致。但是传统的 conv+pooling 结构会缩小图片尺寸。基于此作者引入反卷积(deconvolution)操作,对缩小后的特征进行上采样,恢复原始图像大小。 跳跃结构 :语义分割包括语义识别和目标定位。卷积网络的高层特征图可以有效的反应语义信息,而低层特征图可以有效反应目标的位置信息。语义分割任务同时进行语义识别和目标定位。作者提出的跨层连接结构(skip architecture),将低层的目标位置信息和高层语义信息进行融合,以此来提升语义分割性能。在此基础上进行 2 倍采样,2 倍 upsample 之后与 pool4 的像素点相加,进行 stride=16 的 upsample,为此 FCN-16s,重复上面类似的步骤,得到 FCN-8s。 了解到以上信息,应该对 FCN 有个整体的认识了。还有一些细节部分,比如 FCN 采用的简单的 softmax 分类损失函数,采用双线性差值 + 反卷积进行上采样,在微调的时候没有采用类别平衡策略。分割结果来看,FCN-8s>FCN-16s>FCN-32s。也就是说使用多层特征融合有利于提高分割准确性。 SegNet SegNet 主要动机是在场景理解 。它在设计的时候考虑的是预测期间保证内存和计算时间上的效率。其中,SegNet 和 FCN 有很多相似之处,编码网络使用 VGG16 的前 13 层卷积;移除全连接;解码器使用从相应的编码器的 max-pooling indices 进行 upsampling。 对比 SegNet 和 FCN 实现 Decoder 的过程。FCN 是利用双线性插值初始化的反卷积进行上采样。而 SegNet 则是在每次 pooling 时,都存下最大值的位置,在 upsample 时将 input 值直接赋给相应的位置,其他位置的值置零。 U-Net 接下来,我们需要了解的是 U-Net。U-net 网络架构,由收缩路径(contracting path)和扩展路径(expanding path)组成。每一层使用两个 3 乘 3 的 conv kernel,每次卷积都进行 Relu 和 stride=2 的 maxpooling 进行下采样。四次操作后输出结果称之为 feature map。 2 乘 2 的反卷积,上采样,通道数减半,并将左边对称位置的 feature map copy 到右边进行 concate 操作,来融合下采样的浅层位置信息和高层语义信息。合并后在进行 3*3 的卷积操作。最后 output 之前,通道数表示分类的类别产生 N 类分割结果,最后选择出概率值最大的分割结果,作为最后的分割图。 U-Net 中常常会问为什么适用于医学图像这个问题.。首先分析医学影像数据特点:图像语义较为简单,结构较为固定:都是一个固定的器官的成像。而且器官本身结构固定,语义信息没有特别丰富,所以高级语义信息和低级特征都非常重要。(U-net 的 skip connection 可以解决这个问题);数据量少:医学影像的数据较难获取,为了防止过拟合,设计的模型不宜过大;多模态:医学影像是具有多种模态的;可解释性:医生需要进一步指导病灶在哪一层,哪一层的哪个位置,分割结果能求体积么?而且 U-Net 在自然图像分割也取得了不错的效果。 需要注意的一点:Unet 融合浅层信息是 maxpooling 之前还是之后的结果?是 maxpooling 之前的结果。因为 Maxpooling 之后会丢失准确的位置信息。 V-Net V-Net 也就是 3D 的 U-net 的一种版本,3D 卷积,引入残差模块和 U-Net 的框架。