首页

> 学术期刊知识库

首页 学术期刊知识库 问题

数学数列论文的开题报告

发布时间:

数学数列论文的开题报告

数学系开题报告范文

开题报告是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要而产生的。下面是我为大家整理的数学系开题报告范文,欢迎阅读。

课题名称: 实积分与复积分的比较研究

一、课题的来源及意义

通过对《数学分析》和《复变函数》的学习,我了解到《复变函数论》中的许多知识都是在《数学分析》基础上延伸、拓展的,而复积分在很大程度上说,它就是把实积分的变量范围拓宽了,即在复数域中进行积分。积分学是在古代东西方微积分思想萌发和微积分创立前夕欧洲的思想社会背景的基础上,经过多代数学家研究、探索最终形成完整的数学理论。实积分与复积分的比较研究是值得我思考和研究的一个课题。

积分学是函数论中的一个重要内容,无论是实积分还是复积分,都是研究函数的重要工具,而且在几何、物理和工程技术上,都有着广泛的应用。复积分是复变函数论中的一个重要部分,它在研究复变函数,特别是解析函数时所起的作用远远超过实积分在研究实变函数时所起的作用。无论是在研究复变函数、微分、级数,还是它们的各方面应用,都用到复变函数的积分理论。复积分是实积分的推广,而实积分的计算又用到复积分,因此,比较研复积分和实积分性质和应用对于深刻理解复变函数的理论,并用利用这些理论来解决数学及其他学科中的各种实际问题,都是有十分重要的意义。

二、国内外发展状况及研究背景

国内许多数学家对积分学进行分析和研究,而且许多大学教师也对复积分和实积分进行研究。陇东学院数学的完巧玲就对“利用复积分计算实积分”进行了全面的研究,而且还发表过相关的论文;陕西教育学院的王仲建也发表过“实积分与复积分的联系与区别”的相关论文。国外对积分学的研究要比国内的研究更广泛和深远。实积分和复积分是积分学的具体内容,现代的积分与以前的积分有着一定的区别,但它却是在以前的基础上,经过多代数学家的完善而形成的。积分学最初起源于微积分(微积分起源于牛顿、莱布尼兹),微积分的核心概念是----极限,这个理论的`完善得力于19世纪柯西和魏尔斯特拉斯的工作。17世纪利用积分学求面积、曲线长始于开普勒,他发表了《测量酒桶体积的新科学》。托里拆利、费马、帕斯卡等数学家对以前的积分进行了缺点修补和完善使得积分更接近现代的积分。积分不仅是研究函数的工具,而且在其他方面如几何、物理和工程技术上也有广泛的应用。

三、课题研究的目标和内容

通过对实积分与复积分的比较研究这个课题的研究,熟悉和掌握实积分和复积分的概念和类型,并对其进行分类、归纳,找出它们之间的区别与联系,并了解复积分和实积分的相关应用。

(1)实积分和复积分比较研究课题的研究背景、该课题目前国内外展的状况以及该课题研究的意义等。

(2)实积分和复积分的相关概念(定积分、曲线积分)及它们的性质和计算方法。

(3)对实积分与复积分的定义、性质、计算方法、应用方面进行比较;实积分与复积分的联系(应用复积分来计算实积分,结合例题进行分析、说明)。

四、本课题研究的方法

课题将通过分析、对比、综合等方法对实积分与复积分进行比较研究,最后通过例证说明利用复积分可以解决一些实积分问题。

五、课题的进度安排:

第一阶段:搜集资料,确定选题范围,联系指导老师(20XX秋1--7周)

第二阶段:选定题目、填写开题报告,准备开题 (20XX秋8--12周)

第三阶段:指导教师指导调研、收集资料、准备撰写初稿 (20XX秋13周--20XX春6周)

第四阶段:撰写初稿、在指导老师的指导下修改论文 (20XX春7--14周)

第五阶段:提交论文,准备答辩,论文总结 (20XX春15--16周)

六、参考文献

[1] 钟玉泉. 复变函数论[M]. 第3版.北京:高等教育出版社,2004

[2] 华东师范大学数学系. 数学分析[M].第3版.高等教育出版社,2001

[3] 四川大学数学系. 高等数学(第4册)[M].北京:高等教育出版社,2002

[4] 严子谦, 等. 数学分析(第一册)[M].北京:高等教育出版社,2004

[5] 孙清华, 赵德修. 新编复变函数题解[M]. 武汉:华中科技大学出版社,2002

[6] 王仲建. 实积分与复积分的联系与区别[N]. 陕西教育学院学报,1995,25:73-79

[7] 完巧玲. 利用复积分计算实积分[N]. 菏泽学院学报,2010,32(2):1673—2103

[8] 李敏,王昭海. 巧用复变函数积分证明实积分[J]. 数学教学与研究考试周刊,2009,41

[9] 金云娟. 解析函数唯一性定理在复积分上的应用[N]. 丽水学院学报,2009,31(5)

[10] 崔冬玲. 复积分的计算方法[J]. 淮南师范学院学报,2006,3:6-9

你好啊,你的数列求和的方法探讨开题报告选题定了没?开题报告选题老师同意了吗?准备往哪个方向写?开题报告学校具体格式准备好了没?准备写多少字还有什么不懂不明白的可以问我,希望可以帮到你,祝开题报告选题顺利通过,毕业论文写作过程顺利。 先说下开题报告的内容1、课题的来源及选题的依据。主要是研究生对其研究方向的历史,现状和发展情况进行分析,着重说明所选课题的经过,该课题在国内外的研究动态,和对开展此课研究工作的设想,同时阐明所选课题的理论意义、实用价值和社会经济效益,以及准备在哪些方面有所进展或突破。2、对所确定的课题,在理论上和实际上的意义、价值及可能达到的水平,给予充分的阐述,同时要对自己的课题计划、确定的技术路线、实验方案、预期结果等做理论上和技术可行性的论证。3、课题研究过程,拟采用哪些方法和手段,目前仪器设备和其他各方面条件是否具备。4、阐述课题研究工作可能遇的困难和问题,以及解决的方法和措施。5、估算论文工作所需经费,说明经费来源。再谈下开题报告的要求1、开题时间:开题报告至迟应于第三学期末完成。凡未按时开题着,可酌情在论文成绩中减1至5分。2、研究生要进行系统的文献查阅和广泛的调查研究,写出详细的文献综述,并进行现场考察和初步的试验研究,然后写出5000字左右的书面开题报告,并制定出详细的论文工作计划,经导师审阅、修改后进行开题报告。开题前研究生应将有关的参考文献和已做过的作为开题依据的各种理论分析、试验数据,事先印发给参加会议的有关人员。3、开题报告必须在学院或教研室(研究室)中进行,组成3至5人的开题报告审查小组,并邀请本专业的教师、学生参加,听取多方面的意见。审查小组成员应事先审阅提交的开题报告及有关资料,为开会做好准备。会议应发扬学术民主,对研究生的开题报告进行严格审核和科学论证。对选题适当、论据充分、措施落实的,应批准论文开题;对尚有不足的,要限期修改补充,并重做开题报告。若再次开题不能通过。则取消研究生学籍,终止培养。4、开题通过后,应将开题报告与论文工作计划经导师、教研室主任和学院院长签字后交校学位办公室。研究生、导师、学院各存一份开题报告和论文工作计划的复印件,以便定期检查论文工作。5、开题通过后,一般不得改变研究课题。确有特殊情况需要更改课题者,由导师写出书面报告说明理由,经教研室主任、学院院长、研究生教育学院院长批准后,方可另做开题报告,改换研究课题,更改研究课题后仍不能进行下去的,则对研究生取消学籍,并取消指导教师指导研究生的资格。

擅长的 原创的我帮的.

