首页

> 学术期刊知识库

首页 学术期刊知识库 问题

青霉素研究发展论文

发布时间:

青霉素研究发展论文

1929年,弗莱明发表了学术论文,报告了他的发现,但当时未引起重视,而且青霉素的提纯问题也还没有解决。

1935年,英国牛津大学生物化学家钱恩和物理学家弗罗里对弗莱明的发现大感兴趣。钱恩负责青霉菌的培养和青霉素的分离、提纯和强化,使其抗菌力提高了几千倍,同时,弗罗里负责对动物观察试验。至此,青霉素的功效得到了证明。

由于青霉素的发现和大量生产,拯救了千百万肺炎、脑膜炎、脓肿、败血症患者的生命,及时抢救了许多的伤病员。

第二次世界大战促使青霉素大量生产。1943年,已有足够青霉素治疗伤兵;1950年产量可满足全世界需求。青霉素的发现与研究成功,成为医学史的一项奇迹。青霉素从临床应用开始,至今已发展为三代。

1945年,发现青霉素的弗莱明与研制出青霉素化学制剂的英国病理学家弗罗里、德国化学家钱恩一起获得了诺贝尔生理学奖和医学奖。

青霉素用途

青霉素是抗菌素的一种,是从青霉菌培养液中提制的药物,是第一种能够治疗人类疾病的抗生素。(图)青霉素发明者、英国科学家弗莱明在他的实验室内青霉素的发现者是英国细菌学家弗莱明。1928年的一天,弗莱明在他的一间简陋的实验室里研究导致人体发热的葡萄球菌。由于盖子没有盖好,他发觉培养细菌用的琼脂上附了一层青霉菌。这是从楼上的一位研究青霉菌的学者的窗口飘落进来的。使弗莱明感到惊讶的是,在青霉菌的近旁,葡萄球菌忽然不见了。这个偶然的发现深深吸引了他,他设法培养这种霉菌进行多次试验,证明青霉素可以在几小时内将葡萄球菌全部杀死。弗莱明据此发明了葡萄球菌的克星—青霉素。医药卫生类(6073bytes)1929年,弗莱明发表了学术论文,报告了他的发现,但当时未引起重视,而且青霉素的提纯问题也还没有解决。1935年,英国牛津大学生物化学家钱恩和物理学家弗罗里对弗莱明的发现大感兴趣。钱恩负责青霉菌的培养和青霉素的分离、提纯和强化,使其抗菌力提高了几千倍同,弗罗里负责对动物观察试验。至此,青霉素的功效得到了证明。澳大利亚病理学家霍华德.弗罗里因进行青霉素化学制剂的研究,而与弗莱明、钱恩同获1945年诺贝尔生理学和医学奖由于青霉素的发现和大量生产,拯救了千百万肺炎、脑膜炎、脓肿、败血症患者的生命,及时抢救了许多的伤病员。青霉素的出现,当时曾轰动世界。为了表彰这一造福人类的贡献,弗莱明、钱恩、弗罗里于1945年共同获得诺贝尔医学和生理学奖。

青霉素论文

青霉素是人类历史上发现的第一种抗生素,且应用非常广泛。早在唐朝时,长安城的裁缝会把长有绿毛的糨糊涂在被剪刀划破的手指上来帮助伤口愈合,就是因为绿毛产生的物质(青霉素素菌)有杀菌的作用,也就是人们最早使用青霉素。20世纪40年代以前,人类一直未能掌握一种能高效治疗细菌性感染且副作用小的药物。当时若某人患了肺结核,那么就意味着此人不久就会离开人世。为了改变这种局面,科研人员进行了长期探索,然而在这方面所取得的突破性进展却源自一个意外发现。近代,1928年英国细菌学家弗莱明首先发现了世界上第一种抗生素—青霉素,亚历山大·弗莱明由于一次幸运的过失而发现了青霉素。1928年,英国科学家Fleming在实验研究中最早发现了青霉素,但由于当时技术不够先进,认识不够深刻,Fleming并没有把青霉素单独分离出来。1929年,弗莱明发表了他的研究成果,遗憾的是,这篇论文发表后一直没有受到科学界的重视。在用显微镜观察这只培养皿时弗莱明发现,霉菌周围的葡萄球菌菌落已被溶解。这意味着霉菌的某种分泌物能抑制葡萄球菌。此后的鉴定表明,上述霉菌为点青霉菌,因此弗莱明将其分泌的抑菌物质称为青霉素。然而遗憾的是弗莱明一直未能找到提取高纯度青霉素的方法,于是他将点青霉菌菌株一代代地培养,并于1939年将菌种提供给准备系统研究青霉素的英国病理学家弗洛里(Howard Walter Florey)和生物化学家钱恩。1938年,德国化学家恩斯特钱恩在旧书堆里看到了弗莱明的那篇论文,于是开始做提纯实验。弗洛里和钱恩在1940年用青霉素重新做了实验。他们给8只小鼠注射了致死剂量的链球菌,然后给其中的4只用青霉素治疗。几个小时内,只有那4只用青霉素治疗过的小鼠还健康活着。此后一系列临床实验证实了青霉素对链球菌、白喉杆菌等多种细菌感染的疗效。青霉素之所以能既杀死病菌,又不损害人体细胞,原因在于青霉素所含的青霉烷能使病菌细胞壁的合成发生障碍,导致病菌溶解死亡,而人和动物的细胞则没有细胞壁。1940年冬,钱恩提炼出了一点点青霉素,这虽然是一个重大突破,但离临床应用还差得很远。1941年,青霉素提纯的接力棒传到了澳大利亚病理学家瓦尔特弗洛里的手中。在美国军方的协助下,弗洛里在飞行员外出执行任务时从各国机场带回来的泥土中分离出菌种,使青霉素的产量从每立方厘米2单位提高到了40单位。1941年前后英国牛津大学病理学家霍华德·弗洛里与生物化学家钱恩实现对青霉素的分离与纯化,并发现其对传染病的疗效,但是青霉素会使个别人发生过敏反应,所以在应用前必须做皮试。所用的抗生素大多数是从微生物培养液中提取的,有些抗生素已能人工合成。由于不同种类的抗生素的化学成分不一,因此它们对微生物的作用机理也很不相同,有些抑制蛋白质的合成,有些抑制核酸的合成,有些则抑制细胞壁的合成。通过一段时间的紧张实验,弗洛里、钱恩终于用冷冻干燥法提取了青霉素晶体。之后,弗洛里在一种甜瓜上发现了可供大量提取青霉素的霉菌,并用玉米粉调制出了相应的培养液。在这些研究成果的推动下,美国制药企业于1942年开始对青霉素进行大批量生产。到了1943年,制药公司已经发现了批量生产青霉素的方法。当时英国和美国正在和纳粹德国交战。这种新的药物对控制伤口感染非常有效。1943年10月,弗洛里和美国军方签订了首批青霉素生产合同。青霉素在二战末期横空出世,迅速扭转了盟国的战局。战后,青霉素更得到了广泛应用,拯救了数以千万人的生命。到1944年,药物的供应已经足够治疗第二次世界大战期间所有参战的盟军士兵。因这项伟大发明,1945年,弗莱明、弗洛里和钱恩因“发现青霉素及其临床效用”而共同荣获了诺贝尔生理学或医学奖。1944年9月5日,中国第一批国产青霉素诞生,揭开了中国生产抗生素的历史。截至2001年年底,中国的青霉素年产量已占世界青霉素年总产量的60%,居世界首位。2002年,Birol等人提出了基于过程机理的模型,该过程综合考虑了发酵中微生物的各种生理变化,发现这是个十分复杂的过程。为了更加方便地对青霉素过程进行研究,Birol对Bajpai和Reuss提出的非结构式模型进行了扩展,对模型进一步简化,方便研究。

