首页

> 学术期刊知识库

首页 学术期刊知识库 问题

数据研究论文

发布时间:

数据研究论文

时间序列数据挖掘研究论文提纲 论文摘要: 随着计算机与信息技术的普及和大容量存储技术的发展,人们在日常事务处理和科学研究中逐渐积累了大量宝贵数据,这些数据背后蕴藏着对决策有重要参(略).如何从这些历史数据中提取需要的信息正成为数据挖掘领域(略)在现实生活中,时间是数据本身固有的因素,在数据中常常会发现时序语义问题.时序数据的出现使得有必要在数据挖掘中考虑时间因素.时序数据在现实生活中广泛存在,如金融市场、工业过程、科学试验、医疗、气象、水文、生物信(略)储规模呈现爆炸式增长.因此对时间序列数据挖掘问题进行深入研究是非常必要和富有挑战性的. 从20世纪末开始,复杂网络的研究已经渗透到生命科学、数理学科和工程学科、社会科学等众多不同的领域.对复杂网络的研究,已成为科(略)个极其重要的富有挑战性的课题.其研究热点之一是寻找复杂网络中的社团结构,事实上这个过程就是一个聚类的过程,所以研究复杂网络社团划分新算法,对于时间(略)重要意义. 本文结合时间序列数据挖掘和复杂网络理论,开展了如下的研究工作: 综述了时间序列数据挖掘和时间序列模式挖掘的研究现状,指出了研究的现实意义.介绍并分析了最具代表性的... With the popularity of computer and information technology,and the great(omitted)nt of storage technique of high capacity,,a great amount of data is accumulated in daily work and in s(omitted) potentially useful knowledge is hided behind how to manage and use(omitted)e series data efficiently and extract useful information is an important problem in dat(omitted)ime is the inherent attribute of data,so we should take time into account when mining association serie... 目录:摘要 第4-5页 Abstract 第5页 1 绪论 第8-16页 ·选题背景 第8-9页 ·国内外研究现状 第9-14页 ·数据挖掘研究现状 第9-11页 ·时间序列数据挖掘的研究现状 第11-12页 ·序列模式挖掘研究现状 第12页 ·频繁趋势挖掘的研究与发展 第12-13页 ·聚类问题的研究现状 第13-14页 ·本文主要研究内容 第14-16页 2 研究背景 第16-24页 ·数据挖掘与知识发现 第16页 ·数据挖掘的起源 第16-17页 ·引发数据挖掘的挑战 第16-17页 ·相关领域对数据挖掘的`推动 第17页 ·数据挖掘的过程 第17-18页 ·数据挖掘的分类 第18-20页 ·数据挖掘的方法 第20-22页 ·数据挖掘系统 第22页 ·数据挖掘软件的评价 第22-24页 3 时间序列数据挖掘 第24-36页 ·时间序列 第24-25页 ·时间序列概念 第24页 ·时间序列分类 第24-25页 ·时间序列数据挖掘研究 第25-28页 ·序列模式挖掘 第28-34页 ·问题描述 第28页 ·序列模式挖掘 第28-29页 ·序列模式挖掘算法分析与比较 第29-34页 ·时间序列聚类分析 第34-36页 ·复杂网络社团划分方法 第34页 ·时间序列聚类与复杂网络社团结构划分 第34-36页 4 模糊频繁模式挖掘研究 第36-44页 ·趋势分析 第36页

数据通信作为当今最具潜力的电信新业务,在近几年得到了快速的发展,呈现了旺盛的生命力和巨大的市场潜力。下面是我为大家整理的数据通信 毕业 论文 范文 ,供大家参考。

《 网络数据通信隐蔽通道技术研究 》

摘要:随着科学技术的不断发展, 网络技术 也发生了日新月异的变化。 文章 通过对网络数据通信中的隐蔽通道技术的介绍,进一步就网络通信中隐蔽通道存在的技术基础和实现原理进行了探讨,并对网络通信隐蔽通道技术进行了深入的研究与分析。与此同时对隐蔽通道的检测技术进行了讨论,提出了一系列针对网络安全的防范 措施 。

关键词:网络数据通信;隐蔽通道;隐写术;网络通信协议

根据现代信息理论的分析,层与层之间的通信在多层结构系统中是必须存在的,在此过程中需要安全机制来确保通信的正确性和完整性。在经授权的多层系统的各层之间通信信道上可以建立可能的隐蔽通信信道。在远古时代的简单军事情报传输系统中就已经出现了最原始的多层结构通信系统,而现代的计算机网络也只是一个多层结构通信系统,因此,隐蔽通道会在一定程度上威胁计算机网络系统的安全。

1隐蔽通道的概述

简单来说,隐蔽通道属于通信信道,将一些不安全信息通过通信信道传输隐蔽信息,而且不容易被管理者所察觉。换句话就是借助某个通信通道来完成对另一通信通道进行掩护的目的。一旦建立隐蔽通道以后,都希望通道能够长时间有效运行,由此可见,通道技术的关键是通道隐蔽措施的质量高低。如今,多媒体和Internet技术在各行各业得到了广泛的应用,从而导致隐蔽通道对网络安全造成了较大的威胁,只要与外界保持联系,就不能从根本上清除隐蔽通道所造成的威胁。隐蔽通道按照存在环境的不同可以划分为网络隐蔽通道和主机隐蔽通道两大类。主机隐蔽通道一般是不同进程主机之间所进行的信息秘密传输,而网络隐蔽通道一般是不同主机在网络中完成信息的秘密传输。通常情况下,隐蔽通道通信工具能够在数据报文内嵌入有效的信息,然后借助载体进行传输,传输过程通过网络正常运行,不会被系统管理者发现,从而实现有效数据的秘密传输。攻击者与其控制的主机进行信息传输的主要方式就是建立网络隐蔽通道。利用隐蔽通道,通过网络攻击者将被控主机中的有效数据信息传输到另一台主机上,从而实现情报的获取。与此同时,攻击者还可以将控制命令通过隐蔽通道传输到被控主机上,使被控主机能够长期被攻击者控制。因此,对隐蔽通道的基本原理和相关技术进行研究,同时采取措施对网络隐蔽通道的检测技术进行不断的改进和完善,从而能够及时、准确地发现被控主机,并将其与外界的联系及时切断,对网络安全的提升和网络中安全隐患的消除有十分重要的意义。

2网络数据中隐蔽通道的工作原理及类型

与传统网络通信相比发现,借助隐蔽通道进行通信只是对交换数据过程中所产生的使用机制进行改变。而隐蔽通道将数据从客户端传向服务器的过程中,双方会借助已经协定好的秘密机制将传输的数据嵌入载体中,与正常通信流量没有太大区别,实现了通信的隐藏,接收到传输的数据之后对相应的数据进行提取,再从伪装后的数据中分离出秘密数据。

基于“隧道”的隐蔽通道

基于“隧道”技术的隐蔽通道是目前最为常见的隐蔽通道,也就是我们通常所说的协议隧道。理论上来说,隧道技术需要在一种协议上辅以另外一种协议,而且任何一个通信协议都可以传输其他的协议。例如SSH协议可以用来传输TCP协议,首先将服务信息写入SSH信息内,由于SSH通道已经被加密和认证,信息便可以通过SSH通道进行传输。攻击者为了防止系统管理员发现,通常采用各种协议来建立隐蔽通道。

直接隧道

通信双方直接建立的协议隧道被称为直接隧道,以ICMP协议建立隐蔽隧道为例进行详细的说明。在网络通信过程中ICMP报文是比较常用的报文形式,测试网络连通性的工具常用PING,其一般是需要发送ICMP请求报文,并接收ICMP应答报文,从而对主机是否可达进行判断。PING作为诊断工具被广泛应用于网络中。所以,通常情况下人们会选择通过ICMP回显应答报文和ICMP回显请求报文来构建隐蔽通道。通常情况下,发送端能够对ICMP报文中的序列号字段和标识符进行任意的选择,应答中这些值也应该会回显,从而使得应答端能够将请求和应答报文准确地匹配在一起,另外,还应该回显客户发送的选项数据。根据相关规范我们能够借助ICMP包中的序列号、标识符和选项数据等来秘密携带数据信息。通常情况下,对于ICMP报文来说,入侵检测或防火墙等网络设备只能够完成首步的检查,因此,使用ICMP进行隐蔽通道的建立时通常选择将需要传输的数据放到选项数据中。除此之外,还有使用IGMP,HTTP,DNS等协议来进行隐蔽通道的建立,且 方法 与ICMP类似,这类隐蔽通道具有准实时的特点,可以使客户机与服务器直接通信。

间接隧道

通信双方借助第三方中转所构建起来的协议隧道被称之为间接隧道,下面将会以SMTP协议所构建的隐蔽通道为例来对其进行分析。对于SMTP协议来说,一般要求发送者将信件上传到Mail服务器上,然后接受者才能够从服务器中获取自己所需要的信件。这样一来攻击者就会想办法将目标系统上所进行的命令写到信件中,通过Mail服务器,目标系统接收将要执行的文件,并将最终的执行结果传输到信箱中,此时攻击者可以借助收信这个环节来得到自己所需要的信息,这样就形成了隐蔽通道。在这种隐蔽通道中,目标系统和攻击者一般是借助第三方中转来紧密地衔接在一起,该间接通信在一定程度上提高了信道的时延,与直接隧道相比不再具有实时性。但由于系统目标和攻击者是通过第三方建立的联系,使得目标系统对攻击者没有任何直接的联系,不再需要知道攻击者,攻击者更具安全性。除此之外,使用FTP,LDAP,AD等协议建立隐蔽通道与SMTPA协议的做法类似,根据目标系统的基本要求和特征可以对其进行灵活的选用。

使用报文伪装技术构建隐蔽通道

通过“隧道”构建隐蔽通道具有高效的特征,但要想保证其安全性在实际过程中得到广泛的应用就需要对相关数据进行加密处理。此外,还有一种隐蔽通道的方法是使用报文伪装技术,就是将一些数据插入到协议报文的无用段内。例如可以借助TCP和IP中所含有的包头段内空间进行隐蔽通道的构建。下面以IPIdentification携带数据为例对其中所构建的隐蔽通道进行介绍,其一般需要将数据的编码放入客户IP包的Identification内,再从服务器中将数据编码取出就可以了。与之类似的做法是可以将数据放入Options、Padding等字段中。由此可见,使用报文伪装技术建立隐蔽通道虽然损失了效率,但安全性却更高了。

使用数字水印技术来构建隐蔽通道

数字水印技术对被保护的版权信息的隐藏有非常大的帮助。近年来,随着科学技术的不断进步,国内外大部分研究人员对数字水印技术进行了大量的研究,并提出了大量的解决方案。通常情况下,可以将数字水印技术划分为基于变换域的水印方案和基于时空域的水印方案两类。然而借助数字水印技术建立隐蔽通道就是将需要传送的秘密信息代替版权信息嵌入到数字水印中。在实际的操作过程中信息的载体一般为文本、静态图像、视频流、音频流等,因此,这种隐蔽通道具有很强的隐蔽性和稳健性。

基于阈下通道建立隐蔽通道

SimmonsGJ于1978年提出了阈下通道的概念,具体定位为:定义1,在认证系统、密码系统、数字签名方案等密协议中构建了阈下信道,其一般是用来传输隐藏的接收者和发送者之间的秘密信息,而且所传输的秘密信息不会被信道管理者所发现;定义2,公开的信息被当做载体,通过载体将秘密信息传输到接收者手中,即为阈下信道。就目前而言,阈下通道通常情况下是在数字签名方案中建立的。以美国数字签名标准DSA和ELGamal签名方案为例对阈下信道的建立进行简单的阐述,美国数字签名标准DSA和ELGamal签名方案都是由三元组(H(_):r,s)组成的。首先可以对要进行传输或签名的信息 进 行相关预处理,即所谓的压缩操作或编码操作,从而提供更加便捷的使用信道。但是如果消息_较大时,函数h=H(_)能够对_信息进行摘要操作。假设h,r,s的长度均为L,其比特消息签名的实际长度为2L+[log2_]。其中大约有2-L的长度可能会被伪造、篡改或被其他信息所代替。即在2L的附件信息中既存在签名,又有一部分被当作了阈下信道使用。通过这种方式,发送者将要传输的秘密信息隐藏到签名中,并通过事先约定好的协议,接收方可以将阈下信息恢复出来,从而获得了需要的秘密信息。双方通过交换完全无害的签名信息将秘密信息进行传送,有效地避开了通信监听者的监视。

3检测技术介绍

基于特征匹配的检测技术

特征匹配检测技术是借助数据库中特征信息来实现与网络数据流的有效匹配,如果成功匹配就会发出警告。实际上,基于特征匹配的检测的所有操作是在应用层中进行的,这种检测技术攻击已知的隐蔽通道是非常有效的,但误报率较高,且无法检测加密数据,对于攻击模式的归纳和新型隐蔽通道的识别方面不能发挥作用。

基于协议异常分析的检测技术

该技术需要对网络数据流中的信息进行协议分析,一旦发现有违背协议规则的现象存在,就会有报警产生。通过对其中异常协议进行分析可以准确查找出偏离期望值或标准值的行为,因此,在对未知和已知攻击行为进行检测方面发挥着非常重要的作用。

基于行为异常分析的检测技术

该技术是针对流量模型构建的,在监控网络数据流的过程中能够对其流量进行实时监测,一旦与模型的阈值出现差别,将会发出报警。基于行为异常分析的检测技术不仅可以对事件发生的前后顺序进行确认,而且还能够对单次攻击事件进行分析。这种检测技术主要难点在于准确模拟实际网络流量模型的建立上,建立此种模型需要涉及人工智能方面的内容,需要具备相关理论基础,同时还需要花费大量的时间和精力做研究。虽然就目前而言,准确模拟实际网络流量模型的建立还有很大的难度,技术还有待进一步提高和完善,但随着检测技术的不断发展,人们对于此类检测技术的关注度越来越高,相信终有一天模型的建立可以实现。

4结语

隐蔽通道工具不是真正的攻击程序,而是长期控制的工具,如果对隐蔽通道的技术特点不了解,初期攻击检测又失败的状况下,将很难发现这些隐蔽通道。要想防范隐蔽通道,要从提高操作人员的综合素质着手,按照网络安全 规章制度 进行操作,并安装有效的信息安全设备。

参考文献:

[1]李凤华,谈苗苗,樊凯,等.抗隐蔽通道的网络隔离通信方案[J].通信学报,2014,35(11):96-106.

