认识了小学五年级勾股定理知识和勾股定理知识的常见运用,想必很多同学会去深入学习。本站用户整理了五年级数学小论文:勾股定理,欢迎阅读。五年级数学小论文:勾股定理1、证明一个三角形是直角三角形2、用于直角三角形中的相关计算3、有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学着作—— 周髀算经 的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:勾2+股2=弦2亦即:a2+b2=c2勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。在稍后一点的 九章算术一书 中,勾股定理得到了更加规范的一般性表达。书中的 勾股章 说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:弦=(勾2+股2)(1/2)即:c=(a2+b2)(1/2)定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是33+4。
五年级数学小论文【一】
我对两位数乘两位数有一定的看法。其中,并非都需要列竖式计算,两位数乘两位数有许多种,我先说出其中的五种。第一种,个位相加等于10,十位数字相同。第二种,十位数相加等于10,个位数字相同。第三种,十位、个位相加既不不等于10既,也不相同,没有任何规律。第四种,个位相加等于10,但是十位数字不相同。第五种,十位相加等于10,但是个位数字不相同。第六种当然,我并非知道所有种类,但是也略知皮毛,至少是可以写出前三中的简便方法来的。
我列几题来看:第一题,8684=多少。86和84个位相加等于10,十位数字相同,是第一种情况。可以这样计算:8+1=9,89=72,末尾46=24,89的结果是积的百位和千位,46的结果是积的十位和个位。这题的积是7224。第二题,3452,属于第三种,可以将它乘法变加法,三步完成,第一步,24=8,个位相乘,积的末尾为8。第二步用45+32=26,交叉相乘加起来,写6进2。第三步,十位相乘35=15,15加进的2,等于17,这题的积是1768。第三题,6848,属于第二种,十位数相加等于10,个位数字相同。用64=24,24+8=32,积的千位和百位是3和2。最后末尾相乘,88=64,十位和个位是6和4,这题的积是3264。
当然还有一种指算法。我就不多说了,我就不一一介绍了。看了我的方法,你们觉得是我的好,还是数学报上老土的方法好。
五年级数学小论文【二】
今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。
妈妈问我:考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?
我思索了一会儿,不慌不忙地说:可以这样算:
51=5305=150(小时)200小时150小时
还可以这样算:
51=52005=40(小时)30小时40小时
由这几步可得出结论,节能灯泡省钱。
妈妈又问我:很好。再想想看,还有没有别的办法来算?
我又想了一会儿,一个字一个字地说:可以用我这学期才学的百分数来算:
5/200100=
1/
或者这样算:
200/5100=40100=4000
30/1100=30100=3000
40003000
因此,也是节能灯泡便宜。。
我和妈妈买了比较划算的节能灯泡回去了。
经过这件事,我明白了:生活处处有数学这个道理。
五年级数学小论文【三】
生活处处有数学,今天我来到超市,验证了这一真理。通过比较,我还发现有的东西套装卖比单个买更贵一点。
我来到有火腿肠的架子上,货架上摆着一包一包的火腿肠,同样品牌,同样重量,里面有10根,每包元。到底买一包一包的呢,还是买一根一根的?我犹豫了。突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是我开始算起来:零卖的如果买10根,每根4角,共是4元,而整包的要元,多了3毛钱,所以套装比散装更贵。
我来到饮料货台,一瓶250ml的凉茶元,但是货柜上整箱16瓶装的却标价元,如果按元的单价买16瓶,只需28元,显然单瓶购买比整箱购买少用元。310ml王老吉罐装饮料一瓶元,整箱12瓶装的标价42元,如果以元的单价买12瓶则只需元,比整箱购买便宜了元;而同样的该品种,24瓶装一箱标价元,如按元的零售价买24瓶才元,比整箱购买整整少了元。旁边的啤酒每罐单价元,24瓶应收元,但是超市收款元。整整多出元,都可以多买2罐啤酒了。
同学们,数学是很奥妙的,也是很灵活的,除了我刚才提到的以外,生活中的数学还有很多种呢!所以学数学就是为了能在实际生活中应用,来解决实际问题的,数学问题就产生在生活中。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
买西瓜的数学那是星期六的一天下午,我嚷着要吃西瓜,妈妈爽快地答应了。于是我和奶奶就去买西瓜.走进菜市场,我一眼就瞅住了一个西瓜堆儿。这里的西瓜是红瓤的,又大又圆,看着就让人垂涎三尺。奶奶说:“给我挑个熟的!”那个小贩在西瓜上敲了敲,说:“包熟!”于是放在电子秤上说:“一斤十块半,斤,17元8角。”奶奶说:“什么?17元8角,这么贵?不买了不买了!”小贩急了,说:“别,别,别,你去其它地方买就不贵吗?我这儿可是全市最便宜的了,我这儿一斤十块半,人家一斤半十五块五了!”奶奶数学本来就不好,被小贩这么一说便糊涂了,我当时也在想:一斤十块半,也就是1斤元,单价是:÷1=元,而一斤半十五块五,也就是斤元,它的单价是:÷,我没细算,想想可能应该比多,但是却犯了个致命的错误。算错就会犯错,我向奶奶使了个眼色,示意让她买,于是奶奶说:“价格能少一点吗?”“不能、不能,本能就比人家便宜,再少,我就亏大了,干脆别卖了。”看着小贩的“真诚”的态度,奶奶于是付了钱,拎着装好西瓜的袋子就走了。回到家,我把这件事告诉给妈妈。妈妈听了之后又问了一遍价钱。我说:“小贩说他这儿一斤十块半,别人那一斤半十五块五。”妈妈哭笑不得,问:“你怎么知道别人那儿贵呢?你再好好的算算”。“因为这儿是÷1=,而别人那儿是÷,反正他这儿便宜”我理直气壮。妈妈说:“你呀,太马虎了,÷……,谁便宜呀!”通过这件事,我知道了数学在我们日常生活中运用十分广泛,学好数学十分重要,另外还要记住:“不要利用数学人,也不能不懂数学而被人!”