青霉素是一种能够治疗人类疾病的抗生素。它具有低毒、高效的性质。它的研制成功大大增强了人类抵抗细菌性感染的能力。它是青霉菌分泌的一种能够杀死其它细菌的物质,它的分子中含有青霉烷,能够破坏细菌的细胞壁并在细菌细胞繁殖期起到杀菌作用的一类抗生素。

1928年夏天,英国伦敦大学圣玛丽亚医学院赖特研究中心全体人员放假,细菌学教授亚历山大•弗莱明连实验室都没有整理好就准备去度假了。此前,弗莱明曾从病人的脓中提取了葡萄球菌,放在玻璃器皿中进行培养。假期期间,便没有认真打理。

亚历山大•弗莱明

之前培养的金黄色葡萄球菌被他称为“金妖精”,这种“金妖精”会使人生生疖、长痈、患骨髓炎,引起食物中毒很难对付。他培养它,就是为了找到能杀死它的方法。再众多的培养液中,他发现了其中一个培养液由于受到了污染而出现了一个奇怪的现象,该培养皿中出现了一种绿色的霉菌,并且青色的霉花周围出现一圈空白——原来生长旺盛的“金妖怪”竟然不见了!

弗莱明立即意识到,可能出现了某种了不起的东西。他兴奋地迅速从培养器皿中刮出一点霉菌,小心翼翼地放在显微镜下观察。透过厚厚的镜片,他终于发现这种能杀死青毒素“金妖精”的青绿色霉菌是青霉菌。随后,他把青霉菌分离出来,将分离后的青霉菌放入培养液中继续繁殖,培养了大量的青霉菌。

培养青霉菌的培养液进行过滤分离,将分离之后的培养液滴“金妖精”中。几个小时之内奇迹出现了——“金妖精”们全部死亡。他有把培养液稀释1/2、1/4…直到1/800,滴入“金妖精”中仍然使它们全部死亡。他还发现,青绿色霉花还能杀灭白喉菌、炭疽菌、链球菌和肺炎霉球菌等——青霉菌具有高强而广泛的杀菌作用被类似的实验学证实了。

金黄色葡萄球菌

1928年9月15日,弗莱明在圣玛医学院公布了他的发现,并于1929年2月13日向伦敦医学俱乐部提交了有关论文《青霉素——它的实际应用》,被刊登在《新英格兰医学杂志》上。

弗莱明制取出了青霉素在请求用于人体临床实验室却遭到了拒绝,其中一个重要的原因就是:提取太困难了。在这种既不能销也不能产的情况下,青霉素从此销声匿迹。弗莱明弗莱明也只好在1931年暂时放弃了继续研究,但是一直在让那个培养皿上的青霉素传宗接代。直到两位科学家——出生在德国的英国生化学家钱恩和出生在澳大利亚的英国病理学家弗洛里,于1938年偶然读到弗莱明发表在《新莫格兰医学杂志》上的论文,并在1941年成功分离出青霉有素之后,青霉素才于1944年在美国投入量产。

青霉素曾于原子弹、雷达并称“第二次世界大战期间的三大发明”。青霉素成为了具有惊人疗效的药物。不但在第二次世界大战期间挽救了上千万人的生命,而且使人类的生命延长了近15年。

因此,弗莱明和钱恩、弗洛里共享1945年诺贝尔生理学奖或医学奖

弗莱明(左)和钱恩(中)、弗洛里(右)

青霉素作为一个开端,后来更多的抗菌素奔涌而出,形成规模庞大的“抗菌家族”:链霉素(1943)、金霉素(1947)、土霉素(1950)、红霉素(1952)、卡那霉素(1958)…迄今,世界上已发现1万多种不同的抗菌素,其中人工合成的超过4000种,并且每年都要开发出新品种。

青霉素分子结构

在20世纪除,那个时候人们还没有找到杀灭葡萄球菌和肺炎球菌的药物。谁要是得了败血症或肺炎,就等于得了不治之症,那个时候,或许开刀划开一道伤口,就很有可能因为感染而致命。在40年代初,医生们第一次使用青霉素救活了一位患有败血症的危重病人。青霉素一时成了家喻户晓的灵丹妙药,它的价格在当时比黄金还贵。

青霉素增强了人类治疗传染性疾病的能力,它的研制成功大大增强了人类抵抗细菌性感染的能力,带动了抗生素家族的诞生,它的出现开创了用抗生素治疗疾病的新纪元。

青霉素是抗菌素的一种,是从青霉菌培养液中提炼的药物,是第一种能够治疗人类疾病的抗生素。弗莱明发现青霉素是一个偶然。但是正是他在这方面的研究和探索才铸就了这个偶然,也挽救了众多的生命。

提起青霉素,你会想到什么?

青霉素又叫盘尼西林,是世界上最早,也是最为著名的抗生素之一。

在第一次世界大战期间,各个参战国蒙受了巨大的伤亡。战后,当各国系统统计伤亡人数和原因时,发现在阵亡和致残的士兵中,有很大一部分并非属于枪炮的直接攻击, 受伤后的感染才是最为致命的,而青霉素对这种感染有很好的抑制和治疗作用。

不仅如此,在20世纪最初的几十年中,人类的寿命突然开始了飞跃,从40岁的平均寿命一下涨到了61岁。归根结底,青霉素对于各类疾病的有效控制是最大的影响因素。

而作为青霉素的发现者,英国细菌学家,生物化学家,微生物学家——亚历山大·弗莱明居功甚伟,不过你不知道的是这位科学家有多“顽皮”——

这个令人啼笑皆非的“生化学家”是如何发现青霉素的呢?

弗莱明虽然是青霉素的发现者,并且还有不少医学方面的成就,但实际上,弗莱明从医可以算得上是一个偶然。

1881年8月6日,弗莱明出生于苏格兰基马尔诺克附近的洛克菲尔德,在他7岁的时候,他的父亲就早早去世了,弗莱明便由大哥和母亲抚养成人。

在童年时代,弗莱明一直生活在乡下,由于家中主要以农业维持生计,他从小便活跃在田地间。开放在田野间的野花,草丛中的各种昆虫,无一不吸引着弗莱明的注意。

于是,在玩耍和劳动中,弗莱明养成了很强的观察能力,这也为他日后从事的细菌培养工作积累了足够的基础。

13岁左右,弗莱明的哥哥汤姆从格拉斯哥大学毕业,并在伦敦成为了一个眼科专家。弗莱明为了今后的前途,也被家人送去伦敦投奔哥哥, 以开拓视野和获得更好的教育条件。

在伦敦,弗莱明在技校学习知识,16岁毕业后,他被分配到一家船务公司。

在工作期间,弗莱明努力认真,还曾作为公司代表参加了一场水球比赛,那时的对手是圣玛丽医院附属医学院的院队。在比赛中,这支队伍表现不错,也让他对圣玛丽医院附属医学院印象深刻。