[2]张然,尹毅峰,黄新彭等.网络隐蔽通道的研究与实现[J].信息网络安全,2013(7):44-46.

[3]陶松.浅析网络隐蔽信道的原理与阻断技术[J].电脑知识与技术,2014(22):5198-5200,5203.

《 数据通信及应用前景 》

摘要:数据通信是一种新的通信方式,它是通信技术和计算机技术相结合的产物。数据通信主要分为有线数据通信和无线数据通信,他们主要是通过传输信道来输送数据,达到数据终端与计算机像话连接。数据通信技术的应用对社会的发展产生了巨大的影响,在很大程度上具有很好的发展前景。

关键词:数据通信;应用前景;分类;探究

一、数据通信的基本概况

(一)数据通信的基本概念。数据通信是计算机和通信相结合的产物,是一种通过传输数据为业务的通信系统,是一种新的通信方式和通讯业务。数据主要是把某种意义的数字、字母、符号进行组合,利用数据传输技术进行数据信息的传送,实现两个终端之间数据传输。数据通信可以实现计算机和终端、终端和终端以及计算机和计算机之间进行数据传递。

(二)数据通信的构成原理。数据通信主要是通过数据终端进行传输,数据终端主要包括分组型数据终端和非分组型数据终端。分组型数据终端包括各种专用终端,即:计算机、用户分组拆装设备、分组交换机、专用电话交换机、局域网设备等等。非分组型数据终端主要包括用户电报终端、个人计算机终端等等。在数据通信中数据电路主要是由数据电路终端设备和数据信道组成,主要进行信号与信号之间的转换。在计算机系统中主要是通过控制器和数据终端进行连接,其中中央处理器主要用来处理通过数据终端输入的数据[1]。

二、数据通信的分类

(一)有线数据通信。有线数据通信主要包括:数字数据网(DDN),分组交换网(PSPDN),帧中继网三种。数字数据网可以说是数字数据传输网,主要是利用卫星、数字微波等的数字通道和数字交叉复用。分组交换网又称为网,它主要是采用转发方式进行,通过将用户输送的报文分成一定的数据段,在数据段上形成控制信息,构成具有网络链接地址的群组,并在网上传播输送。帧中继网络的主要组成设备是公共帧中继服务网、帧中继交换设备和存储设备[2]。

(二)无线数据通信。无线数据通信是在有线数据的基础上不断发展起来的,通常称之为移动数据通信。有线数据主要是连接固定终端和计算机之间进行通信,依靠有线传输进行。然而,无线数据通信主要是依靠无线电波来传送数据信息,在很大程度上可以实现移动状态下的通信。可以说,无线数据通信就是计算机与计算机之间相互通信、计算机与个人之间也实现无线通信。这主要是通过与有线数据相互联系,把有线的数据扩展到移动和便携的互联网用户上。

三、数据通信的应用前景

(一)有线数据通信的应用。有线数据通信的数字数据电路的应用范围主要是通过高速数据传输、无线寻呼系统、不同种专用网形成数据信道;建立不同类型的网络连接;组件公用的数据通信网等。数据通信的分组交换网应用主要输入信息通信平台的交换,开发一些增值数据的业务。

(二)无线数据通信的应用。无线数据通信具有很广的业务范围,在应用前景上也比较广泛,通常称之为移动数据通信。无线数据通信在业务上主要为专用数据和基本数据,其中专用数据业务的应用主要是各种机动车辆的卫星定位、个人无线数据通信、远程数据接入等。当然,无线数据通信在各个领域都具有较强的利用性,在不同领域的应用,移动数据通信又分为三种类型,即:个人应用、固定和移动式的应用。其中固定式的应用主要是通过无线信道接入公用网络实现固定式的应用网络;移动式的应用网络主要是用在移动状态下进行,这种连接主要依靠移动数据终端进行,实现在野外施工、交通部门的运输、快递信息的传递,通过无线数据实现数据传入、快速联络、收集数据等等。

四、小结

随着网络技术的不断发展,数据通信将得到越来越广泛的应用,数据通信网络不断由分散性的数据信息传输不断向综合性的数据网络方向发展,通过传输数据、图像、语言、视频等等实现在各个领域的综合应用。无论是在工业、农业、以及服务业方面都发挥着重要的作用,展示出广阔的应用前景来。因此,当今时代学习、了解并掌握先进技术对于社会和个人的发展尤为重要。

参考文献

[1]李亚军.浅谈数据通信及其应用前景[J].中小 企业管理 与科技(上半月),2008(04).

[2]朱江山.李鸿杰.刘冰.浅谈数据通信及其应用前景[J].黑龙江科技信息,2007(01).

《 数据通信与计算机网络发展思考 》

摘要:近年来,网络及通信技术呈现了突飞猛进的发展势态。这一势态给人们生活及工作带来了极大的方便,与此同时也给数据通信及计算机网络的发展带来了巨大的机遇及挑战。本课题笔者在概述数据通信与计算机网络的基础上,进一步对基于计算机网络中的数据通信交换技术进行了分析,最后探讨了数据通信与计算机网络的发展前景。

关键词:数据通信;计算机网络;发展前景

信息时代的发展带动了经济社会的发展。从狭义层面分析,网络与通信技术的提升,为我们日常生活及工作带来了极大的便利[1]。从广义方面分析,网络与通信技术的进步及发展,能够推进人类文明的历史进程。现状下,计算机网络技术较为成熟,将其与数据通信有机融合,能够具备更为广泛的应用。鉴于此,本课题对“数据通信与计算机网络发展”进行分析与探究具有较为深远的重要意义。

1数据通信与计算机网络概述

数据通信是一种全新的通信方式,并且是由通信技术与计算机技术两者结合而产生的。对于数据通信来说,需具备传输信道,才能完成两地之间的信息传输[2]。以传输媒体为参考依据,可分为两类,一类为有线数据通信,另一类为无线数据通信。两部分均是以传输信道为 渠道 ,进一步使数据终端和计算机相连接,最终使不同地区的数据终端均能够实现信息资源共享。计算机网络指的是将处于不同地区或地域的具备独特功能的多台计算机及其外部设备,以通信线路为渠道进行连接,并在网络 操作系统 环境下实现信息传递、管理及资源共享等。对于计算机网络来说,主要的目的是实现资源共享。结合上述概念可知数据通信与计算机网络两者并不是单独存在的。两者相互融合更能够促进信息的集中及交流。通过计算机网络,能够使数据通信的信息传输及利用加快,从而为社会发展提供保障依据。例如,基于计算机网络中的数据通信交换技术,通过该项技术便能够使信息资源共享更具有效性,同时也具备多方面的技术优势。

2基于计算机网络中的数据通信交换技术

基于计算机网络中的数据通信交换技术是计算机网络与数据通信两者融合的重要产物,通过该技术能够实现数据信息交换及信息资源共享等功能。下面笔者以其中的帧中继技术为例进行探究。帧中继协议属于一类简化的广域网协议,同时也是一类统计复用的协议,基于单一物理传输线路当中,通过帧中继协议能够将多条虚电路提供出来,并通过数据链路连接标识的方式,对每一条虚电路进行标识。对于DLCI来说,有效的部分只是本地连接和与之直接连接的对端接口[3]。所以,在帧中继网络当中,不同的物理接口上同种DLCI不能视为同一种虚电路。对于帧中继技术来说,所存在的主要优势是将光纤视为传输媒介,实现高质量传输,同时误码率偏低,进一步提升了网络资源的利用效率。但同时也存在一些较为明显的缺陷,比如对于实时信息的传输并不适合,另外对传输线路的质量也有着较高的要求。当然,对于基于计算机网络中的数据通信交换技术远远不止以上一种,还包括了电路交换、报文交流及分组交换等技术。与此同时,数据通信交换技术在未来还有很大的发展空间。例如现阶段具备的光传输,其中的数据传输与交换均是以光信号为媒介,进一步在信道上完成的。在未来发展中,数据通信交换技术远远不止表现为光传输和交换阶段,将进一步以满足用户为需求,从而实现更有效率的信息资源共享等功能。

3数据通信与计算机网络发展前景

近年来,数据通信技术及计算机网络技术被广泛应用。无疑,在未来发展过程中, 无线网络 技术将更加成熟。与此同时,基于网络环境中的互联网设备也会朝着集成化及智能化的方向完善。纵观这几年,我国计算机技术逐年更新换代,从而使网络传输的效率大大提升。对于用户来说,无疑是很多方面的需求都得到了有效满足。笔者认为,网络与通信技术将从以下方面发展。(1)移动、联通、电信公司将朝着4G方向发展,从而满足用户的信息交流及信息资源共享需求。(2)宽带无线接入技术将进一步完善。随着WiFi 热点 的逐渐变大,使我国宽带局域网的发展进一步加大,显然,在数据通信与计算机网络充分融合的背景下,宽带无线接入技术将进一步得到完善。(3)光通信将获得巨大发展前景,包括ASON能够获得充分有效的利用以及带宽资源的管理力度将加大,从而使光通信技术更具实用价值。

4结语

通过本课题的探究,认识到数据通信与计算机网络两者之间存在相辅相成、共同发展的联系。总之,在信息时代的背景下,数据通信是行业发展的主要趋势。通过数据通信实现图像、视频、数据等方面的传输及共享,更能满足企业生产需求。总而言之,需要做好数据通信与计算机网络的融合工作,以此使数据通信更具实用价值,进一步为社会经济的发展起到推波助澜的作用。

参考文献:

[1]魏英韬.对通信网络数据的探讨[J].黑龙江科技信息,2011(3):80-83.

[2]刘世宇,姜山.计算机通信与网络发展技术探讨[J].科技致富向导,2012(33):253-258.

[3]屈景怡,李东霞,樊志远.民航特色的“数据通信与计算机网络”课程教改[J].电气电子教学学报,2014(1):20-22.

有关数据通信毕业论文范文推荐:

1.本科通信学毕业论文范文

2.通信工程毕业论文范文

3.有关通信学毕业论文范文

4.浅谈通信学毕业论文范文

5.有关本科通信学毕业论文

6.计算机网络技术类论文范文

数据挖掘的算法及技术的应用的研究论文

摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。

关键词: 数据挖掘; 技术; 应用;

引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。

一、数据挖掘概述

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。

二、数据挖掘的基本过程

(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。

三、数据挖掘方法

1、聚集发现。

聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。

2、决策树。

这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。

四、数据挖掘的应用领域

市场营销

市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。

金融投资

典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。

结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。

参考文献

[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.

[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.

研究生论文数据

没有必要,也别那么干了。

研究生论文数据700个多。根据查询相关资料信息,论文数据大概需要200以上个数据,一篇论文需要有多少数据取决于这篇论文的性质和水平。

最好不要原始数据。事实上,任何高质量的论文都要做大量的实验和海量的数据,分析结果也是在此基础上优化出来的,才是最科学的。试想,高质量的期刊论文都没有放原始数据的传统,研究生论文也是如此。当然,如果你认为有些数据和分析结果关联性很强,也可以加个附录附上,最好不要长篇大论。拓展资料:论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。论文题目:要求准确、简练、醒目、新颖。目录:目录是论文中主要段落的简表。(短篇论文不必列目录)内容提要:是文章主要内容的摘录,要求短、精、完整。关键词定义:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。参考文献:一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。论文装订:论文的有关部分全部抄清完了,经过检查,再没有什么问题,把它装成册,再加上封面。论文的封面要朴素大方,要写出论文的题目、学校、科系、指导教师姓名、作者姓名、完成年月日。论文的题目的作者姓名一定要写在表皮上,不要写里面的补页上。

可以。1、必须是最新的三年论文数据。2、硕士论文数据三年是最基本的,因为数据越多越能反应研究深入性,答辩的时候数据多也加分。

研究数据的论文

Web数据挖掘技术探析论文

在日复一日的学习、工作生活中,大家或多或少都会接触过论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。那么你知道一篇好的论文该怎么写吗?以下是我收集整理的Web数据挖掘技术探析论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

引言

当前,随着网络技术的发展和数据库技术的迅猛发展,有效推动了商务活动由传统活动向电子商务变革。电子商务就是利用计算机和网络技术以及远程通信技术,实现整个商务活动的电子化、数字化和网络化。基于Internet的电子商务快速发展,使现代企业积累了大量的数据,这些数据不仅能给企业带来更多有用信息,同时还使其他现代企业管理者能够及时准确的搜集到大量的数据。访问客户提供更多更优质的服务,成为电子商务成败的关键因素,因而受到现代电子商务经营者的高度关注,这也对计算机web数据技术提出了新的要求,Web数据挖掘技术应运而生。它是一种能够从网上获取大量数据,并能有效地提取有用信息供企业决策者分析参考,以便科学合理制定和调整营销策略,为客户提供动态、个性化、高效率服务的全新技术。目前,它已成为电子商务活动中不可或缺的重要载体。

计算机web数据挖掘概述

1.计算机web数据挖掘的由来

计算机Web数据挖掘是一个在Web资源上将对自己有用的数据信息进行筛选的过程。Web数据挖掘是把传统的数据挖掘思想和方法移植到Web应用中,即从现有的Web文档和活动中挑选自己感兴趣且有用的模式或者隐藏的数据信息。计算机Web数据挖掘可以在多领域中展示其作用,目前已被广泛应用于数据库技术、信息获取技术、统计学、人工智能中的机器学习和神经网络等多个方面,其中对商务活动的变革起到重大的推动作用方面最为明显。

2.计算机Web数据挖掘含义及特征

(1)Web数据挖掘的含义

Web数据挖掘是指数据挖掘技术在Web环境下的应用,是一项数据挖掘技术与WWW技术相结合产生的新技术,综合运用到了计算机语言、Internet、人工智能、统计学、信息学等多个领域的技术。具体说,就是通过充分利用网络(Internet),挖掘用户访问日志文件、商品信息、搜索信息、购销信息以及网络用户登记信息等内容,从中找出隐性的、潜在有用的和有价值的信息,最后再用于企业管理和商业决策。

