有钱,稳定性理论创始人。1901年当选为俄罗斯科学院院士。生于雅罗斯拉夫。1880年毕业于彼得堡大学物理数学系并留校任教。在切比雪夫院士的影响下,从事力学系统稳定性的研究。在流体稳定性、位势理论、概率论、微分方程与稳定性等方面发表一系列论文。1892年在莫斯科大学通过博士论文《论运动稳定性一般问题》,采用数学分析中有关极限的ε–δ语言严格定义稳定、渐近稳定、不稳定等概念,奠定了稳定性理论的基础。20世纪中叶以来,李雅普诺夫稳定性理论得到很大发展,在线性系统、非线性系统、分布参数系统、随机系统、最优控制领域成为研究系统稳定性的最重要的理论方法。因妻子死于肺结核病而自杀
这两个概念是卡尔曼在20世纪60年代提出的,是现代控制理论中的两个基本概念。
由于能控性只涉及用外部输入来改变系统状态的问题,故只考虑系统的状态方程:
其中, 是 维的状态向量(点), 是 维控制输入向量(点), 和 分别是已知的 和 维实常数矩阵。
定义: 对上述系统的一个状态 ,如果存在一个有限时刻 和时间段 上的控制信号 ,使得在这样一个控制信号(control)作用下,系统状态从 时刻的初始状态 ,转移到 时刻的零状态,即 ,则状态 称为是能控的。若系统的所有状态都是能控的,则称系统是状态完全能控的,简称系统是能控的,有时也记矩阵对 是能控的。
系统的能控性表明:若状态 是能控的,则一定可以通过设计一个适当的控制律(control law),将系统在有限时间内从 转移到零状态。
在实际的控制系统设计中,我们需要控制的往往是输出量,而不是系统的状态。这种情况下,系统状态能控性对实现输出量的控制既不充分也不必要。
输出能控性定义: 对上述系统,若对任意的初始输出 (状态的一个线性组合),存在有限时刻 和在时间段 上定义的控制信号 ,使得在该控制信号作用下,系统的输出从初始输出 转移到任意给定的最终输出 ,则系统称为是 输出完全能控 的,简称输出能控。
在实际控制系统设计中,我们总希望利用描述系统全部动态行为的状态信息来构造反馈控制器,以使得闭环系统具有尽可能满意的性能。但在一个实际的系统中,并不是所有的状态信息都是直接可测量得到的,能够测量的只是系统的输出,因此如何解决这个矛盾?
状态空间模型中的输出方程建立起了系统的状态变量和输出量之间的关系,从而系统的输出信号中或多或少总包含有系统的状态的信息 。那么,是否可以通过观测一段时间内的测量输出信号,或者再结合外加的输入信号(因为输出方程中输出有时也依赖输入信号)来确定出之前某个时刻系统的状态呢?这就是系统状态能否从外部观测或估计的问题,简称系统状态能观性问题。
在讨论能观性条件时,只需要考虑零输入系统:
其中, 是 维的系统状态向量, 是 维的测量输出, 和 分别是已知的 维和 维常数矩阵, 是 时刻的初始状态向量。
之所以只考虑零输入系统,是因为能观性问题考虑的是用外部的已知信号(如输出信号,控制信号)来估计内部的未知状态。由系统运动分析结论可知,从系统状态空间模型可得系统的状态关于时间的响应在给定初始条件 下:
从而,可得系统输出响应:
由于矩阵 均已知, 也已知(控制信号由我们设计),所以上式右端的积分项为已知,将它们移到等式的左边:
上式左边都是已知信号,而右边是带估计的状态 的线性组合。这和上述的零输入系统状态空间模型得到的输出 没有本质区别,即通过左边已知信号来估计右边的未知状态 。因此研究系统的状态估计或观测问题只需考虑零输入状态空间模型即可。
定义: 对上述系统,若以非零初始状态 产生的输出响应恒为零,即对所有的时间 :
则称状态 是不能观的。 若系统中没有不能观的状态(换句话说所有状态都能观),则称系统是完全能观的,简称是能观的, 有时也称矩阵对 是能观的。
系统的输出恒为零表明自治系统在 非零初始状态 的激励下仍然是静止的 ,初始状态对系统输出响应没有任何影响, 即在系统输出中不能反映状态 的任何信息 ,根据定义这样的状态 是不能观的。