比赛结束后,弗莱明又回归到正常的工作中,至此,他的人生似乎已经固定, 如果就此延续下去,医学仿佛是他一生也无法接触的领域。

不过,在20岁的时候,弗莱明迎来了转机。他的一个舅舅去世,留下了一笔遗产,他幸运地分到了250英镑。 有眼见的哥哥汤姆提醒他可以用这笔钱继续深造,弗莱明听从了哥哥的话,开始学习医学。

于是,他不假思索的报考了心中的学校。

经过不懈的努力,在1901年7月,弗莱明先后通过了16门考试,顺利进入圣玛丽医院附属医学院。 从此,他人生的方向盘有了第一次转向。

在1901年至1906年,也就是在读书期间,弗莱明用自身的努力获得了学校多项奖学金,并通过测试获得了独立诊所的经营权。

成为医生,或许是大部分医学专业学子的梦想。但当时,医学院实验室有一名叫赖特的博士,他的助理弗里曼劝说弗莱明留在圣玛丽医院的接种部,和他一样成为一名助理。

而当时的弗莱明已经通过测试,获得了成为外科医生的资格,并不愿意只成为一名助理。

事实也确实如同他的想法一样,他并没有成为一名低年资助理,但弗莱明也没有当上外科医生,他选择了赖特博士作为老师,留在母校的实验室从事研究工作。

从这里开始,弗莱明开始书写青霉素的 历史 。

一战爆发后,弗莱明和导师赖特奔赴战争前线,在救治伤者之余,他也获得了千载难逢的研究病菌机会。

在战争期间,弗莱明先后开创第一个交叉感染的研究和输血技术的改良。

就这样,弗莱明等人在赖特博士的领导下,渐渐地成长起来,他的研究成果与日俱增,并且逐渐获得了学术声望。

很多人都认为这就是弗莱明的人生巅峰,即在赖特的光环之下小有成就,但事实证明并非如此,他很快又迎来了人生方向盘的另一个转向。

1921年11月,弗莱明患上了重感冒,但实验室当时人手紧缺,这种情况下,并不允许他停止工作,于是弗莱明没有请假,坚持带病实验,以求试验进度的顺利推进。

当时,他所负责的实验是培养一种新的黄色球菌, 就在一次实验中,弗莱明刚刚打开培养皿,他的鼻涕就流了下来。

弗莱明并没有立刻将它们擦除,反而是一不做二不休,索性取了点鼻涕保留在培养皿里,作为固体培养基的一部分。

过了两周,弗莱明准备清洗培养皿,这时,他意外的发现了一个新的现象: 之前沾有鼻涕粘液的培养皿上,充满了球菌的克隆群落,但粘液所在之处没有,那里的细菌变成了如同玻璃一样透明的胶质物。

之后,他通过三个参考实验, 确定了让细菌“死亡”的是一种抗菌素,并根据特性判断其是一种酶。 在向赖特老师汇报后,这种酶被命名为“溶菌酶”。

由于溶菌酶是弗莱明在巧合下,从鼻涕中发现的,他判断 这种酶存在于人的体液中。 于是,为了进一步研究, 弗莱明开始到处收集眼泪,甚至不惜用柠檬等刺激性食物“催泪”,一时间,所有同事都纷纷躲避弗莱明。

这是弗莱明于一战后写下的一句话,话中 包含着对一种能击败感染药物的迫切需求。 在发现溶菌酶后,他曾寄希望与此,可经过7年的研究后,他失望的发现 这种酶的医学价值并不强, 弗莱明只能转而研究其他物质。

1928年,又一个巧合引导了弗莱明的人生。

在1928年初,他从一篇论文上发现了一种培养特殊白色菌落的方法,出于疑惑,弗莱明和助手开始不断的实验。 在长达半年的,漫长的、重复的实验中,弗莱明从童年便延续下来的好奇心和观察力发挥了作用。

有一些并不需要特殊观察的普通培养基,他也会故意放置一段时间。以便于在菌落产生变异后,再进行最后一次观察。

就这样, 在某一天,一阵夏日的热风从窗外吹进,这其中就裹挟着一种真菌——“青霉素”。

8月份,当弗莱明回到实验室后,惊奇的发现培养皿内真菌菌落周围所有葡萄球菌都消失了,形成一个白环。他立刻着手研究这种真菌, 并很快确认这是一种能分泌杀菌物质的真菌, 在确定作用原理后,他正式将其命名为“青霉素”。

就这样,弗莱明苦苦追求的物质终于出现在他的面前。

1929年,弗莱明迫不及待的发表了关于青霉素的论文, 想尽快让这种强大的,宛如神赐的真菌造福人类。

但是科学的严谨再次改变了 历史 ,也改变了弗莱明的命运。由于实验室中并没有专业的化学家,这就导致了虽然弗莱明和研究小组成功发现,并且培养出了相当数量的青霉素, 可是受限于提纯等技术,青霉菌的稳定性和纯度都很成问题,且产量极低。

这就使得青霉素虽然功效强大,但是很难让其他人做进一步研究。弗莱明的论文虽然指出了青霉素的巨大作用,但并不受重视,就这样,他和他的论文都被暂时尘封于 历史 中。

直到1938年,弗莱明的人生再一次发生了戏剧化的转变, 牛津病理学院的弗劳雷和钱恩发现了他的论文, 并着手重复试验,通过动物和临床实验,他们发现了被遗忘的青霉素。

二战爆发后,由于伤亡惨重,青霉素终于被重视起来了,英美开始推进青霉素的研究,相关政策和资金的注入,为青霉素的制备创造了前所未有的条件。

直到1945年,青霉素已经遍布世界的每个角落,同年,战争结束后, 弗莱明、弗劳雷和钱恩因青霉素研究获得诺贝尔生理或医学奖。

虽然对弗莱明获奖,很多人依然有着异议,但不可否认的是,弗莱明依然是凭着满腔热血和孜孜不倦的研究,打开了发现青霉素的大门,在青霉素的研究史上,他理应占据一席之地。

青霉素的发展与应用毕业论文

1929年,弗莱明发表了学术论文,报告了他的发现,但当时未引起重视,而且青霉素的提纯问题也还没有解决。

1935年,英国牛津大学生物化学家钱恩和物理学家弗罗里对弗莱明的发现大感兴趣。钱恩负责青霉菌的培养和青霉素的分离、提纯和强化,使其抗菌力提高了几千倍,同时,弗罗里负责对动物观察试验。至此,青霉素的功效得到了证明。

由于青霉素的发现和大量生产,拯救了千百万肺炎、脑膜炎、脓肿、败血症患者的生命,及时抢救了许多的伤病员。

第二次世界大战促使青霉素大量生产。1943年,已有足够青霉素治疗伤兵;1950年产量可满足全世界需求。青霉素的发现与研究成功,成为医学史的一项奇迹。青霉素从临床应用开始,至今已发展为三代。