五年级第二学期以来,我们学的主要内容就是长方体、正方体的表面积、体积和分数乘法的等。在长方体、正方体表面积的单元里,有许多典型的题目,而这些题目通常会导致我们思维混乱从而做错。下面,我就来分析一道多次出错的题目。 题目是这样的: 一个长方体鱼缸,长6米、宽2米、深1米,制作这个鱼缸至少要多少平方米的玻璃? 我是这样做的: (6×2+2×1+6×1)×2-6×2 分析我的做法: 我先算出整个鱼缸6个面的总面积,再减去缺少的那个面(上面)的面积。因为鱼缸要养鱼,所以不可能是完全封闭的,往往都是上面作为缸口,所以要减去上面的面积。 方法多种多样,做这一道题还有另一种方法: (2×1+6×1)×2+6×2 分析这样的做法: 已知鱼缸共有5个面,其中前面、后面是一组,左面、右面是一组,可以先算出前、后、左、4个面的总面积,再加上下面的面积,就可以求出鱼缸5个面的面积,也就是鱼缸的表面积。 最容易出错的地方: 像这样类型的题目,往往容易出错的有2点。一是不联合实际想,把鱼缸的表面积当做6个面来计算;二是虽然知道鱼缸只有5个面,但却不知道少的面面积应当怎么算。 我的建议: 当你做到这种题目时,应该画一画图来帮助你,并在图形上标明长、宽、高对应的数目,这样题目就一目了然,做起来就会得心应手了。另外,还要注意单位是否一致! 以上就是我对“鱼缸问题”的分析与见解
啦咯啦咯啦咯
今天,我和妈妈去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。 妈妈问我:“考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?” 我思索了一会儿,不慌不忙地说:“可以这样算: 5÷1=5 30×5=150(小时)200小时>150小时 还可以这样算: 5÷1=5 200÷5=40(小时)30小时<40小时 由这几步可得出结论,节能灯泡省钱。” 妈妈又问我:“很好。再想想看,还有没有别的办法来算?” 我又想了一会儿,一个字一个字地说:“可不可以百分数?来 算。”也可以这样算: 5÷200×100=×100= 1÷30×100≈×100= > 或者这样算: 200÷5×100=40×100=4000 30×1×100=30×100=3000 4000>3000 因此,也是节能灯泡便宜。。” 我和妈妈买了比较划算的节能灯泡回去了。 从这件事中,我知道了:“生活处处有数学”。
认识了小学五年级勾股定理知识和勾股定理知识的常见运用,想必很多同学会去深入学习。本站用户整理了五年级数学小论文:勾股定理,欢迎阅读。五年级数学小论文:勾股定理1、证明一个三角形是直角三角形2、用于直角三角形中的相关计算3、有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学着作—— 周髀算经 的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:勾2+股2=弦2亦即:a2+b2=c2勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。在稍后一点的 九章算术一书 中,勾股定理得到了更加规范的一般性表达。书中的 勾股章 说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:弦=(勾2+股2)(1/2)即:c=(a2+b2)(1/2)定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是33+4。
买西瓜的数学那是星期六的一天下午,我嚷着要吃西瓜,妈妈爽快地答应了。于是我和奶奶就去买西瓜.走进菜市场,我一眼就瞅住了一个西瓜堆儿。这里的西瓜是红瓤的,又大又圆,看着就让人垂涎三尺。奶奶说:“给我挑个熟的!”那个小贩在西瓜上敲了敲,说:“包熟!”于是放在电子秤上说:“一斤十块半,斤,17元8角。”奶奶说:“什么?17元8角,这么贵?不买了不买了!”小贩急了,说:“别,别,别,你去其它地方买就不贵吗?我这儿可是全市最便宜的了,我这儿一斤十块半,人家一斤半十五块五了!”奶奶数学本来就不好,被小贩这么一说便糊涂了,我当时也在想:一斤十块半,也就是1斤元,单价是:÷1=元,而一斤半十五块五,也就是斤元,它的单价是:÷,我没细算,想想可能应该比多,但是却犯了个致命的错误。算错就会犯错,我向奶奶使了个眼色,示意让她买,于是奶奶说:“价格能少一点吗?”“不能、不能,本能就比人家便宜,再少,我就亏大了,干脆别卖了。”看着小贩的“真诚”的态度,奶奶于是付了钱,拎着装好西瓜的袋子就走了。回到家,我把这件事告诉给妈妈。妈妈听了之后又问了一遍价钱。我说:“小贩说他这儿一斤十块半,别人那一斤半十五块五。”妈妈哭笑不得,问:“你怎么知道别人那儿贵呢?你再好好的算算”。“因为这儿是÷1=,而别人那儿是÷,反正他这儿便宜”我理直气壮。妈妈说:“你呀,太马虎了,÷……,谁便宜呀!”通过这件事,我知道了数学在我们日常生活中运用十分广泛,学好数学十分重要,另外还要记住:“不要利用数学人,也不能不懂数学而被人!”