律师事务所实习调查报

斐波那契数列论文开题报告

我原来是数学课代表 我写过的 并不难 比如说斐波那契数列的研究斐波那契数列,又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。定义斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368特别指出:第0项是0,第1项是第一个1。这个数列从第二项开始,每一项都等于前两项之和。斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci)递推公式斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式:显然这是一个线性递推数列。通项公式(如上,又称为“比内公式”,是用无理数表示有理数的一个范例。)注:此时a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3,n∈N*)通项公式的推导方法一:利用特征方程(线性代数解法)线性递推数列的特征方程为:X^2=X+1解得X1=(1+√5)/2, X2=(1-√5)/2.则F(n)=C1*X1^n + C2*X2^n∵F(1)=F(2)=1∴C1*X1 + C2*X2=C1*X1^2 + C2*X2^2=1 解得C1=1/√5,C2=-1/√5∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】方法二:待定系数法构造等比数列1(初等代数解法)设常数r,s。使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。则r+s=1, -rs=1。n≥3时,有。F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]。F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]。……F⑶-r*F⑵=s*[F⑵-r*F⑴]。联立以上n-2个式子,得:F(n)-r*F(n-1)=[s^(n-2)]*[F⑵-r*F⑴]。∵s=1-r,F⑴=F⑵=1。上式可化简得:F(n)=s^(n-1)+r*F(n-1)。那么:F(n)=s^(n-1)+r*F(n-1)。= s^(n-1) + r*s^(n-2) + r^2*F(n-2)。= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)。……= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F⑴。= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)。(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的等比数列的各项的和)。=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)。=(s^n - r^n)/(s-r)。r+s=1, -rs=1的一解为 s=(1+√5)/2,r=(1-√5)/2。则F(n)=(√5/5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。方法三:待定系数法构造等比数列2(初等代数解法)已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))。得α+β=1。αβ=-1。构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。所以。an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1。an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2。由式1,式2,可得。an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3。an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。方法四:母函数法。对于斐波那契数列{a(n)},有a(1)=a(2)=1,a(n)=a(n-1)+a(n-2)(n>2时)令S(x)=a(1)x+a(2)x^2+……+a(n)x^n+……。那么有S(x)*(1-x-x^2)=a(1)x+[a(2)-a(1)]x^2+……+[a(n)-a(n-1)-a(n-2)]x^n+……=x.因此S(x)=x/(1-x-x^2).不难证明1-x-x^2=-[x+(1+√5)/2][x+(1-√5)/2]=[1-(1-√5)/2*x][1-(1+√5)/2*x].因此S(x)=(1/√5)*{x/[1-(1+√5)/2*x]-x/[1-(1-√5)/2*x]}.再利用展开式1/(1-x)=1+x+x^2+x^3+……+x^n+……于是就可以得S(x)=b(1)x+b(2)x^2+……+b(n)x^n+……其中b(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}.因此可以得到a(n)=b(n)==(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}与黄金分割关系有趣的是:这样一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当n趋向于无穷大时,后一项与前一项的比值越来越逼近黄金分割.(或者说后一项与前一项的比值小数部分越来越逼近黄金分割、前一项与后一项的比值越来越逼近黄金分割)1÷1=1,1÷2=,2÷3=...,3÷5=,5÷8=,…………,55÷89=…,…………144÷233=…46368÷75025=…...越到后面,这些比值越接近黄金比.证明a[n+2]=a[n+1]+a[n]。两边同时除以a[n+1]得到:a[n+2]/a[n+1]=1+a[n]/a[n+1]。若a[n+1]/a[n]的极限存在,设其极限为x,则lim[n->;;∞](a[n+2]/a[n+1])=lim[n->;;∞](a[n+1]/a[n])=x。所以x=1+1/x。即x²=x+1。所以极限是黄金分割比..特性平方与前后项从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。如:第二项1的平方比它的前一项1和它的后一项2的积2少1,第三项2的平方比它的前一项1和它的后一项3的积3多1。(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如从数列第二项1开始数,第4项5是奇数,但它是偶数项,如果认为5是奇数项,那就误解题意,怎么都说不通)证明经计算可得:[f(n)]^2-f(n-1)f(n+1)=(-1)^(n-1)与集合子集斐波那契数列的第n+2项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。奇数项求和偶数项求和平方求和隔项关系f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m) [ n〉m≥-1,且n≥1]两倍项关系f(2n)/f(n)=f(n-1)+f(n+1)其他公式应用生活中斐波那契斐波那契数列中的斐波那契数会经常出现在我们的眼前——比如松果、凤梨、树叶的排列、某些花朵的花瓣数(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越数e(可以推出更多),黄金矩形、黄金分割、等角螺线,十二平均律等。斐波那契数与植物花瓣3………………………百合和蝴蝶花5………………………蓝花耧斗菜、金凤花、飞燕草、毛茛花8………………………翠雀花13………………………金盏和玫瑰21………………………紫宛34、55、89……………雏菊斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那些叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。黄金分割随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值..…杨辉三角将杨辉三角左对齐,成如图所示排列,将同一斜行的数加起来,即得一数列1、1、2、3、5、8、……公式表示如下:f⑴=C(0,0)=1。f⑵=C(1,0)=1。f⑶=C(2,0)+C(1,1)=1+1=2。f⑷=C(3,0)+C(2,1)=1+2=3。f⑸=C(4,0)+C(3,1)+C(2,2)=1+3+1=5。f⑹=C(5,0)+C(4,1)+C(3,2)=1+4+3=8。F⑺=C(6,0)+C(5,1)+C(4,2)+C(3,3)=1+5+6+1=13。……F(n)=C(n-1,0)+C(n-2,1)+…+C(n-1-m,m) (m<=n-1-m)质数数量斐波那契数列的整除性与素数生成性每3个连续的数中有且只有一个被2整除,每4个连续的数中有且只有一个被3整除,每5个连续的数中有且只有一个被5整除,每6个连续的数中有且只有一个被8整除,每7个连续的数中有且只有一个被13整除,每8个连续的数中有且只有一个被21整除,每9个连续的数中有且只有一个被34整除,.......我们看到第5、7、11、13、17、23位分别是素数:5,13,89,233,1597,28657(第19位不是)斐波那契数列的素数无限多吗?尾数循环斐波那契数列的个位数:一个60步的循环11235,83145,94370,77415,…进一步,斐波那契数列的最后两位数是一个300步的循环,最后三位数是一个1500步的循环,最后四位数是一个15000步的循环,最后五位数是一个150000步的循环。自然界中巧合斐波那契数列在自然科学的其他分支,有许多应用。例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。这样,一株树木各个年份的枝桠数,便构成斐波那契数列。这个规律,就是生物学上著名的“鲁德维格定律”。另外,观察延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花的花瓣,可以发现它们花瓣数目具有斐波那契数:3、5、8、13、21、……其中百合花花瓣数目为3,梅花5瓣,飞燕草8瓣,万寿菊13瓣,向日葵21或34瓣,雏菊有34,55和89三个数目的花瓣。斐波那契螺旋:具有13条顺时针旋转和21条逆时针旋转的螺旋的蓟的头部这些植物懂得斐波那契数列吗?应该并非如此,它们只是按照自然的规律才进化成这样。这似乎是植物排列种子的“优化方式”,它能使所有种子具有差不多的大小却又疏密得当,不至于在圆心处挤了太多的种子而在圆周处却又稀稀拉拉。叶子的生长方式也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能最佳地利用空间(要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的),每片叶子和前一片叶子之间的角度应该是度,这个角度称为“黄金角度”,因为它和整个圆周360度之比是黄金分割数……的倒数,而这种生长方式就决定了斐波那契螺旋的产生。向日葵的种子排列形成的斐波那契螺旋有时能达到89,甚至144条。1992年,两位法国科学家通过对花瓣形成过程的计算机仿真实验,证实了在系统保持最低能量的状态下,花朵会以斐波那契数列长出花瓣。数字谜题三角形的三边关系定理和斐波那契数列的一个联系:现有长为144cm的铁丝,要截成n小段(n>2),每段的长度不小于1cm,如果其中任意三小段都不能拼成三角形,则n的最大值为多少?分析:由于形成三角形的充要条件是任何两边之和大于第三边,因此不构成三角形的条件就是任意两边之和不超过最大边。截成的铁丝最小为1,因此可以放2个1,第三条线段就是2(为了使得n最大,因此要使剩下来的铁丝尽可能长,因此每一条线段总是前面的相邻2段之和),依次为:1、1、2、3、5、8、13、21、34、55,以上各数之和为143,与144相差1,因此可以取最后一段为56,这时n达到最大为10。我们看到,“每段的长度不小于1”这个条件起了控制全局的作用,正是这个最小数1产生了斐波那契数列,如果把1换成其他数,递推关系保留了,但这个数列消失了。这里,三角形的三边关系定理和斐波那契数列发生了一个联系。在这个问题中,144>143,这个143是斐波那契数列的前n项和,我们是把144超出143的部分加到最后的一个数上去,如果加到其他数上,就有3条线段可以构成三角形了。影视作品中的斐波那契数列斐波那契数列在欧美可谓是尽人皆知,于是在电影这种通俗艺术中也时常出现,比如在风靡一时的《达芬奇密码》里它就作为一个重要的符号和情节线索出现,在《魔法玩具城》里又是在店主招聘会计时随口问的问题。可见此数列就像黄金分割一样流行。可是虽说叫得上名,多数人也就背过前几个数,并没有深入理解研究。在电视剧中也出现斐波那契数列,比如:日剧《考试之神》第五回,义嗣做全国模拟考试题中的最后一道数学题~在FOX热播美剧《Fringe》中更是无数次引用,甚至作为全剧宣传海报的设计元素之一。推广斐波那契—卢卡斯数列卢卡斯数列1、3、4、7、11、18…,也具有斐波那契数列同样的性质。(我们可称之为斐波那契—卢卡斯递推:从第三项开始,每一项都等于前两项之和f(n) = f(n-1)+ f(n-2)。卢卡斯数列的通项公式为 f(n)=[(1+√5)/2]^n+[(1-√5)/2]^n这两个数列还有一种特殊的联系(如下表所示),F(n)*L(n)=F(2n),及L(n)=F(n-1)+F(n+1)n12345678910…斐波那契数列F(n)11235813213455…卢卡斯数列L(n)776123…F(n)*L(n)7798725846765…类似的数列还有无限多个,我们称之为斐波那契—卢卡斯数列。如1,4,5,9,14,23…,因为1,4开头,可记作F[1,4],斐波那契数列就是F[1,1],卢卡斯数列就是F[1,3],斐波那契—卢卡斯数列就是F[a,b]。斐波那契—卢卡斯数列之间的广泛联系①任意两个或两个以上斐波那契—卢卡斯数列之和或差仍然是斐波那契—卢卡斯数列。如:F[1,4]n+F[1,3]n=F[2,7]n,F[1,4]n-F[1,3]n=F[0,1]n=F[1,1](n-1),n12345678910…F[1,4]n097157…F[1,3]n776123…F[1,4]n-F[1,3]n0112358132134…F[1,4]n+F[1,3]n279162540…②任何一个斐波那契—卢卡斯数列都可以由斐波那契数列的有限项之和获得,如n12345678910…F[1,1](n)11235813213455…F[1,1](n-1)0112358132134…F[1,1](n-1)0112358132134…F[1,3]n776123…黄金特征与孪生斐波那契—卢卡斯数列斐波那契—卢卡斯数列的另一个共同性质:中间项的平方数与前后两项之积的差的绝对值是一个恒值,斐波那契数列:|1*1-1*2|=|2*2-1*3|=|3*3-2*5|=|5*5-3*8|=|8*8-5*13|=…=1卢卡斯数列:|3*3-1*4|=|4*4-3*7|=…=5F[1,4]数列:|4*4-1*5|=11F[2,5]数列:|5*5-2*7|=11F[2,7]数列:|7*7-2*9|=31斐波那契数列这个值是1最小,也就是前后项之比接近黄金比例最快,我们称为黄金特征,黄金特征1的数列只有斐波那契数列,是独生数列。卢卡斯数列的黄金特征是5,也是独生数列。前两项互质的独生数列只有斐波那契数列和卢卡斯数列这两个数列。而F[1,4]与F[2,5]的黄金特征都是11,是孪生数列。F[2,7]也有孪生数列:F[3,8]。其他前两项互质的斐波那契—卢卡斯数列都是孪生数列,称为孪生斐波那契—卢卡斯数列。广义斐波那契数列斐波那契数列的黄金特征1,还让我们联想到佩尔数列:1,2,5,12,29,…,也有|2*2-1*5|=|5*5-2*12|=…=1(该类数列的这种特征值称为勾股特征)。佩尔数列Pn的递推规则:P1=1,P2=2,Pn=P(n-2)+2P(n-1).据此类推到所有根据前两项导出第三项的通用规则:f(n) = f(n-1) * p + f(n-2) * q,称为广义斐波那契数列。当p=1,q=1时,我们得到斐波那契—卢卡斯数列。当p=1,q=2时,我们得到佩尔—勾股弦数(跟边长为整数的直角三角形有关的数列集合)。当p=-1,q=2时,我们得到等差数列。其中f1=1,f2=2时,我们得到自然数列1,2,3,4…。自然数列的特征就是每个数的平方与前后两数之积的差为1(等差数列的这种差值称为自然特征)。具有类似黄金特征、勾股特征、自然特征的广义——斐波那契数列p=±1。当f1=1,f2=2,p=2,q=1时,我们得到等比数列1,2,4,8,16……相关数学排列组合有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法?这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……1,2,3,5,8,13……所以,登上十级,有89种走法。类似的,一枚均匀的硬币掷10次,问不连续出现正面的可能情形有多少种?答案是(1/√5)*{[(1+√5)/2]^(10+2) - [(1-√5)/2]^(10+2)}=144种。求递推数列a⑴=1,a(n+1)=1+1/a(n)的通项公式由数学归纳法可以得到:a(n)=F(n+1)/F(n),将斐波那契数列的通项式代入,化简就得结果。兔子繁殖问题斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔子都不死,那么一年以后可以繁殖多少对兔子?我们不妨拿新出生的一对小兔子分析一下:第一个月小兔子没有繁殖能力,所以还是一对两个月后,生下一对小兔对数共有两对三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对------依次类推可以列出下表:经过月数0123456789101112幼仔对数101123581321345589成兔对数011235844总体对数11235844233幼仔对数=前月成兔对数成兔对数=前月成兔对数+前月幼仔对数总体对数=本月成兔对数+本月幼仔对数可以看出幼仔对数、成兔对数、总体对数都构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)的性质外,还可以证明通项公式为:an=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}(n=1,2,3.....)数列与矩阵对于斐波那契数列1、1、2、3、5、8、13、……。有如下定义F(n)=f(n-1)+f(n-2)F(1)=1F(2)=1对于以下矩阵乘法F(n+1) = 11 F(n)F(n) 10 F(n-1)它的运算就是右边的矩阵 11乘以矩阵 F(n) 得到:10 F(n-1)F(n+1)=F(n)+F(n-1)F(n)=F(n)可见该矩阵的乘法完全符合斐波那契数列的定义设矩阵A=1 1 迭代n次可以得到:F(n+1) =A^(n) * F(1)= A^(n)*11 0 F(n) F(0) 0这就是斐波那契数列的矩阵乘法定义。另矩阵乘法的一个运算法则A^n(n为偶数) = A^(n/2)* A^(n/2),这样我们通过二分的思想,可以实现对数复杂度的矩阵相乘。因此可以用递归的方法求得答案。数列值的另一种求法:F(n) = [ (( sqrt ( 5 ) + 1 ) / 2) ^ n ]其中[ x ]表示取距离 x 最近的整数。斐波那契弧线斐波那契弧线,也称为斐波那契扇形线。第一,此趋势线以二个端点为准而画出,例如,最低点反向到最高点线上的两个点。然后通过第二点画出一条“无形的(看不见的)”垂直线。然后,从第一个点画出第三条趋势线:, 50%和的无形垂直线交叉。斐波纳契弧线,是潜在的支持点和阻力点水平价格。斐波纳契弧线和斐波纳契扇形线常常在图表里同时绘画出。支持点和阻力点就是由这些线的交汇点得出。要注意的是弧线的交叉点和价格曲线会根据图表数值范围而改变,因为弧线是圆周的一部分,它的形成总是一样的。于公元1170年,卒于1250年,籍贯是比萨。他被人称作“比萨的列昂纳多”。1202年,他撰写了《算盘全书》(Liber Abacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。斐波那契数列在股市中的应用时间周期理论是股价涨跌的根本原因之一,它能够解释大多数市场涨跌的奥秘。在时间周期循环理论中,除了利用固定的时间周期数字寻找变盘点之外,还可以利用波段与波段之间的关系进行研究。但无论如何寻找变盘点,斐波那契数列都是各种重要分析的基础之一,本文将简单阐述斐波那契数列及其与市场的关系。工具/原料步骤/方法斐波那契数列由十三世纪意大利数学家斐波那契发现。数列中的一系列数字常被人们称之为神奇数奇异数。具体数列为:1,1,2,3,5,8,13,21,34,55,89,144,233等,从该数列的第三项数字开始,每个数字等于前两个相邻数字之和。而斐波那契数列中相邻两项之商就接近黄金分割数,与这一数字相关的、、和等数字就构成了股市中关于市场时间和空间计算的重要数字。大到整个宇宙空间到小到分子原子,从时间到空间,从自然到人类社会,政治、经济、军事等,各种现象中的规律都能找到斐波那契数的踪迹。世界著名建筑如巴黎圣母院、埃菲尔铁塔、埃及金字塔等均能从它们身上找到的影子。名画、摄影、雕塑等作品的主题都在画的处。报幕员站在舞台的处所报出的声音最为甜美、动听。人的肚脐眼是人体长度的位置,人的膝盖是从脚底到肚脐眼长度的。战争中的运用也是无所不在,小到兵器的制造、中到排兵布阵到战争时间周期的运用,相传拿破仑大帝即败于黄金分割线。在金融市场的分析方法中,斐波那契数字频频出现。例如,在波浪理论中,一轮牛市行情可以用1个上升浪来表示,也可以用5个低一个层次的小浪来表示,还可继续细分为21个或89个小浪;在空间分析体系中,反弹行情的高度通常是前方下降趋势幅度的、、;回调行情通常是前方上升趋势的、和。斐波那契数列在实际操作过程中有两个重要意义:第一个实战意义在于数列本身。本数列前面的十几个数字对于市场日线的时间关系起到重要的影响,当市场行情处于重要关键变盘时间区域时,这些数字可以确定具体的变盘时间。使用斐波那契数列时可以由市场中某个重要的阶段变盘点向未来市场推算,到达时间时市场发生方向变化的概率较大。图1综合指数(1A0001)2009年7月29日—12月31日日线图如图1所示,综合指数(1A0001)2009年8月4日的3478点到2009年9月1日阶段低点2639点的时间关系是21个交易日,2009年9月1日的阶段低点2639点到2009年9月18日的高点3068点是13个交易日的时间,到2009年9月29日的低点2712点是21个交易日,到2009年10月23日的高点3123点的时间是34个交易日,到2009年11月24日的年度次高点3361点的时间是55个交易日。图2综合指数(1A0001)2009年7月10日—12月31日周线图如图2所示,综合指数(1A0001)2009年8月4日的高点3478点到2009年9月4日2639点的运行时间是5周;2009年9月4日的低点2639点到2009年11月27日反弹高点3361点的时间是13周。斐波那契数列在股市中的应用斐波那契数列在股市中的应用第二个实战意义在于本数列的衍生数字是市场中纵向时间周期计算未来市场变盘时间的理论基础。这组衍生数列分别是:、、、、、2、、、等一系列与黄金分割相关的数字。在使用神奇数列时主要有六个重要的时间计算方法:第一、通过完整的下跌波段时间推算未来行情上涨波段的运行时间。第二、通过完整的上涨波段时间推算未来行情下跌波段的运行时间。这两种比例关系就像生活中我们经常见到的作用力与反作用的关系,乒乓球垂直掉到地面的高度决定乒乓球触击地面以后反弹的高度是同样的道理。第三、通过上升波段中第一个子波段低点到高点的时间推算本上升波段最终的运行时间。第四、通过下降波段中第一子波段高点到低点的时间推算本下跌波段最终的运行时间。这两种比例关系就像生活中我们经常见到的推动力与惯性的关系,当古代弓箭的弓与弦被拉开的距离直接决定了未来箭向前飞行的距离。第五、通过本上升波段中第一子波段的两个相邻低点的时间推算未来上升波段的最终运行时间。第六、通过下降波段中第一子波段的两个相邻高点的时间推算本下跌波段最终的运行时间。这两种比例关系就像生活中我们经常见到的建筑物地基宽度影响未来高度一样重要。在材质相同的情况下,地基宽度越大,未来高度越高。5在这六种重要的时间计算方法中最为重要的就是计算过程中实际使用的参数,利用不同的参数会得到不同的答案,而使用过程中几乎所有的重要参数都与斐波那契数列有关。由于篇幅原因,这里先埋个伏笔,我会在以后的文章中为股民朋友详细阐述计算方法。