1945年,发现青霉素的弗莱明与研制出青霉素化学制剂的英国病理学家弗罗里、德国化学家钱恩一起获得了诺贝尔生理学奖和医学奖。

青霉素用途

要写毕业论文的话就要去查文献啦,目前国内最常用的就是CNKI和维普咯。像楼上说的是挺多的,但是不好作为毕业论文里引用,因为只要是引用就一定要带上参考文献,否则不好通过哦。既然要写论文,肯定是在学校啦,现在的高校一般都买有那两个数据库的,多看看就好

抗生素发展简介抗生素分为天然品和人工合成品,前者由微生物产生,后者是对天然抗生素进行结构改造获得的部分合成产品。 1981年我国第四次全国抗生素学术会议指出,近些年来在抗生素的作用对象方面,除了抗菌以外,在抗肿瘤,抗病毒,抗原虫、寄生虫和昆虫等领域也有较快发展。有些抗生素具有抑制某些特异酶的功能,另外一些抗生素则具有其他的生物活性或生理活性的作用。鉴于“抗菌素”早已越出了抗菌范围,继续使用抗菌素这一名词已不能适应专业的进一步发展,也不符合实际情况了。因此,会议决定将抗菌素正式更名为抗生素。 抗生素分类根据抗生素的化学结构和临床用途,可将抗生素分为β—内酰胺类、氨基糖苷类、大环内酯类、林可霉素类、四环素类、氯霉素类以及其他主要抗细菌的抗生素、抗真菌抗生素、抗肿瘤抗生素、具有免疫抑制作用的抗生素十大类。 编辑本段药品发现抗生很早以前,人们就发现某些微生物对另外一些微生物的生长繁 抗生素分子式殖有抑制作用,把这种现象称为抗生。随着科学的发展,人们终于揭示出抗生现象的本质,从某些微生物体内找到了具有抗生作用的物质,并把这种物质称为抗生素,如青霉菌产生的青霉素,灰色链丝菌产生的链霉素都有明显的抗菌作用。所以人们把由某些微生物在生活过程中产生的,对某些其他病原微生物具有抑制或杀灭作用的一类化学物质称为抗生素。 抗菌由于最初发现的一些抗生素主要对细菌有杀灭作用,所以一度将抗生素称为抗菌素。但是随着抗生素的不断发展,陆续出现了抗病毒、抗衣原体、抗支原体,甚至抗肿瘤的抗生素也纷纷发现并用于临床,显然称为抗菌素就不妥,还是称为抗生素更符合实际了。抗肿瘤(antineoplastic) 抗生素的出现,说明微生物产生的化学物质除了原先所说的抑制或杀灭某些病原微生物的作用之外,还具有抑制癌细胞的增殖或代谢的作用,因此现代抗生素的定义应当为:由某些微生物产生的化学物质,能抑制微生物和其他细胞增殖的物质叫做抗生素。 细菌“导弹”有望代替抗生素细菌之间相互拼杀所用的微小蛋白质“导弹”有望在不久的将来代替治疗疾病所用的抗生素。研究该项技术的一个美国研究所希望能够首先在治疗动物(如猪和鸡)的常见病方面取得突破。同时这个研究所也发现用这种蛋白质“导弹”能够在食品无菌包装和保存方面做出突破。由于人体血原对抗生素的反应存在一定的危险,这种物质的使用能够降低医学的危险性,且使用后没有后遗物。 编辑本段抗生素杀菌作用主要有4种机制抑制细菌细胞壁的合成抑制细胞壁的合成会导致细菌细胞破裂死亡,以这种方式作用的抗菌药物包括青霉素类和头孢菌素类,哺乳动物的细胞没有细胞壁,不受这些药物的影响。 与细胞膜相互作用一些抗菌素与细胞的细胞膜相互作用而影响膜的渗透性,这对细胞具有致命的作用。以这种方式作用的抗生素有多粘菌素和短杆菌素。 干扰蛋白质的合成干扰蛋白质的合成意味着细胞存活所必需的酶不能被合成。干扰蛋白质合成的抗生素包括福霉素(放线菌素)类、氨基糖苷类、四环素类和氯霉素。 抑制核酸的转录和复制抑制核酸的功能阻止了细胞分裂和/或所需酶的合成。以这种方式作用的抗生素包括萘啶酸和二氯基吖啶。 编辑本段药品使用、误区及不良反应使用临床应用抗生素时必须考虑以下几个基本原则: (一)严格掌握适应证凡属可用可不用的尽量不用,而且除考虑抗生素的抗菌作用的针对性外,还必须掌握药物的不良反应和体内过程与疗效的关系。 (二)发热原因不明者不宜采用抗生素除病情危重且高度怀疑为细菌感染者外,发热原因不明者不宜用抗生素,因抗生素用后常使致病微生物不易检出,且使临床表现不典型,影响临床确诊,延误治疗。 (三)病毒性或估计为病毒性感染的疾病不用抗生素抗生素对各种病毒性感染并无疗效,对麻疹、腮腺炎、伤风、流感等患者给予抗生素治疗是无害无益的。咽峡炎、上呼吸道感染者90%以上由病毒所引起,因此除能肯定为细菌感染者外,一般不采用抗生素。 (四)皮肤、粘膜局部尽量避免反应应用抗生素因用后易发生过敏反应且易导致耐药菌的产生。因此,除主要供局部用的抗生素如新霉素、杆菌肽外,其它抗生素特别是青霉素G的局部应用尽量避免。在眼粘膜及皮肤烧伤时应用抗生素要选择告辞适合的时期和合适的剂量。 (五)严格控制预防用抗生素的范围在下列情况下可采用预防治疗: 1.风湿热病人,定期采用青霉素G,以消灭咽部溶血链球菌,防止风湿热复发。 2.风湿性或先天性心脏病进行手术前后用青霉素G或其它适当的抗生素,以防止亚急性细菌性心内膜炎的发生。 3.感染灶切除时,依治病菌的敏感性而选用适当的抗生素。 4.战伤或复合外伤后,采用青霉素G或四环素族以防止气性坏疽。 5.结肠手术前采用卡那霉素,新霉素等作肠道准备。 6.严重烧伤后,在植皮前应用青霉素G消灭创面的溶血性链球菌感染。或按创面细菌和药敏结果采用适当的抗生素防止败血症的发生。 7.慢性支气管炎及支气扩张症患者,可在冬季预防性应用抗生素(限于门诊)。 8.颅脑术前1天应用抗生素,可预防感染。 (六)强调综合治疗的重要性在应用抗生素治疗感染性疾病的过程中,应充分认识到人体防御机制的重要性,不能过分依赖抗生素的功效而忽视了人体内在的因素,当人体免疫球蛋白的质量和数量不足、细胞免疫功能低下,或吞噬细胞性能与质量不足时,抗生素治疗则难以秦效。因此,在应用抗生素的同进应尽最大努力使病人全身状况得到改善;采取各种综合措施,以提高机体低抗能力,如降低病人过高的体温;注意饮食和休息;纠正水、电解质和碱平衡失调;改善微循环;补充血容量;以及处理原发性疾病和局部病灶等。 连续使用抗生素不宜超过一周 如果超量使用抗生素药物,很容易导致女性患上霉菌性阴道炎。武警总医院妇产科王黎娜主任解释说,阴道炎的产生并不完全由于个人卫生没做好,过量服用抗生素也一样可能导致阴部炎症产生。事实上,抗生素的副作用之一就是破坏体内细菌群落的平衡。 美国曾经有一项调查显示:使用一种强力抗生素超过一周,女性中会有近一半的人发生霉菌感染。其实,健康女性的阴道本来就有“自洁”的能力,阴道中存在一种乳酸杆菌,可以始终保持阴道内环境呈适度酸性,这样,习惯生长在碱性环境中的霉菌,正常情况下,在这里就不能生存。但长期使用抗生素,会使阴道中的乳酸菌受抑制,失去对霉菌的拮抗作用,扰乱阴道的自然生态平衡,改变阴道的微环境,从而使细菌病原体迅速繁殖,导致霉菌性阴道炎的发生。 目前,一些女性在药物的使用上盲目追求高档次,往往迷信进口抗生素,造成小感冒引发严重的真菌、霉菌感染。对此,王主任提示广大女性朋友,一定要避免长期、大量使用抗生素药物,尤其是广谱抗生素更应少用,如果根据病情必须使用抗生素,建议连续使用不宜超过一周。另外,一旦感染阴道炎,一定要到正规的大医院就诊,一般情况下,根据医生指导,坚持合理用药,病情很快就会好转。[1] 药品误区目前,市面上大多数妇科药品仍含有甲硝唑、克霉唑类抗生素,过多使用这类药品的直接后果就是使病菌产生耐药性,破坏阴道菌群间的制约关系,导致真菌生长旺盛,有炎症的女性会使治疗周期不断延长,不断增加药品剂量,疾病得不到有效治疗。 不良反应与用药目的无关的由药物引起的机体反应称为不良反应。其包括:副作用、毒性反应、后遗反应、过敏反应、致畸、致癌,致突变作用等。副作用属药物固有反应,正常量出现较轻微。毒性反应指药物引起的生理生化机能异常和结构的病理变化,严重程度随剂量增加或疗程延长而增加。抗生素的毒性反应临床较多见,如及时停药可缓解和恢复,但亦可造成严重后果。主要有以下几方面: ①神经系统毒性反应;氨基糖甙类损害第八对脑神经,引起耳鸣、眩晕、耳聋;大剂量青霉素G或半合成青霉素或引起神经肌肉阻滞,表现为呼吸抑制甚至呼吸骤停。氯霉素、环丝氨酸引起精神病反应等。 ②造血系统毒性反应;氯霉素可引起再障性贫血;氯霉素、氨苄青霉素、链霉素、新生霉素等有时可引起粒细胞缺乏症。庆大霉素、卡那霉素、先锋霉素Ⅳ、Ⅴ、Ⅵ可引起白细胞减少,头孢菌素类偶致红细胞或白细胞,血小板减少、嗜酸性细胞增加。 ③肝、肾毒性反应:妥布霉素偶可致转氨酶升高,多数头孢菌素类大剂量可致转氨酶、碱性磷酸脂酶Ⅰ和Ⅱ、多粘菌素类、氨基甙类及磺胺药可引起肾小管损害。 ④胃肠道反应:口服抗生素后可引起胃部不适,如恶心、呕吐、上腹饱胀及食欲减退等。四环素类中尤以金霉素、强力霉素、二甲四环素显著。大环内脂类中以红霉素类最重,麦迪霉素、螺旋霉素较轻。四环素类和利福平偶可致胃溃疡。 ⑤抗生素可致菌群失调,引起维生素B族和K缺乏;也可引起二重感染,如伪膜性肠炎、急性出血肠炎、念珠菌感染等。林可霉素和氯林可霉素引起的伪膜性肠炎最多见,其次是先锋霉素Ⅳ和Ⅴ。急性出血性肠炎主要由半合成青霉素引起,以氨苄青霉素引起的机会最多。另外,长期口服大剂量新霉素和应用卡那霉素引起肠粘膜退行性变,导致吸收不良综合症,使婴儿腹泻和长期体重不增,应预重视。少数人用抗生素后引起肛门瘙痒及肛周糜烂,停药后症状可消失。 ⑥抗生素的过敏反应一般分为过敏性休克、血清病型反应、药热、皮疹、血管神经性水肿和变态反应性心肌损害等。 ⑦抗生素后遗效应是指停药后的后遗生物效应,如链毒素引起的永久性耳聋。许多化疗药可引起"三致"作用。利福平的致畸率为,氯霉素、灰黄霉素和某些抗肿瘤抗生素有致突变和致癌作用等。