在控制工程中,所设计的系统在受到扰动后,尽管系统会偏离原平衡工作点(稳定点),但在扰动消失后,设计者往往希望系统有能力自动回到并保持在原工作点附近,这就是系统稳定的基本含义。
稳定是一个控制系统能正常工作的基本要求,系统只有在稳定的前提下才能进一步探讨其他性能。因此,稳定性问题一直是控制理论中的一个最基本和最重要的问题,控制系统的稳定性分析是系统分析的首要任务。
1892年,俄国数学力学家李雅普诺夫(. Lyapunov)在他的博士论文《运动稳定性的一般问题》中,提出了著名的李雅普诺夫稳定性理论。该理论作为稳定性判别的一般方法,适用于各类动态系统。李雅普诺夫稳定性理论的核心是提出了判别系统稳定性的两种方法,分别被称为李雅普诺夫第一方法和第二方法。
李雅普诺夫第一方法是通过求解系统的动态方程,然后根据解的性质来判断系统的稳定性,其基本思路和分析方法与古典控制理论是一致的。由于需要求出系统动态方程的解后才能判别系统的稳定性,故也称为判别稳定性的李雅普诺夫间接法。
李雅普诺夫第二方法则是一种定性方法,它无需求解复杂的系统微分方程,而是通过 构造一个类似于能量函数的标量李雅普诺夫函数,然后再根据李雅普诺夫函数随时间变化的情况来直接判定系统的稳定性 。因此,它特别适合于那些难以求解的 非线性系统和时变系统 。李雅普诺夫第二方法不仅可以用来分析系统的稳定性,而且还可用于对系统过渡过程特性的评价以及求解参数最优化等问题。李雅普诺夫第二方法最大的优点是它可用于控制系统的设计,从而使得该方法在自动控制的各个分支中都有广泛的应用,是控制理论中最重要的理论和方法之一。
图中小球在没有任何外力作用下,它将保持在B点静止不动(稳态)。若给小球一个外力,使之移动到A点,然后让它做自由运动,则小球做震荡运动由于摩擦力的存在,最后在B点稳定下来并静止。
稳定性指的是系统在平衡状态下收到干扰后,系统自由运动的性质。 上述描述中,小球最终又稳定在了原平衡点,则这样的系统是稳定的。若小球初始静止状态在D点,则当小球受到干扰后,小球不能再回到D点,这样的系统是不稳定的。
在以上小球运动分析中有几个关键的概念。第一个就是 平衡状态 ,图中B点和D点处的状态就是平衡状态,即小球处于静止状态。其次是扰动,小球在受到外部干扰后偏离平衡状态,然后在没有任何外力和扰动作用下做自由运动(自治系统的自由运动)。因此, 小球受到的干扰只是初始干扰,而非持续干扰,这就是李雅普诺夫稳定性所处理干扰的特点,从而诸如持续风力干扰等(持续的输入干扰)就不在李雅普诺夫稳定性分析范围之内。 最后,系统的稳定与否依赖于小球受干扰前所处的平衡位置,如小球在B点是稳定的,在D点是不稳定的。因此,系统的稳定与否和平衡状态相关, 系统稳定性仅仅指的是在某个平衡状态处的稳定性(稳定性都是相对于某个平衡状态而言的)。 但若系统只有唯一的平衡状态,则在该平衡状态处的稳定性就可视为整个系统的稳定性;若具有多个平衡状态的系统,其稳定性必须逐个讨论。
由于稳定性是系统在自由运动下的特性,故只需要考虑自治系统:
对上述系统而言,若存在状态向量 ,使得对所有时间 ,都有
则称 为系统的 平衡状态或平衡点 。事实上,平衡状态指的就是系统的静止状态(稳态)。并不是所有的系统都一定存在平衡状态,有时即使存在也未必是唯一的。
以下总是假定原点 是系统 的平衡状态,即 对所有时间 成立。为了分析系统在原点处的稳定性,需要确定系统状态 偏离原点的距离 。在一般的 维实数空间中,点 到原点的距离定义为:
其中, 称为向量的2范数。
表示以原点为中心,半径为 的球域 。当 很小时,球域 也称为原点的一个邻域。
考虑系统的状态轨迹 , 对所有的时间 成立表明系统的这一状态轨迹在原点的一个小邻域中。对应于图1,相当于小球始终在B点附近。
在图1中,若要使小球运动轨迹不超过A点的高度,则只要初值位置的高度不超过A点高度,就可以保证在以后所有时间内,小球运动时的高度都不会超过A点的高度。对应于定义1,给定A点高度就相当于任意给定 ,存在 的和A点高度相等.