数学小论文大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。有趣的鸡兔同笼,古怪的数学黑洞,在这之中我发现了一些奇妙的数学规律。记得我有一次在做奥数题的时候遇到了一道方程题18X=20。当我用20除以18时发现得数是……,是一个纯循环小数。后来我写了分数九分之十。写完答案之后,我看着这道题的答案时,我就猜测:当被除数是整十数时,如果用这个数减去其十位上的数字,然后再用原来的数除以减得的数,得数就是……或分数中的九分之十。当想到这时,我有些犹豫:这个猜测准不准确呢,不会有错吧?我半信半疑的带着这个疑问,开始用其他数来进行验算:用30先减去十位上的3等于27,再用30除以27。这时我发现得数还真是……和九分之十。后来我又分别用70和60来证明我的说法是否正确,果真我的想法是正确的,改成事实证明我的想法是正确的。在此之后,我又继续用这种规律来验算整百位的题,又发现得出来的数是……或九十九分之一百,依照这种规律,那么整千位的数就可以得出……和九百九十九分之一千,整万位就可以得出……或九千九百九十九分之一万……在这奇妙的数学王国里,只要我们不断努力探索和发现,就能发现不少有趣的同时不为我们熟悉的数学问题。猜想验证的方法是人类探索未知的一种重要方法,很多科学规律的发现,都是先有猜想,而后被不断的验证、再猜想、再验证才被认识。猜想验证也是一种重要的数学思想方法。我们应当在听老师讲课时注意向老师学习该种思维方法,同时,还应该在平常的生活中尝试自我探索。
五年级数学小论文【一】
我对两位数乘两位数有一定的看法。其中,并非都需要列竖式计算,两位数乘两位数有许多种,我先说出其中的五种。第一种,个位相加等于10,十位数字相同。第二种,十位数相加等于10,个位数字相同。第三种,十位、个位相加既不不等于10既,也不相同,没有任何规律。第四种,个位相加等于10,但是十位数字不相同。第五种,十位相加等于10,但是个位数字不相同。第六种当然,我并非知道所有种类,但是也略知皮毛,至少是可以写出前三中的简便方法来的。
我列几题来看:第一题,8684=多少。86和84个位相加等于10,十位数字相同,是第一种情况。可以这样计算:8+1=9,89=72,末尾46=24,89的结果是积的百位和千位,46的结果是积的十位和个位。这题的积是7224。第二题,3452,属于第三种,可以将它乘法变加法,三步完成,第一步,24=8,个位相乘,积的末尾为8。第二步用45+32=26,交叉相乘加起来,写6进2。第三步,十位相乘35=15,15加进的2,等于17,这题的积是1768。第三题,6848,属于第二种,十位数相加等于10,个位数字相同。用64=24,24+8=32,积的千位和百位是3和2。最后末尾相乘,88=64,十位和个位是6和4,这题的积是3264。
当然还有一种指算法。我就不多说了,我就不一一介绍了。看了我的方法,你们觉得是我的好,还是数学报上老土的方法好。
五年级数学小论文【二】
今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。
妈妈问我:考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?
我思索了一会儿,不慌不忙地说:可以这样算:
51=5305=150(小时)200小时150小时
还可以这样算:
51=52005=40(小时)30小时40小时
由这几步可得出结论,节能灯泡省钱。
妈妈又问我:很好。再想想看,还有没有别的办法来算?