(2)Web数据挖掘的特点

计算机Web数据挖掘技术具有以下特点:一是用户不用提供主观的评价信息;二是用户“访问模式动态获取”不会过时;三是可以处理大规模的数据量,并且使用方便;四是与传统数据库和数据仓库相比,Web是一个巨大、分布广泛、全球性的信息服务中心。

(3)计算机web数据挖掘技术的类别

web数据挖掘技术共有三类:第一类是Web使用记录挖掘。就是通过网络对Web日志记录进行挖掘,查找用户访问Web页面的模式及潜在客户等信息,以此提高其站点所有服务的竞争力。第二类是Web内容挖掘。既是指从Web文档中抽取知识的过程。第三类是Web结构挖掘。就是通过对Web上大量文档集合的内容进行小结、聚类、关联分析的方式,从Web文档的组织结构和链接关系中预测相关信息和知识。

计算机web数据挖掘技术与电子商务的关系

借助计算机技术和网络技术的日臻成熟,电子商务正以其快速、便捷的特点受到越来越多的企业和个人的关注。随着电子商务企业业务规模的不断扩大,电子商务企业的商品和客户数量也随之迅速增加,电子商务企业以此获得了大量的数据,这些数据正成为了电子商务企业客户管理和销售管理的重要信息。为了更好地开发和利用这些数据资源,以便给企业和客户带来更多的便利和实惠,各种数据挖掘技术也逐渐被应用到电子商务网站中。目前,基于数据挖掘(特别是web数据挖掘)技术构建的电子商务推荐系统正成为电子商务推荐系统发展的一种趋势。

计算机web数据挖掘在电子商务中的具体应用

(1)电子商务中的web数据挖掘的过程

在电子商务中,web数据挖掘的过程主要有以下三个阶段:既是数据准备阶段、数据挖掘操作阶段、结果表达和解释阶段。如果在结果表达阶段中,分析结果不能让电子商务企业的决策者满意,就需要重复上述过程,直到满意为止。

(2)Web数据挖掘技术在电子商务中的应用

目前,电子商务在企业中得到广泛应用,极大地促进了电子商务网站的兴起,经过分析一定时期内站点上的用户的访问信息,便可发现该商务站点上潜在的客户群体、相关页面、聚类客户等数据信息,企业信息系统因此会获得大量的数据,如此多的数据使Web数据挖掘有了丰富的数据基础,使它在各种商业领域有着更加重要的.实用价值。因而,电子商务必将是未来Web数据挖掘的主攻方向。Web数据挖掘技术在电子商务中的应用主要包含以下几方面:

一是寻找潜在客户。电子商务活动中,企业的销售商可以利用分类技术在Internet上找到潜在客户,通过挖掘Web日志记录等信息资源,对访问者进行分类,寻找访问客户共同的特征和规律,然后从已经存在的分类中找到潜在的客户。

二是留住访问客户。电子商务企业通过商务网站可以充分挖掘客户浏览访问时留下的信息,了解客户的浏览行为,然后根据客户不同的爱好和要求,及时做出让访问客户满意的页面推荐和专属性产品,以此来不断提高网站访问的满意度,最大限度延长客户驻留的时间,实现留住老客户发掘新客户的目的。

三是提供营销策略参考。通过Web数据挖掘,电子商务企业销售商能够通过挖掘商品访问情况和销售情况,同时结合市场的变化情况,通过聚类分析的方法,推导出客户访问的规律,不同的消费需求以及消费产品的生命周期等情况,为决策提供及时而准确的信息参考,以便决策者能够适时做出商品销售策略调整,优化商品营销。

四是完善商务网站设计。电子商务网站站点设计者能够利用关联规则,来了解客户的行为记录和反馈情况,并以此作为改进网站的依据,不断对网站的组织结构进行优化来方便客户访问,不断提高网站的点击率。

结语

本文对Web数据挖掘技术进行了综述,讲述了其在电子商务中广泛应用。可以看出,随着计算机技术和数据库技术快速发展,计算机Web数据技术的应用将更加广泛,Web数据挖掘也将成为非常重要的研究领域,研究前景巨大、意义深远。目前,我国的Web数据应用还处于探索和起步阶段,还有许多问题值得深入研究。

摘要: 该文通过介绍电子商务及数据挖掘基本知识,分别从几个方面分析了电子商务中WEB数据挖掘技术的应用。

关键词: 电子商务;数据挖掘;应用

1概述

电子商务是指企业或个人以网络为载体,应用电子手段,利用现代信息技术进行商务数据交换和开展商务业务的活动。随着互联网的迅速发展,电子商务比传统商务具有更明显的优势,由于电子商务具有方便、灵活、快捷的特点,使它已逐渐成为人们生活中不可缺少的活动。目前电子商务平台网站多,行业竞争强,为了获得更多的客户资源,电子商务网站必须加强客户关系管理、改善经营理念、提升售后服务。数据挖掘是从数据集中识别出隐含的、潜在有用的、有效的,新颖的、能够被理解的信息和知识的过程。由数据集合做出归纳推理,从中挖掘并进行商业预判,能够帮助电子商务企业决策层依据预判,对市场策略调整,将企业风险降低,从而做出正确的决策,企业利润将最大化。随着电子商务的应用日益广泛,电子商务活动中会产生大量有用的数据,如何能够数据挖掘出数据的参考价值?研究客户的兴趣和爱好,对客户分门别类,将客户心仪的商品分别推荐给相关客户。因此,如何在电子商务平台上进行数据挖掘成为研究的热点问题。

2数据挖掘技术概述

数据挖掘(DataMining),也称数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD)。数据挖掘一般是指从海量数据中应用算法查找出隐藏的、未知的信息的过程。数据挖掘是一个在大数据资源中利用分析工具发现模型与数据之间关系的一个过程,数据挖掘对决策者寻找数据间潜在的某种关联,发现隐藏的因素起着关键作用。这些模式是有潜在价值的、并能够被理解的。数据挖掘将人工智能、机器学习、数据库、统计、可视化、信息检索、并行计算等多个领域的理论与技术融合在一起的一门多学科交叉学问,这些学科也对数据挖掘提供了很大的技术支撑。

3Web数据挖掘特点

Web数据挖掘就是数据挖掘在Web中的应用。Web数据挖掘的目的是从万维网的网页的内容、超链接的结构及使用日志记录中找到有价值的数据或信息。依据挖掘过程中使用的数据类别,Web数据挖掘任务可分为:Web内容挖掘、Web结构挖掘、Web使用记录挖掘。

1)Web内容挖掘指从网页中提取文字、图片或其他组成网页内容的信息,挖掘对象通常包含文本、图形、音视频、多媒体以及其他各种类型数据。

2)Web结构挖掘是对Web页面之间的结构进行挖掘,挖掘描述内容是如何组织的,从Web的超链接结构中寻找Web结构和页面结构中的有价值模式。例如从这些链接中,我们可以找出哪些是重要的网页,依据网页的主题,进行自动的聚类和分类,为了不同的目的从网页中根据模式获取有用的信息,从而提高检索的质量及效率。

3)Web使用记录挖掘是根据对服务器上用户访问时的访问记录进行挖掘的方法。Web使用挖掘将日志数据映射为关系表并采用相应的数据挖掘技术来访问日志数据,对用户点击事件的搜集和分析发现用户导航行为。它用来提取关于客户如何浏览和使用访问网页的链接信息。如访问了哪些页面?在每个页面中所停留的时间?下一步点击了什么?在什么样的路线下退出浏览的?这些都是Web使用记录挖掘所关心要解决的问题。

4电子商务中Web挖掘中技术的应用分析

1)电子商务中序列模式分析的应用

序列模式数据挖掘就是要挖掘基于时间或其他序列的模式。如在一套按时间顺序排列的会话或事务中一个项目有存在跟在另一个项目后面。通过这个方法,WEB销售商可以预测未来的访问模式,以帮助针对特定用户组进行广告排放设置。发现序列模式容易使客户的行为被电子商务的组织者预测,当用户浏览站点时,尽可能地迎合每个用户的浏览习惯并根据用户感兴趣的内容不断调整网页,尽可能地使每个用户满意。使用序列模式分析挖掘日志,可以发现客户的访问序列模式。在万维网使用记录挖掘应用中,序列模式挖掘可以用于捕捉用户路径之中常用的导航路径。当用户访问电子商务网站时,网站管理员能够搜索出这个访问者的对该网站的访问序列模式,将访问者感兴趣但尚未浏览的页面推荐给他。序列模式分析还能分析出商品购买的前后顺序,从而向客户提出推荐。例如在搜索引擎是发出查询请求、浏览网页信息等,会弹出与这些信息相关的广告。例如购买了打印机的用户,一般不久就会购买如打印纸、硒鼓等打印耗材。优秀的推荐系统将为客户建立一个专属商店,由每个客户的特征来调整网站的内容。也能由挖掘出的一些序列模式分析网站及产品促销的效果。

2)电子商务中关联规则的应用

关联规则是揭示数据之间隐含的相互关系,关联分析的任务是发现事物间的关联规则或相关程序。关联规则挖掘的目标是在数据项目中找出每一个数据信息的内在关系。关联规则挖掘就是要搜索出用户在服务器上访问的内容、页面、文件之间的联系,从而改进电子商务网站设计。可以更好在组织站点,减少用户过滤网站信息的负担,哪些商品顾客会可能在一次购物时同时购买?关联规则技术能够通过购物篮中的不同商品之间的联系,分析顾客的购物习惯。例如购买牛奶的顾客90%会同时还购买面包,这就是一条关联规则,如果商店或电子商务网站将这两种商品放在一起销售,将会提高它们的销量。关联规则挖掘目标是利用工具分析出顾客购买商品间的联系,也即典型购物篮数据分析应用。关联规则是发现同类事件中不同项目的相关性,例如手机加充电宝,鼠标加鼠标垫等购买习惯就属于关联分析。关联规则挖掘技术可以用相应算法找出关联规则,例如在上述例子中,商家可以依据商品间的关联改进商品的摆放,如果顾客购买了手机则将充电宝放入推荐的商品中,如果一些商品被同时购买的概率较大,说明这些商品存在关联性,商家可以将这些有关联的商品链接放在一起推荐给客户,有利于商品的销售,商家也根据关联有效搭配进货,提升商品管理水平。如买了灯具的顾客,多半还会购买开关插座,因此,一般会将灯具与开关插座等物品放在一个区域供顾客选购。依据分析找出顾客所需要的商品的关联规则,由挖掘分析结果向顾客推荐所需商品,也即向顾客提出可能会感兴趣的商品推荐,将会大大提高商品的销售量。

3)电子商务中路径分析技术的应用

路径分析技术通过对Web服务器的日志文件中客户访问站点的访问次数的分析,用来发现Web站点中最经常访问的路径来调整站点结构,从而帮助使用用户以最快的速度找到其所需要的产品或是信息。例如在用户访问某网站时,如果有很多用户不感兴趣的页面存在,就会影响用户的网页浏览速度,从而降低用户的浏览兴趣,同时也会使整个站点的维护成本提高。而利用路径分析技术能够全面地掌握网站各个页面之间的关联以及超链接之间的联系,通过分析得出访问频率最高的页面,从而改进网站结构及页面的设计。

4)电子商务中分类分析的应用

分类技术在根据各种预定义规则进行用户建模的Web分析应用中扮演着很重要的角色。例如,给出一组用户事务,可以计算每个用户在某个期间内购买记录总和。基于这些数据,可以建立一个分类模型,将用户分成有购买倾向和没有购买倾向两类,考虑的特征如用户统计属性以及他们的导航活动。分类技术既可以用于预测哪些购买客户对于哪类促销手段感兴趣,也可以预测和划分顾客类别。在电子商务中通过分类分析,可以得知各类客户的兴趣爱好和商品购买意向,因而发现一些潜在的购买客户,从而为每一类客户提供个性化的网络服务及开展针对性的商务活动。通过分类定位模型辅助决策人员定位他们的最佳客户和潜在客户,提高客户满意度及忠诚度,最大化客户收益率,以降低成本,增加收入。

5)电子商务中聚类分析的应用

聚类技术可以将具有相同特征的数据项聚成一类。聚类分析是对数据库中相关数据进行对比并找出各数据之间的关系,将不同性质特征的数据进行分类。聚类分析的目标是在相似的基础上收集数据来分类。根据具有相同或相似的顾客购买行为和顾客特征,利用聚类分析技术将市场有效地细分,细分后应可每类市场都制定有针对性的市场营销策略。聚类分别有页面聚类和用户聚类两种。用户聚类是为了建立拥有相同浏览模式的用户分组,可以在电子中商务中进行市场划分或给具有相似兴趣的用户提供个性化的Web内容,更多在用户分组上基于用户统计属性(如年龄、性别、收入等)的分析可以发现有价值的商业智能。在电子商务中将市场进行细化的区分就是运用聚类分析技术。聚类分析可根据顾客的购买行为来划分不同顾客特征的不同顾客群,通过聚类具有类似浏览行为的客户,让市场人员对顾客进行类别细分,能够给顾客提供更人性化的贴心服务。比如通过聚类技术分析,发现一些顾客喜欢访问有关汽车配件网页内容,就可以动态改变站点内容,让网络自动地给这些顾客聚类发送有关汽车配件的新产品信息或邮件。分类和聚类往往是相互作用的。在电子商务中通过聚类行为或习性相似的顾客,给顾客提供更满意的服务。技术人员在分析中先用聚类分析将要分析的数据进行聚类细分,然后用分类分析对数据集合进行分类标记,再将该标记重新进行分类,一直如此循环两种分析方法得到相对满意的结果。

5结语

随着互联网的飞速发展,大数据分析应用越来越广。商业贸易中电子商务所占比例越来越大,使用web挖掘技术对商业海量数据进行挖掘处理,分析客户购买喜好、跟踪市场变化,调整销售策略,对决策者做出有效决策及提高企业的市场竞争力有重要意义。

参考文献:

[1]庞英智.Web数据挖掘技术在电子商务中的应用[J].情报科学,2011,29(2):235-240.