从几何上来看,定义1所定义的系统稳定性意味着:对任意选择的一个球域 ,必存在另一个球域 ,使得对所有的时间 ,始于球域 中(初始状态在球域 内,该球域表示了偏离平衡状态 的界)的状态轨迹总不脱离球域 (注意:球域 是任意的)。
在图1中,随着时间 趋向于无穷,在B点附近出发运动的小球在摩擦力作用下慢慢回到平衡状态B点,因此B点处的平衡状态是在李雅普诺夫意义下渐进稳定的。
图3和图4表明了所考虑的二阶系统在原点处的渐进稳定性。从图中可以清楚地看出,当时间 无限增加时,从球域 出发的状态轨迹不仅不会超出球域 ,而且最终收敛到原点。图3反映了状态轨迹 的 有界性和渐进性; 图4对状态轨迹 随时间变化的状况表示得更为清晰,它反映了初始状态在 内的状态轨迹随时间的推移,从球域 范围内被 压缩 到球域 范围内。
本文讨论的稳定性都是李雅普诺夫意义下的稳定性。在实际应用中,渐进稳定性比稳定性更重要,渐进稳定性表明系统能完全消除扰动的影响。同时需要注意的是, 渐进稳定性只是一个局部的概念,它依赖系统的平衡状态。 所以简单地确定了系统的渐进稳定性并不意味着系统能正常工作,通常有必要确定系统渐进稳定性的最大范围,即确定在多大范围内出发的状态轨迹将渐进趋向于所考虑的平衡状态。
由于从状态空间中任意点出发的状态轨迹都要收敛于原点,因此,大范围渐进稳定的系统在整个状态空间中只能有一个平衡状态,这也是系统大范围渐进稳定的必要条件。
图1中的平衡状态D点就复合定义4的条件,因此是不稳定的。在图5中,状态轨迹离开了球域,这说明平衡状态是不稳定的。然而,这种情况未必意味着状态轨迹一定将趋于无穷远处。比如图1中的D点虽然不稳定,但随着时间的推移最后可能趋向于另一个平衡点B。
在稳定、渐进稳定和大范围渐进稳定这些定义中的 一般总是与 和 有关。但很多时候 却与初始时间 是无关的,此时可进一步称系统为一致稳定、一致渐进稳定和一致大范围渐进稳定。
首先分析图1所示小球运动系统B点的稳定性。在一个初始外力的作用下,小球偏离原先的平衡状态到达A点(外力的作用给了小球能量),然后小球做自由运动(不受任何外力)。根据高中物理知识,小球不断做往复运动,能量(动、势能)不断转换。在这个过程中,系统没有从外部吸收能量(无外界输入),故系统总能量从不会增加(单调递减)。其次,在摩擦力的作用下,将消耗系统一定的能量,意味着系统最大的势能在减小,从而小球运动的最高点的高度不断下降。随着时间推移,系统总能量不断减少,最后系统的动能势能都将为零,小球静止在B点。这就是小球在B平衡点处的稳定性。
上面的例子说明系统的能量与系统稳定性之间的密切关系。那么这种能量与系统稳定性之间的关系能不能推广到更一般的系统呢?经过深入分析,李雅普诺夫给出了肯定的答案。然而,一般的系统未必具有那样物理意义清晰的能量函数。为此,李引入了 虚拟能量函数 的概念,并根据该虚拟能量函数沿系统状态轨迹随时间的变化情况,提出了一般系统基于能量函数的李雅普诺夫稳定性分析方法。
定理1: 考虑非线性系统:
原点是该系统的平衡状态,即 。如果 存在 一个具有连续一阶偏导数的标量函数 ,且满足一下条件: (1) 是正定的(标量函数恒大于0); (2)沿系统任意轨迹, 关于时间 的导数 是负定的; 则系统在原点处的平衡状态是 渐进稳定的 。满足以上条件(1)和(2)的标量函数 称为是系统的一个 李雅普诺夫函数。 进而,若 时,有 (径向无穷大),则在原点处的平衡状态 是大范围渐进稳定的。