我又想了一会儿,一个字一个字地说:可以用我这学期才学的百分数来算:
5/200100=
1/
或者这样算:
200/5100=40100=4000
30/1100=30100=3000
40003000
因此,也是节能灯泡便宜。。
我和妈妈买了比较划算的节能灯泡回去了。
经过这件事,我明白了:生活处处有数学这个道理。
五年级数学小论文【三】
生活处处有数学,今天我来到超市,验证了这一真理。通过比较,我还发现有的东西套装卖比单个买更贵一点。
我来到有火腿肠的架子上,货架上摆着一包一包的火腿肠,同样品牌,同样重量,里面有10根,每包元。到底买一包一包的呢,还是买一根一根的?我犹豫了。突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是我开始算起来:零卖的如果买10根,每根4角,共是4元,而整包的要元,多了3毛钱,所以套装比散装更贵。
我来到饮料货台,一瓶250ml的凉茶元,但是货柜上整箱16瓶装的却标价元,如果按元的单价买16瓶,只需28元,显然单瓶购买比整箱购买少用元。310ml王老吉罐装饮料一瓶元,整箱12瓶装的标价42元,如果以元的单价买12瓶则只需元,比整箱购买便宜了元;而同样的该品种,24瓶装一箱标价元,如按元的零售价买24瓶才元,比整箱购买整整少了元。旁边的啤酒每罐单价元,24瓶应收元,但是超市收款元。整整多出元,都可以多买2罐啤酒了。
同学们,数学是很奥妙的,也是很灵活的,除了我刚才提到的以外,生活中的数学还有很多种呢!所以学数学就是为了能在实际生活中应用,来解决实际问题的,数学问题就产生在生活中。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
伟大的数学王国由0-9、点、线、面组成。你可别小瞧这些成员,他们让我们的生活奇妙无比,丰富多彩。例如这不起眼的点,它使我们的生活更美,更快捷。这个功劳非黄金分割点莫属了。把一条线段分成两部分,其中一段与该线段的比等于另一条线段与第一条线段的比,比值近似,这就是黄金分割点。从古希腊以来,一直有人认为把黄金分割点应用于造型艺术,可以使作品给人以最美的感觉。因此,黄金分割点在生活中的应用十分广泛。一、画图的应用1、画长方形是我们小学生最平常的事,也是最熟悉不过的。你们可知道在无条件的情况下怎么把长方形画的更美,给人一种更舒适的感觉?那就是长方形的宽与长的比值接近,这样画出的图形更美。2、学过绘图的人可能知道如果给你一张纸,把这张纸画满,不一定会好看,但要是就画一点,留许多空白也不会太好看。但有一些画就让人感觉很美、很清爽。那是因为它应用了黄金分割点,才让人感到赏心悦目[注: 悦目:看了舒服。指看到美好的景色而心情愉快。]。二、人体的应用1、在人体的结构上,黄金分割的应用更为广泛,举个最为熟悉的例子。人们常称的帅哥、美女,就是他们的脸宽与脸长的比、腿长与身长的比值都约是,这样的身材堪称最美。2、人的肚脐是人体的黄金分割点、膝盖是人腿的黄金分割点……三、建筑物的应用古今中外[注: 指从古代到现代,从国内到国外。泛指时间久远,空间广阔。],许多建造师都偏爱,他们的杰作另世人仰慕。如:古埃及的金字塔,巴黎的圣母院,还有法国的埃菲尔铁塔……小学生作文网t262四、生活上的应用1、大家平时可能注意到电工在检查一根不导电的电线时,他总是选择这根电线的黄金分割点来检查,因为这样可以最快速的找到损坏处。谜语大全及答案2、我们家里大多数门窗的宽和长的比也是,还有箱子、书本等都应用了黄金分割点,让这些物品看上去更舒心。大千世界[注: 佛教用语,世界的千倍叫小千世界,小千世界的千倍叫中千世界,中千世界的千倍叫大千世界。后指广大无边的人世。],美轮美奂[注: 轮:高大;奂:众多。形容房屋高大华丽。],到处都蕴藏着黄金分割点。让我们一起努力吧,用知识和智慧创造出更多的美!
无论是身处学校还是步入社会,大家都接触过论文吧,论文是描述学术研究成果进行学术交流的一种工具。你知道论文怎样写才规范吗?以下是我为大家收集的数学小论文作文,仅供参考,大家一起来看看吧。
星期天,全家人在一起讨论清明节回老家扫墓的事。谈着谈着,我心里忽然冒出了一个疑问:这里离老家有多远呢?”我问妈妈,妈妈笑了,说:你说呢?你上了这么多年学,一定会有办法知道的,对吧?”
我想了想,灵光一闪,对了,可以用我们最近学的比例尺的知识来算。我立即拿来地图,找到了泰州市,却怎么也找不到老家所在地顾高镇。怎么办呢?我冥思苦想,突然灵机一动:我可以先找到离老家顾高镇最近的乡镇黄桥镇,量出地图上泰州到黄桥的距离,再减去一些,就是地图上泰州到老家的大约的距离了!说干就干,我立即量出地图上泰州到黄桥的距离,它是0。6cm。因为老家比黄桥离泰州更近些,我便把减去了,变成了。因为这份地图的比例尺是1:6000000,我便用0。5×6000000=3000000cm,3000000cm=30km。
我立即向妈妈报出了我的答案:大约30千米,本以为会得到妈妈的表扬,可谁知妈妈却疑惑地说:好像没这么近吧?”听了妈妈的话,我也疑惑不解:怎么会这样?”我又来到地图前,重新量起来。量着量着,我突然发现了其中的奥秘:我量的是地图上两点间的直线距离,而实际的道路不是直线的,是绕来绕去的,所以实际路程一定比依据地图计算出来的远。
我把我的发现告诉了妈妈,妈妈也恍然大悟:对!就是这样!你真聪明!”