万古霉素研究论文

5 抗菌药物与其他药物合用时可引发或加重不良反应〔8〕 在临床治疗过程中,多数情况下是需要联合用药的,如一些慢性病(糖尿病、肿瘤等)合并感染,手术预防用药,严重感染时,伴器官反应症状,需要对症治疗等。由于药物的相互作用,可能引发或加重抗菌药物的不良反应。 与心血管药物合用 红霉素和四环素能抑制地高辛的代谢,合用时可引起后者血药浓度明显升高,发生地高辛中毒。 与抗凝药合用 头孢菌素类、氯霉素可抑制香豆素抗凝药在肝脏的代谢,使后者半衰期延长,作用增强,凝血时间延长。红霉素可使华法林作用增强,凝血时间延长。四环素类可影响肠道菌群合成维生素K,从而增强抗凝药的作用。 与茶碱类药物合用 大环内酯类药物也可以抑制肝细胞色素P450酶系统,使茶碱血药浓度增加。红霉素与茶碱合用时,茶碱血药浓度可增加约40%,而茶碱可影响红霉素的吸收,使红霉素的峰浓度降低。 与降糖药合用 氯霉素与甲苯磺丁脲及氯磺丙脲合用时,可抑制后者的代谢,使其半衰期延长,血药浓度增加,作用增强,可导致急性低血糖。 与利尿剂合用 氨基糖苷类药物庆大霉素与呋喃苯胺酸类合用时,有引起耳毒性增加的报道。头孢噻啶与呋噻米合用时可增加肾毒性,原因可能是合用时前者的清除率降低。环孢菌素与甘露醇合用时,可引起严重的肾坏死性改变,停用甘露醇后,移植肾的功能可得到恢复。 与其他药物合用 红霉素、四环素与制酸剂合用时,可使抗生素的吸收降低。大环内酯类红霉素与卡马西平合用时,可引起卡马西平中毒症状。 综上所述,合理使用抗生素,重视患者用药过程中的临床监护对于临床医生安全用药,保证患者生命健康,减少不良反应的发生有重要的意义。 正确诊断分清是否为细菌感染,如利用标本的培养判断认为是细菌感染,才是应用抗菌药物的适应证。熟悉抗生素的药理作用及不良反应特点,掌握药物的临床药理作用、抗菌谱、适应证、禁忌证、不良反应以及制剂、剂量、给药途径与方法等,做到了解病人用药过敏史,使用药有的放矢,避免不良反应发生。在医、护、药三方加强ADR监测〔9~11〕。 同时对药物监测、临床血液及生化指标检验监测、护理监护等〔12〕。特别是对氨基糖苷类抗生素药物进行血药浓度监测的同时也应监测肾功能和听力;合并用药时对受影响药物的血药浓度进行监测,如红霉素或四环素与地高辛合用时,对地高辛药物浓度进行监测或避免合用;口服抗凝剂与氯霉素、四环素、红霉素合用时,应监测患者的凝血时间,或避免合用;必须合用时,须调整口服抗凝剂的剂量。 护理人员与患者接触较多,认真细致的护理工作,特别是对儿童及老年患者的周到护理,是对药物不良反应及时发现和处理的重要环节。对护理人员进行临床药理知识的培训,增加他们这方面的知识,以便及时发现问题及时报告和处理。 一旦发现不良反应应采取果断措施,如停药或换药。若出现过敏反应,应立即采取抢救措施。这些做法对抗生素不良反应的预防和补救都是行之有效的。 参考文献 1 张克义,赵乃才.临床药物不良反应大典.沈阳:辽宁科学技术出版社, 2001,96. 2 杨利平.再谈抗菌药物的合理应用.医学理论与实践,2004,17(2):229. 3 王正春,李秋,王珊.药物不良反应803例分析.医药导报,2004,23(9):695-696. 4 张立新,王秀美.抗生素应用中的问题与探讨.实用医技杂志,2004,11(8):1498-1499. 5 张紫洞,熊方武.药物导致的变态反应、过敏反应.抗感染药学,2004,1(2):49-52. 6 吴文臻,刘建慧.药疹220例临床分析.现代中西医结合杂志,2004,13(13):1739. 7 刘斌,彭红军.药物性肝炎136例分析.药物流行病学杂志,2004,13(5):251-253. 8 程悦.联合用药致变态反应探析.现代中西医结合杂志,2004,13(13):1793-1794. 9 马冬梅,李净,舒丽伟.如何合理使用抗生素.黑龙江医学,2004,28(12):925. 10 吴安华.临床医师处方抗菌药物前需思考的几个问题.中国医院,2004,8(8):19-22. 11 高素华.抗生素滥用的危害.内蒙古医学杂志,2005,37(11):1056-1057. 12 魏健,郦柏平,赵永根,等.抗生素合理应用自动监控系统的构建.中华医院管理杂志,2004,20(8):479-481.