A.斐波那契数列在欧美可谓是尽人皆知,于是在电影这种通俗艺术中也时常出现,比如在风靡一时的《达芬奇密码》里它就作为一个重要的符号和情节线索出现,在《魔法玩具城》里又是在店主招聘会计时随口问的问题。可见此数列就像黄金分割一样流行。可是虽说叫得上名,多数人也就背过前几个数,并没有深入理解研究。在电视剧中也出现斐波那契数列,比如:日剧《考试之神》第五回,义嗣做全国模拟考试题中的最后一道数学题~B.人类文明的斐波那契演进古老的<马尔萨斯理论>已经显灵马尔萨斯认为:每当社会财富快速积累,人口快速增长,就会出现:战争、瘟疫、饥荒、自然灾害来削减人口。2000年科技泡沫达到繁荣的极限,到处都是财富神话!然后盛极而衰,全球经济急转直下转入衰退、长期萧条。于是:911、阿富汗战争、伊拉克战争、 SARS、印度洋海啸、飓风袭击美利坚、禽流感、寒流袭击欧罗巴。这一切集中在一起接二连三地发生!2000年是自上世纪30年代全球经济大萧条后,一个长达约70年的经济增长周期的结束点,后面将是一个长期萧条周期。上世纪30年代全球经济大萧条导致了二次世界大战,被艾略特称之为:底部战争。现在又是一个与上世纪30年代全球经济大萧条同级别的经济萧条周期,2000年来的经济萧条将持续至 2021年才会结束(预测附在下面)。后面是否又会发生被艾略特称之为的:底部战争?至少有不良苗头:哈马斯执政、伊朗核问题纠缠,世界将走向何方? 是否还记得那个著名的: 1999年7月之上 (误差了2年) 恐怖大王从天而降 (911) 使安哥鲁摩阿大王为之复活 (美国发动反恐战争) 这期间由马尔斯借幸福之名统治四方 (唯一待验证) 社会群体心理、群体行为、群体价值观,乃至国际政治、经济、军事,一切皆是自相似系统分形几何运行阶段的反映和结果。 1、自2000年来的全球经济萧条将持续至2021年,说明未来将是长期萧条。 2、之前会有若干次小级别、温和的经济扩张和收缩,2010、2011、2018年是拐点。 3、2021年是一个黑暗的年份,人们悲观、恐惧、绝望的情绪会达到一个极点。到时绝大多数经济学家会一致悲观!接着柳岸花明经济开始复苏,经济学家们又挨了一记大耳光。 首先,列出一组计算公式: (公元1937年 – 公元1932年)X + 公元1982年 = 公元2000年 (公元1966年 – 公元1942年)/ + 公元1982年 = 公元1999年 (公元1837年 – 公元1789年)X + 公元1932年 = 公元1998年 (公元1325年 – 公元950年)X – (公元1650年 – 公元1490年) + (公元1789年– 公元1650年) + 公元1789年 = 公元2000年 其中: 公元950年 商业革命的起点 公元1325年 商业革命的结束点 公元1490年 资本主义革命的起点 公元1650年 资本主义革命的结束点 公元1789年 工业革命的起点 公元1837年 公元1789年后第一轮经济扩张的结束点 公元1932年 自公元1929年资本主义世界股灾的结束点 公元1937 年 公元1929年股灾后第一轮经济扩张的结束点 公元1942年 公元1929年股灾后第二轮经济扩张的起点 公元1966年 公元1929年股灾后第二轮经济扩张的结束点 公元1982年 70年代全球经济滞胀的结束点 、、 是斐波那契比率,来源于斐波那契数列 前2个计算公式的含义: 自上世纪30年代资本主义世界经济大萧条以来,新的一个自公元1932年开始的上升5浪的经济扩张周期已经结束,结束点为公元2000年。那么接着是一个调整期(经济萧条期),如果是对公元1932年至公元2000年,长度68年的经济扩张周期的调整,那么它的长度应该比之前小一浪级的第4浪(公元 1966年至公元公元1982年,长16年)要长,那么斐波那契数列中最接近的数字是21年。另外,贝纳理论对时间周期的推导,公元2000年为一个重要的高点,公元2003年为一个重要的低点,下一个重要的低点是公元2021年,相互吻合。并且,公元2000年的全球经济繁荣的拐点、公元2003年的低点已经被全球经济运行的事实所确认。其中,第2个计算公式误差了1年。 第3个计算公式的含义: 公元1932年至公元2000年,长度68年的经济扩张的上升5浪,又是更大浪级一个上升5浪(公元1789年至公元2000年,长度211年)的第5子浪,公元2000年同时又是长211年上升5浪的结束点。该计算公式的结果误差了2年。那么,接下来的调整(经济萧条期)可就不是21年这么短,而是211年的 、50%、(斐波那契回荡) ,也就是长度几十年至百年级的。 第4个计算公式的含义: 公元1789年至公元2000年,长211年上升5浪的经济扩张周期,又是更大浪级公元950年至公元2000年千年浪(浪3)的第5子浪,说明公元 2000年同时又是长度1050年的一个千年浪(浪3)的结束点。那么说明接下来的调整(浪4,经济萧条期)将是对千年浪(浪3)的几百年级的。这种几百年级规模的调整不得不要从人类文明级别来考虑!之前:古罗马帝国于公元476年灭亡,之前是一个一千年的罗马帝国人类奴隶社会的文明(浪1),公元476 年后接着是一个长达474年动荡的、封建的黑暗中世纪(浪2)。并且,公元2000年的拐点(浪3的结束点)已经被全球经济运行的事实所证实,按照马尔萨斯的人口理论:每当社会财富快速积累,人口快速增长,就会出现:战争、瘟疫、饥荒、自然灾害来削减人口。公元2000年后马尔萨斯理论在不断被验证,而唯一还没有被证实的饥荒,气候如此大面积剧烈异常波动,难免会造成连续几年的粮食减产,马尔萨斯所提到的饥荒也是不难预期地。以后发生的事情还会继续不断地验证马尔萨斯理论,不信让你们的孩子的孩子......的孩子,来继续鉴证。(自然灾害频发粮食减产,低素质人口猛超生,已经为将来闹饥荒打下了伏笔。2007-2-15补)公元2000年一个时间窗口打开,之后将会战争、瘟疫、饥荒、自然灾害频发,这个逆流(浪4)的长度将是几百年长度的,未来的几百年全球人口将会被消减或50%或(斐波那契回荡),个人认为的可能性偏大,也就是说将有大量人口死于非命。即便是没被消减的,也是活的生不如死。事实已经证明公元2000年是一个千年级的时空 共振点。扩张/收缩、前进/倒退的交替式发展是自然生长、事物发展的自然法则,是不以人的意志为转移地。况且,人类社会本身就是自然的组成部分。 另外,非常精确的是: 浪3长度是浪2长度的倍(又一个斐波那契比率) 浪3长度= 公元2000年– 公元950年= 1050年 浪2长度= 公元950年– 公元476年= 474年 1050年/ = 470年,与浪2的474年仅很接近,仅误差4年。 非常巧合的是公元2000年已经被证实是全球经济运行的重要拐点,同时与上述4个计算公式的计算结果、贝纳理论的周期推导结果、还有400多年前的大预言时间出奇的一致!不知道大预言的作者是怎么计算的? 1999年7月之上 恐怖大王从天而降 使安哥鲁摩阿大王为之复活 这期间由马尔斯借幸福之名统治四方 至此我们应该明白,我们伟大的人生处于历史长河的何种阶段?下面的几百年级的调整(浪4),世界将是动荡不安的、到处都充满仇恨、敌对、剥削、压迫。有可能会是象伟大革命导师列宁所论述的:资本主义是腐朽的,资本主义是垂死的,无产阶级最终是资本主义的掘墓人。人类社会经过几百年的动荡和无产阶级革命(浪4),下一个千年浪(浪5)可能是人类文明的全球普遍社会主义阶段,下一个千年浪(浪5)也可能是一个延长浪,其中的第5子浪会上升到共产主义阶段,英特纳雄耐尔就一定会实现!! 而西方文明精确理论计算的未来: 根据波浪构造指导方针 1、浪2、4趋于等长,或呈斐波那契关系。 2、一个波浪结构中的5个子浪的第1子浪延长,这个波浪结构之后的调整浪幅度将小于等于第2子浪的底。那么,浪4的调整比较可能的是与浪2趋于等长。浪4长度 = 公元950年 – 公元476年 = 474年也就是说,上面提到的公元2000年后的战争、瘟疫、饥荒、自然灾害频发来消减人口的逆流(浪4),其长度将持续474年。之后的浪5(社会主义至共产主义文明):浪1、3趋于等长,那么浪5将是延长浪,长度是浪1、3的(斐波那契比率)倍。浪5长度 = (公元2000年 – 公元950年)X = 1699年也就是说,西方文明自公元950年来的浪3(发展的驱动浪,它伴随商业贸易的兴起至资本主义的科技泡沫)已于公元2000年结束,之后的浪4(战乱、瘟疫、饥荒、自然灾害频发的调整浪)将是长度474年的调整,然后的浪5(发展的驱动浪,社会主义至共产主义文明)长度将是1699年,最后西方文明将于公元2000年 + 474年 + 1699年 = 公元4173年结束。 我们人类在地球上的文明史本身可能就是地球生命发展阶段的一个子浪而已。 通过对跨度几千年的中国历史朝代表分析,惊异地发现中华文明竟然也是以艾略特波浪的斐波那契方式演进! 先看中国封建社会: 浪Ⅰ 公元前221年 -- 公元220年 长度441年 统一、发展的秦、汉 浪Ⅱ 公元220年 -- 公元581年 长度361年 动荡、战乱、分裂的三国、两晋、南北朝 浪Ⅲ 公元581年 – 公元907年 长度326年 统一、发展的隋、唐 浪Ⅳ 公元907年 – 公元1279年 长度372年 动荡、战乱、分裂/并存的五代十国、宋、辽、西夏、金 浪Ⅴ 公元1279年 – 公元1911年 长度632年 统一、发展的元、明、清 并且: 1、中国封建社会的三大盛世“文景之治”、“贞观之治”、“康乾盛世”就出现在Ⅰ、Ⅲ、Ⅴ三个上升的驱动浪中。 2、浪Ⅴ是延长浪经历3个朝代,浪Ⅰ、Ⅲ未延长经历2个朝代。 3、每个驱动浪开头总有一个短命的朝代:秦、隋、元 4、元/隋 = 89年/37年 = 隋/秦 = 37年/15年 = 趋于一致 其间的斐波那契关系: 1、浪Ⅰ长度是浪Ⅲ长度的倍(斐波那契比率),浪Ⅲ长度326年X = 451年,与浪Ⅰ长度441年接近。 2、浪Ⅴ长度是浪Ⅰ长度的倍(斐波那契比率),浪Ⅰ长度441年X = 609年,与浪Ⅴ长度632年接近。也就是说,(公元220年 – 公元前221年)X + 公元1279年 = 公元1888年公式含义:中国封建社会结束点公元1911年之前很多年,就可以通过波浪间的斐波那契关系计算出中国封建社会将于公元1888年结束。只误差了23年,对于长达2132年的中国封建社会而言,误差仅为 3、浪Ⅱ长度是浪Ⅰ长度的倍(斐波那契比率),浪Ⅰ长度441年 X =357年,与浪Ⅱ长度361年接近。 4、浪Ⅳ长度372年与浪Ⅱ长度361年趋于等长。 5、浪Ⅴ是延长浪,长度是浪Ⅰ至浪Ⅲ的倍(斐波那契比率)。(441年 – 361年 + 326年)X = 657年,与浪Ⅴ长度632年接近。也就是说,(公元220年 – 公元前221年 – 公元581年 + 公元220年 + 公元907年 – 公元581年)X + 公元1279年 = 公元1936年 公式含义: 中国封建社会结束点公元1911年之前很多年,就可以通过波浪间的斐波那契关系计算出中国封建社会将于公元1936年结束。只误差了25年,对于长达2132年的中国封建社会而言,误差仅为然而公元前221年至公元1911年长达2132年的中国封建社会仅是更大浪级中华文明的第3子浪。 更大浪级的波浪间存在令人瞠目结舌的精确、完美的斐波那契关系: 浪1 约公元前21世纪 -- 公元前722年,长度约1300年,夏、商、周至春秋/战国前的中国奴隶社会文明。 浪2 公元前722年 -- 公元前221年,长度501年,动荡、战乱、分裂的春秋/战国。 浪3 公元前221年 -- 公元1911年,长度2132年,中国封建社会文明。 (因内容过长,后续略)