在学校里,学了如何算体积的,急忙想算一下周围用品的体积。突然,我的目光集中在我的未开封清风面巾纸上,有了,就只算单张面巾纸的体积。
既然算单张的,就要先算整包的。我拿出尺子,分别量出了长,宽,高。
长:7。4厘米 体积为:7·4×5。6×2。5=103。6立方厘米
宽:5,6厘米 但是,我突然想到,面巾纸是可以压的扁一点的,这不
高:2。5厘米 就减少了体积吗?我思考了几分钟,想到既然是测量未开封的的,就应该是未压扁的。想到这,我又看到了我的数据。可能是量的是压得。最后仔仔细细量重新变动数据。
长:7。5厘米 体积为:7·5×5。5×2。5=立方厘米
宽:5,5厘米 眼看就要成功了,可我猛地发现,包装塑料纸也是有体
高:2。5厘米 积的,可是又有什么办法。思考许久,忽然,我想到了一个很原始的办法。我抽出里面的面巾纸,把塑料包装纸对折4着,这成了一个小正方体。
长:2。1厘米 体积为:2。1×1。8×0。3=1。134立方厘米
宽:1,8厘米 虽然可能有误,但是我也想不出其他办法了。
高:0。3厘米
最后算式:(103,125—1。134)÷10(一包面巾纸里有10张)=10。1991立方厘米
经过这次,我终于享受到写数学小论文的快乐。
今天,我无意间发现里一个有趣的测试,这是一个由印第安人发明的水晶球心理测试。
我打开页面,看了看规则,是这样的:随便从10—99之间选一个数字,把十位数和个位数相加,再把原数减去相加的数,最后记住得出数字的图案,点一下水晶球,就会出现那个你记住的图案了(水晶球旁边有10——99的数字,数字旁有一种图案)。如:23 2+3=5 23——5=18。
我看好后,就选了78 7+8=15 78——15=63。我又看了看63旁的图案,便点了点水晶球,发现出现的图还真的是我记下的图。我又选了一些数字,算了算,水晶球都可以准确的出现我记下的图案。好神奇啊!
我心想:水晶球为什么知道我记下的图案啊?
于是,我做了一个很笨的小实验:从10——99的数字都算一遍。结果发现得出来的数都是9的倍数:9。18。27。36。45。54。63。72。我又看了看这些数字边的图案,都是一样的。我说:”哦,所以水晶球会知道我记下的图案啊!哈哈哈!“
我发现数学其实无处不在。只要我们善于发现,善于观察,善于思考,数学的海洋将任我们翱翔!
西瓜是夏天中最爱欢迎的水果。今天,妈妈买回了一个又大又圆的`西瓜。于是,我们准备吃西瓜了!
小妹妹问我:”嘉嘉姐姐,你要吃多少呀!“我想了想说,”我吃这个西瓜的1/2吧。“”1/2是什么?“她问。”1/2是分数,是把一个东西平均分成2份,取其中的1份。“我说。”哦。“小妹妹似懂非懂地说。”我吃这个西瓜剩下的1/2。“妈妈插话道。小妹妹问:”剩下的1/2是不是嘉嘉姐姐留下的全部吃掉啊?那我没得吃了?“”哈哈!“我和妈妈哈哈大笑。”不是这样的。“妈妈笑着说。我接话道:”剩下的1/2就是把我吃剩的那部分看作一个整体,再把这部分平均分成2份,取其中的1份。“”是这样啊!那我还是有西瓜吃的了!“小妹妹恍然大悟。小妹妹调皮地说:”以后我要先吃1/2,这样我的1/2比你的多,这次不划算!“”你的,我哪吃得了这么多?你想吃多少就吃多少!“我们都笑了!
你现在认识分数了吗?分数还有很多哦!等着你去发现。让我们一起踏上寻找数学的旅程吧!
一年一度的双11“剁手节”来了。
今天下午,妈妈坐在沙发上,翻看着天猫里面的商品准备在明天双十一抢购。我一直想买一个做奶茶的工具,妈妈是一个实用主意者,没有用的东西一般都不会买回来。我很担心提出需求后妈妈不给买,又说我乱花钱。忍不住内心的想要还是说了出来。
“妈妈可以给我买个玩具吗”?我轻声细语的问。妈妈说,只要我能回答她一个数学问题可以买,我爽快的答应了。我们搜了做奶茶的工具,出现了许多的旗舰店,其中有两家销量最好的都各有各的优惠。它们一套都是68。5元,但是甲店是买两套送一套,乙店是打七折。我要买三套,妈妈问我哪一家便宜,我说甲店是68。5×2=137元(3套),乙店是68。5×3=205。5元,205。5×0。7=143。85元(3套)。143。85大于137,所以甲店划算。当我准确算出答案时,妈妈很爽快的我买了做奶茶的工具。
数学知识在生活中无处不在,我要找到数学的乐趣,遨游在数字的海洋里。
关于速度一向学习成绩不好的我,在无意中发现了一道题,并且给做出来了,下面我给大家分享一下吧!在20xx年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电。该地供电局组织电工进行抢修供电局距离抢修工地15千米。抢修车装载着所需材料先从供电局出发,15分钟后电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地,已知吉普车速度是抢修车速度的1。5倍,求这两种车的速度。
解:1。设抢修车的速度为x千米/时,则吉普车的速度为1。5x千米/时.由题意走相同路程15千米,吉普车比抢修车快15分钟(即0。25小时)得方程15/X-15/1。5X=0。25解得X=20千米/小时,则1。5X=30千米/小时
答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.