[2]马宗亚,张会彦.Web数据挖掘技术在电子商务中的应用研究[J].现代经济信息,2014(6):23-24.

[3]徐剑彬.Web数据挖掘技术在电子商务中的应用[J].时代金融,2013(4):

[4]周世东.Web数据挖掘在电子商务中的应用研究[D].北京交通大学,2008.

[5]段红英.Web数据挖掘技术在电子商务中的应用[J].陇东学院学报,2009(3):32-34.

数据分析法论文研究方法怎么写

数据分析法论文研究方法怎么写,毕业论文对大学生是很重要的一项内容,如果毕业论文不通过就可能毕不了业了,论文的数据是很重要的,如果你的论文数据不准确,就没研究意义了, 下面我和大家分享数据分析法论文研究方法怎么写。

确定数据分析方法

首先,针对实证性论文而言,在开始撰写论文之前,必须要提前确定好数据研究方法。而数据研究方法的确定与选择需要根据大家毕业论文的研究课题来确定。

另外,大家也可以跟自己的的论文指导老师多多交流,尽可能多的了解更多关于研究方法的知识,以供自己选择。除此之外,大家还需要大量查找文献资料,见多识广有大量输入之后才能有所输出,本环节需要大家跟导师沟通商议后决定。

搜集整理实验数据

接下来一个比较重要的步骤是搜集和整理实验数据。在这一部分,很多同学朋友都会遇到各种各样的问题,比如,不知道去哪里找数据,找到的数据可靠性无法保障,需要的数据总是无法搜集全面等等各种问题。

那么在这里需要跟大家强调一下,推荐大家使用国家统计局、中国统计年鉴、国泰安、万方等等这些比较权威的网站去搜集数据资料。

在此需要注意的是,国泰安和万方等这些网站是需要收费的,上去看了一下,价格不是很亲民。

给大家分享一下,如果有些数据在国家官方网站确实找不到或者毕业论文所需的最新数据还没及时发布,推荐大家可以上某宝,因为某宝上电子版数据往往都很全面,而且价格大都可以接受。

在此提醒大家搜集到数据之后,一定要按照自己的习惯整理保存好,避免后期使用数据时出现差错。

使用软件进行分析

接下来第三部分就是使用软件进行数据分析,本部分是非常重要的一个部分。因而可能会出现各种各样的问题。

在本部分大家可以通过软件对所得数据按照前面选定的研究方法进行分析。实践是检验一切的'唯一标准。有很多问题往往都是在进行了数据分析以后才暴露出来的。

根据自身经历,通过软件分析了实验数据以后,才发现结果非常不理想,此时就需要及时跟论文指导老师沟通去进行数据分析方法的调整。

在使用软件进行数据分析之前,一切都是未知的,只有分析之后才能对症下药。所以本环节大家一定要高度重视,根据分析结果及时对研究方法或者样板数据进行微调。

梳理归纳实验结果

最后一个部分就是梳理和归纳实验数据分析结果,此时,大家要讲结果进行合理化解释。同时也需要大量参考先前学者的优秀文献,寻找类似的结果或者解释,从而为自己的实验结果的合理解释提供参考。

有的实证性论文的课题研究可能还不止一个阶段,因为很多研究方法会分阶段进行,比如考虑外部因素的影响或者投出产入效率等等,所以大多研究方法都是两阶段或者三阶段。此时就需要大家根据论文整体性原则,及时对实验结果进行分阶段阐述,所以大家一定要自己思维清晰,层次分明。

这一部分也是将来在毕业论文答辩需要大家重点向答辩老师介绍和阐述的,一定要熟稔于心。

1、调查法

它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。调查方法是科学研究中常用的基本研究方法,它综合运用历史法、观察法等方法以及谈话、问卷、个案研究、测验等科学方式,对教育现象进行有计划的、周密的和系统的了解。

2、观察法

观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。

3、实验法

实验法是通过主支变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:第一、主动变革性和控制性。

4、文献研究法

文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。

5、实证研究法

在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势。

数据挖掘的算法及技术的应用的研究论文

摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。

关键词: 数据挖掘; 技术; 应用;

引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。

一、数据挖掘概述

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。

二、数据挖掘的基本过程

(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。

三、数据挖掘方法

1、聚集发现。

聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。

2、决策树。

这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。

四、数据挖掘的应用领域

市场营销

市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。

金融投资

典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。

结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。

参考文献

[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.

[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.

数据算法研究论文

数据挖掘的算法及技术的应用的研究论文

摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。

关键词: 数据挖掘; 技术; 应用;

引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。

一、数据挖掘概述

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。

二、数据挖掘的基本过程

(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。

三、数据挖掘方法

1、聚集发现。

聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。

2、决策树。

这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。

四、数据挖掘的应用领域

市场营销

市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。

金融投资

典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。

结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。

参考文献

[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.

[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.

多媒体图像压缩技术姓名:Vencent Lee摘要:多媒体数据压缩技术是现代网络发展的关键性技术之一。由于图像和声音信号中存在各种各样的冗余,为数据压缩提供了可能。数据压缩技术有无损压和有损压缩两大类,这些压缩技术又各有不同的标准。一、多媒体数据压缩技术仙农(C.E.Shannon)在创立信息论时,提出把数据看作是信息和冗余度的组合。早期的数据压缩之所以成为信息论的一部分是因为它涉及冗余度问题。而数据之所以能够被压缩是因为其中存在各种各样的冗余;其中有时间冗余性、空间冗余性、信息熵冗余、先验知识冗余、其它冗余等。时间冗余是语音和序列图像中常见的冗余,运动图像中前后两帧间就存在很强的相关性,利用帧间运动补兴就可以将图像数据的速率大大压缩。语音也是这样。尤其是浊音段,在相当长的时间内(几到几十毫秒)语音信号都表现出很强的周期性,可以利用线性预测的方法得到较高的压缩比。空间冗余是用来表示图像数据中存在的某种空间上的规则性,如大面积的均匀背景中就有很大的空间冗余性。信息熵冗余是指在信源的符号表示过程中由于未遵循信息论意义下最优编码而造成的冗余性,这种冗余性可以通过熵编码来进行压缩,经常使用的如Huff-man编码。先验知识冗余是指数据的理解与先验知识有相当大的关系,如当收信方知道一个单词的前几个字母为administrato时,立刻就可以猜到最后一个字母为r,那么在这种情况下,最后一个字母就不带任何信息量了,这就是一种先验知识冗余。其它冗余是指那些主观无法感受到的信息等带来的冗余。通常数据压缩技术可分为无损压缩(又叫冗余压缩)和有损压缩(又叫熵压缩)两大类。无损压缩就是把数据中的冗余去掉或减少,但这些冗余量是可以重新插入到数据中的,因而不会产生失真。该方法一般用于文本数据的压缩,它可以保证完全地恢复原始数据;其缺点是压缩比小(其压缩比一般为2:1至5:1)。有损压缩是对熵进行压缩,因而存在一定程度的失真;它主要用于对声音、图像、动态视频等数据进行压缩,压缩比较高(其压缩比一般高达20:1以上。最新被称为“E—igen—ID”的压缩技术可将基因数据压缩1.5亿倍)。对于多媒体图像采用的有损压缩的标准有静态图像压缩标准(JPEG标准,即‘JointPhotographicExpertGroup’标准)和动态图像压缩标准(MPEG标准,即‘MovingPictureExpertGroup’标准)。JPEG利用了人眼的心理和生理特征及其局限性来对彩色的、单色的和多灰度连续色调的、静态图像的、数字图像的压缩,因此它非常适合不太复杂的以及一般来源于真实景物的图像。它定义了两种基本的压缩算法:一种是基于有失真的压缩算法,另一种是基于空间线性预测技术(DPCM)无失真的压缩算法。为了满足各种需要,它制定了四种工作模式:无失真压缩、基于DCT的顺序工作方式、累进工作方式和分层工作方式。MPEG用于活动影像的压缩。MPEG标准具体包三部分内容:(1)MPEG视频、(2)MPEG音频、(3)MP系统(视频和音频的同步)。MPEG视频是标准的核心分,它采用了帧内和帧间相结合的压缩方法,以离散余变换(DCT)和运动补偿两项技术为基础,在图像质量基不变的情况下,MPEG可把图像压缩至1/100或更MPEG音频压缩算法则是根据人耳屏蔽滤波功能。利用音响心理学的基本原理,即“某些频率的音响在重放其频率的音频时听不到”这样一个特性,将那些人耳完全不到或基本上听到的多余音频信号压缩掉,最后使音频号的压缩比达到8:1或更高,音质逼真,与CD唱片可媲美。按照MPEG标准,MPEG数据流包含系统层和压层数据。系统层含有定时信号,图像和声音的同步、多分配等信息。压缩层包含经压缩后的实际的图像和声数据,该数据流将视频、音频信号复合及同步后,其数据输率为1.5MB/s。其中压缩图像数据传输率为1.2M压缩声音传输率为0.2MB/s。MPEG标准的发展经历了MPEG—I,MPEG一2、MPEG一4、MPEG-7、MPEG一21等不同层次。在MPEG的不同标准中,每—个标准都是建立在前面的标准之上的,并与前面的标准向后的兼容。目前在图像压缩中,应用得较多的是MPEG一4标准,MPEG-是在MPEG-2基础上作了很大的扩充,主要目标是多媒体应用。在MPEG一2标准中,我们的观念是单幅图像,而且包含了一幅图像的全部元素。在MPEG一4标准下,我们的观念变为多图像元素,其中的每—个多图像元素都是独立编码处理的。该标准包含了为接收器所用的指令,告诉接收器如何构成最终的图像。上图既表示了MPEG一4解码器的概念,又比较清楚地描绘了每个部件的用途。这里不是使用单一的视频或音频解码器,而是使用若干个解码器,其中的每一个解码器只接收某个特定的图像(或声音)元素,并完成解码操作。每个解码缓冲器只接收属于它自己的灵敏据流,并转送给解码器。复合存储器完成图像元素的存储,并将它们送到显示器的恰当位置。音频的情况也是这样,但显然不同点是要求同时提供所有的元素。数据上的时间标记保证这些元素在时间上能正确同步。MPEG一4标准对自然元素(实物图像)和合成元素进行区分和规定,计算机生成的动画是合成元素的一个例子。比如,一幅完整的图像可以包含一幅实际的背景图,并在前面有一幅动画或者有另外一幅自然图像。这样的每一幅图像都可以作最佳压缩,并互相独立地传送到接收器,接收器知道如何把这些元素组合在一起。在MPEG一2标准中,图像被看作一个整体来压缩;而在MPEG一4标准下,对图像中的每一个元素进行优化压缩。静止的背景不必压缩到以后的I帧之中去,否则会使带宽的使用变得很紧张。而如果这个背景图像静止10秒钟,就只要传送一次(假设我们不必担心有人在该时间内切人此频道),需要不断传送的仅是前台的比较小的图像元素。对有些节目类型,这样做会节省大量的带宽。MPEG一4标准对音频的处理也是相同的。例如,有一位独唱演员,伴随有电子合成器,在MPEG一2标准下,我们必须先把独唱和合成器作混合,然后再对合成的音频信号进行压缩与传送。在MPEG一4标准下,我们可以对独唱作单独压缩,然后再传送乐器数字接口的声轨信号,就可以使接收器重建伴音。当然,接收器必须能支持MIDI放音。与传送合成的信号相比,分别传送独唱信号和MIDI数据要节省大量的带宽。其它的节目类型同样可以作类似的规定。MPEG一7标准又叫多媒体内容描述接口标准。图像可以用色彩、纹理、形状、运动等参数来描述,MPEG一7标准是依靠众多的参数对图像与声音实现分类,并对它们的数据库实现查询。二、多媒体数据压缩技术的实现方法目前多媒体压缩技术的实现方法已有近百种,其中基于信源理论编码的压缩方法、离散余弦变换(DCT)和小波分解技术压缩算法的研究更具有代表性。小波技术突破了传统压缩方法的局限性,引入了局部和全局相关去冗余的新思想,具有较大的潜力,因此近几年来吸引了众多的研究者。在小波压缩技术中,一幅图像可以被分解为若干个叫做“小片”的区域;在每个小片中,图像经滤波后被分解成若干个低频与高频分量。低频分量可以用不同的分辨率进行量化,即图像的低频部分需要许多的二进制位,以改善图像重构时的信噪比。低频元素采用精细量化,高频分量可以量化得比较粗糙,因为你不太容易看到变化区域的噪声与误差。此外,碎片技术已经作为一种压缩方法被提出,这种技术依靠实际图形的重复特性。用碎片技术压缩图像时需要占用大量的计算机资源,但可以获得很好的结果。借助于从DNA序列研究中发展出来的模式识别技术,能减少通过WAN链路的流量,最多时的压缩比率能达到90%,从而为网络传送图像和声音提供更大的压缩比,减轻风络负荷,更好地实现网络信息传播。三、压缩原理由于图像数据之间存在着一定的冗余,所以使得数据的压缩成为可能。信息论的创始人Shannon提出把数据看作是信息和冗余度(redundancy)的组合。所谓冗余度,是由于一副图像的各像素之间存在着很大的相关性,可利用一些编码的方法删去它们,从而达到减少冗余压缩数据的目的。为了去掉数据中的冗余,常常要考虑信号源的统计特性,或建立信号源的统计模型。图像的冗余包括以下几种:(1) 空间冗余:像素点之间的相关性。(2) 时间冗余:活动图像的两个连续帧之间的冗余。(3) 信息熵冗余:单位信息量大于其熵。(4) 结构冗余:图像的区域上存在非常强的纹理结构。(5) 知识冗余:有固定的结构,如人的头像。(6) 视觉冗余:某些图像的失真是人眼不易觉察的。对数字图像进行压缩通常利用两个基本原理:(1) 数字图像的相关性。在图像的同一行相邻像素之间、活动图像的相邻帧的对应像素之间往往存在很强的相关性,去除或减少这些相关性,也就去除或减少图像信息中的冗余度,即实现了对数字图像的压缩。(2) 人的视觉心理特征。人的视觉对于边缘急剧变化不敏感(视觉掩盖效应),对颜色分辨力弱,利用这些特征可以在相应部分适当降低编码精度,而使人从视觉上并不感觉到图像质量的下降,从而达到对数字图像压缩的目的。编码压缩方法有许多种,从不同的角度出发有不同的分类方法,比如从信息论角度出发可分 为两大类:(1)冗余度压缩方法,也称无损压缩,信息保持编码或熵编码。具体讲就是解码图像和压缩 编码前的图像严格相同,没有失真,从数学上讲是一种可逆运算。(2)信息量压缩方法,也称有损压缩,失真度编码或熵压缩编码。也就是讲解码图像和原始图像是有差别的,允许有一定的失真。应用在多媒体中的图像压缩编码方法,从压缩编码算法原理上可以分类为:(1)无损压缩编码种类 •哈夫曼编码 •算术编码 •行程编码 •Lempel zev编码(2)有损压缩编码种类 •预测编码:DPCM,运动补偿 •频率域方法:正文变换编码(如DCT),子带编码 •空间域方法:统计分块编码 •模型方法:分形编码,模型基编码 •基于重要性:滤波,子采样,比特分配,矢量量化(3)混合编码 •JBIG,H261,JPEG,MPEG等技术标准衡量一个压缩编码方法优劣的重要指标(1)压缩比要高,有几倍、几十倍,也有几百乃至几千倍;(2)压缩与解压缩要快,算法要简单,硬件实现容易;(3)解压缩的图像质量要好。四、JPEG图像压缩算法1..JPEG压缩过程JPEG压缩分四个步骤实现:1.颜色模式转换及采样;变换;3.量化;4.编码。2.1.颜色模式转换及采样RGB色彩系统是我们最常用的表示颜色的方式。JPEG采用的是YCbCr色彩系统。想要用JPEG基本压缩法处理全彩色图像,得先把RGB颜色模式图像数据,转换为YCbCr颜色模式的数据。Y代表亮度,Cb和Cr则代表色度、饱和度。通过下列计算公式可完成数据转换。Y=+128人类的眼晴对低频的数据比对高频的数据具有更高的敏感度,事实上,人类的眼睛对亮度的改变也比对色彩的改变要敏感得多,也就是说Y成份的数据是比较重要的。既然Cb成份和Cr成份的数据比较相对不重要,就可以只取部分数据来处理。以增加压缩的比例。JPEG通常有两种采样方式:YUV411和YUV422,它们所代表的意义是Y、Cb和Cr三个成份的资料取样比例。2.变换DCT变换的全称是离散余弦变换(Discrete Cosine Transform),是指将一组光强数据转换成频率数据,以便得知强度变化的情形。若对高频的数据做些修饰,再转回原来形式的数据时,显然与原始数据有些差异,但是人类的眼睛却是不容易辨认出来。压缩时,将原始图像数据分成8*8数据单元矩阵,例如亮度值的第一个矩阵内容如下:JPEG将整个亮度矩阵与色度Cb矩阵,饱和度Cr矩阵,视为一个基本单元称作MCU。每个MCU所包含的矩阵数量不得超过10个。例如,行和列采样的比例皆为4:2:2,则每个MCU将包含四个亮度矩阵,一个色度矩阵及一个饱和度矩阵。当图像数据分成一个8*8矩阵后,还必须将每个数值减去128,然后一一代入DCT变换公式中,即可达到DCT变换的目的。图像数据值必须减去128,是因为DCT转换公式所接受的数字范围是在-128到+127之间。DCT变换公式:x,y代表图像数据矩阵内某个数值的坐标位置f(x,y)代表图像数据矩阵内的数个数值u,v代表DCT变换后矩阵内某个数值的坐标位置F(u,v)代表DCT变换后矩阵内的某个数值u=0 且 v=0 c(u)c(v)=1/>0 或 v>0 c(u)c(v)=1经过DCT变换后的矩阵数据自然数为频率系数,这些系数以F(0,0)的值最大,称为DC,其余的63个频率系数则多半是一些接近于0的正负浮点数,一概称之为AC。3.3、量化图像数据转换为频率系数后,还得接受一项量化程序,才能进入编码阶段。量化阶段需要两个8*8矩阵数据,一个是专门处理亮度的频率系数,另一个则是针对色度的频率系数,将频率系数除以量化矩阵的值,取得与商数最近的整数,即完成量化。当频率系数经过量化后,将频率系数由浮点数转变为整数,这才便于执行最后的编码。不过,经过量化阶段后,所有数据只保留整数近似值,也就再度损失了一些数据内容,JPEG提供的量化表如下:2.4、编码Huffman编码无专利权问题,成为JPEG最常用的编码方式,Huffman编码通常是以完整的MCU来进行的。编码时,每个矩阵数据的DC值与63个AC值,将分别使用不同的Huffman编码表,而亮度与色度也需要不同的Huffman编码表,所以一共需要四个编码表,才能顺利地完成JPEG编码工作。DC编码DC是彩采用差值脉冲编码调制的差值编码法,也就是在同一个图像分量中取得每个DC值与前一个DC值的差值来编码。DC采用差值脉冲编码的主要原因是由于在连续色调的图像中,其差值多半比原值小,对差值进行编码所需的位数,会比对原值进行编码所需的位数少许多。例如差值为5,它的二进制表示值为101,如果差值为-5,则先改为正整数5,再将其二进制转换成1的补码即可。所谓1的补码,就是将每个Bit若值为0,便改成1;Bit为1,则变成0。差值5应保留的位数为3,下表即列出差值所应保留的Bit数与差值内容的对照。在差值前端另外加入一些差值的霍夫曼码值,例如亮度差值为5(101)的位数为3,则霍夫曼码值应该是100,两者连接在一起即为100101。下列两份表格分别是亮度和色度DC差值的编码表。根据这两份表格内容,即可为DC差值加上霍夫曼码值,完成DC的编码工作。AC编码AC编码方式与DC略有不同,在AC编码之前,首先得将63个AC值按Zig-zag排序,即按照下图箭头所指示的顺序串联起来。63个AC值排列好的,将AC系数转换成中间符号,中间符号表示为RRRR/SSSS,RRRR是指第非零的AC之前,其值为0的AC个数,SSSS是指AC值所需的位数,AC系数的范围与SSSS的对应关系与DC差值Bits数与差值内容对照表相似。如果连续为0的AC个数大于15,则用15/0来表示连续的16个0,15/0称为ZRL(Zero Rum Length),而(0/0)称为EOB(Enel of Block)用来表示其后所剩余的AC系数皆等于0,以中间符号值作为索引值,从相应的AC编码表中找出适当的霍夫曼码值,再与AC值相连即可。例如某一组亮度的中间符为5/3,AC值为4,首先以5/3为索引值,从亮度AC的Huffman编码表中找到1111111110011110霍夫曼码值,于是加上原来100(4)即是用来取[5,4]的Huffman编码1111111110011110100,[5,4]表示AC值为4的前面有5个零。由于亮度AC,色度AC霍夫曼编码表比较长,在此省略去,有兴趣者可参阅相关书籍。实现上述四个步骤,即完成一幅图像的JPEG压缩。