斐波那契数列是数学中最著名的公式之一。

数列中的每个数都是它前面两个数的和。顺序是:0,1,1,2,3,5,8,13,21,34等等。描述它的数学方程是Xn+2=Xn+1+Xn

是高中和本科的主干课程,它被称为“自然的密码”和“自然的普遍法则”。据说它支配着吉萨大金字塔的所有东西的维度,对于你学校数学课本封面上的标志性贝壳,

和几率是,几乎所有你知道的都是错的。

那么,这个著名序列背后的真实故事是什么

许多消息来源声称它是莱昂纳多·斐波纳契最先发现或“发明”的。这位出生于公元1170年左右的意大利数学家最初被称为比萨的列奥纳多,斯坦福大学的数学家基思·德夫林说。德夫林说,直到19世纪,历史学家才想出了“斐波那契”这个绰号(大致意思是“博纳契家族的儿子”),以将这位数学家与比萨的另一位著名的列奥纳多区分开。《发现斐波纳契:寻找改变世界的被遗忘的数学天才的探索》(普林斯顿大学出版社,2017年)一书的作者德夫林说:“定义宇宙的大量数据”

,但比萨的列奥纳多并没有真正发现这个序列。使用印度教 *** 数字系统的古代梵文文献首先提到了它,那些比比萨的列奥纳多早了几个世纪。

“它一直存在,”德夫林告诉《生活科学》。

然而,在1202年,比萨的列奥纳多出版了大量的书“Liber Abaci”,一本数学“如何计算的食谱”,德夫林Devlin说:“Liber Abaci”是为商人编写的,它列出了印度教- *** 语的算法,用于跟踪利润、损失、剩余贷款余额等。在书中的一个地方,

中,比萨的Leonardo介绍了一个涉及兔子的问题。问题是:从一只雄性和一只雌性兔子开始。一个月后,它们成熟并与另一只雌雄兔产仔。一个月后,这些兔子繁殖出来-你猜的到-另一只雄性和雌性,也可以在一个月后交配。(忽略这里不太可能的生物学)一年后,你会有多少只兔子?结果,答案是144-,用来得到答案的公式就是现在所说的斐波那契数列。[最美的11个数学方程]

“Liber Abaci”首次将这一序列引入西方世界。但是在关于兔子繁殖的几段简短的文字之后,比萨的列奥纳多再也没有提到这个序列。事实上,直到19世纪,数学家们对序列的数学性质有了更多的研究,这一问题才被人们遗忘。1877年,法国数学家埃杜阿尔·卢卡斯正式将兔子问题命名为“斐波那契数列”,德夫林说,

,但斐波那契序列到底有什么意义?除了作为一个整洁的教学工具,它还出现在自然界的一些地方。然而,支配宇宙结构的并不是什么秘密代码,德夫林说,

斐波那契序 *** 实与现在所知的黄金比率紧密相连(黄金比率甚至不是真正的比率,因为它是一个无理数)。简单地说,数列中的数字的比率,随着数列的无穷大,接近黄金比率,即。。。从那里,数学家可以计算出所谓的黄金螺旋,或是生长因子等于黄金比率的对数螺旋。[最多的9个德夫林说,存在大量的“KDSPE”“KDSPs”,黄金比例似乎捕捉到了一些植物生长的类型。例如,一些植物的叶子或花瓣的螺旋排列遵循黄金比例。松树呈现出一个金色的螺旋状,就像向日葵中的种子一样,根据“叶状:植物形态发生的系统研究”(剑桥大学出版社,1994)。但也有同样多的植物不遵循这一规则。

“这不是生长事物的‘上帝的唯一规则’,让我们这么说吧,”德夫林说。

也许是最著名的例子,被称为鹦鹉螺的海贝,实际上并没有按照斐波那契序列生长新的细胞,他说,

当人们开始绘制与人体、艺术和建筑的连接时,与斐波那契序列的连接从稀薄到完全虚构。

需要一本大书来记录所有关于黄金比例的错误信息,当时在缅因大学的数学家乔治·马科夫斯基(George Markowsky)在1992年发表在《大学数学杂志》上的一篇论文中写道:“这些错误信息中的许多都可以归因于1855年德国心理学家阿道夫·泽伊辛的一本书。Zeising声称人体的比例是基于黄金比例。黄金比例催生了“黄金矩形”、“黄金三角形”以及各种关于这些标志性维度出现在哪里的理论。从那时起,人们就说黄金比例可以在吉萨金字塔、帕特农神庙、达芬奇的“维特鲁维亚人”和一堆文艺复兴时期的建筑中找到。德夫林说,关于这个比率对人眼来说是“唯一令人满意”的最重要的说法是不加批判的。

所有这些说法在测试时都是可测量的错误,

我们是很好的模式识别器。“我们可以看到一个模式,无论它是否存在,”德夫林说这只是一厢情愿

而从第三项起,每一项是之前两项之和,则称该数列为斐波那契数列.即: 1 , 1 , 2 , 3 , 5 , 8 , 13 , … … 1 + 1...后来的数学家发现了许多关於斐波那契数列的特性.