浅析抗生素的不良反应 摘要:帮助临床医生了解抗生素的药物不良反应,促进临床合理使用抗生素药物,保证患者用药安全、有效、合理。方法 复习文献资料,从过敏反应、毒性反应、特异性反应、二重感染、联合用药引起或加重不良反应等几个方面,综述抗生素的药物不良反应及临床危害。结果 抗生素的药物不良反应可以预防和控制,应重视患者用药过程中的临床监护。结论 抗生素的药物不良反应应引起临床医生的高度重视。 关键词:抗生素;不良反应 药物的不良反应是临床用药中的常见现象。它不仅指药物的副作用,还包括药物的毒性、特异性反应、过敏反应、继发性反应等〔1〕。抗菌药物是临床上最常用的一类用药,包括抗生素类、抗真菌类、抗结核类及具有抗菌作用的中药制剂类。其中以抗生素类在临床使用的品种和数量最多。目前临床常用抗生素品种有100多种。抗生素挽救了无数生命,但其在临床应用也引发了一些不良反应〔2〕。抗生素药物不良反应的临床危害后果是严重的。在用药后数秒钟至数小时乃至停药后相当长的一段时间内均可发生不良反应。常见的有过敏性休克、固定型药疹、荨麻疹、血管神经性水肿等过敏性反应、胃肠道反应、再生障碍性贫血等,严重的甚至会引起患者死亡〔3〕。因此,加强临床用药过程中的监督和合理使用抗生素对减少临床不良反应的发生具有特别重要的意义〔4〕。 1 过敏反应 抗生素引起的过敏反应最为常见〔5〕,主要原因是药品中可能存在的杂质以及氧化、分解、聚合、降解产物在体内的作用,或患者自身的个体差异。发生过敏反应的患者多有变态反应性疾病,少数为特异高敏体质。 过敏性休克 此类反应属Ⅰ型变态反应,所有的给药途径均可引起。如:青霉素类、氨基糖苷类、头孢菌素类等可引起此类反应,头孢菌素类与青霉素类之间还可发生交叉过敏反应。因此,在使用此类药物前一定要先做皮试。 溶血性贫血 属于Ⅱ型变态反应,其表现为各种血细胞减少。如:头孢噻吩和氯霉素可引起血小板减少,青霉素类和头孢菌素类可引起溶血性贫血。 血清病、药物热 属于Ⅲ型变态反应,症状为给药第7~14天出现荨麻疹、血管神经性水肿、关节痛伴关节周围水肿及发热、胃肠道黏膜溃疡和肠局部坏死。如:青霉素类、头孢菌素类、林可霉素和链霉素均可引起以上反应。头孢菌素类、氯霉素等抗菌药物还可引起药物热。 过敏反应 这是一类属于Ⅳ型变态反应的过敏反应。如:经常接触链霉素或青霉素,常在3~12个月内发生。 未分型的过敏反应 有皮疹(常见为荨麻疹)〔6〕、血管神经性水肿、日光性皮炎、红皮病、固定性红斑、多形性渗出性红斑、重症大疱型红斑、中毒性表皮坏死松解症,多见于青霉素类、四环素类、链霉素、林可霉素等;内脏病变,包括急慢性间质性肺炎、支气管哮喘、过敏性肝炎、弥漫性过敏性肾炎,常见于青霉素类、链霉素等。复方新诺明还可引起严重的剥脱性皮炎。 2 毒性反应 抗生素药物的毒性反应是药物对人体各器官或组织的直接损害,造成机体生理及生化机能的病理变化,通常与给药剂量及持续时间相关。 对神经系统的毒性 如:青霉素G、氨苄西林等可引起中枢神经系统毒性反应,严重者可出现癫痫样发作。青霉素和四环素可引起精神障碍。氨基糖苷类、万古霉素、多粘菌素类和四环素可引起耳和前庭神经的毒性。链霉素、多粘霉素类、氯霉素、利福平、红霉素可造成眼部的调节适应功能障碍,发生视神经炎甚至视神经萎缩。 新的大环内酯类药物克拉霉素可引起精神系统不良反应。另有报道,大环内酯类药物克拉霉素和阿奇霉素可能减少突触前乙酰胆碱释放或加强了突触后受体抑制作用,可诱导肌无力危象。 肾脏毒性 许多抗生素均可引起肾脏的损害,如:氨基糖苷类、多粘菌素类、万古霉素。氨基糖苷类的最主要不良反应是耳肾毒性。在肾功能不全患者中,第3代头孢菌素的半衰期均有不同程度延长,应引起临床医生用药时的高度重视。 肝脏毒性〔7〕 如:两性霉素B和林可霉素可引起中毒性肝炎,大剂量四环素可引起浸润性重症肝炎,大环内酯类和苯唑青霉素引起胆汁淤滞性肝炎,头孢菌素中的头孢噻吩和头孢噻啶及青霉素中的苯唑西林、羧苄西林、氨苄西林等偶可引起转氨酶升高,链霉素、四环素和两性霉素B可引起肝细胞型黄疸。 对血液系统毒性 如:氯霉素可引起再生障碍性贫血和中毒性粒细胞缺乏症,大剂量使用青霉素时偶可致凝血机制异常,第3代头孢菌素类如头孢哌酮、羟羧氧酰胺菌素等由于影响肠道菌群正常合成维生素K可引起出血反应。 免疫系统的毒性 如:两性霉素B、头孢噻吩、氯霉素、克林霉素和四环素〔6〕。对机体免疫系统和机制具有毒性作用。 胃肠道毒性 胃肠道的不良反应较常见。可引起胃肠道反应的药物如:口服四环素类、青霉素类等,其中大环内酯类、氯霉素类等药物即使注射给药,也可引起胃肠道反应。 心脏毒性 大剂量青霉素、氯霉素和链霉素可引起心脏毒性作用,两性霉素B对心肌有损害作用,林可霉素偶见致心律失常。 3 特异性反应 特异性反应是少数患者使用药物后发生与药物作用完全不同的反应。其反应与患者的遗传性酶系统的缺乏有关。氯霉素和两性霉素B进入体内后,可经红细胞膜进入红细胞,使血红蛋白转变为变性血红蛋白,对于该酶系统正常者,使用上述药物时无影响;但对于具有遗传性变性血红蛋白血症者,机体对上述药物的敏感性增强,即使使用小剂量药物,也可导致变性血红蛋白症。 4 二重感染 在正常情况下,人体表面和腔道黏膜表面有许多细菌及真菌寄生。由于它们的存在,使机体微生态系统在相互制约下保持平衡状态。当大剂量或长期使用抗菌药物后,正常寄生敏感菌被杀死,不敏感菌和耐药菌增殖成为优势菌,外来菌也可乘机侵入,当这类菌为致病菌时,即可引起二重感染。常见二重感染的临床症状有消化道感染、肠炎、肺炎、尿路感染和败血症。