数据模型研究论文

在统计学中,统计模型是指当有些过程无法用理论分析 方法 导出其模型,但可通过试验或直接由工业过程测定数据,经过数理统计法求得各变量之间的函数关系。下文是我为大家整理的关于统计模型论文的 范文 ,欢迎大家阅读参考!

统计套利模型的理论综述与应用分析

【摘要】统计套利模型是基于数量经济学和统计学建立起来的,在对历史数据分析的基础之上,估计相关变量的概率分布,并结合基本面数据对未来收益进行预测,发现套利机会进行交易。统计套利这种分析时间序列的统计学特性,使其具有很大的理论意义和实践意义。在实践方面广泛应用于个对冲基金获取收益,理论方面主要表现在资本有效性检验以及开放式基金评级,本文就统计套利的基本原理、交易策略、应用方向进行介绍。

【关键词】统计套利 成对交易 应用分析

一、统计套利模型的原理简介

统计套利模型是基于两个或两个以上具有较高相关性的股票或者其他证券,通过一定的方法验证股价波动在一段时间内保持这种良好的相关性,那么一旦两者之间出现了背离的走势,而且这种价格的背离在未来预计会得到纠正,从而可以产生套利机会。在统计套利实践中,当两者之间出现背离,那么可以买进表现价格被低估的、卖出价格高估的股票,在未来两者之间的价格背离得到纠正时,进行相反的平仓操作。统计套利原理得以实现的前提是均值回复,即存在均值区间(在实践中一般表现为资产价格的时间序列是平稳的,且其序列图波动在一定的范围之内),价格的背离是短期的,随着实践的推移,资产价格将会回复到它的均值区间。如果时间序列是平稳的,则可以构造统计套利交易的信号发现机制,该信号机制将会显示是否资产价格已经偏离了长期均值从而存在套利的机会 在某种意义上存在着共同点的两个证券(比如同行业的股票), 其市场价格之间存在着良好的相关性,价格往往表现为同向变化,从而价格的差值或价格的比值往往围绕着某一固定值进行波动。

二、统计套利模型交易策略与数据的处理

统计套利具 体操 作策略有很多,一般来说主要有成对/一篮子交易,多因素模型等,目前应用比较广泛的策略主要是成对交易策略。成对策略,通常也叫利差交易,即通过对同一行业的或者股价具有长期稳定均衡关系的股票的一个多头头寸和一个空头头寸进行匹配,使交易者维持对市场的中性头寸。这种策略比较适合主动管理的基金。

成对交易策略的实施主要有两个步骤:一是对股票对的选取。海通证券分析师周健在绝对收益策略研究―统计套利一文中指出,应当结合基本面与行业进行选股,这样才能保证策略收益,有效降低风险。比如银行,房地产,煤电行业等。理论上可以通过统计学中的聚类分析方法进行分类,然后在进行协整检验,这样的成功的几率会大一些。第二是对股票价格序列自身及相互之间的相关性进行检验。目前常用的就是协整理论以及随机游走模型。

运用协整理论判定股票价格序列存在的相关性,需要首先对股票价格序列进行平稳性检验,常用的检验方法是图示法和单位根检验法,图示法即对所选各个时间序列变量及一阶差分作时序图,从图中观察变量的时序图出现一定的趋势册可能是非平稳性序列,而经过一阶差分后的时序图表现出随机性,则序列可能是平稳的。但是图示法判断序列是否存在具有很大的主观性。理论上检验序列平稳性及阶输通过单位根检验来确定,单位根检验的方法很多,一般有DF,ADF检验和Phillips的非参数检验(PP检验)一般用的较多的方法是ADF检验。

检验后如果序列本身或者一阶差分后是平稳的,我们就可以对不同的股票序列进行协整检验,协整检验的方法主要有EG两步法,即首先对需要检验的变量进行普通的线性回归,得到一阶残差,再对残差序列进行单位根检验,如果存在单位根,那么变量是不具有协整关系的,如果不存在单位根,则序列是平稳的。EG检验比较适合两个序列之间的协整检验。除EG检验法之外,还有Johansen检验,Gregory hansan法,自回归滞后模型法等。其中johansen检验比较适合三个以上序列之间协整关系的检验。通过协整检验,可以判定股票价格序列之间的相关性,从而进行成对交易。

Christian L. Dunis和Gianluigi Giorgioni(2010)用高频数据代替日交易数据进行套利,并同时比较了具有协整关系的股票对和没有协整关系股票对进行套利的立即收益率,结果显示,股票间价格协整关系越高,进行统计套利的机会越多,潜在收益率也越高。

根据随机游走模型我们可以检验股票价格波动是否具有“记忆性”,也就是说是否存在可预测的成分。一般可以分为两种情况:短期可预测性分析及长期可预测性分析。在短期可预测性分析中,检验标准主要针对的是随机游走过程的第三种情况,即不相关增量的研究,可以采用的检验工具是自相关检验和方差比检验。在序列自相关检验中,常用到的统计量是自相关系数和鲍克斯-皮尔斯 Q统计量,当这两个统计量在一定的置信度下,显著大于其临界水平时,说明该序列自相关,也就是存在一定的可预测性。方差比检验遵循的事实是:随机游走的股价对数收益的方差随着时期线性增长,这些期间内增量是可以度量的。这样,在k期内计算的收益方差应该近似等于k倍的单期收益的方差,如果股价的波动是随机游走的,则方差比接近于1;当存在正的自相关时,方差比大于1;当存在负的自相关是,方差比小于1。进行长期可预测性分析,由于时间跨度较大的时候,采用方差比进行检验的作用不是很明显,所以可以采用R/S分析,用Hurst指数度量其长期可预测性,Hurst指数是通过下列方程的回归系数估计得到的:

Ln[(R/S)N]=C+H*LnN

R/S 是重标极差,N为观察次数,H为Hurst指数,C为常数。当H>时说,说明这些股票可能具有长期记忆性,但是还不能判定这个序列是随机游走或者是具有持续性的分形时间序列,还需要对其进行显著性检验。

无论是采用协整检验还是通过随机游走判断,其目的都是要找到一种短期或者长期内的一种均衡关系,这样我们的统计套利策略才能够得到有效的实施。

进行统计套利的数据一般是采用交易日收盘价数据,但是最近研究发现,采用高频数据(如5分钟,10分钟,15分钟,20分钟收盘价交易数据)市场中存在更多的统计套利机会。日交易数据我们选择前复权收盘价,而且如果两只股票价格价差比较大,需要先进性对数化处理。Christian L. Dunis和Gianluigi Giorgioni(2010)分别使用15分钟收盘价,20分钟收盘价,30分以及一个小时收盘价为样本进行统计套利分析,结果显示,使用高频数据进行统计套利所取得收益更高。而且海通证券金融分析师在绝对收益策略系列研究中,用沪深300指数为样本作为统计套利 配对 交易的标的股票池,使用高频数据计算累计收益率比使用日交易数据高将近5个百分点。

三、统计套利模型的应用的拓展―检验资本市场的有效性

Fama(1969)提出的有效市场假说,其经济含义是:市场能够对信息作出迅速合理的反应,使得市场价格能够充分反映所有可以获得的信息,从而使资产的价格不可用当前的信息进行预测,以至于任何人都无法持续地获得超额利润.通过检验统计套利机会存在与否就可以验证资本市场是有效的的,弱有效的,或者是无效的市场。徐玉莲(2005)通过运用统计套利对中国资本市场效率进行实证研究,首先得出结论:统计套利机会的存在与资本市场效率是不相容的。以此为理论依据,对中国股票市场中的价格惯性、价格反转及价值反转投资策略是否存在统计套利机会进行检验,结果发现我国股票市场尚未达到弱有效性。吴振翔,陈敏(2007)曾经利用这种方法对我国A股市场的弱有效性加以检验,采用惯性和反转两种投资策略发现我国A股若有效性不成立。另外我国学者吴振翔,魏先华等通过对Hogan的统计套利模型进行修正,提出了基于统计套利模型对开放式基金评级的方法。

四、结论

统计套利模型的应用目前主要表现在两个方面:1.作为一种有效的交易策略,进行套利。2.通过检测统计套利机会的存在,验证资本市场或者某个市场的有效性。由于统计套利策略的实施有赖于做空机制的建立,随着我股指期货和融资融券业务的推出和完善,相信在我国会有比较广泛的应用与发展。

参考文献

[1] . Burgess:A computational Methodolology for Modelling the Dynamics of statistical arbitrage, London business school,PhD Thesis,1999.