小学数学的论文开题报告

小学高年级数学阅读能力的培养与研究开题报告

由于开题报告是用文字体现的论文总构想,因而篇幅不必过大,但要把计划研究的课题、如何研究、理论适用等主要问题写清楚,以下是一篇关于小学高年级数学阅读能力的培养与研究的范文,希望对大家有帮助。

论文题目: 小学高年级数学阅读能力的培养与研究

课题的提出

现实意义:

在一次次考试后我们经常会听学生发出这样的感慨: 唉呀!这道题目怎么没看清楚。 我审题不够仔细! 我没理解题意。 这样的解释从表面上看似乎合情合理,但我们更应该追根溯源,更进一步剖析是什么导致学生分析问题、解决问题能力的不足,又是什么原因让学生题目都没有看懂。我认为其根本原因是学生对数学阅读能力的不足。苏霍姆林斯基曾指出:没有那种占据学生全部理智和心灵的真正的阅读,学生就没有了学习的愿望,他们的精神世界就会变得狭窄和贫乏。然而,谈到阅读,我们常常误认为那是语文老师的事,数学教学只要让学生会思考、会解题就足够了,课外阅读可有可无。然而有多少语文阅读能力很强的学生遇到数学题就犯糊涂,这样的例子我们并不鲜见。

另一方面由于是在小学阶段,老师总感觉学生年龄小,理解能力弱,自主学习能力差,不敢放手让学生通过阅读来获得新知,该阅读的时候不是被教师代替就是电脑课件代替,学生读的机会少,甚至一节课,学生没有机会读书,课堂上往往是学生听的多,而读的少。这种 包办 的形式,完全限制住了学生自身能力的发展,不利于培养学生的自主学习能力。

同时 社会数学化 正在成为现代社会发展的方向,一些 产品说明书 股市分析 都需要数学阅读。因此,数学教学中须重视数学阅读,培养学生以阅读能力为核心的独立获取数学知识的能力,成为学生获得终身学习的本领 导航 。

理论意义:

新课程对教师的要求。数学课标指出, 数学为其他科学提供了语言、思想和方法 ,而 数学阅读 则是读者通过数学语言符号获得意义的一种心理过程,因而专家强调: 数学教学就是数学语言的教学 ,所以,若要切实加强数学自主学习的思维训练,最为重要的一个基点就是强化 数学阅读 。

教师教学观念、教学行为转变的需要。随着新课改实施的不断深入,强烈要求教师的教学观念、教学行为也随之改变。作为教师应充分吃透新课标理念,充分挖掘教科书的阅读资源,充分发挥教科书的教育功能。将课堂的主体地位还给学生,当学生遇见不会的时候,教师可适当点拨让学生带着问题继续阅读、思考、讨论。教师是学生阅读能力的培养者,是学生学会阅读的促进者。

创新意义:

虽对数学阅读能力的探讨有很多,也对其重要性达到了共识。但大多数的研究都是概念化的描述和理性化的概括,缺乏可操作性的方法和案例。本课题重在通过对小学高年级学生阅读能力的研究,做到从学生的角度出发,以学生为主,充分利用教科书的资源,交给学生数学阅读的方法,让不同层次的学生掌握住以阅读能力为核心的独立获取数学知识的能力,从而获得终身学习的'本领。

课题的定义

新课程标准强调:要注重学生多种能力的培养,其中包括数学阅读能力、数学应用能力和数学探究能力。在数学教学中对学生进行数学阅读能力的培养,是提高学生自主学习能力的一项重要课题,也是新课程赋予我们的历史使命。

数学阅读过程同一般阅读过程一样,是一个完整的心理活动过程,包含语言符号(文字、数学符号、术语、公式、图表等)的感知和认读、新概念的同化和顺应、阅读材料的理解和记忆等各种心理活动因素。

数学阅读理解能力常常是解决数学问题,特别是数学文本问题的必要前提。如应用题、文字题、图表题等,这些数学文本由数字、抽象符号以及语言词汇等构成。

数学阅读不是机械地认知数学语言,按照数学教育心理学的说法,数学中的阅读是指选择那些对于产生有效的猜测或指向问题解决来说是最必要、而且是最少的、最有效的线索的技能,只有这样的阅读才是有效的。

数学阅读能力的培养即培养学生以阅读能力为核心的独立获取数学知识的能力,从而使他们获得终身学习的本领,符合现代化的先进教育思想。

国内外研究现状述评

研究的目标和内容:

研究目标

(1)让学生正确认识数学阅读的作用,有效地发挥数学阅读的教学功能,培养和提高学生的自学能力,增强学生独立获取知识的能力。

(2)通过课题研究,让老师体会到阅读数学课本内容的重要性,从而更有效地利用教材;同时,在阅读中培养学生自主学习的意识和能力,突出学生的主体地位。

(3)教师的专业水平得到提升。

研究内容

(2)探索出适合高年级学生数学阅读能力的方法。

让学生进行数学阅读,不是放手让学生自己随意读,教师要深刻钻研教材,要根据教材内容,确定哪些内容需要读,在什么时间读,读什么,怎样读才能使学生爱读、会读、读出效果,培养学生的数学语言,提高学生的解题能力。

①对教材中概念、公式阅读方法指导的策略研究。

教材中的概念、公式一直是课堂教学的重点及难点,这些内容语言精炼、准确、抽象,学生很难理解,教学中通过哪些策略让学生能深入理解内容,是本课题需研究的问题。

②对计算题阅读方法指导的策略研究。

计算题教学不仅仅是纯计算,有的学生答案做对了但题目却读错了,有的学生没有理解四则运算的含义导致算错。主要是平时很少读题,加强计算题阅读指导,对正确理解文字题、应用题有一定的促进作用。

③对图形题阅读方法指导的策略研究。

看图题在小学各册教材中占有不小的比重,对于课本上的图片、线段图、几何图、统计图等,有一部分学生看不懂图或说不清图意。这部分内容教师如何组织学生看图,如何理解图中一些关系,如何让学生用数学语言完整的进行表述,才能让学生掌握看图的方法,并学会从多角度、用不同的叙述表达图意。

④对应用题阅读方法指导的策略研究。

应用题教学一直是小学数学教学的重点,也是难点,学生最头疼的是做应用题,考试时不少学生应用题失分最多,许多学生不会读题,看不懂题,理不清题中的数量关系,因此,应重视应用题阅读方法指导,使学生掌握阅读应用题的技巧,培养学生严密、有序的思维,养成良好的阅读习惯

(3)在高年级学生中开展课内外数学阅读习惯的行动研究。

本课题的研究思路、研究方法、技术路线和实施步骤

研究思路

(1)组织本课题成员进行相关的理论学习,提高自身的数学阅读能力。

(2)分别设立实验班和对照班,在教学实践的过程中,有目标、有对照的逐步完成培养学生在课堂教学中数学阅读能力的策略。

(3)进行实验班与对照班的对比,通过进一步分析、探讨,再次完善其能力。

研究方法

(3)行动研究法:以课题研究计划为目标,对各个阶段的研究不断进行计划、研究、总结、修正,使实验研究科学、规范、合理。

(4)个案研究法:对典型的教学案例进行解剖,采用多种方法,进行全面、细致、深入的分析,从中揭示教学规律。

研究路线与实施步骤

本课题根据新课改的要求,通过调查、探索、研究等环节,积极探索学生在数学阅读方面存在的问题以及解决此问题的策略,所需时间一年。本

课题研究分三个阶段:

准备阶段()

成立课题研究小组,明确分工,组织专题培训。

召开课题开题论证会和实验老师培训会议;

确立研究对象(本校六年级学生),对实验班(五四班)进行前期调查。

设计课题的研究目标与具体实施方案,并进行自我论证。

实施阶段()

第一阶段

(1)通过问卷调查《小学高年级学生数学阅读活动调查表》和抽样分析,了解学生现有的数学阅读水平,对常见问题进行归类整理,从而分析出其不会阅读的原因。同时撰写 小学高年级学生数学阅读能力的现状分析 调查报告,为下一步研究做好准备。此项任务由翟素娟老师负责。

(2)搜集各种适合高年级学生数学阅读的方法,探究相关经验,结合本校学生的实际初步梳理出可行性措施及方法。此项任务由和志娟老师负责。

(3)聘请专家(中心校李书平校长、市教科研苗东军)担任课题顾问指导。

第二阶段

(3)进行实验班与对照班相结合、相对比的研究形式,对每一阶段学生的课堂表现、作业情况、学习成绩等进行调查,不断地调整方法。同时兼周召开一次专题研讨会,逐步完善教学中的阅读能力。由王丽萍老师负责。

(4)完成阶段性研究总结。由蔡雅雅老师负责。

总结阶段()

(2)课题成果的汇集、写出课题研究报告与结题报告,申请课题结题评估。由课题组长薛丽霞负责。

完成课题的保障条件

相关管理制度和经费保证,学校领导十分重视教育科研,严格科研制度和考核标准,建立激励机制,提供专门的科研经费支持。

研究能力的保证。整个数学组成员,都有很强的责任心和事业心,年轻有活力,好学爱专研。同时学校不仅优先考虑让课题组的成员外出学习,还会定期聘请课题研究方面的专家进行讲座,对研究的课题进行指导。

时间的保证。每周四固定的教研活动,为课题组的成员提供了较好的条件,确保了研讨的次数和时间。

考核评价的保证。在本学校的教科研考核这一块,学校对每一位参与课题研究的老师都给予了高达十分的奖励。

今天,我作为课题主持人能在这儿宣读开题报告,感到十分的光荣和高兴!希望各位老师和专家能对此课题提出宝贵的意见和建议。谢谢大家!

主要参考文献:

教育部,全日制义务教育数学课程标准(实验稿)[m].北京:北京师范大学出版社,XX。

卲光华 《数学阅读 现代数学教育不容忽视的话题》[m] 1999第十期。

李星云,一[m].合肥:安徽人民出版社, 96.。

顾安国,让数学阅读走进课堂[j].教育实践与研究,XX,(7)59 60。

马云鹏,小学数学教学论[m].北京:人民教育出版社, 33。

李佐峰,周淑芬.小学数学教师知识扩展[m].长春:东北师范大学出版社, 209。

小学数学课题研究开题报告范文

开题报告包含的论文提纲可以是粗线条的,是一个研究构想的基本框架。下面为大家分享了小学数学课题研究开题报告,欢迎借鉴!

题目:小学数学课堂教学有效性的研究

一、课题提出的背景及所要解决的主要问题

课堂教学是一个由许多种因素相互制约、相互影响的复杂系统,勿庸置疑,课堂教学的有效性即课堂教学的效率是课堂教学永恒的追求。随着课改的深入,我们的数学课堂发生了很大的变化,课堂不再是教师的“一言堂”,多位目标、生活化、动手操作、自主探究、合作交流、课堂生成……成为热门词语和热门话题。我们的课堂日益呈现新变化、新气象。然而,我们还是在许多的课例中发现,不少教师仅仅模仿了新课改的“形”,许多课堂表面上热闹、生动,试图体现新课改的种种新理念。但静心反思时总觉得有许多缺憾。究其原因,我们认为课堂教学效率意识的缺失是其中的主要原因。

有效的课堂教学就是在教学活动中,以最少的时间、最小的精力投入取得尽可能多的教学效果,它是兼顾知识的传授、情感的交流、智慧的培养和个性塑造的过程,也是全面关照学生成长与发展的乐园。

二、国内外同一研究领域现状与研究的价值

1、目前,小学数学课堂的现状:

长期以来,由于应试教育的影响, 我们的教育活动以理论学习为主,以课堂教学为主,评价教学的手段也以考试为主。课堂教学理念陈旧,教学效率低下,课内损失课外补,仍然靠死记硬背、题海战术来强化学生的记忆。学生的动手能力、实践能力较差,缺乏创新的精神和能力。

2、时代的呼唤:

新课程明确提出:“有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。重视课程内容与现实生活的联系,增选在现代生活中广泛应用的内容,开发实践应用环节,加强实验和各类实践活动,培养学生乐于动手、勤于实践的意识和习惯,提高实际操作能力。” 数学来源于生活,也应用数学知识去解决生活中的各类数学问题,加强知识与实践的联系在数学学习中十分必要。从课改精神出发,如何提高小学数学课堂教学效率已成为摆在我们面前的一个亟待解决的问题。

基于以上考虑,提出“提高小学数学课堂教学有效性的研究”的课题实验。

三、研究的`目标、子课题设计与重点

研究目标:

1、通过有效的数学教学活动,使学生掌握概念、法则、公式、性质、数量关系和由其内容反映出来的数学方法。

2、通过有效的数学教学活动,使学生具有敏锐的感知力,独特的想象力和深刻的理解力,从而提高学生的自主探索和解决问题的能力,培养学生的创新意识。

3、通过有效的数学教学活动,调动学生学习的积极性,把获取新知识作为自己的内部需要,培养学生认真、严格、刻苦钻研的学习态度。

子课题设计:

1、学习目标定位的准确性、可行性。

2、增强教学方法的有效性。包括教学情境的有效性、课堂提问的有效性、课堂生成的有效性、媒体运用的有效性……

3、确保学习方法的有效性。保证自主学习的有效性、保证合作学习的有效性、保证探究学习的有效性……

4、注重课堂教学的细节。包括板书设计、习惯养成、位置移动、引导点拨、课堂总结……

5、开展多元化的数学学习评价。

研究重点:增强教学方法的有效性、确保学习方法的有效性。

四、研究的思路、过程与方法

1、 研究思路:

通过提高数学课堂教学效率的研究,着眼于培养学生学习的主动性和自主性,构建和谐、高效的数学课堂,促进教师转变数学教学的观念:通过提高课堂教学效率来增强学生数学素养,提高学生的学业水平,调动学生学习数学的积极性,探寻一条有效地促进学生爱学数学、会学数学的课堂教学模式。

2、研究过程

实验时间为三年,主要分三个阶段:

(1)准备阶段:(—)

认真组织参加研究的教师学习《数学课程标准》、《主体教育论》及有关信息、资料,吸取广大教师的有关经验和体会,提高认识,明确指导思想,形成较为实用、科学的研究方案。

(2)实践探究阶段:(—)

依据研究方案,开展提高课堂教学效率的理念、方法、实施等方面的研究,加强日常沟通,不定期的组织参加研究的教师研讨、分析实验情况,完善方案。并将研究资料及时汇总使用,不断发现问题,总结经验,交流推进。

(3)实验的总结阶段: (—)

①进行课题实验总结,形成实验报告。

②整理实验资料,总结出具有特色的经验、成果。

③举行课题实验的结题和鉴定活动。

3、研究方法:

(1)行动研究法:运用行动研究法来研究教师在提高课堂教学效率中的作用,研究学生对具体措施的反应,努力做到“行动—反思—再行动—再反思”。

(2)观察法:对数学课堂教学活动过程中的相关要素进行第一时间的记录和描述。

(3)比较法:一例多堂,一例多师,平行班对比等,分析相关要素的关系。

(4)调查法:对学生和教师进行学后调查,把握当事者的感受和课堂教学实效获取“定性”与“定量”的双重资料。

(5)个案法: 对部分研究对象尽可能搜集更多的资料加以分析、综合运用各种方法探讨对采取提高效率后的成果。

五、主要观点与创新之处

1、主要观点:

(1) 部分教师理念异化为目标,在隐藏目标的泛化、扩大化与多维目标的整合中迷失方向。

(2) 热闹的“多言堂”、频繁的合作与讨论,使得不少课堂“形”聚“神” 却散。

(3) 部分课堂过分地拉长学生亲历数学知识形成的全过程,课堂学习的整体效率下降。

(4) 过度地依赖学具操作、数学知识泛生活化的现象,造成学生数学化思考缺乏,阻碍着课堂数学学习效率的提高。

(5) 不少课堂过分地强调了学生的自主与课堂的生成,教师发挥主导作用有畏首畏脚的现象和被弱化的趋势。

2、创新之处:

我们作为农村的一线教师,与新课程密切接触几年下来,最大的感受就是“题目变活了,错误变多了,分数变低了”。面对轰轰烈烈的新课改,我们从农村小学的视角出发思考着。新的课程标准强调数学学习与学生生活的紧密联系。把数学问题与生活情境相结合,要求学生从自身的生活经验出发,用数学的眼光捕捉信息、分析生活现象、自主解决生活中的实际问题。新教材中的很多知识如果学生没有生活经验作为基础,学起来是很困难的。新课程注重学生学习的亲历性和实践体验性,很多家庭作业形式也由原来的书面作业转变成操作实践性作业,有的则需要在家长的帮助和支持下才能完成。但在实际操作中往往会由于种种原因而大打折扣,很难实施见效。农村小学教学条件及硬件设施相对较差,数学学习中的动手操作或实践活动往往由于学具量的不足而只能靠老师或个别学生的演示验证一下,大多数学生无法亲历实践的过程,无法在操作中观察、分析和体验。动手能力弱在农村小学生身上表现尤为突出,这也在一定程度上使得农村的孩子缺乏自主探索、有效合作学习的能力。同时,某些老师仍然迷信于题海战术,高耗低效,让学生练技巧出成绩,把学生当作盛载知识的容器,当作彰显自己教学业绩的筹码。

六、预期研究成果

成果名称 成果形式 完成时间 负责人

阶段成果

总结出较系统的、可操作的提高数学课堂教学效率的方法,切实提高我校数学课堂教学效率。 公开课 XX年5月

学生数学素养全面提高,学生能力由单向发展向综合形延伸。 竞赛、检测 XX年9月

教师的教育观念得到更新,业务水平得到提升,培养出区教学骨干2~3名。 证书 XX年6月

教科研理论成果突出,在区级以上刊物发表文章10篇以上。 发表 XX年12月

最终成果

建立完善的提高数学课堂教学效率的理论体系,在一定范围内有较大影响。 论文集 XX年6月

培养出市、区教学骨干2~3名,区学科带头人1~2名。 证书 XX年6月

我校数学教学质量居全区前列,在全区范围内有一定知名度。 竞赛、检测 XX年6月

七、完成研究任务的可行性分析

1、专业引领:

聘请教研室领导等作为本课题的顾问,定期来我校做专家讲座,听实验教师的随堂课,进行随机检测,与其他学习的班级做比较研究。

2、优质团队:

由学校领导、教导主任、区骨干教师、区教坛新秀、优秀一线教师组成。

3、管理经验:

我们提出“确立效率意识 ,促进师生发展;强化系统意识,形成教育合力;增强责任意识,发挥引领作用;加强规范意识,保证研究质量”等课题开展组织策略。探索实践课题实验的激励机制,可保证课题研究的质量。

4、理论基础:

课题参与者对小学数学课堂教学活动组织、实施等均具有较强的理论素养,前期研究比较到位,已有相关的学术论文发表、获奖。

5、经费保证:

学校能提供课题实验所需的经费,保证给予方便。

我发给你,具体的可以。

数学数列论文题目

数学中,数列的教学思想是一座桥梁,能够将复杂的问题巧妙地转化成简单的解题方法,让教师在教学中和学生学习的过程中更清晰、更简洁。下面是我为你整理的高中数学数列论文,一起来看看吧。

【摘要】随着新课标在我国的全面实施,高中数学教学中心课改的理念如何体现,才能适应新课改的要求?成为高中数学教学实践的重点目标。高中数学数列方面的内容,是高中数学的基础内容,很多重要的数学问题通过数列都可得到圆满解决。因此教好数列、学好数列对提高学生未来解决数学问题的能力有重要的实践意义。从教师角度看,优良的数列教学课堂设计对教学目标和教学效果的实现举足轻重。

【关键词】高中数学;数列;课堂教学

高中数学中,数列占有很重要的教学地位,数列在数学领域隶属于离散函数的范畴,是解决现实中很多数学问题的重要工具。数列问题是高二年级数学教学的基础。数列问题学习可以培养学生对数学问题的思考、分析和归纳的能力。并对以后阶段的数学知识有启蒙作用。数学教师必须重视数列教学实践对学生的启发作用。

一、数列部分教学内容概述

数列这一部分主要介绍了数列的概念,并对数列根据其特点进行了分类。接着引出了数列通项的概念。高中二年级主要学习等差、等比数列的概念,通项公式,前n项和。并对数列在现实生活中的意义进行了介绍,主要有分期付款等储蓄问题。本章介绍的数学公式较多,主要涉及数列的通项公式和前n项和公式。教学中,对公式的推导过程和变形种类要重点讲解。以便让学生从数学原理的角度对数列的相关概念做深入理解。如何灵活的运用数列的性质来对综合性题目进行解答是本章的重点教学任务。数列的相关问题的认识,要贯穿函数的思想来向学生传递。

二、数列教学的有效性策略简析

数列的教学应该遵循有效性原则来进行。我们在教学中应该用先进的教学理念来指导教学。数学的思维模式主要是逻辑性思维为主,因此有效的方式方法一旦为学生所领会,那教学的过程会变得相当的容易。

1.对比数学问题,归纳共性特点,培养探究习惯和能力

在认识数列时,应该同时引入函数的动态认识数列的方法,利用对函数的研究方法来类比到数列问题中来。对于数列的表示法的讲解,可通过函数的表示方法引申过来。而对等差数列,等比数列的单调性性质,也可通过以往学过的函数的相关性质来类比讲解;在求和问题的最值研究中,可从抛物线等二次函数中的变量演化过程类比讲解求函数最值。等差数列和等比数列的概念、性质、通项等,我们可通过两个类型数列的异同点来进行研究。如:从数列的特点来说,前一项与后一项的之间的差异对等差数列来说,两项间是加减法的关系,每两项之间都相差一个固定的数值,而对等比数列来说,则是乘除法的关系,每相邻两项之间是倍数的关系。对中项的概念来说,等差中项概念与相邻项的关系同样的加减法的规则,而等比数列的中项则是插入一个固定比例的关系。而两个等差数列,仍然为等差数列。而两个等比数列的对应项的乘积也为等比数列。这种数列之间的项与项的数量关系的实质要为学生开解明白。

2.与其他数学知识相综合,建立数学知识体系的网络化综合化

数学中任何一个概念都不了独立的,在整个的数学知识体系里面,每个知识点都与其他的结点有关联性,因此在数列教学中,要把数列、函数、不等式、解析几何等概念有机的结合起来进行讲解。数列其实是函数的特殊化,研究函数有普遍性的意义,而研究数列是研究函数的特殊化。因此在数列教学中建立函数的概念,有助于改变学生的静态思维。另外还有,数列与不等式,数列与导数,数列与算法等的综合运用,都要在数列教学中对学生加以讲解。

3.通过练习和小测试来巩固课堂教学的效果

传统教学模式中,有一项是“题海战术”,可见习题在数学教学中的作用是不容忽视的。尽管目前的教育模式不支持教师对学生施以题海战术,但选取具有代表性的习题,开拓学生的数学思想和知识点延伸,是有极大好处的。首先通过习题,可以巩固学生的基础知识结构,加强知识点之间的有机结合,从而提高学生对数学问题的分析能力。举个简单的例子,求数列an-n。通过前面的知识的学习,我们可以知道,这道题目,分为两部分数列的综合计算而成。前半部分是一个等比数列,而后半部分,我们可以看成负自然数的数列。等比数列的求和公式是形成的,而自然数的和在初中的高斯定理就已学过,通过这样的拆解,为学生解答综合性的问题提供了行之有效的途径。其次,同样一个题目如果能,应当鼓励学生用更多的方法来进行解答,这样可以培养学生的发散性思维,在考试中碰到的问题即使一时想不出来,至少学生能够想到很多种解题的方案,这其中说不定就有通往正确答案的途径。第三,公式的变形要加强练习,只有这样,学生才能够触类旁通,同一类问题的解决途径往往稍加变形,但其解法本质上是殊途同归的,通过这种锻炼,学生解题的能力得到了很大的提高,学到的知识体系也进一步得到巩固。第四,题目解决了,并不是学习的终结,要培养学生“回头看题”的习惯。这种习惯的养成有助于学生对题目的知识点进行全面把握。

三、高中数学数列部分课堂教学设计要点

课堂教学设计是高中教学中的重中之重,课堂教学设计的水平在某种意义上决定了课堂教学的效果和学生学习的成果。在课堂教学方案的设计中,笔者通过多年的教学经验和实践认为应该包括以下要素:

1.要细致了解学生在数列学习和解决数列问题中的切身体验

应该说,学生之间对数学问题的认知和理解能力确实存在着差异性。到了高中阶段,学生们都经历了近十年的数学学习经历,长期的学习中会对某一类知识点相当的敏感,而对另外的一些知识点却有盲点。有的学生在逻辑思维方面有特长,而另外的一些学生对计算情有独钟,对知识点掌握程度的不同会造成学生解题习惯和解题思路的差异。教师在课堂教学设计中也充分考虑大部分学生的群体差异。

2.要注重数列部分概念本质的强化记忆和理解,对基础知识的传授要夯实,避免短板

数学中,不仅仅是数列,其他的概念也如此,其描述的方式,往往通过文字性的描述来说明。这种方式比较抽象,我们在设计课堂教学时,对概念性的东西要注意辅以实例来讲解。以便激发学生的猎奇心理和探索问题的欲望。