整个网络分为压缩路径和非压缩路径,也就是缩小和扩大 feature maps,每个 stage 将特征缩小一半,也就是 128-128-64-32-16-8,通道上为 1-16-32-64-128-256。每个 stage 加入残差学习以加速收敛。 图中的圆圈加交叉代表卷积核为 5 乘 5 乘 5,stride 为 1 的卷积,可知 padding 为 2 乘 2 乘 2 就可以保持特征大小不变。每个 stage 的末尾使用卷积核为 2 乘 2 乘 2,stride 为 2 的卷积,特征大小减小一半(把 2x2 max-pooling 替换成了 2x2 conv.)。整个网络都是使用 keiming 等人提出的 PReLU 非线性单元。网络末尾加一个 1 乘 1 乘 1 的卷积,处理成与输入一样大小的数据,然后接一个 softmax。 而且 V-Net 采用 Dice coefficient 损失函数,如下: Pi 为预测的前景,Gi 为标记的前景,使用这个函数能有效避免类别不平衡的问题。 Dense-UNet Dense U-net(原名:one-hundred layers Tiramisu Network)该架构是由密集连接块(dense block)构建的。该架构由向下过度的两个下采样路径和向上过度的两个上采样路径组成。且同样包含两个水平跳跃连接,下采样 Dense 模块的输出与同水平的上采样 Dense 模块输入的相应特征图拼接在一起。上采样路径和下采样路径的连接模式并不完全相同:下采样路径中,每个密集块外有一条跳跃性连接,从而导致 feature map 数量线性增长,上采样中没有此操作。 主要创新点是融合了 Dense-Net 和 U-Net 网络。 DeepLab 系列网络 DeepLabV1:首次把空洞卷积(dilated convolution) 引入图形分割领域, 融合卷积神经网络和概率图模型:CNN + CRF,提高了分割定位精度。 DeepLabV2:ASPP (扩张空间金字塔池化):CNN+CRF。 DeepLabV3:改进 ASPP,多了 1 乘 1 卷积和全局平均池化(global avg pool);对比了级联和并联空洞卷积的效果。 DeepLabV3+:加入编解码架构思想,添加一个解码器模块来扩展 DeepLabv3;将深度可分离卷积应用于 ASPP 和解码器模块;将改进的 Xception 作为 Backbone。 PSPNet PSPNet 全名是 Pyramid Scene Parsing Network(金字塔场景解析网络)。提出了金字塔池化模块(pyramid pooling module)能够聚合不同区域的上下文信息,从而提高获取全局信息的能力。 输入图像后,使用预训练的带空洞卷积 ResNet 提取特征图。最终的特征映射大小是输入图像的 1/8;在特征图上,我们使用 C 中的金字塔池化模块收集上下文信息。使用 4 层金字塔结构,池化内核覆盖了图像的全部、一半和小部分。他们被融合为全局先验信息;在 c 的最后部分将之前的金字塔特征映射与原始特征映射 concate 起来;在进行卷积,生成 d 中的最终预测图。 总结 基于深度学习的图像语义分割模型大多遵循编码器-解码器体系结构,如 U-Net。近几年的研究成果表明,膨胀卷积和特征金字塔池可以改善 U-Net 风格的网络性能。 参考文献: Deep Semantic Segmentation of Natural and Medical Images: A Review