[2]方昊.统计套利的理论模式及应用分析―基于中国封闭式基金市场的检验.统计与决策,2005,6月(下).

[3]马理,卢烨婷.沪深 300 股指期货期现套利的可行性研究―基于统计套利模型的实证.财贸研究,2011,1.

[4]吴桥林.基于沪深 300 股指期货的套利策略研究[D].中国优秀硕士学位论文.2009.

[5]吴振翔,陈敏.中国股票市场弱有效性的统计套利检验[J].系统工程理论与实践.2007,2月.

关于半参统计模型的估计研究

【摘要】随着数据模型技术的迅速发展,现有的数据模型已经无法满足实践中遇到的一些测量问题,严重的限制了现代科学技术在数据模型上应用和发展,所以基于这种背景之下,学者们针对数据模型测量实验提出了新的理论和方法,并研制出了半参数模型数据应用。半参数模型数据是基于参数模型和非参数模型之上的一种新的测量数据模型,因此它具备参数模型和非参数模型很多共同点。本文将结合数据模型技术,对半参统计模型进行详细的探究与讨论。

【关键词】半参数模型 完善误差 测量值 纵向数据

本文以半参数模型为例,对参数、非参数分量的估计值和观测值等内容进行讨论,并运用三次样条函数插值法得出非参数分量的推估表达式。另外,为了解决纵向数据下半参数模型的参数部分和非参数部分的估计问题,在误差为鞅差序列情形下,对半参数数据模型、渐近正态性、强相合性进行研究和分析。另外,本文初步讨论了平衡参数的选取问题,并充分说明了泛最小二乘估计方法以及相关结论,同时对半参数模型的迭代法进行了相关讨论和研究。

一、概论

在日常生活当中,人们所采用的参数数据模型构造相对简单,所以操作起来比较容易;但在测量数据的实际使用过程中存在着相关大的误差,例如在测量相对微小的物体,或者是对动态物体进行测量时。而建立半参数数据模型可以很好的解决和缓解这一问题:它不但能够消除或是降低测量中出现的误差,同时也不会将无法实现参数化的系统误差进行勾和。系统误差非常影响观测值的各种信息,如果能改善,就能使其实现更快、更及时、更准确的误差识别和提取过程;这样不仅可以提高参数估计的精确度,也对相关科学研究进行了有效补充。

举例来说,在模拟算例及坐标变换GPS定位重力测量等实际应用方面,体现了这种模型具有一定成功性及实用性;这主要是因为半参数数据模型同当前所使用的数据模型存在着一致性,可以很好的满足现在的实际需要。而新建立的半参数模型以及它的参数部分和非参数部分的估计,也可以解决一些污染数据的估计问题。这种半参数模型,不仅研究了纵向数据下其自身的t型估计,同时对一些含光滑项的半参数数据模型进行了详细的阐述。另外,基于对称和不对称这两种情况,可以在一个线性约束条件下对参数估计以及假设进行检验,这主要是因为对观测值产生影响的因素除了包含这个线性关系以外,还受到某种特定因素的干扰,所以不能将其归入误差行列。另外,基于自变量测量存在一定误差,经常会导致在计算过程汇总,丢失很多重要信息。

二、半参数回归模型及其估计方法

这种模型是由西方著名学者Stone在上世纪70年代所提出的,在80年代逐渐发展并成熟起来。目前,这种参数模型已经在医学以及生物学还有经济学等诸多领域中广泛使用开来。

半参数回归模型介于非参数回归模型和参数回归模型之间,其内容不仅囊括了线性部分,同时包含一些非参数部分,应该说这种模型成功的将两者的优点结合在一起。这种模型所涉及到的参数部分,主要是函数关系,也就是我们常说的对变量所呈现出来的大势走向进行有效把握和解释;而非参数部分则主要是值函数关系中不明确的那一部分,换句话就是对变量进行局部调整。因此,该模型能够很好的利用数据中所呈现出来的信息,这一点是参数回归模型还有非参数归回模型所无法比拟的优势,所以说半参数模型往往拥有更强、更准确的解释能力。

从其用途上来说,这种回归模型是当前经常使用的一种统计模型。其形式为:

三、纵向数据、线性函数和光滑性函数的作用

纵向数据其优点就是可以提供许多条件,从而引起人们的高度重视。当前纵向数据例子也非常多。但从其本质上讲,纵向数据其实是指对同一个个体,在不同时间以及不同地点之上,在重复观察之下所得到一种序列数据。但由于个体间都存在着一定的差别,从而导致在对纵向数据进行求方差时会出现一定偏差。在对纵向数据进行观察时,其观察值是相对独立的,因此其特点就是可以能够将截然不同两种数据和时间序列有效的结合在一起。即可以分析出来在个体上随着时间变化而发生的趋势,同时又能看出总体的变化形势。在当前很多纵向数据的研究中,不仅保留了其优点,并在此基础之上进行发展,实现了纵向数据中的局部线性拟合。这主要是人们希望可以建立输出变量和协变量以及时间效应的关系。可由于时间效应相对比较复杂,所以很难进行参数化的建模。

另外,虽然线性模型的估计已经取得大量的成果,但半参数模型估计至今为止还是空白页。线性模型的估计不仅仅是为了解决秩亏或病态的问题,还能在百病态的矩阵时,提供了处理线性、非线性及半参数模型等方法。首先,对观测条件较为接近的两个观测数据作为对照,可以削弱非参数的影响。从而将半参数模型变成线性模型,然后,按线性模型处理,得到参数的估计。而多数的情况下其线性系数将随着另一个变量而变化,但是这种线性系数随着时间的变化而变化,根本求不出在同一个模型中,所有时间段上的样本,亦很难使用一个或几个实函数来进行相关描述。在对测量数据处理时,如果将它看作为随机变量,往往只能达到估计的作用,要想在经典的线性模型中引入另一个变量的非线性函数,即模型中含有本质的非线性部分,就必须使用半参数线性模型。

另外就是指由各个部分组成的形态,研究对象是非线性系统中产生的不光滑和不可微的几何形体,对应的定量参数是维数,分形上统计模型的研究是当前国际非线性研究的重大前沿课题之一。因此,第一种途径是将非参数分量参数化的估计方法,也称之为参数化估计法,是关于半参数模型的早期工作,就是对函数空间附施加一定的限制,主要指光滑性。一些研究者认为半参数模型中的非参数分量也是非线性的,而且在大多数情形下所表现出来的往往是不光滑和不可微的。所以同样的数据,同样的检验方法,也可以使用立方光滑样条函数来研究半参数模型。

四、线性模型的泛最小二乘法与最小二乘法的抗差

(一)最小二乘法出现于18世纪末期

在当时科学研究中常常提出这样的问题:怎样从多个未知参数观测值集合中求出参数的最佳估值。尽管当时对于整体误差的范数,泛最小二乘法不如最小二乘法,但是当时使用最多的还是最小二乘法,其目的也就是为了估计参数。最小二乘法,在经过一段时间的研究和应用之后,逐步发展成为一整套比较完善的理论体系。现阶段不仅可以清楚地知道数据所服从的模型,同时在纵向数据半参数建模中,辅助以迭代加权法。这对补偿最小二乘法对非参数分量估计是非常有效,而且只要观测值很精确,那么该法对非参数分量估计更为可靠。例如在物理大地测量时,很早就使用用最小二乘配置法,并得到重力异常最佳估计值。不过在使用补偿最小二乘法来研究重力异常时,我们还应在兼顾着整体误差比较小的同时,考虑参数估计量的真实性。并在比较了迭代加权偏样条的基础上,研究最小二乘法在当前使用过程中存在的一些不足。应该说,该方法只强调了整体误差要实现最小,而忽略了对参数分量估计时出现的误差。所以在实际操作过程中,需要特别注意。

(二)半参模型在GPS定位中的应用和差分

半参模型在GPS相位观测中,其系统误差是影响高精度定位的主要因素,由于在解算之前模型存在一定误差,所以需及时观测误差中的粗差。GPS使用中,通过广播卫星来计算目标点在实际地理坐标系中具体坐标。这样就可以在操作过程中,发现并恢复整周未知数,由于观测值在卫星和观测站之间,是通过求双差来削弱或者是减少对卫星和接收机等系统误差的影响,因此难于用参数表达。但是在平差计算中,差分法虽然可以将观测方程的数目明显减少,但由于种种原因,依然无法取得令人满意的结果。但是如果选择使用半参数模型中的参数来表达系统误差,则能得到较好的效果。这主要是因为半参数模型是一种广义的线性回归模型,对于有着光滑项的半参数模型,在既定附加的条件之下,能够提供一个线性函数的估计方法,从而将测值中的粗差消除掉。

另外这种方法除了在GPS测量中使用之外,还可应用于光波测距仪以及变形监测等一些参数模型当中。在重力测量中的应用在很多情形下,尤其是数学界的理论研究,我们总是假定S是随机变量实际上,这种假设是合理的,近几年,我们对这种线性模型的研究取得了一些不错的成果,而且因其形式相对简洁,又有较高适用性,所以这种模型在诸多领域中发挥着重要作用。

通过模拟的算例及坐标变换GPS定位重力测量等实际应用,说明了该法的成功性及实用性,从理论上说明了流行的自然样条估计方法,其实质是补偿最小二乘方法的特例,在今后将会有广阔的发展空间。另外 文章 中提到的分形理论的研究对象应是非线性系统中产生的不光滑和不可微的几何形体,而且分形已经在断裂力学、地震学等中有着广泛的应用,因此应被推广使用到研究半参数模型中来,不仅能够更及时,更加准确的进行误差的识别和提取,同时可以提高参数估计的精确度,是对当前半参数模型研究的有力补充。

五、 总结

文章所讲的半参数模型包括了参数、非参数分量的估计值和观测值等内容,并且用了三次样条函数插值法得到了非参数分量的推估表达式。另外,为了解决纵向数据前提下,半参数模型的参数部分和非参数部分的估计问题,在误差为鞅差序列情形下,对半参数数据模型、渐近正态性、强相合性进行研究和分析。同时介绍了最小二乘估计法。另外初步讨论了平衡参数的选取问题,还充分说明了泛最小二乘估计方法以及有关结论。在对半参数模型的迭代法进行了相关讨论和研究的基础之上,为迭代法提供了详细的理论说明,为实际应用提供了理论依据。

参考文献

[1]胡宏昌.误差为AR(1)情形的半参数回归模型拟极大似然估计的存在性[J].湖北师范学院学报(自然科学版),2009(03).

[2]钱伟民,李静茹.纵向污染数据半参数回归模型中的强相合估计[J].同济大学学报(自然科学版),2009(08).

[3]樊明智,王芬玲,郭辉.纵向数据半参数回归模型的最小二乘局部线性估计[J].数理统计与管理,2009(02).

[4]崔恒建,王强.变系数结构关系EV模型的参数估计[J].北京师范大学学报(自然科学版).2005(06).

[5]钱伟民,柴根象.纵向数据混合效应模型的统计分析[J].数学年刊A辑(中文版).2009(04)

[6]孙孝前,尤进红.纵向数据半参数建模中的迭代加权偏样条最小二乘估计[J].中国科学(A辑:数学),2009(05).

[7]张三国,陈希孺.EV多项式模型的估计[J].中国科学(A辑),2009(10).

[8]任哲,陈明华.污染数据回归分析中参数的最小一乘估计[J].应用概率统计,2009(03).

[9]张三国,陈希孺.有重复观测时EV模型修正极大似然估计的相合性[J].中国科学(A辑).2009(06).

[10]崔恒建,李勇,秦怀振.非线性半参数EV四归模型的估计理论[J].科学通报,2009(23).

[11]罗中明.响应变量随机缺失下变系数模型的统计推断[D].中南大学,2011.

[12]刘超男.两参数指数威布尔分布的参数Bayes估计及可靠性分析[D].中南大学,2008.

[13]郭艳.湖南省税收收入预测模型及其实证检验与经济分析[D].中南大学,2009.

[14]桑红芳.几类分布的参数估计的损失函数和风险函数的Bayes推断[D].中南大学,2009.

[15]朱琳.服从几类可靠性分布的无失效数据的bayes分析[D].中南大学,2009.

[16]黄芙蓉.指数族非线性模型和具有AR(1)误差线性模型的统计分析[D].南京理工大学,2009.