3.重视数学史渗透和用数学工具解决实际问题的能力

数学的发展史源远流长,每种数学问题的提出和最后的解决都有其历史的背景。数列教学中穿插数学史知识的传授,有利于学生对知识的来龙去脉在熟稔中学习。另外数学问题的提出往往有其实践的背景,或者是人民集体智慧的结晶,或者是某一时期特殊问题的解决之道,教师在课堂教学的过程中要努力挖掘现实问题的应用。学以致用,当学生认识到自己学习的数列知识在现实生活中确实能解决很多问题的时候,学习的欲望和学习的效果自然而然就出来了。

4.重视数列学习中组合学习的魅力

人以群分,物以类聚。在数学学习的过程中,教师应该将不同层次的学生进行分组,这种分组的教学行为,可以让学生在相同的起点上进行学习。通过对班级内不同的学生的特点和能力进行分析,对其学习的目标,任务等精心设置,发挥团队学习的效用。

5.教师应该注重自我提高,从别人的课堂教学中汲取营养

老师在教学中不能固步自封,应该走出去,在同事中加强听课和学习。完善自我的课程教学缺陷,在不断的学习中,但课堂教学方案日趋完美。

四、结束语

高中数学中数列的教学内容虽然比较少,但其教学思想却在高中数学中占有很重要的地位,数学教学,应当立足于学生对数学知识的学习特点,以先进的教学理论为指导,对课堂教学方案设计精益求精,才能获得应有的教学效果。

摘要:数列是高中数学教学中重要的内容,其在高中数学中占据着重要的地位,同时在生活中也具有非常大的应用价值。本文介绍了高中数学学习数列的重要性及新时期如何提高高中数学数列教学质量和学习能力。

关键词:高中数学;数列;教学

一、引言

在高中数学的数列教学的过程中,教师不但要让学生懂得数列问题的知识点,还要让学生能够根据掌握的相关知识熟练地解决数学问题。困此教师要以生为本,以学定教,让学生在不同的数学环境巾积极思考,推进能力的提升,并让学生在各种数学数列问题的训练中学会自主学习数学的能力。

二、高中数学数列教学体会

1、以生为本,以学定教

1)以生为本,实时掌握在数学教学过程中学生的基本的数学能力在高中数学数列教学的过程中不但每一个班的综合数学能力不同,而且就是同一个班级中的学生的数学能力也不尽相同。在这种条件下,教师不论是在新接手班级还是在教学的过程中,都要通过各种有效的数学考查方式掌握学生的实际能力,确定学生的数学层次。在这个基础上教师将不同的数学层次的学生组合成组,方便学生进行合作交流的学习。

2)以学定教,采用适合本班同学的数学教学方式进行有效教学

在高中数学数列教学的过程中,教师在选择教学方法以及教学策略的时候,要能根据本班同学的不同数学层次特点进行确定,教师要紧紧把握住学生旧知与新知的链接点,寻找能够激发学生主动思维的教学方式进行教学。同时教师还要善于选择学生喜欢的教学模式,引发学生主动探究、合作交流,并在教学的过程中要巧妙使用课堂生成,使教学能够在师生之间、生生之间的思维碰撞中引领学生对数学知识的掌握。

2、善用多媒体课件辅助教学,促使学生能够更好地理解数学知识

1)多媒体课件辅助教学具有传统的课堂教学所无法比拟的教学优势,在数列教学的过程中,很多数列问题如数列与不等式综合问题中的放缩问题、解决递推数列问题等数学问题,单凭教师一张嘴,一支粉笔并不容易将抽象的数学知识让学生透彻地理解。而在这个过程中随着信息时代的到来,计算机以及互联网络的使用让多媒体课件走入了高中数列教学的课堂。

2)多媒体课件辅助教学可以让学生更加直观地理解数学知识

教师巧妙利用多媒体课件进行教学,使原有的抽象的数学问题变得可观可感,能够最大限度地调动学生多种感官的有效参与,极大地提高了学生学习的积极性,使得学生能够在课堂上跟着教师的引导积极思维、主动探究。如:在人教版高中数学数列教学“等差数列的前n项和”的教学过程中,教师通过多媒体课件出尔:“有一堆钢管,最底下放了15根,上一层是14根,再上一层是13根,……最顶层是3根。这堆钢管共有多少根?”这个问题,同时教师出示钢管的图像,并在和学生讨论思考的过程中将讨论的结果逐步出示,或者将学生解决问题的不同方案通过多媒体课件有效地呈现出来,引发学生的积极思考,让学生能够更直观地看到不同的解题方法的过程,并在这个过程中获得数学能力的不断提升。如果教师只是采用传统的教学方式进行讲解的话,那么学生也许很难理解教师的教学思路。多媒体课件辅助教学大大提高了教师的教学效率,解决了学生对抽象的数学知识无法理解的难题,并促使学生能够在这个过程中,形成数学架构的时间的缩短。

3、高中数学数列教学的创新

数列、一般数列、等差数列、等比数列是高中数学数列教学的主要内容。其中,等差数列和等比数列是数列教学内容中的重点。主要包括对数列的定义、基本特点、通项公式、分类方法、具体应用等知识点的学习。传统的教学观念中,教学设计作为一种系统化过程,是用系统的教学方法将数列教学理论,同学习理论原理进行转换,使之成为教学活动和教学资料的具体计划。创新理念的数列教学设计解决了“教学成果”、“教学方法”、“教学目的”等问题,通过教学设计来解决教学问题,探究总结问题的解决方法和步骤,形成新的教学方案。并在新的教学方案实施以后及时的对教学效果进行分析,规划操作其过程程序,判断其实施的价值。这一过程也是教学优化的的过程,能够提高教学成果,创造出更加合理高效的教学方案。

(一)数列教学应注重问题情境的创设

为调动学生主动、合作、探索学习的积极性,实现师生互动,我们教师营造自主、合作、探索的学习环境显得很重要。在数列的教学中首先要注重数学问题情境的创设。我们创设问题情况可以考虑以下方面:学生的已有知识与生活经验及数学的趣味性、教学内容、新旧知识的衔接点以及自身的教学特色。

(二)创新理念下的“数学概念”

对数学对象本质属性进行反映的思维方式,是数列的数学概念。我们知道数列的概念是按一定次序排列的一列数称为数列。对一个数学概念的学习,应记住其名称、了解其涉及到的范围、简述其本质属性并运用其概念进行判断。数学概念包括等差数列、等比数列、通项公式和数列。

在对这些陈述性概念进行设计时,设计者应对上述概念体现的概念特点进行描述。并且在高中数学数列教学中,为了能够激发学生对数列学习的兴趣,体会数列实际应用的价值,则可以通过将生活中实际的问题引入到课程教学中,从而将抽象的数学知识转变为实际需要解决的问题,使学生学生对所要研究的内容有所认识。并且在数列学习中可以结合其他知识点进行学习。比如数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列,这样不仅能够引导学生通过多方面解决问题,而且对提高学生运用知识的能力也具有重要的意义。我们还以等差数列的定义教学为例,如:增加判断某数列是否成等差数列的题目来促进概念理解。再如:把一次函数和等差数列通项公式相联系,利用函数概念同化等差数列的概念,凸显函数思想;让学生自己列表、画图象,用“形”感受函数与数列之间联系;用方程与等差数列基本量的运算相结合来加深了对概念的理解和巩固。此外我们在教学中还要明理强化,实践探究,注重激励评价,引申探究。

学好数理化,走遍天下都不怕。写好数学论文的前提是需要有拟定一个优秀的数学论文题目,有哪些比较优秀的数学论文题目呢?下面我给大家带来2022最新数学方向 毕业 论文题目有哪些,希望能帮助到大家!

↓↓↓点击获取更多“知足常乐 议论文 ”↓↓↓

★ 数学应用数学毕业论文 ★

★ 大学生数学毕业论文  ★

★ 大学毕业论文评语大全 ★

★ 毕业论文答辩致谢词10篇 ★

中学数学论文题目

1、用面积思想 方法 解题

2、向量空间与矩阵

3、向量空间与等价关系

4、代数中美学思想新探

5、谈在数学中数学情景的创设

6、数学 创新思维 及其培养

7、用函数奇偶性解题

8、用方程思想方法解题

9、用数形结合思想方法解题

10、浅谈数学教学中的幽默风趣

11、中学数学教学与女中学生发展

12、论代数中同构思想在解题中的应用

13、论教师的人格魅力

14、论农村中小学数学 教育

15、论师范院校数学教育

16、数学在母校的发展

17、数学学习兴趣的激发和培养

18、谈新课程理念下的数学教师角色的转变

19、数学新课程教材教学探索

20、利用函数单调性解题

21、数学毕业论文题目汇总

22、浅谈中学数学教学中学生能力的培养

23、变异思维与学生的创新精神

24、试论数学中的美学

25、数学课堂中的提问艺术

26、不等式的证明方法

27、数列问题研究

28、复数方程的解法

29、函数最值方法研究

30、图象法在中学数学中的应用

31、近年来高考命题研究

32、边数最少的自然图的构造

33、向量线性相关性讨论

34、组合数学在中学数学中的应用

35、函数最值研究

36、中学数学符号浅谈

37、论数学交流能力培养(数学语言、图形、 符号等)