中药复方化学成分的研究进展摘要:综述了中药复方化学成分的研究成果与进展,包括有效化学成分的定性与定量、全方化学成分的提取分离与鉴定、复方活性部位与有效成分的药理追踪等。 中药复方是中医治病的主要临床应用形式,复方中的化学成分是中药发挥药效作用的物质基础。进行复方化学成分的研究,在阐明中医的方药理论,揭示中药的配伍规律和作用机制,优化制剂工艺,制定质控标准,实现中医药现代化并走向国际市场等方面均具重要意义。笔者就中药复方化学成分的研究进行综述,以供参考。 1研究方法与途径 迄今,中药复方化学成分的研究,无论在思路还是在技术与方法等诸方面仍处探索阶段,不少作者提出了一些有意义的观点和构思,如余亚纲的中药复方化学成分系统分离与鉴定的三元设计方案〔1〕,薛燕等提出的中药复方多成分经多途径协同作用的霰弹理论〔2〕以及周俊的中药复方天然组合化学库与多靶作用机制〔3〕等,这些对于如何开展中药复方化学成分的研究工作具有一定的启发和参考价值。关于中药复方化学成分的研究方法与途径,目前可归纳成如下3个方面:1)以单味药有效成分为指标,对全方制剂进行定性与定量。2)采用植化方法对全方化学成分进行系统提取、分离和鉴定。 3)以药效为标准追踪复方活性部位与有效成分。 2以单味药有效成分为指标定性与定量 确定单味药主要有效化学成分作为指标性物质(marker substances),采用各种分离与分析技术,对复方全方、各药配伍及各单味药制剂中指标性物质(成分)进行定性与定量,并探讨制备条件(药材粒度、煎煮器具、加水量、浸泡时间、煎煮时间、煎煮次数、加热温度、包煎与另煎以及先煎与后下等)、制备方式(单煎、分煎和合煎)、配伍和剂型等对指标性物质(成分)质和量的影响。此类研究工作开展较多,也取得了一些有意义的结果。 四物汤由当归、地黄、芍药和川芎组成,袁久荣等〔4〕采用多种分析方法测定了四物汤各药单煎、分煎和合煎液中的阿魏酸、8种微量元素、17种氨基酸及水溶性煎出物的含量,结果表明在加热条件下合煎时,各成分间具有增溶效应。钟立贤等〔5〕测定并比较了小青龙汤(由麻黄、桂枝、芍药和甘草等组成)各药单煎、分煎及合煎液中麻黄碱的含量,结果显示合煎液中麻黄碱含量最低,此系甘草酸与麻黄碱作用产生沉淀所致,但合煎液与分煎液的药效并无显著差异,说明虽然甘草酸与麻黄碱形成沉淀,但口服后在体内仍具药效,因此对中药复方煎煮过程中产生的沉淀应慎重考虑其取舍。四逆汤由附子、甘草和干姜组成,张宇等〔6〕对附子与甘草、附子与干姜及三味药配伍前后主要有效成分进行了定性与定量,结果表明附子与干姜配伍时,具毒性的乌头碱类含量升高;而附子与甘草配伍时,乌头碱类含量降低,说明中医“附子无干姜不热、得甘草则缓”理论具有一定科学依据。 六味地黄汤为补阴名方,严永清等〔7~9〕对其化学成分进行了初步分析,结果表明同一方剂因制备工艺不同,其化学成分的质与量也不尽一致;复方化学成分不等于各单味药化学成分的简单加和;合煎液中化学成分种类多于分煎液。朱永新等〔10〕发现生脉散水煎剂中人参皂苷Rg3和Rh1等含量明显高于单味人参水煎 剂,由此推测在加热煎煮过程中发生了人参皂苷的水解转化,结果使原来在单味药中属微量成分的Rg3和Rh1在复方中成为主要成分。严永清等〔7〕则在比较生脉散中人参、麦冬和五味子合煎与分煎液化学成分差异时发现,合煎液中人参总皂苷的含量低于分煎液,而在血流动力学以及对心肌作用和临床疗效观察上,合煎液效果优于 分煎液,据此推测人参皂苷Rg3和Rh1等可能是该方某些药理作用和临床疗效的活性成分。魏慧芬等〔11〕对小半夏加茯苓汤及方中各单味药的化学成分进行了比较,结果发现复方中生物碱含量低于半夏单味药,而氨基酸含量均高于各单味药,认为高含量的氨基酸对发挥该方的和胃止呕作用有益。 五仁液系山楂核等多种中药提取制成的一种杀菌剂,涂家生等〔12〕用GC/MS法对其化学成分进行了分析,发现其富含酚类、苯甲酸类和脂肪酸等具抗微生物作用的有效成分,并以面积归一化法计算了各类有效成分的相对含量。枳术丸由枳实和白术组成,罗尚凤等〔13〕采用GC/MS法测定了其制备过程中苍术酮、苍术内酯、羟基苍术内酯和脱水羟基苍术内酯等4种有效成分的含量动态变化,结果发现在炮制时白术中的苍术酮可氧化生成苍术内酯和羟基苍 术内酯,而在与枳实组方时苍术内酯和羟基苍术内酯又可还原成苍术酮,并讨论了这一化学变化的原因。 3用植化法对化学成分提取、分离与鉴定 将中药复方视为一个整体,采用植化方法对全方化学成分进行系统提取、分离、纯化和结构鉴定,可全面分析复方化学成分是什么,与单味药成分比较有何区别以及有无新化合物生成等。目前,有关这方面的研究工作报道不多。 全文地址: 共三页