(1)定理1给出的系统稳定性条件仅仅是充分的,即如果找到一个李雅普诺夫函数 ,则系统一定是渐进稳定的。但若找不到这样的李雅普诺夫函数,并不能说明系统是不稳定的。 (2)对于非线性系统,通过构造具体的李雅普诺夫函数,可以证明系统在某个稳定域内是渐进稳定的,但这并不意味着稳定域外的运动就是不稳定的。然后,可以证明:对于线性系统,如果存在渐进稳定的平衡点,则它必定是大范围渐进稳定的。 (3)若定理1条件(2)中的 是半负定的,则系统在平衡状态是稳定的。 (4)定理1既适用于线性系统、非线性系统,也适用于定常系统、时变系统。
注意:定理1中关于 必须是负定的条件还是比较苛刻的,因为它要求对所有非零的 , 都小于零。而事实上, 只需要在系统的状态轨迹上 是减少的,即在系统的状态轨迹上 小于零就可以了。
定理2: 考虑非线性系统:
原点是系统的平衡状态。若存在具有连续一阶偏导数的标量函数 ,满足以下条件: (1) 是正定的; (2)沿系统的任意轨迹, 关于时间的导数 是半负定的; (3)在系统的任意轨迹上, 不恒等于零; (4)当 时,有 ,则在原点处的平衡状态 是大范围渐进稳定的。
定理3 :考虑非线性系统:
原点是系统的平衡状态。若存在具有连续一阶偏导数的标量函数 ,满足以下条件: (1) 在原点附件的某一领域内是正定的; (2) 在同样的领域内也是正定的。 则系统在原点处的平衡状态是不稳定的。
显然,当 正定时,表示系统的能量在不断增大(不可能保持在原点的小邻域内),故系统的状态必将发散,远离原点。所以,系统是不稳定的。
李雅普诺夫稳定性方法在控制系统分析和设计中有着广泛的应用。它不仅可以用来判别一个系统(可以是非线性、时变)的稳定性,或者确定系统中某些参数的取值范围,使得系统保持稳定,还可以用于设计使得闭环系统稳定的控制器,即稳定化控制器的设计;线性系统时间常数的估计;确定系统的最优参数等。
考虑线性系统:
其中, 是系统的 维状态向量,系统矩阵中含有可调参数 。一般的,参数 不仅可以影响系统的稳定性,而且还可以影响系统的动态特性。因此,希望选取最优参数 ,使得系统不仅是渐近稳定的,同时还使得系统的性能指标:
最小化,其中 是对称正定加权矩阵,可以根据任务设计。这样一个问题称为参数优化问题,其目的在于保证系统稳定的前提下,使得系统具有较好的过渡特性(动态过程)。性能指标 越小,系统状态衰减到零的速度就越快,调节时间越短,震荡幅度也越小,故动态性能就越好。
我们可以用李雅普诺夫稳定性分析方法有效地解决这个问题,这种方法不仅能保证所求得的参数使系统渐近稳定,而且可以避免求解系统状态的微分方程和性能指标积分。
由于选择的参数 要保证系统是渐近稳定的,则必须对 任意给定的对称正定矩阵 ,李雅普诺夫方程:
存在唯一对称正定矩阵 (该矩阵需要我们去找)。此时, 是系统的一个李雅普诺夫函数,且沿着系统任意轨迹,李雅普诺夫函数的导数 :
两边分别对时间 积分,并利用系统的渐近稳定性:
因此,
由于矩阵 为任意对称正定阵,我们选 ,则可得:
其中矩阵 满足李雅普诺夫方程:
因此,我们得到了系统的性能指标可以通过求解以上一个 静态的李雅普诺夫矩阵方程 来计算,显然这比求解一个微分方程和积分要简单得多。从李雅普诺夫方程可以看出,李雅普诺夫矩阵 依赖参数 。因此,