38、探影响解决数学问题的心理因素

39、数学后进学生的心理分析

40、生活中处处有数学

41、数学毕业论文题目汇总

42、生活中的数学

43、欧几里得第五公设产生背景及对数学发展影响

44、略谈我国古代的数学成就

45、论数学史的教育价值

46、课程改革与数学教师

47、数学差生非智力因素的分析及对策

48、高考应用问题研究

49、“数形结合”思想在竞赛中的应用

50、浅谈数学的 文化 价值

51、浅谈数学中的对称美

52、三阶幻方性质的探究

53、试谈数学竞赛中的对称性

54、学竞赛中的信息型问题探究

55、柯西不等式分析

56、中国剩余定理应用

57、不定方程的研究

58、一些数学思维方法的证明

59、分类讨论思想在中学数学中的应用

60、生活数学文化分析

数学研究生论文题目推荐

1、混杂随机时滞微分方程的稳定性与可控性

2、多目标单元构建技术在圆锯片生产企业的应用研究

3、基于区间直觉模糊集的多属性群决策研究

4、排队论在交通控制系统中的应用研究

5、若干类新形式的预条件迭代法的收敛性研究

6、高职微积分教学引入数学文化的实践研究

7、分数阶微分方程的Hyers-Ulam稳定性

8、三维面板数据模型的序列相关检验

9、半参数近似因子模型中的高维协方差矩阵估计

10、高职院校高等数学教学改革研究

11、若干模型的分位数变量选择

12、若干变点模型的 经验 似然推断

13、基于Navier-Stokes方程的图像处理与应用研究

14、基于ESMD方法的模态统计特征研究

15、基于复杂网络的影响力节点识别算法的研究

16、基于不确定信息一致性及相关问题研究

17、基于奇异值及重组信任矩阵的协同过滤推荐算法的研究

18、广义时变脉冲系统的时域控制

19、正六边形铺砌上H-三角形边界H-点数的研究

20、外来物种入侵的广义生物经济系统建模与控制

21、具有较少顶点个数的有限群元阶素图

22、基于支持向量机的混合时间序列模型的研究与应用

23、基于Copula函数的某些金融风险的研究

24、基于智能算法的时间序列预测方法研究

25、基于Copula函数的非寿险多元索赔准备金评估方法的研究

26、具有五个顶点的共轭类类长图

27、刚体系统的优化方法数值模拟

28、基于差分进化算法的多准则决策问题研究

29、广义切换系统的指数稳定与H_∞控制问题研究

30、基于神经网络的混沌时间序列研究与应用

31、具有较少顶点的共轭类长素图

32、两类共扰食饵-捕食者模型的动力学行为分析

33、复杂网络社团划分及城市公交网络研究

34、在线核极限学习机的改进与应用研究

35、共振微分方程边值问题正解存在性的研究

36、几类非线性离散系统的自适应控制算法设计

37、数据维数约简及分类算法研究

38、几类非线性不确定系统的自适应模糊控制研究

39、区间二型TSK模糊逻辑系统的混合学习算法的研究

40、基于节点调用关系的软件执行网络结构特征分析

41、基于复杂网络的软件网络关键节点挖掘算法研究

42、圈图谱半径问题研究

43、非线性状态约束系统的自适应控制方法研究

44、多维power-normal分布及其参数估计问题的研究

45、旋流式系统的混沌仿真及其控制与同步研究

46、具有可选服务的M/M/1排队系统驱动的流模型

47、动力系统的混沌反控制与同步研究

48、载流矩形薄板在磁场中的随机分岔

49、广义马尔科夫跳变系统的稳定性分析与鲁棒控制

50、带有非线性功能响应函数的食饵-捕食系统的研究

51、基于观测器的饱和时滞广义系统的鲁棒控制

52、高职数学课程培养学生关键技能的研究

53、基于生存分析和似然理论的数控机床可靠性评估方法研究

54、面向不完全数据的疲劳可靠性分析方法研究

55、带平方根俘获率的可变生物种群模型的稳定性研究

56、一类非线性分数阶动力系统混沌同步控制研究

57、带有不耐烦顾客的M/M/m排队系统的顾客损失率

58、小波方法求解三类变分数阶微积分问题研究

59、乘积空间上拓扑度和不动点指数的计算及其应用

60、浓度对流扩散方程高精度并行格式的构造及其应用

专业微积分数学论文题目

1、一元微积分概念教学的设计研究

2、基于分数阶微积分的飞航式导弹控制系统设计方法研究

3、分数阶微积分运算数字滤波器设计与电路实现及其应用

4、分数阶微积分在现代信号分析与处理中应用的研究

5、广义分数阶微积分中若干问题的研究

6、分数阶微积分及其在粘弹性材料和控制理论中的应用

7、Riemann-Liouville分数阶微积分及其性质证明

8、中学微积分的教与学研究

9、高中数学教科书中微积分的变迁研究

10、HPM视域下的高中微积分教学研究

11、基于分数阶微积分理论的控制器设计及应用

12、微积分在高中数学教学中的作用

13、高中微积分的教学策略研究

14、高中微积分教学中数学史的渗透

15、关于高中微积分的教学研究

16、微积分与中学数学的关联

17、中学微积分课程的教学研究

18、高中微积分课程内容选择的探索

19、高中微积分教学研究

20、高中微积分教学现状的调查与分析

21、微分方程理论中的若干问题

22、倒向随机微分方程理论的一些应用:分形重倒向随机微分方程

23、基于偏微分方程图像分割技术的研究

24、状态受限的随机微分方程:倒向随机微分方程、随机变分不等式、分形随机可生存性

25、几类分数阶微分方程的数值方法研究

26、几类随机延迟微分方程的数值分析

27、微分求积法和微分求积单元法--原理与应用

28、基于偏微分方程的图像平滑与分割研究

29、小波与偏微分方程在图像处理中的应用研究

30、基于粒子群和微分进化的优化算法研究

31、基于变分问题和偏微分方程的图像处理技术研究

32、基于偏微分方程的图像去噪和增强研究

33、分数阶微分方程的理论分析与数值计算

34、基于偏微分方程的数字图象处理的研究

35、倒向随机微分方程、g-期望及其相关的半线性偏微分方程

36、反射倒向随机微分方程及其在混合零和微分对策

37、基于偏微分方程的图像降噪和图像恢复研究

38、基于偏微分方程理论的机械故障诊断技术研究

39、几类分数阶微分方程和随机延迟微分方程数值解的研究

40、非零和随机微分博弈及相关的高维倒向随机微分方程

41、高中微积分教学中数学史的渗透

42、关于高中微积分的教学研究

43、微积分与中学数学的关联

44、中学微积分课程的教学研究

45、大学一年级学生对微积分基本概念的理解

46、中学微积分课程教学研究

47、中美两国高中数学教材中微积分内容的比较研究

48、高中生微积分知识理解现状的调查研究

49、高中微积分教学研究

50、中美高校微积分教材比较研究

51、分数阶微积分方程的一种数值解法

52、HPM视域下的高中微积分教学研究

53、高中微积分课程内容选择的探索

54、新课程理念下高中微积分教学设计研究

55、基于分数阶微积分的线控转向系统控制策略研究

56、基于分数阶微积分的数字图像去噪与增强算法研究

57、高中微积分教学现状的调查与分析

58、高三学生微积分认知状况的思维层次研究

59、分数微积分理论在车辆底盘控制中的应用研究

60、新课程理念下高中微积分课程的教育价值及其教学研究

在一篇数学 教育 论文中,题目是论文的要件之首,它不同于一般 文章 的题目,我们要重视题目的重要性。以下是我为大家精心准备的数学教育论文题目,欢迎阅读!数学教育论文题目(一) 1、浅谈中学数学中的反证法 2、数学选择题的利和弊 3、浅谈计算机辅助数学教学 4、数学研究性学习 5、谈发展数学思维的 学习 方法 6、关于整系数多项式有理根的几个定理及求解方法 7、数学教学中课堂提问的误区与对策 8、中学数学教学中的创造性思维的培养 9、浅谈数学教学中的“问题情境” 0、市场经济中的蛛网模型 11、中学数学教学设计前期分析的研究 12、数学课堂差异教学 13、浅谈线性变换的对角化问题 14、圆锥曲线的性质及推广应用 15、经济问题中的概率统计模型及应用 数学教育论文题目(二) 1、二阶变系数齐次微分方程的求解问题 2、一种函数方程的解法 3、微分中值定理的再讨论 4、学生数学学习的障碍研究; 5、中学数学教育中的素质教育的内涵; 6、数学中的美; 7、数学的和谐和统一----谈论数学中的美; 8、推测和猜想在数学中的应用; 9、款买房问题的决策; 10、线性回归在经济中的应用; 11、数学规划在管理中的应用; 12、初等数学解题策略; 13、浅谈数学CAI中的不足与对策; 14、数学创新教育的课堂设计; 15、中学数学教学与学生应用意识培养; 16、关于培养和提高中学生数学学习能力的探究; 17、运用多媒体培养学生 18、高等数学课件的开发 19、 广告 效益预测模型; 数学教育论文题目(三) 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的 反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 猜你喜欢: 1. 数学教育教学论文参考范文 2. 关于数学专业毕业论文题目参考 3. 数学教育专业毕业论文 4. 有关数学教育的论文范文 5. 数学教育专业毕业论文参考

数学系大数据论文开题报告

是想要个提纲吗?

一般包括下面的内容 一、课题来源(如属导师或本人主持、参加的课题,注明课题名称、来源、起止时间等) 二、选题的国内外研究现状及水平、研究目标及意义(包括应用前景、科学意义、理论价值)以及主要参考文献 三、研究的主要内容、研究方案及准备采取的技术路线、拟解决的关键问题 四、已进行的科研工作基础和已具备的科学研究条件(包括已经取得的科研成果、已经完成的科学实验及调查研究、具备的主要仪器设备及资料与数据等),以及可行性分析 五、课题研究起止年限、任务安排、分阶段要求和预期结果

数学系开题报告范文

开题报告是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要而产生的。下面是我为大家整理的数学系开题报告范文,欢迎阅读。

课题名称: 实积分与复积分的比较研究

一、课题的来源及意义

通过对《数学分析》和《复变函数》的学习,我了解到《复变函数论》中的许多知识都是在《数学分析》基础上延伸、拓展的,而复积分在很大程度上说,它就是把实积分的变量范围拓宽了,即在复数域中进行积分。积分学是在古代东西方微积分思想萌发和微积分创立前夕欧洲的思想社会背景的基础上,经过多代数学家研究、探索最终形成完整的数学理论。实积分与复积分的比较研究是值得我思考和研究的一个课题。

积分学是函数论中的一个重要内容,无论是实积分还是复积分,都是研究函数的重要工具,而且在几何、物理和工程技术上,都有着广泛的应用。复积分是复变函数论中的一个重要部分,它在研究复变函数,特别是解析函数时所起的作用远远超过实积分在研究实变函数时所起的作用。无论是在研究复变函数、微分、级数,还是它们的各方面应用,都用到复变函数的积分理论。复积分是实积分的推广,而实积分的计算又用到复积分,因此,比较研复积分和实积分性质和应用对于深刻理解复变函数的理论,并用利用这些理论来解决数学及其他学科中的各种实际问题,都是有十分重要的意义。

二、国内外发展状况及研究背景

国内许多数学家对积分学进行分析和研究,而且许多大学教师也对复积分和实积分进行研究。陇东学院数学的完巧玲就对“利用复积分计算实积分”进行了全面的研究,而且还发表过相关的论文;陕西教育学院的王仲建也发表过“实积分与复积分的联系与区别”的相关论文。国外对积分学的研究要比国内的研究更广泛和深远。实积分和复积分是积分学的具体内容,现代的积分与以前的积分有着一定的区别,但它却是在以前的基础上,经过多代数学家的完善而形成的。积分学最初起源于微积分(微积分起源于牛顿、莱布尼兹),微积分的核心概念是----极限,这个理论的`完善得力于19世纪柯西和魏尔斯特拉斯的工作。17世纪利用积分学求面积、曲线长始于开普勒,他发表了《测量酒桶体积的新科学》。托里拆利、费马、帕斯卡等数学家对以前的积分进行了缺点修补和完善使得积分更接近现代的积分。积分不仅是研究函数的工具,而且在其他方面如几何、物理和工程技术上也有广泛的应用。

三、课题研究的目标和内容

通过对实积分与复积分的比较研究这个课题的研究,熟悉和掌握实积分和复积分的概念和类型,并对其进行分类、归纳,找出它们之间的区别与联系,并了解复积分和实积分的相关应用。

(1)实积分和复积分比较研究课题的研究背景、该课题目前国内外展的状况以及该课题研究的意义等。

(2)实积分和复积分的相关概念(定积分、曲线积分)及它们的性质和计算方法。

(3)对实积分与复积分的定义、性质、计算方法、应用方面进行比较;实积分与复积分的联系(应用复积分来计算实积分,结合例题进行分析、说明)。

四、本课题研究的方法

课题将通过分析、对比、综合等方法对实积分与复积分进行比较研究,最后通过例证说明利用复积分可以解决一些实积分问题。

五、课题的进度安排:

第一阶段:搜集资料,确定选题范围,联系指导老师(20XX秋1--7周)

第二阶段:选定题目、填写开题报告,准备开题 (20XX秋8--12周)

第三阶段:指导教师指导调研、收集资料、准备撰写初稿 (20XX秋13周--20XX春6周)

第四阶段:撰写初稿、在指导老师的指导下修改论文 (20XX春7--14周)

第五阶段:提交论文,准备答辩,论文总结 (20XX春15--16周)

六、参考文献

[1] 钟玉泉. 复变函数论[M]. 第3版.北京:高等教育出版社,2004

[2] 华东师范大学数学系. 数学分析[M].第3版.高等教育出版社,2001

[3] 四川大学数学系. 高等数学(第4册)[M].北京:高等教育出版社,2002

[4] 严子谦, 等. 数学分析(第一册)[M].北京:高等教育出版社,2004

[5] 孙清华, 赵德修. 新编复变函数题解[M]. 武汉:华中科技大学出版社,2002

[6] 王仲建. 实积分与复积分的联系与区别[N]. 陕西教育学院学报,1995,25:73-79

[7] 完巧玲. 利用复积分计算实积分[N]. 菏泽学院学报,2010,32(2):1673—2103

[8] 李敏,王昭海. 巧用复变函数积分证明实积分[J]. 数学教学与研究考试周刊,2009,41

[9] 金云娟. 解析函数唯一性定理在复积分上的应用[N]. 丽水学院学报,2009,31(5)

[10] 崔冬玲. 复积分的计算方法[J]. 淮南师范学院学报,2006,3:6-9

小学数学类毕业论文开题报告,很简单,原创的。

相关百科

热门百科

首页
发表服务