猜你喜欢:

1. 统计学分析论文

2. 统计方面论文优秀范文参考

3. 统计优秀论文范文

4. 统计学的论文参考范例

人们把客观存在的事物以数据的形式存储到计算机中,经历了对现实生活中事物特性的认识、概念化到计算机数据库里的具体表示的逐级抽象过程,即现实世界-概念世界-机器世界三个领域。有时也将概念世界称为信息世界;将机器世界称为存储或数据世界。 一、三个世界 1、现实世界 人们管理的对象存于现实世界中。现实世界的事物及事物之间存在着联系,这种联系是客观存在的,是由事物本身的性质决定的。例如学校的教学系统中有教师、学生、课程,教师为学生授课,学生选修课程并取得成绩。 2、概念世界 概念世界是现实世界在人们头脑中的反映,是对客观事物及其联系的一种抽象描述,从而产生概念模型。概念模型是现实世界到机器世界必然经过的中间层次。涉及到下面几个术语: 实体:我们把客观存在并且可以相互区别的事物称为实体。实体可以是实际事物,也可以是抽象事件。如一个职工、一场比赛等。 实体集:同一类实体的集合称为实体集。如全体职工。注意区分"型"与"值"的概念。如每个职工是职工实体"型"的一个具体"值"。 属性:描述实体的特性称为属性。如职工的职工号,姓名,性别,出生日期,职称等。 关键字:如果某个属性或属性组合的值能唯一地标识出实体集中的每一个实体,可以选作关键字。用作标识的关键字,也称为码。如"职工号"就可作为关键字。 联系:实体集之间的对应关系称为联系,它反映现实世界事物之间的相互关联。联系分为两种,一种是实体内部各属性之间的联系。另一种是实体之间的联系。 3、机器世界 存入计算机系统里的数据是将概念世界中的事物数据化的结果。为了准确地反映事物本身及事物之间的各种联系,数据库中的数据必须有一定的结构,这种结构用数据模型来表示。数据模型将概念世界中的实体,及实体间的联系进一步抽象成便于计算机处理的方式。 数据模型应满足三方面要求:一是能比较真实地模拟现实世界;二是容易为人所理解;三是便于在计算机上实现。数据结构、数据操作和完整性约束是构成数据模型的三要素。数据模型主要包括网状模型、层次模型、关系模型等,它是按计算机系统的观点对数据建模,用于DBMS的实现。 层次模型 若用图来表示,层次模型是一棵倒立的树。在数据库中,满足以下条件的数据模型称为层次模型: ① 有且仅有一个结点无父结点,这个结点称为根结点; ② 其他结点有且仅有一个父结点。 根据层次模型的定义可以看到,这是一个典型的树型结构。结点层次从根开始定义,根为第一层,根的子结点为第二层,根为其子结点的父结点,同一父结点的子结点称为兄弟结点,没有子结点的结点称为叶结点。 网状模型 在现实世界中,事物之间的联系更多的是非层次关系的,用层次模型表示非树型结构是很不直接的,网状模型则可以克服这一弊病。网状模型是一个网络。在数据库中,满足以下两个条件的数据模型称为网状模型。 ① 允许一个以上的结点无父结点; ② 一个结点可以有多于一个的父结点。 从以上定义看出,网状模型构成了比层次结构复杂的网状结构。 关系模型 在关系模型中,数据的逻辑结构是一张二维表。 在数据库中,满足下列条件的二维表称为关系模型: ① 每一列中的分量是类型相同的数据; ② 列的顺序可以是任意的; ③ 行的顺序可以是任意的; ④ 表中的分量是不可再分割的最小数据项,即表中不允许有子表; ⑤ 表中的任意两行不能完全相同。 个人版权,请勿复制

数学建模研究性学习论文以自己的生活为背景,用自己所学的数学知识,去解决生活当中的疑虑,然后把这这个过程分析说明清楚,就是一遍好的数学建模建模论文,北京市数学建模应用竞赛已经搞了很多届,你可以找找相关的论文,关于这方面也有好几本书书籍,比如中学数学建模教与学