从而,原来的参数优化问题,转为求解参数 使得 最小。由于 是凸的,我们可以通过求一个无约束的极值问题,得到参数 的解析解,一般情况下参数 的取值与初始状态 有关。
特别地,从LQR的视角我们还可以知道,求得的最优李雅普诺夫矩阵 就是在给定加权矩阵 和初始状态 下系统的 最优值函数 。
俄国数学家和力学家.李雅普诺夫在1892年所创立的用于分析系统稳定性的理论。对于控制系统,稳定性是需要研究的一个基本问题。在研究线性定常系统时,已有许多判据如代数稳定判据、奈奎斯特稳定判据等可用来判定系统的稳定性。李雅普诺夫稳定性理论能同时适用于分析线性系统和非线性系统、定常系统和时变系统的稳定性,是更为一般的稳定性分析方法。李雅普诺夫稳定性理论主要指李雅普诺夫第二方法,又称李雅普诺夫直接法。李雅普诺夫第二方法可用于任意阶的系统,运用这一方法可以不必求解系统状态方程而直接判定稳定性。对非线性系统和时变系统,状态方程的求解常常是很困难的,因此李雅普诺夫第二方法就显示出很大的优越性。与第二方法相对应的是李雅普诺夫第一方法,又称李雅普诺夫间接法,它是通过研究非线性系统的线性化状态方程的特征值的分布来判定系统稳定性的。第一方法的影响远不及第二方法。在现代控制理论中,李雅普诺夫第二方法是研究稳定性的主要方法,既是研究控制系统理论问题的一种基本工具,又是分析具体控制系统稳定性的一种常用方法。李雅普诺夫第二方法的局限性,是运用时需要有相当的经验和技巧,而且所给出的结论只是系统为稳定或不稳定的充分条件;但在用其他方法无效时,这种方法还能解决一些非线性系统的稳定性问题。 发展概况 从19世纪末以来,李雅普诺夫稳定性理论一直指导着关于稳定性的研究和应用。不少学者遵循李雅普诺夫所开辟的研究路线对第二方法作了一些新的发展。一方面,李雅普诺夫第二方法被推广到研究一般系统的稳定性。例如,1957年,В.И.祖博夫将李雅普诺夫方法用于研究度量空间中不变集合的稳定性。随后,.拉萨尔等又对各种形式抽象系统的李雅普诺夫稳定性进行了研究。在这些研究中,系统的描述不限于微分方程或差分方程,运动平衡状态已采用不变集合表示,李雅普诺夫函数是在更一般意义下定义的。1967年,D.布肖对表征在集合与映射水平上的系统建立了李雅普诺夫第二方法。这时,李雅普诺夫函数已不在实数域上取值,而是在有序定义的半格上取值。另一方面,李雅普诺夫第二方法被用于研究大系统或多级系统的稳定性。此时,李雅普诺夫函数被推广为向量形式,称为向量李雅普诺夫函数。用这种方法可建立大系统稳定性的充分条件。 系统的受扰运动和平衡状态 稳定性问题的实质是考察系统由初始状态扰动引起的受扰运动能否趋近或返回到原平衡状态。用x0表示初始状态扰动,则受扰运动就是系统状态方程 凧=f(x,t)在初始时刻 t0时受到状态扰动x(t0)=x0后的解。其中x是n维状态向量,f(x,t)是以x和时间t为自变量的一个n维非线性向量函数。在满足一定条件时,这个状态方程有惟一解。系统的受扰运动是随时间 t而变化的,而其变化又与初始扰动 x0和作用时刻t0有直接的关系,数学上表示为依赖于这些量的一个向量函数,记为φ(t; x0,t0)。在以状态x的分量为坐标轴构成的状态空间中,随着时间t增加,受扰运动φ(t; x0,t0)表现为从 x0点出发的一条轨线。平衡状态是系统处于相对静止时的运动状态,用xe表示,其特点是对时间的导数恒等于零,可由求解函数方程f(xe,t)=0来定出。