2。因为走的路程(S=15KM)一样,人用的时间是X。材料用的时间是X+15,即(15÷X)÷(15÷(X+15))=1。5,一元一次方程,得X=30分钟,即0。5小时,那么吉普车的速度就是30KM/H,抢修车20KM/H
答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.
3。设吉普车用的时间为x小时。
根据题意得:x+15=1。5x
一天,数学老师提出了一个问题:1+2+3+4+5+6……一直加到100的得数是多少?那么,一直加到1000和10000呢?用简便方法计算。
算式:1+2+3+4+5+6+7……+100=5050 5050×10=50500 50500×10=505000
答:1一直加到100的得数是5050,一直加到1000和10000各是50500和505000.
简便算法:或许有些同学会觉得这个算是太长,需要计算器!no,那就错了。只要仔细看看就可以发现1和99可以凑成100,2和98可以凑成100,3和97也可以凑成100,4和96,5和95,6和94 ,7和93,8和92,9和91,10和90,11和89……一直这样凑成100,结果可以得到能凑成50个100,就是5000,但是还剩下一个50单独一个数字,就可以拿5000 + 50 =5050,得出1一直加到100的得数。但有人会问了,1一直加到1000和10000为什么不着要算呢?因为100和1000的进率是10倍,1000和10000的进率也是10倍,所以可以拿1一直加到100的得数5050乘10倍等于50500,再拿50500乘10倍等于5050000。行对应的,1一直加到100000、1000000、10000000......以此类推,都可以这样算,当然,你也可以更深的理解这道题的规律哦!
今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。
妈妈问我:“考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?”
我思索了一会儿,不慌不忙地说:“可以这样算:
5/1=5
30*5=150(小时)200小时>150小时
还可以这样算:
5/1=5
200/5=40(小时)30小时<40小时
由这几步可得出结论,节能灯泡省钱。”
妈妈又问我:“很好。再想想看,还有没有别的办法来算?”
我又想了一会儿,一个字一个字地说:“可以用我这学期才学的?百分数?来算。也可以这样算:
5/200*100=*100=
1/30*100≈*100=
>
或者这样算:
200/5*100=40*100=4000
30/1*100=30*100=3000
4000>3000
因此,也是节能灯泡便宜。。”
我和妈妈买了比较划算的节能灯泡回去了。
经过这件事,我明白了:“生活处处有数学”这个道理。
今天,老师给我们讲了一道三级训练上的重点难题:一个长100米,宽80米的广场中间留了宽4米的人行道,把广场平均分成4块,求每块的面积是多少?
看到题目后,有的人开动脑筋,寻找方法;有的人望着天花板干瞪眼;我绞尽脑汁使劲地想,终于思考出一种方法,于是赶紧举起小手,老师便叫我起来回答,我大声地说:“100-4=96米;96÷2=48米;80-4=76米;76÷2=38米;38×48=1824平方米”。
“你能说说你的思考方法吗?”沈老师问。“先把长减去4,算出两块的长,再除以2就得出一块小广场的长;宽也用同样的方法,最后长和宽相乘便得出一块的面积了。”
沈老师又问“还有其他的方法吗?”
夏雨航站起来回答,他连说了好几个算式,可我们却不懂。
老师又让大家想其他方法,大家看起来信心十足,但又害怕不对又都低下了头。
于是沈老师就带着我们一起理解了各个算式,这困难就迎刃而解了.
通过这节课我明白了一个道理:世上无难事,只怕有心人,只要你肯想,就一定能想出解决问题的办法来!