图像分割毕设毕业论文

图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!

图像分割技术研究

摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。

关键词:图像分割、阈值、边缘检测、区域分割

中图分类号: 文献标识码: A

1引言

随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。

2图像分割方法

图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。

基于灰度特征的阈值分割方法

阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。

这类方法主要包括以下几种:

(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。

(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。

(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。

边缘检测分割法

基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。

基于区域的分割方法

基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。

区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。

结合特定工具的图像分割技术

20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。

基于数学形态学的分割算法

分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。

基于模糊数学的分割算法

目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。

这类方法主要有广义模糊算子与模糊阈值法两种分割算法。

(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。

(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。

基于遗传算法的分割方法

此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。

基于神经网络分割算法

人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。

图像分割中的其他方法

前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。

(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。

(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的

(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。

(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。

3图像分割性能的评价

图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。

4图像分割技术的发展趋势

随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。

参考文献

[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003

[2] 章毓晋.图像分割[M].北京:科学出版社,2001.

[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.

[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.

点击下页还有更多>>>图像分割技术论文

论文地址:     V-Net 是另一种版本的3D U-Net。它与U-Net的区别在于: 1、3D图像分割end2ent模型(基于3D卷积),用于MRI前列腺容积医学图像分割。2、新的目标函数,基于Dice coefficient。3、数据扩充方法:random non-linear transformations和histogram matching(直方图匹配)。4、加入残差学习提升收敛。 (1)网络结构     其网络结构主要特点是3D卷积,引入残差模块和U-Net的框架,网络结构如图:          整个网络分为压缩路径和非压缩路径,也就是缩小和扩大feature maps,每个stage将特征缩小一半,也就是128-128-64-32-16-8,通道上为1-16-32-64-128-256。每个stage加入残差学习以加速收敛。    图中的圆圈加交叉代表卷积核为5*5*5,stride为1的卷积,可知padding为2*2*2就可以保持特征大小不变。每个stage的末尾使用卷积核为2*2*2,stride为2的卷积,特征大小减小一半(把2x2 max-pooling替换成了2x2 conv.)。整个网络都是使用keiming等人提出的PReLU非线性单元。网络末尾加一个1*1*1的卷积,处理成与输入一样大小的数据,然后接一个softmax。 (2)损失函数     由于前景比较小,在学习过程中不容易被学习到,因此重新定义了Dice coefficient损失函数。两个二进制的矩阵的dice相似系数为:          使用这个函数能避免类别不平衡。

随着现代化科学技术的快速发展,计算机图形图像处理技术也越来越成熟,为人们的生活、工作和学习提供了极大的便利。然而我们该如何写有关计算机图形图像处理的论文呢?下面是我给大家推荐的计算机图形图像处理相关的论文,希望大家喜欢!

《计算机图形图像处理技术分析》

摘 要:随着现代化科学技术的快速发展,计算机图形图像处理技术也越来越成熟,Photoshop、CAE、CAD等计算机图形图像处理软件被广泛的应用在各个领域,为人们的生活、工作和学习提供了极大的便利。在未来的发展过程中,要不断改进和完善计算机图形图像处理技术,推动计算机图形图像处理技术更加广泛的应用和发展。本文简要介绍了计算机图形图像处理技术,阐述了计算机图形图像处理技术的应用。

关键词:计算机;图形图像;处理技术

中图分类号:

计算机图形图像技术以计算机网络系统为平台,实现了人们主观意识中图像和真实存在的图形之间的相互结合,各种各样的计算机图形图像处理软件,为人们的主观处理和操作提供了很多的便利,随着现代化科学技术的快速发展,计算机图形图像处理技术的应用前景会更加广阔。

1 计算机图形图像处理技术概述

基本含义

计算机图形图像处理技术是指通过几何模型和数据将描述性的形象或者概念在计算机系统软件中进行存储、定稿、优化、修改和显现。计算机图形图像处理技术可以用来设计图形的色彩、做纹理和明暗的贴图处理、对图像进行建模设计和造型、消除图像隐线和隐面、对图形曲线和曲面进行拟合操作、数字化的图像存储、图像分割、分析、编码、增强、复原等操作[1],以及对图像进行形式转换,如投影、缩放、旋转、平移等几何形式。

基本组成

计算机图形图像处理技术的基本组成主要包括计算机硬件设备和计算机图形图像处理软件。计算机硬件设备性能的好坏对于计算机图形图像处理效果有着直接的影响,计算机图形图像处理软件将终端的显示和计算机结合在一起,由于计算机图形图像处理技术自身具有设计、存储、修改等功能,可以迅速整合图片数据,不仅可以保障计算机图形图像的处理效果,也可以有效地提高计算机中央处理器和计算机图形图像处理软件的运行效果。键盘和鼠标作为终端的输入设备,可以完成对图形的修改和定位,并且利用显示器、绘图仪、打印机等显示设备和输出设备,可以完整的保存计算机图片。

基本功能

计算机图形图像处理技术主要具有五个基本功能:对话、输入、输出、存储和计算。对话功能是指利用通讯交互设备和计算机显示器实现人机交流。输入和输出功能是指计算机图形图像处理软件可以随时输入和输出相关的图形图像。存数功能是指实时监控计算机的图形图像数据进行有效的检索和维护。计算功能是指计算机图形图像处理软件对相关的图形图像进行必要的数据交换和计算分析。

计算机图形图像处理技术的运行环境

计算机图形图像处理技术的硬件配置主要包括工作站和微型机,软件配置就是建立在工作站和微型机上的运行软件。计算机图形图像处理技术的工作站软件主要有TDI和Alias两种,工作站的软件主要负责处理计算机工作站中的各种图形图像处理。微型机上的计算机图形图像处理软件主要包括3DStudio、Winimage:morph和Photoshop等,3DStudio是微型机上的一种最主要的图形图像处理软件,被广泛的应用在多个计算机系统中;Winimage:morph是一种常用的二维图形图像处理软件,可以将一个图形或者图像制作成另外一个图形或者图像;Photoshop是一个非常专业的图形图像处理软件,其支持图形图像资料的分色制版,给人们进行图形图像处理带来很多的便利。