为便于表示和分析,常把平衡点xe规定为状态空间的原点,这可通过适当的坐标变换来实现。因此李雅普诺夫第二方法可归结为研究受扰运动轨线相对于状态空间原点的稳定性。 李雅普诺夫意义下的稳定性 指对系统平衡状态为稳定或不稳定所规定的标准。主要涉及稳定、渐近稳定、大范围渐近稳定和不稳定。 ①稳定用 S(ε)表示状态空间中以原点为球心以ε为半径的一个球域,S(δ)表示另一个半径为 δ的球域。如果对于任意选定的每一个域S(ε),必然存在相应的一个域S(δ),其中δ<ε,使得在所考虑的整个时间区间内,从域 S(δ)内任一点 x0出发的受扰运动φ(t;x0,t0)的轨线都不越出域S(ε),那么称原点平衡状态 xe=0是李雅普诺夫意义下稳定的。②渐近稳定如果原点平衡状态是李雅普诺夫意义下稳定的,而且在时间t趋于无穷大时受扰运动φ(t;x0,t0)收敛到平衡状态xe=0,则称系统平衡状态是渐近稳定的。从实用观点看,渐近稳定比稳定重要。在应用中,确定渐近稳定性的最大范围是十分必要的,它能决定受扰运动为渐近稳定前提下初始扰动x0的最大允许范围。 ③大范围渐近稳定又称全局渐近稳定,是指当状态空间中的一切非零点取为初始扰动x0时,受扰运动φ(t;x0,t0)都为渐近稳定的一种情况。在控制工程中总是希望系统具有大范围渐近稳定的特性。系统为全局渐近稳定的必要条件是它在状态空间中只有一个平衡状态。 ④不稳定如果存在一个选定的球域S(ε),不管把域S(δ)的半径取得多么小,在S(δ)内总存在至少一个点x0,使由这一状态出发的受扰运动轨线脱离域 S(ε),则称系统原点平衡状态xe=0是不稳定的。
大雅和维普的指标体系比较如下:1、维普:相似比(总相似比、自写率、复写率、引用率),相似片断(包括:期刊库片断、硕博库片断、互联网片断、高校特色片断、自建库片断),字数(包括:总字数、重复字数、总章节数、疑似章节数);2、大雅:相似度(总相似度、过滤参考文献后相似度)、重复字数和过滤参考文献后的重复字数,相似片段分布。而在实际操作中,高校论文管理机构最关注的指标是“去除本人文献检测结果复制比”和“相似片段分布”。
48%。大雅与维普数据库都是以各国往其报刊,全球各国论文集合而成,数据库的数据都一样,所以查重率一样是48%。
写一篇论文需要很长时间和精力,大约需要三四个月。在这个过程中,每个人都需要不断修改论文。一般来说,论文至少需要4稿,有些学生需要7到8稿才能最终确定。虽然最终确定了,但是如果你的重复率没有达到要求,那么你之前的辛苦就白费了,后续还是需要改重。每个人都想一次性通过,所以在选择查重系统时也很重要。论文查重系统哪个最严格?请和paperfree小编一起看看。 一、学校内部查重系统。 学校内部检测系统是目前使用最广泛的论文检测平台,该检测系统的查重也非常严格,数据库比其他检测系统稍完善,如果你的论文能通过该系统的检测,一般没有问题。 二、万方、维普查重系统。 这两个检测系统的检测会比较宽松,但是检测的价格也比较高,小编个人认为价格会比较贵。其实这也要看个人习惯。如果你喜欢使用这个软件,你也可以使用这两个软件,它的查重准确率相对可以。 三、Paperfree查重系统。 在这里,小编较建议大家使用Paperfree这个软件来查重,它提供的各种功能都很齐全,而且还有一个优点就是它的价格会比其他查重系统便宜很多,它的性价比也很高。
哥告诉你,CNKI!