一、三个世界 1、现实世界 人们管理的对象存于现实世界中。现实世界的事物及事物之间存在着联系,这种联系是客观存在的,是由事物本身的性质决定的。例如学校的教学系统中有教师、学生、课程,教师为学生授课,学生选修课程并取得成绩。 2、概念世界 概念世界是现实世界在人们头脑中的反映,是对客观事物及其联系的一种抽象描述,从而产生概念模型。概念模型是现实世界到机器世界必然经过的中间层次。涉及到下面几个术语: 实体:我们把客观存在并且可以相互区别的事物称为实体。实体可以是实际事物,也可以是抽象事件。如一个职工、一场比赛等。 实体集:同一类实体的集合称为实体集。如全体职工。注意区分"型"与"值"的概念。如每个职工是职工实体"型"的一个具体"值"。 属性:描述实体的特性称为属性。如职工的职工号,姓名,性别,出生日期,职称等。 关键字:如果某个属性或属性组合的值能唯一地标识出实体集中的每一个实体,可以选作关键字。用作标识的关键字,也称为码。如"职工号"就可作为关键字。 联系:实体集之间的对应关系称为联系,它反映现实世界事物之间的相互关联。联系分为两种,一种是实体内部各属性之间的联系。另一种是实体之间的联系。 3、机器世界 存入计算机系统里的数据是将概念世界中的事物数据化的结果。为了准确地反映事物本身及事物之间的各种联系,数据库中的数据必须有一定的结构,这种结构用数据模型来表示。数据模型将概念世界中的实体,及实体间的联系进一步抽象成便于计算机处理的方式。 数据模型应满足三方面要求:一是能比较真实地模拟现实世界;二是容易为人所理解;三是便于在计算机上实现。数据结构、数据操作和完整性约束是构成数据模型的三要素。数据模型主要包括网状模型、层次模型、关系模型等,它是按计算机系统的观点对数据建模,用于DBMS的实现。 关系数据库采用关系模型作为数据的组织方式。 关系数据库因其严格的数学理论、使用简单灵活、数据独立性强等特点,而被公认为最有前途的一种数据库管理系统。它的发展十分迅速,目前已成为占据主导地位的数据库管理系统。自20世纪80年代以来,作为商品推出的数据库管理系统几乎都是关系型的,例如,Oracle,Sybase,Informix,Visual FoxPro等。 网络数据库也叫Web数据库。促进Internet发展的因素之一就是Web技术。由静态网页技术的HTML到动态网页技术的CGI、ASP、PHP、JSP等,Web技术经历了一个重要的变革过程。Web已经不再局限于仅仅由静态网页提供信息服务,而改变为动态的网页,可提供交互式的信息查询服务,使信息数据库服务成为了可能。Web数据库就是将数据库技术与Web技术融合在一起,使数据库系统成为Web的重要有机组成部分,从而实现数据库与网络技术的无缝结合。这一结合不仅把Web与数据库的所有优势集合在了一起,而且充分利用了大量已有数据库的信息资源。图1-1是Web数据库的基本结构图,它由数据库服务器(Database Server)、中间件(Middle Ware)、Web服务器(Web Server)、浏览器(Browser)4部分组成。 Web数据库的基本结构 它的工作过程可简单地描述成:用户通过浏览器端的操作界面以交互的方式经由Web服务器来访问数据库。用户向数据库提交的信息以及数据库返回给用户的信息都是以网页的形式显示。 Internet技术与相关协议 Internet技术在Web数据库技术中扮演着重要的角色。Internet(因特网)专指全球最大的、开放的、由众多网络相互连接而成的计算机网络,并通过各种协议在计算机网络中传递信息。TCP/IP协议是Internet上使用的两个最基本的协议。因此也可以说Internet是全球范围的基于分组交换原理和TCP/IP协议的计算机网络。它将信息进行分组后,以数据包为单位进行传输。Internet在进行信息传输时,主要完成两项任务。 (1)正确地将源信息文件分割成一个个数据包,并能在目的地将源信息文件的数据包再准确地重组起来。 (2)将数据包准确地送往目的地。 TCP/IP协议的作用就是为了完成上述两项任务,规范了网络上所有计算机之间数据传递的方式与数据格式,提供了数据打包和寻址的标准方法。 1.TCP/IP协议 TCP协议(Transmission Control Protocol,传输控制协议)规定了分割数据和重组数据所要遵循的规则和要进行的操作。TCP协议能保证数据发送的正确性,如果发现数据有损失,TCP将重新发送数据。 2.IP协议 在Internet上传送数据往往都是远距离的,因此在传输过程中要通过路由器一站一站的转接来实现。路由器是一种特殊的计算机,它会检测数据包的目的地主机地址,然后决定将该数据包送往何处。IP协议(Internet Protocol,网际协议)给Internet中的每一台计算机规定了一个地址,称为IP地址。IP地址的标准是由4部分组成(例如),其中前两部分规定了当前使用网络的管理机构,第3部分规定了当前使用的网络地址,第4部分规定了当前使用的计算机地址。 Internet上提供的主要服务有E-mail、FTP、BBS、Telnet、WWW等。其中WWW(World Wide Web,万维网)由于其丰富的信息资源而成为Internet最为重要的服务。 3.HTTP协议 HTTP协议(Hypertext Transfer Protocol,超文本传输协议)应用在WWW上,其作用是完成客户端浏览器与Web服务器端之间的HTML数据传输。 Web的工作原理与工作步骤 万维网简称为Web。Web可以描述为在Internet上运行的、全球的、交互的、动态的、跨平台的、分布式的、图形化的超文本信息系统。 1.Web的工作原理 Web是伴随着Internet技术而产生的。在计算机网络中,对于提供Web服务的计算机称为Web服务器。Web采用浏览器/服务器的工作方式。每个Web服务器上都放置着大量的Web信息。Web信息的基本单位是Web页(网页),多个网页组成了一个Web节点。每个Web节点的起始页称为“主页”,且拥有一个URL地址(统一资源定位地址)。Web节点之间及网页之间都是以超文本结构(非线性的网状结构)来进行组织的。 2.Web的工作步骤 Web的工作步骤如下。 (1)用户打开客户端计算机中的浏览器软件(例如Internet Explorer)。 (2)用户输入要启动的Web主页的URL地址,浏览器将生成一个HTTP请求。 (3)浏览器连接到指定的Web服务器,并发送HTTP请求。 (4)Web服务器接到HTTP请求,根据请求的内容不同作相应的处理,再将网页以HTML文件格式发回给浏览器。 (5)浏览器将网页显示到屏幕上. 图1-2 Web的工作步骤 WWW世界中的标记语言 1.HTML语言 HTML(Hypertext Markup Language,超文本标记语言)是创建网页的计算机语言。所谓网页实际上就是一个HTML文档。文档内容由文本和HTML标记组成。HTML文档的扩展名就是.html或.htm。浏览器负责解释HTML文档中的标记,并将HTML文档显示成网页。 (1)HTML标记 HTML标记的作用是告诉浏览器网页的结构和格式。每一个标记用尖括号<>括起来。大多数标记都有一个开始标记和一个结束标记。标记不分大小写。多数标记都带有自己的属性。例如字体标记有FACE、COLOR、SIZE等属性:FACE定义字体;COLOR定义字体的颜色;SIZE定义字体的大小。 使用格式: BEIJING 。 网页中有很多文本链接和图片链接。链接,又被称为超链接,用于链接到WWW万维网中的其他网页上。在HTML文档中表示超链接的标记是,通过属性HREF指出链接的网页地址URL。 使用格式: BEIJING 。 (2)HTML程序 HTML程序必须以标记开始,以标记结束。在和标记之间主要由两部分组成:文件头和文件体。文件头用标记 来标识,文件体用标记来标识。在文件的头部通常包含整个网页的一些信息。例如标记是用来说明网页的名称;标记是用来说明网页的其他信息,如设计者姓名和版权信息等。所有在浏览器中要显示的内容称为网页的主体,必须放在标记中。下面给出的是一个空网页的HTML程序。 (在此标记中写网页的标题) (在此标记中写网页的内容) (3)HTML规范 HTML规范又称为HTML标准,它总在不断地发展。每一新版本的出现,HTML都会增加新的特性和内容。有关HTML版本的详细信息请访问网站。 在不同的浏览器中,网页的显示效果可能会有所不同。每一个浏览器都使用自己独特的方式解释HTML文档中的标记,并且多数浏览器不完全支持HTML的所有特性。因为,像Microsoft和Netscape公司在HTML标准上又开发了一些特有的HTML标记和属性,称之为HTML的扩展。这些标记和属性只被他们自己的浏览器所识别,不可能被其他公司的浏览器识别。如果浏览器不能识别HTML文档中的标记,则会忽略这个标记。 (4)HTML程序的编辑环境与运行环境 HTML文档是一个普通的文本文件(ASCII),不包含任何与平台、程序有关的信息。因此HTML文档可以利用任何文本编辑器来方便地生成。要注意的是HTML文档的扩展名必须是.html或.htm。运行HTML文档可以在任何浏览器下进行,并可在浏览器上查看网页的HTML源代码。 关于HTML语言中标记的种类与使用方法将会在第5章中更详细地进行介绍。 2.可扩展标记语言(XML) HTML是Web上的通用语言,随着Internet的深入人心,WWW上的Web文件日益复杂化、多样化,人们开始感到了HTML这种固定格式的标记语言的不足。1996年W3C开始对HTML的后续语言进行研究,并于1998年正式推出了XML(Extensible Markup Language,可扩展标记语言)。在设计网页时,XML提供了比HTML更灵活的方法。 (1)XML语言的特点 XML是国际组织W3C为适应WWW的应用,将SGML (Standard Generalized Markup Language)标准进行简化形成的元标记语言。简单地说,XML是使用标记来描述内容或与内容相关的形式信息的通用语言。一个XML文档由标记和字符数据组成。 而作为元标记语言,XML不再使标记固定,允许网页的设计者定义数量不限的标记来描述内容,同时还允许设计者创建自己的使用规则。 (2)XML的DTD DTD(Document Type Definition,文档类型定义)是一组应用在XML文档中的自定义标记语言的技术规范。DTD中定义了标记的含义及关于标记的语法规则。语法规则中确定了在XML文档中使用哪些标记符,它们应该按什么次序出现,标记符之间如何 嵌套,哪些标记符有属性等等。DTD可以包含在它所描述的XML文档中,但通常它是一份单独的文档或者一系列文档。作为外部文件可通过URL链接,被不同的XML文档 共享。 XML把DTD的定义权开放,不同行业可以根据自己的实际需求定义描述内容的DTD,以适应本行业内部的信息交流和存档需要。因此,适合于不同行业、不同平台的标记语言大批涌现。 (3)XML的CSS与XSL 强调内容描述与形式描述的分离,一方面可以使XML文件的编写者更集中精力于数据本身,而不受显示方式的细节影响;另一方面允许为相同的数据定义不同的显示方式,从而适合于不同应用、不同媒体,使XML数据得到最大程度的重用。XML文档数据的显示形式是通过样式单定义的。CSS(Cascading Style Sheets)是XML使用的一种标准的级联样式单,XSL(Extensible Style Language)则是可扩展的样式语言。 由于XML允许用户创建任何所需的标记,而通用浏览器却既无法预期用户标记的意义,又无法为显示这些标记而提供规则,因此用户必须为自己创建的XML文档编写样式单,样式单可以实现共享。 浏览器对一个XML文档的处理过程是,首先去关联它所指定的样式单文件,如果该样式单是一个XSL文件,则按照规定对XML数据进行转换然后再显示,XSL本身也是基于XML语言的,可以将XML转化为HTML后再显示。如果该样式单是一个CSS文件,浏览器就会按照样式单的规定给每个标记赋予一组样式后再显示。 Web数据库访问技术 Web数据库访问技术通常是通过三层结构来实现的,如图1-3所示。目前建立与Web数据库连接访问的技术方法可归纳为CGI技术,ODBC技术和ASP、JSP、PHP 技术。 Web数据库访问的三层结构 CGI技术 CGI(Common Cateway Interface,通用网关界面)是一种Web服务器上运行的基于Web浏览器输入程序的方法,是最早的访问数据库的解决方案。CGI程序可以建立网页与数据库之间的连接,将用户的查询要求转换成数据库的查询命令,然后将查询结果通过网页返回给用户。一个CGI工作的基本原理如图1-4所示。 CGI程序需要通过一个接口才能访问数据库。这种接口多种多样,数据库系统对CGI程序提供了各种数据库接口如Perl、C/C++、VB等。为了使用各种数据库系统,CGI程序支持ODBC方式,通过ODBC接口访问数据库。 CGI工作流程 ODBC技术 ODBC(Open Database Connectivity,开放数据库互接)是一种使用SQL的应用程序接口(API)。ODBC最显著的优点就是它生成的程序与数据库系统无关,为程序员方便地编写访问各种DBMS的数据库应用程序提供了一个统一接口,使应用程序和数据库源之间完成数据交换。ODBC的内部结构为4层:应用程序层、驱动程序管理器层、驱动程序层、数据源层。它们之间的关系如图1-5所示。由于ODBC适用于不同的数据库产品,因此许多服务器扩展程序都使用了包含ODBC层的系统结构。 ODBC的内部结构 Web服务器通过ODBC数据库驱动程序向数据库系统发出SQL请求,数据库系统接收到的是标准SQL查询语句,并将执行后的查询结果再通过ODBC传回Web服务器,Web服务器将结果以HTML网页传给Web浏览器,工作原理如图1-6所示。 Web服务器通过ODBC访问数据库 由于Java语言所显示出来的编程优势赢得了众多数据库厂商的支持。在数据库处理方面,Java提供的JDBC为数据库开发应用提供了标准的应用程序编程接口。与ODBC类似,JDBC也是一种特殊的API,是用于执行SQL语句的Java应用程序接口。它规定了Java如何与数据库之间交换数据的方法。采用Java和JDBC编写的数据库应用程序具有与平台无关的特性。 ASP、JSP、PHP技术 ASP是Microsoft开发的动态网页技术,主要应用于Windows NT+IIS或 Windows 9x+PWS平台。确切地说ASP不是一种语言,而是Web服务器端的开发环境。利用ASP可以产生和运行动态的、交互的、高性能的Web服务应用程序。ASP支持多种脚本语言,除了VBScript和Pscript,也支持Perl语言,并且可以在同一ASP文件中使用多种脚本语言以发挥各种脚本语言的最大优势。但ASP默认只支持VBScript和Pscript,若要使用其他脚本语言,必须安装相应的脚本引擎。ASP支持在服务器端调用ActiveX组件ADO对象实现对数据库的操作。在具体的应用中,若脚本语言中有访问数据库的请求,可通过ODBC与后台数据库相连,并通过ADO执行访问库的操作。关于ASP的编程技术将会在第7章中详细介绍。 JSP是Sun公司推出的新一代Web开发技术。作为Java家族的一员,几乎可以运行在所有的操作系统平台和Web服务器上,因此JSP的运行平台更为广泛。目前JSP支持的脚本语言只有Java。JSP使用JDBC实现对数据库的访问。目标数据库必须有一个JDBC的驱动程序,即一个从数据库到Java的接口,该接口提供了标准的方法使Java应用程序能够连接到数据库并执行对数据库的操作。JDBC不需要在服务器上创建数据源,通过JDBC、JSP就可以实现SQL语句的执行。 PHP是Rasmus Lerdorf推出的一种跨平台的嵌入式脚本语言,可以在Windows、UNIX、Linux等流行的操作系统和IIS、Apache、Netscape等Web服务器上运行,用户更换平台时,无需变换PHP代码。PHP是通过Internet合作开发的开放源代码软件,它借用了C、Java、Perl语言的语法并结合PHP自身的特性,能够快速写出动态生成页面。PHP可以通过ODBC访问各种数据库,但主要通过函数直接访问数据库。PHP支持目前绝大多数的数据库,提供许多与各类数据库直接互连的函数,包括Sybase、Oracle、SQL Server等,其中与SQL Server数据库互连是最佳组合。 网络数据库应用系统的层次体系 当前,Internet/Intranet技术发展异常迅速,越来越多的数据库应用软件运行在Internet/Intranet环境下。在此之前,数据库应用系统的发展经历了单机结构、集中式结构、客户机/服务器(C/S)结构之后,随着Internet的普及,又出现了浏览器/服务器(B/S)结构与多层结构。在构造一个应用系统时,首先考虑的是系统的体系结构,采用哪种结构取决于系统的网络环境、应用需求等因素。 客户机/服务器结构 1.二层C/S结构 二层C/S结构是当前非常流行的数据库系统结构,在这种结构中,客户机提出请求,服务器对客户机的服务请求做出回答。它把界面和数据处理操作分开在前端(客户端)和后端(服务器端),这个主要特点使得C/S系统的工作速度主要取决于进行大量数据操作的服务器,而不是前端的硬件设备;同时也大大降低了对网络传输速度的要求,因为只须客户端把服务请求发送给数据库服务器,数据库服务器只把服务结果传回前端,如图1-7所示。 在设计时,对数据可能有如下不同的处理形式。 (1)在处理时,客户机先向服务器索取数据,然后释放数据库,即客户机发出的是文件请求,在客户机端处理数据,最后将结果送回服务器。这种处理方式的缺点很明显:所有的应用处理都在客户端完成,这就要求客户端的计算机必须有足够的能力,以便执行需要的任何程序。更为糟糕的是,由于所有的处理均在客户端完成,每次运行时都要将文件整体传送到客户端,然后才能执行。如:Student表中有30 000条记录,客户端发出命令: Select * From Student Where Sno='200101' 这条命令将要求服务器将Student表中的所有记录传送到客户端,然后在客户端执行查询,结果只用到一条记录;如果查询的记录不存在,网络传输的数据实际上是无 用的。如此大的数据传输量是不可想象的。因此,人们提出了在服务器中能够执行部分代码的客户机/服务器结构。 (2)在处理时,客户机接受用户要求,并发给服务器;在服务器端处理用户要求,最后将结果传回客户机显示或打印。这种处理方式网络通信量较小。客户机向服务器发出的是处理请求,而不是文件请求,处理请求中的代码在服务器端执行后向客户机传送处理后的结果。 这样,为了特定任务,客户机上的程序和服务器上的程序协同工作:客户机端的代码用于完成用户的输入输出及数据的检查,而服务器端的代码完成对数据库的操作。 客户机/服务器结构的另一个主要特点在于软件、硬件平台的无关性。数据库服务器上的数据库管理系统集中负责管理数据,它向客户端提供一个开放的使用环境,客户端通过数据库接口,如ODBC(开放数据库连接)和SQL语言访问数据库,也就是说,不管客户端采用什么样的硬件和软件,它只要能够通过网络和数据库接口程序连接到服务器,就可对数据库进行访问。 在客户机/服务器结构中,常把客户机称为前台,而把服务器端称为后台。前台应用程序的功能包括用户界面、接收用户数据、处理应用逻辑、向后台发出请求、同时接收后台返回的结果,最后再将返回的结果按一定的格式或方式显示给用户。而后台服务器则负责共享外部设备、存取共享数据、响应前台客户端的请求并回送结果等工作。前台的应用程序和数据一般是用户专用的,而后台的数据和代码是所有用户可以共享的。 由于数据库服务器不仅要管理共享数据,保证数据的完整性,还要执行一部分代码,完成客户端的一些处理请求,所以对用于服务器的计算机提出较高的要求。最好要采用一台专用的服务器,有较快的处理速度,有大容量的硬盘和内存,支持磁带等大容量的存储设备。 上面讲的客户机/服务器结构将应用分在了客户机、服务器两级,称其为两层客户机/ 服务器结构。总之,两层C/S结构的基本工作方式是客户程序向数据库服务器发送SQL请求,服务器返回数据或结果。 这种C/S结构有两种实现方式,一种是客户来完成表示部分和应用逻辑部分,而服务器完成数据访问部分,这种情况是以客户为中心的,适用于应用相对简单、数据访问量不是很大的情况。另一种是以服务器为中心的,把一些重要的应用逻辑部分放到服务器上,这样可充分利用服务器的计算能力,减少网络上需要传送的数据。通常以存储过程和触发器的形式出现,但存储过程都依赖于特定数据库,不同数据库之间很难移植,而三层C/S结构可以很好地解决这个问题。 注意:触发器(trigger)是数据库系统中,一个在插入、删除、修改操作之后运行的记录级事件代码。不同的事件可以对应不同的动作。通常有3种类型的触发器:INSERT触发器、DELETE触发器和UPDATE触发器。 2.三层C/S结构 由于两层结构的客户机/服务器系统本身固有的缺陷,使得它不能应用于一些大型、结构较为复杂的系统中,故出现了3层结构的客户机/服务器系统,将两层结构中服务器部分和客户端部分的应用单独划分出来,即采用“客户机—应用服务器—数据库服务器”结构(如图1-8所示)。典型的数据库应用可分为三部分:表示部分、应用逻辑(商业逻辑)部分和数据访问部分,三层结构便是对应于这三部分。 图1-8 三层C/S结构 其中,应用服务器和数据库服务器可位于同一主机,也可位于不同主机。客户机是应用的用户接口部分,负责用户与应用程序的交互,运行在客户机端的软件也称为表示层软件。应用服务器存放业务逻辑层(也称为功能层)软件,是应用逻辑处理的核心,实现具体业务。它能响应客户机请求,完成业务处理或复杂计算。若有数据库访问任务时,应用服务器层可根据客户机的要求向数据库服务器发送SQL指令。应用逻辑变得复杂或增加新的应用时,可增加新的应用服务器。数据库服务器便是用来执行功能层送来的SQL指令,完成数据的存储、访问和完整性约束等。操作完成后再通过应用服务器向客户机返回操作结果。 浏览器/服务器结构 随着Internet技术和Web技术的广泛应用,C/S结构已无法满足人们的需要。因为在典型C/S体系中,通常为客户安装前端应用程序的做法已不再现实,并且限制客户端工作环境只能基于Windows、Macintosh或UNIX等操作系统也不切实际。于是基于浏览器/服务器结构(Browser/Server)的系统应运而生。 采用B/S结构后,在客户端只需安装一个通用的浏览器即可,不再受具体操作系统和硬件的制约,实现了跨平台的应用。 基于B/S结构的典型应用通常采用三层结构:“浏览器—Web服务器—数据库服务器”,B/S模式的工作原理是:通过浏览器以超文本的形式向Web服务器提出访问数据库的请求,Web服务器接受客户请求后,激活对应的CGI程序将超文本HTML语言转化为SQL语法,将这个请求交给数据库,数据库服务器得到请求后,进行数据处理,然后将处理结果集返回给CGI程序。CGI再将结果转化为HTML,并由Web服务器转发给请求方的浏览器,如图1-9所示。 图1-9 B/S工作原理 在B/S模式中,客户端的标准配置是浏览器,如IE;业务功能处理由独立的应用服务器处理,Web服务器成为应用处理的标准配置;数据处理仍然由数据库服务器处理。 从本质上讲,B/S结构与传统的C/S结构都是以同一种请求和应答方式来执行应用的,区别主要在于:C/S是一种两层或三层结构模式,其客户端集中了大量应用软件,而B/S是一种基于超链接(HyperLink)、HTML、Java的三级或多级C/S结构,客户端仅需单一的浏览器软件,是一种全新的体系结构,解决了跨平台问题。到目前,这两种结构在不同方面都有着广泛的应用。虽然C/S结构在Internet环境下明显不如B/S结构具有优势,但它在局域网环境下仍具有优势。 Internet/Intranet信息系统的多层体系结构 多层结构应用软件与传统的两层结构应用软件相比,有可伸缩性好、可管理性强、安全性高、软件重用性好等诸多优点,如何在Internet/Intranet环境下构建应用软件体系结构就成为一个非常重要的问题,也是现今软件体系研究的一个新热点。 目前各种技术层出不穷,如最初的静态HTML页面、简单的CGI网关程序、Java Applet程序,现在的ASP等Web数据库技术,还有动态的Java在线游戏及PHP技术等。 实际上,多层的概念是由Sun公司提出来的。Sun公司提出的多层应用体系包括4层:客户层、顶端Web服务层、应用服务层和数据库层。其中顶端Web服务层是Sun公司多层体系结构中非常重要的一层,它主要起代理和缓存的作用。顶端Web服务器的作用是缓存本地各客户机经常使用的Java Applet程序和静态数据,通常被放置在客户机所在的局域网内,起到一个Java Applet主机(向Web浏览器传送Java Applet程序的计算机)和访问其他服务的代理作用。与普通代理服务器的作用相同。构建多层结构应用软件时,选用Java平台是一个很好的选择,因为它跨越各应用平台。总之,在Java平台上构建多层应用软件体系代表着今后Internet/Intranet应用的趋势。

相关百科

热门百科