1、在印度等南亚国家出现的 “超级病菌”NDM-1,已经蔓延到英国、美国、加拿大、澳大利亚、荷兰等国家,全球已有170人被感染。美媒分析称,这种超级细菌虽恐怖,但控制它的传播并非没有办法。国内专家也认为,超级病菌不会像甲流般凶猛,无需过度恐慌,一名曾在巴基斯坦出车祸并在那里接受短暂治疗的比利时男子于2010年6月死亡。这名医生没有交代死者身份,只说他在巴基斯坦入院治疗时感染含超级抗药基因NDM-1的细菌。医生说他遭遇车祸,腿部受伤,因接受大手术入院治疗,随后回到比利时,但回国时已感染这种超级细菌。医生曾用强力抗生素黏菌素治疗这名患者,但仍无法挽救他的生命,这名比利时男子是超级病菌致死第一人。另有一名比利时男子因在黑山遭遇车祸感染这种超级细菌,随后在比利时接受治疗,上月康复。2、广东省疾控中心流行病防治研究所所长何剑峰表示,超级病菌NDM-1其实就是一种酶的基因变化,很容易和细菌夹杂在一起,成为细菌的载体,可以复制,可以传播。超级病菌对很多抗生素都有耐药性,不过据研究发现,万古霉素对它还是有效的,各大医院都有储备,在必要的时候可以使用。不过万古霉素虽然在治疗多重耐药的细菌上有效果,但效果有多大暂且不知。北大医院感染疾病科王贵强主任也表示,NDM-1是一种感染性的细菌,并不像SARS或甲流一样是传染性的疾病,所以不会造成大流行,大家不必过于恐慌。王贵强指出,不知道预防NDM-1有何特效方法,但做好勤洗手等个人卫生防护很有必要。3、超级病菌在引发全球恐慌的同时,也令部分相关医药股受到市场狂热追捧。据专家称超级病菌可以抵御几乎所有抗生素,目前最好的抗生素是替加环素和万古霉素。如果该病菌真正蔓延,医药股会因此受益。

青蒿素研究进展论文

谷歌高管淘汰

青蒿素的期刊论文最早的时间在 1977年2月15日。

青蒿素(Artemisinin)是一种有机化合物,分子式为C15H22O5,相对分子质量。

青蒿素为无色针状结晶,熔点为156~157℃,易溶于氯仿、丙酮、乙酸乙酯和苯,可溶于乙醇、乙醚,微溶于冷石油醚,几乎不溶于水。因其具有特殊的过氧基团,它对热不稳定,易受湿、热和还原性物质的影响而分解。

青蒿素是治疗疟疾耐药性效果最好的药物,以青蒿素类药物为主的联合疗法,也是当下治疗疟疾的最有效最重要手段。但是近年来随着研究的深入,

青蒿素其它作用也越来越多被发现和应用研究,如抗肿瘤、治疗肺动脉高压、抗糖尿病、胚胎毒性、抗真菌、免疫调节、抗病毒 [ 、抗炎、抗肺纤维化、抗菌、心血管作用等多种药理作用  。

2015年10月,屠呦呦因创制新型抗疟药—青蒿素和双氢青蒿素的贡献,与另外两位科学家获2015年度诺贝尔生理学或医学奖。

疟疾是人类最古老的疾病之一,迄今依然还是一个全球广泛关注且亟待解决的重要公共卫生问题。

1631年,意大利传教士萨鲁布里诺(AgostinoSalumbrino)从南美洲秘鲁人那里获得了一种有效治疗热病的药物——金鸡纳树皮(cinchonabark)并将之带回欧洲用于热病治疗,不久人们发现该药对间歇热具有明显的缓解作用。

1820年,法国化学家佩尔蒂埃(PierreJoseph)和药学家卡文托(JosephBienaiméCaventou)从金鸡纳树皮分离治疗疟疾的有效成分并将之命名为奎宁(quinine)。

一,青蒿素的发现屠呦呦发现青蒿素(Artemisinin),一种治疗疟疾的药物,在全球特别是发展中国家挽救了数百万人的生命,获得2011年度拉斯克-狄贝基临床医学研究奖。引起人们对参与青蒿素研制人员的关注,特别是周维善院士等人全合成青蒿素,得到媒体大量报道。1970年代初,屠呦呦从植物中提取了青蒿素。1979年上海生物物理所确定了蒿素青的绝对空间构型。1977年报道了青蒿素结构。[青蒿素结构研究协作组.一种新型的倍半萜内酯青蒿素.科学通报,1977,(3):142.] 1979年12月以英文公开报道青蒿素抗疟作用。[Qinghaosu Antimalarial Coordinatiing Research Group, Antimalarial studies on qinghaosu. Chinese Medicine Journal, 1979, 92(12):811-816.](It remained largely unknown to the rest of the world for about seven years, until results were published in the Chinese Medical Journal in report was met with skepticism at first, partly because the chemical structure of artemisinin, particularly the peroxide, appeared to be too unstable to be a viable drug.)    二,青蒿素的合成全合成,新发现的化合物由已知化合物一步一步的人工合成的过程。半合成,新发现的化合物由另一个未知化合物一步一步的人工合成的过程。全合成在有机合成史中非常重要,几百年来创造许多经典的合成方法及技术等。奎宁作为治疗疟疾的药物已有几百年的历史,是青蒿素的前一代药物,从树皮中提取.大约在1850-2000年之间,有机化学家们不断地全合成奎宁化合物,涌现许多杰出的科学家,开创一个又一个研究领域.[1],1983年1月,Schmid G, Hofheinz W.发表青蒿素全合成论文.[Schmid G, Hofheinz W. Total synthesis of Qinghaosu. J Am Chem Soc, 1983, 105(3):624~625].反应示意图见上面.以(-)-2-异薄荷醇((-)-Isopulegol)为原料,巧妙的设计,最后得到青蒿素.反应物(11)>>反应物(12)>>青蒿素是最后两步关键反应,其他研究者都参照该步骤.[2],1983年6月,许杏祥,朱杰,黄大中,周维善发表了青蒿素半合成的论文.[许杏样,朱杰,黄大中,周维善.青蒿素及其一类物构造和合成的研讨. X. 从青蒿酸立体操纵合成青蒿素和脱氧青蒿素. 化学学报,1983,41(6):574-575].系列论文研究之一,参考论文[1],大约经过5步反应,最后两步借用论文[1],没有独创性.由已知开始物一步一步合成到最后的未知物,这篇论文却把最后5步先合成了,而且关键的两步还是借用论文[1],有疑团丛丛之感!!(《化学学报》 1983年06期,中文摘要)(化学学报(Acta Chim. Sinica),英文摘要)[3],1984年5月许杏祥等报道以香草醛为原料合成双氢青蒿酸甲酯.[许杏祥,朱杰,黄大中,周维善.青蒿素及其一类物结构和合成的研究 XVII.双氢青蒿酸甲酯的立体控制性合成-青蒿素全合成,化学学报,1984,V42(9): 940-942].结合论文[2],构成青蒿素的全合成.但至今为止,没被研究者引用过,不知什么原因,无法重复?既然是全合成,为什么不直说哪?玩弄文字游戏? [4],论文[3]英文版[《Acta Chimica Sinica(English Edition)》 1984年02期,Studies on structures and syntheses of arteannuin and its related compounds——ⅩⅦ.The stereocontrolled total synthesis of methyl dihydroarteannuate—T

相关百科

热门百科

首页
发表服务