论文查重系统严不严首先看比对数据库,比对数据库大,数据范围广泛的查重系统一般都比较严格,然后就是看查重系统的算法了,能不能把论文中的重复内容都查出来,一般严格的查重系统查出来的论文重复率都比较高。如果普通的论文查重系统查出来的重复率也很高,不一定就是严格,可能是他的算法不行,把一些原创内容也算成重复了。所以,我们在选择论文查重系统时,要尽量选择主流的,比如中国知网、维普、万方这些,相对要严格一些,其中最严的是知网。1、知网查重系统:知网论文查重系统应该是同学们最熟悉的一个查重系统了,毕竟是国内三大主流查重系统之一,并且还是最权威的那一个。知网的查重数据库也是最大的,收录了很多各种类型的文献资料,查重系统的算法也是目前最先进的,海量并且全面,而且检测论文的方法也是最为先进最为严格的,当前百分之九十五以上的高等院校使用的就是知网查重系统。2、万方维普查重系统:这两个论文查重系统就是除知网外国内三大主流论文查重系统中的最后两个,其查重严格程度相对于知网检测而言是比较松的,并且价格也比知网查重低很多,它们收录的数据库也没有知网那么广泛,但是查重结果质量也是非常高的,在国内的覆盖范围也很广泛。因此以国内最有代表性的三大主流论文查重系统来比较的话,从各种方面综合考虑,最后的出结论还是知网论文查重系统最为严格。因此大家遇到学校是要求论文需要通过论文查重的话,一定要认真撰写自己的论文,提高原创程度。
知网论文查重是否最严格?知网查重平台,每年要查几十万甚至上百万份的论文,其中包括期刊论文、毕业生论文、本科论文和硕博论文等等论文,这些论文虽然字数不一样,文体结构也不一样,研究的课题也不一样,但是知网查重平台这个非常专业的查重渠道可以查到各种不同类型论文的重复率,然后通过标注的形式把这个重复率标注出来,方便写论文的人对照查重报告进行修改。由于知网论文查重软件的查重率非常准确,因此知网的检测比一般的论文查重软件都要严格,其查重率能够精确到5%左右。对于很多毕业生选择的论文,一般都有论文查重的要求,有些要求高的,大概是10%,有些不高的,大概是30%,一般的,大概在15%这个样子就合格了。虽然知网查重只是起到重复率的检测作用,不能直接给论文做降重处理,但是,知网上查的重复率是可以拿来作为修改依据的,那个检测报告中的标红部分就是需要修改的部分,如果这部分不降下来,那修改就等同于白修改了,没有任何实质性的意义。知网查重平台的重复率因为精确度高,所以它发布的报告是非常权威的,即使有些高校有自己的查重软件标准,知网上的查重标准也和学校查重软件差不多,不会相差太多,所以毕业生用知网查重的效果,和学校的查重软件是类似的。
没有知网查重严格。对于这两者之间是没有可比性,因为数据库和基本思路不同,自然得出的检测报告结果就不同。要想顺利通过学校的检测,那么就需要提前了解学校使用什么样的检测系统。
目前大部分高校采用的是知网查重系统,也有的用万方和维普的。不同的学校要求标准不同。对于不同的论文检测系统使用方式也不同。如果学生需要在学校外进行查重,一般就需要付一定的检测费用。知网高校查重系统也区分了很多种,根据论文类型的不同,分为本科论文查重系统,硕博论文查重系统,还有大分解查重和小分解查重。
论文查重的基本规则:
1、把多篇不同的论文拆散然后再进行组合,或者是自己的一篇论文投过很多次稿,一般都是会被检测出来重复的,会被视为抄袭,当然仅仅只是少量的文字和句子有摘抄的话,影响不会很大。
2、摘抄大段和逐字逐句的摘抄,或者是将其他文章中的章节仅仅只改变几个字或者词就放入自己的论文之中,通常也是会检测出来重复,视为抄袭。
3、想将其他论文文献中的资料引用到自己论文中,但是引用格式没标注正确的话,也有可能是会被检测重复视为抄袭的。