2 计算机图形图像处理技术的应用

用户接口

人们利用计算机系统的用户接口来操作多种计算机软件,计算机图形图像处理技术和用户接口的有效结合,借助于计算机操作系统构建友好的人机交互用户图形界面,极大地提高了计算机图形图像处理的简便性和易用性。近年来,微软公司普及和推广的图像化windows系统,充分发挥了计算机图形图像处理技术和用户接口全面融合的重要作用。

动画与艺术

随着计算机科学技术的快速发展,计算机硬件设备和计算机图形学也在蓬勃发展,静态的图形图像已经很难再满足人们对高质量、优质的、动态的图形图像的巨大需求,因此近年来,计算机动画技术蓬勃发展,特别是一些美术设计人员,多是依靠计算机图形图像处理软件来进行艺术创作。计算机图形图像处理技术的快速发展,同时推动了艺术设计技术的应用和开发,例如,3DS Studio Max三维设计软件和Photoshop二维平面设计软件[2]。

可视化科学计算

近年来,我国社会主义市场经济快速发展,各个领域的信息通信越来越频繁,计算机网络技术的广泛应用和普及,使得计算机系统数据库中的信息量日益庞大,计算机数据处理和分析技术面临着严峻的考验。相关的技术操作人员利用计算机数据处理和分析软件,很难准确、快速地从计算机的数据库系统中检索出需要的信息数据,难以总结出数据信息的共性和特征。通过将计算机数据处理技术和计算机图形图像处理技术有效的结合起来,可以通过计算机图形图像技术将大量的复杂结构的信息数据进行归类,操作人员通过计算机数据处理软件可以对有共性特征和本质特征的数据信息进行快速检索,极大地提高了计算机数据处理和分析的效率。可视化的科学计算技术最早出现在美国的科学协会研讨中,目前,可视化的科学计算技术被广泛的应用在气象分析、流体力学、医学等领域中[3],特别是在医学领域,利用可视化的科学计算技术可以实现高精度的远程控制和操作,可以应用在远程的脑部手术中,突破医学难题。在未来的发展过程中,可视化的科学计算技术将会在更多的领域发挥更加重要的作用。

工业制造和设计

目前,计算机图形图像处理技术在工业制造和设计领域应用的最为广泛,特别是二维三维CAD和CAE等计算机图形图像处理软件,不仅在工业生产的产品制造和产品设计过程中,还有土木工程领域,甚至是集成电路、网络分析和电子线路等电子电工领域都有着广泛的应用。在高精度的工业制造和设计领域中,利用计算机图形图像处理软件,可以在很短的时间内完成高精度的图形图像设计和画图,极大地提高了技术人员的工作效率,同时,标准的计算机图形图像处理程序,提高了工业制造和设计的精确度,有效地降低了设计误差。由于工业产品多是批量化的制造和生产,利用计算机图形图像处理技术,可以极大地提高企业批量化的运行效率和生产质量,降低工业产品的质量检测投入成本,为工业企业带来了更大的经济效益。

3 结束语

计算机图形图像处理技术的广泛应用和快速发展,推动了多个领域的技术革新,充分发挥人们的想象和创造力,创造出很多独特新奇的图形图像效果,丰富人们的日常生活,同时也为企业节约了很多的图形图像处理成本,提高了产品竞争力。在未来的发展过程中,计算机图形图像处理技术的应用前景会更加广阔。

参考文献:

[1]韩晓颖.浅谈计算机图形图像处理技术[J].福建电脑,2011(10):83-84.

[2]和晓娟.计算机图形图像处理技术的探讨[J].信息与电脑(理论版),2013(11):164-165.

[3]王应荣,王静漪.计算机图形图像处理技术[J].天津理工学院学报,2012(03):6-10.

作者简介:刘倩(1981-),女,满族,硕士,讲师,研究方向:图形图像处理与多媒体技术。

作者单位:宁夏大学 数学计算机学院,银川 750001

相关百科

热门百科

首页
发表服务