有一天,我跟妈妈去逛商场。妈妈进了超市买东西,让我站在付钱的地方等她。我没什么事,就看着营业员阿姨收钱。看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。”我定下心,仔细地想了起来。过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。”
这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服。在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。
比如,在我爸爸给我买的一本数学拓展题中,有一题思考题是这样说的:”一辆客车从东城开向西城,每小时行45千米,行了2。5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?“ 这时,我就在数学草稿纸上这样写: 45×2。5=112。5(千米),112。5+18=130。5(千米),130。5×2=261(千米),答:东西两城相距261千米。
但我又看了看,发现有点不对劲。原来,我忽略了一个重要的东西,就是:这时刚好离东西两城的中点18千米,其中的”离“,这到底是没到中点呢?还是过了中点呢?如果是还没到中点,离中点还差18千米的话,就是我刚刚这么写。但如果是到了中点多了18千米,那就应该这么写:45×2。5=112。5(千米),112。5——18=94。5(千米),94。5×2=189(千米)。
那到底是怎么写呢?我便向爸爸求助,我跟爸爸讲了这件事后,又给爸爸看了看式子,结果,爸爸却说:”嗯……你写的这两个式子都对。都可以写。“
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,根据生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案。
今天早上一起来,妈妈就宣布:由于家里停水,今天全家到欧尚那边去吃早餐,顺便到超市买东西。
到了那边,我们准备先去吃早餐,先来到了珅府捞面。可是,这里一碗面就要3、40块钱,好贵,而且更加“惊悚”的是,这里的一个鸡爪要5块钱。我们觉得太贵不合算,就来到了“丸来丸趣”,没想到,仅仅一墙之隔,价钱差距就这么大:这里一碗面只要9块钱。吃完早餐,我们就开始逛超市啦!我们先买了一袋我和爸爸最喜欢吃的青桔子,总共数量是11个,价钱是元,差不多一个5毛钱左右。我们又去买了5个鸡爪,一共元。这个鸡爪的价格简直与珅府捞面的价格有着“天壤之别”,一边是不到1元/个,一边是5元/个。来到水果区,我们买了一袋青蛇果,3个共元,这么小的一个青蛇果差不多一个要6元,好贵!接下来,我们又去买了一个哈密瓜,元,没想到,3个小小的青蛇果比一个大大的哈密瓜整整还贵出了元。由于我在邻居桃桃家里尝过黄桃很好吃,我们又去买了3个大大的黄桃,一共元,平均下来每个黄桃是元。我们买完所有需要的东西去结帐,算上这里没有提到的东西,一共是500元。
这次,我从买东西里面学到了很多数学知识,今天真是太开心了!
今天是中秋节,我们一家人可高兴了。爸爸妈妈说:“今天是个好日子,我们来玩一个抓纸的游戏怎么样?”我点了点头,爸爸拿了4个形状相等,大小相同的纸,分别把2张红纸和2张蓝纸放进这个袋子里说:“这个不是透明袋子,里有2张红和2张蓝纸,如果你摸到2张都是红纸或2张都是蓝纸的话,我就给你5块钱,否则你给我5块钱,好不好?”我说:“那我可不干。
”爸爸问:“这是为什么呀?你不是也有机会挣钱吗?”我有说:“虽然我也能挣钱,可是机会并没有你多呀!你想,一共有4张纸,如果我第一张摸到的是红色,袋子里还剩下2张蓝色纸和一张红色纸,那么再摸到红色的机会只有1/3,而摸到蓝色的机会却是2/3;如果我第一张摸到的是蓝色,那么再摸到蓝色的机会只有1/3,而摸到过红色的机会却是2/3,所以你当然比我更容易挣钱喽。”爸爸说:“不错吗,小子,看你也挺聪明的嘛,这样也迷不到你,好吧,看你今天表现得还不错,奖励你五块钱吧!”我高兴极了,今天真是个好日子。
爸爸是一个的十足的数学迷,平时最爱出些数学题来考我了。这不,今天闲来无事又向我出题了,我问道“:爸爸今儿要出啥题?我奉陪到底:”爸爸看我自信满满,满脸笑意说:“输了可别哭鼻子,请听题:有一师徒二人共同加工26个零件,徒弟先到车间,就先拿了一些零件放在自己的机床边。师傅”来了,一看徒弟要拿去加工的零件太多了,他除了拿了留给他的零件外,又从徒弟那里拿了一半零件。徒弟觉得自己应该多干一点,又从师傅那里拿来一半。师傅不肯,徒弟只好再给师傅5个零件,最后还是师傅比徒弟多加工2个零件。请问,徒弟最初准备加工零件是多少个?“我不禁想:可以先求出徒弟最后加工零件(26÷2)÷2=12个。徒弟没给师傅5个零件时,徒弟有零件12+5=17个,徒弟没从师傅那里拿走一半之前,师傅有9×2=18个,而这时徒弟只有零件26——18=8个,因此师傅没拿走徒弟手中零件的一半之前徒弟有零件8×2=16个。这时,爸爸拍了我的肩,说:”想出来了没。“我这才恍过神来,答道:”徒弟最初准备加工零件16个。“
爸爸故弄玄虚地问:”你确定吗,还要改吗?“我胸有成竹的摇了摇脑袋,说:”不用改了 。“”恭喜你……答对了!“
我高兴的一蹦三尺高,心里乐滋滋的,像吃了蜜一样甜。
我和妈妈去金鸡湖玩。途中看到很多交通指示牌。有的写着离前方1000米,有的500米,也有3公里等等。我就好奇的问妈妈:”妈妈,10公里有多少米啊?“妈妈笑着对我说就是10000米啊!”啊?我以为10米呢!“我对妈妈说。
”哦,儿子你知道一公里等于多少米么?“妈妈问
”100米?“我试着回答
”错了,一公里等于1000米!“妈妈说
”那为什么人们不说一公里是1000米,而以公里计算呢?“我问道
”那样太麻烦啦,如果是几百几千甚至几万公里,以米计算的话那得写多少个0啊,人们为了便于记录,就以公里代替,1000米,10000米,100000米等等,只要把后面的3个0去掉,就是公里数啦!“妈妈说。
”我懂了,妈妈,1000米去了3个0就是1公里,10000米去了3个0就是10公里,100000米去了3个0就是100公里!“我兴奋地告诉妈妈
”儿子,你真棒!“妈妈赞许的说道。
哈哈,原来计算公里数是有窍门的呀!