4、对于一些图片和表格的复制,虽然大部分查重系统不会进行检测,但是知网论文查重系统最新的VIP论文查重系统是可以检测出来的。
根本没有谁严格谁不严格的说法,只是各个系统的对比资源不一样,你要是抄书,大雅查重很厉害,你要抄论文,那知网厉害,你要是又抄书又抄论文,大雅这两个资源都有,知网只有论文
首先明确大雅或维普哪个是学校定稿检测,其次选择paper系列免费查重作初稿,大雅和维普的数据库和算法都是有区别的,无法确定之间查重结果相差多少,定稿在用学校查重系统。
大雅和维普的指标体系比较如下:
维普相似比(总相似比、自写率、复写率、引用率),相似片断(包括:期刊库片断、硕博库片断、互联网片断、高校特色片断、自建库片断),字数(包鉴于学校用大雅和维普查重论文,是不是有很不狠,大雅查的不严格。维普查关键词,改起来麻烦。
论文的重复率标准都是有不同的,如果是大学毕业论文的话,那么学习各门课程都需要达到学校所要求的查重率标准才可以顺利毕业,通常重复率要求在20%左右,如果学校要求比较严格的话,或者需要申请硕士学位的,那么论文字数至少要写上万字才可以。
当然如果是要求学生参加省级或者是国家级的项目,也需要去提交认可的论文的稿件。一些学校还需要学生提交10份专利文章,并且还要求提交到统一验收的地方,这样才具备专利资质。
大雅查重真的仅供参考,前期修改的时候用一下是可以的,但真的不怎么准,毕竟不花钱;中期建议用papertest,这个便宜,还有修改建议;后期就用paperpass吧,这个其实比知网还严格,因为我周围同学查出来都是这样,所以花十几块钱好好改几回,查重就基本没问题了呐~本人最近的经验之谈,我最后外审前paperpass大约25%,但大雅只有。。。。so,明白了吧~比复制粘贴的好吧~希望帮到你
大雅查重14%,学校知网查重 59%,说一下为什么会相差这么大,因为后两个查询匹配不怎么准确而且会将论文的内容和网络上的博客、CSDN、互联网中查询
大雅查重是32%,知网才10%,所以两者相差22%。查重,全称为论文查重,是把自己写好的论文通过论文检测系统资源库的比对,得出与各大论文库的相似比。论文,古典文学中意为交谈辞章或交流思想,现多指进行各个学术领域的研究和描述学术研究成果的文章。论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。
根据实际经验在百分之十一。 一般大雅的查重率会比知网高出20%左右。
如果重复率小于等于30%,说明论文合格,可以申请论文答辩;查重率小于等于15%的,可以申请大学水平的优秀毕业论文评价。
如果复读率小于等于10%,可以申请大学水平的优秀毕业论文评价。重复率在30%-50%之间,说明查重率不合格,学校会给你一周的修改和降重时间。
如果修改后重复率为30%,可以申请答辩。失败的,取消答辩资格;重复率超过50%的,评定为严重学术不端,取消答辩资格。
毕业论文的写作注意:
首先是选题,通常是老师给出一些建议,学生根据自己的需要选择,然后按照任务书的流程写;确定选题后,要收集整理参考文献。
主要文献搜索网站包括维普、万方、大雅等论文服务系统,根据时间、作者、选题进行筛选,然后大致阅读整理,从而确定自己的研究重点。
其次是开题答辩,包括选题背景和意义、文献综述、研究内容、研究方法、研究步骤和进度、参考文献等。通过答辩,正式写文章,然后修改降重。
社会上95%以上的查重用户会选择高校pmlc论文查重系统进行论文检测。高校pmlc论文查重以大学生论文联合对比数据库为论文数据对比数据库,包含大量本科论文。论文查重效果准确,非常适合作为论文定稿查重系统。