论文还是自己写比较好
小学数学教学论文--在小学数学教学中培养学生的思维能力 培养学生的思维能力是现代学校教学的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。小学数学教学从一年级起就担负着培养学生思维能力的重要任务。下面就如何培养学生思维能力谈几点看法。 一 培养学生的逻辑思维能力是小学数学教学中一项重要任务 思维具有很广泛的内容。根据心理学的研究,有各种各样的思维。在小学数学教学中应该培养什么样的思维能力呢?《小学数学教学大纲》中明确规定,要“使学生具有初步的逻辑思维能力。”这一条规定是很正确的。下面试从两方面进行一些分析。首先从数学的特点看。数学本身是由许多判断组成的确定的体系,这些判断是用数学术语和逻辑术语以及相应的符号所表示的数学语句来表达的。并且借助逻辑推理由一些判断形成一些新的判断。而这些判断的总和就组成了数学这门科学。小学数学虽然内容简单,没有严格的推理论证,但却离不开判断推理,这就为培养学生的逻辑思维能力提供了十分有利的条件。再从小学生的思维特点来看。他们正处在从具体形象思维向抽象逻辑思维过渡的阶段。这里所说的抽象逻辑思维,主要是指形式逻辑思维。因此可以说,在小学特别是中、高年级,正是发展学生抽象逻辑思维的有利时期。由此可以看出,《小学数学教学大纲》中把培养初步的逻辑思维能力作为一项数学教学目的,既符合数学的学科特点,又符合小学生的思维特点。 值得注意的是,《大纲》中的规定还没有得到应有的和足够的重视。一个时期内,大家谈创造思维很多,而谈逻辑思维很少。殊不知在一定意义上说,逻辑思维是创造思维的基础,创造思维往往是逻辑思维的简缩。就多数学生说,如果没有良好的逻辑思维训练,很难发展创造思维。因此如何贯彻《小学数学教学大纲》的目的要求,在教学中有计划有步骤地培养学生逻辑思维能力,还是值得重视和认真研究的问题。 《大纲》中强调培养初步的逻辑思维能力,只是表明以它为主,并不意味着排斥其他思维能力的发展。例如,学生虽然在小学阶段正在向抽象逻辑思维过渡,但是形象思维并不因此而消失。在小学高年级,有些数学内容如质数、合数等概念的教学,通过实际操作或教具演示,学生更易于理解和掌握;与此同时学生的形象思维也会继续得到发展。又例如,创造思维能力的培养,虽然不能作为小学数学教学的主要任务,但是在教学与旧知识有密切联系的新知识时,在解一些富有思考性的习题时,如果采用适当的教学方法,可以对激发学生思维的创造性起到促进作用。教学时应该有意识地加以重视。至于辩证思维,从思维科学的理论上说,它属于抽象逻辑思维的高级阶段;从个体的思维发展过程来说,它迟于形式逻辑思维的发展。据初步研究,小学生在10岁左右开始萌发辨证思维。因此在小学不宜过早地把发展辩证思维作为一项教学目的,但是可以结合某些数学内容的教学渗透一些辩证观点的因素,为发展辩证思维积累一些感性材料。例如,通用教材第一册出现,可以使学生初步地直观地知道第二个加数变化了,得数也随着变化了。到中年级课本中还出现一些表格,让学生说一说被乘数(或被除数)变化,积(或商)是怎样跟着变化的。这就为以后认识事物是相互联系、变化的思想积累一些感性材料。 二 培养学生思维能力要贯穿在小学数学教学的全过程 现代教学论认为,教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展(包括思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握与思维能力的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断、推理;另一方面,在学习数学知识时,为运用思维方法和形式提供了具体的内容和材料。这样说,绝不能认为教学数学知识、技能的同时,会自然而然地培养了学生的思维能力。数学知识和技能的教学只是为培养学生思维能力提供有利的条件,还需要在教学时有意识地充分利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的目的。如果不注意这一点,教材没有有意识地加以编排,教法违背激发学生思考的原则,不仅不能促进学生思维能力的发展,相反地还有可能逐步养成学生死记硬背的不良习惯。 怎样体现培养学生思维能力贯穿在小学数学教学的全过程?是否可以从以下几方面加以考虑。 (一)培养学生思维能力要贯穿在小学阶段各个年级的数学教学中。要明确各年级都担负着培养学生思维能力的任务。从一年级一开始就要注意有意识地加以培养。例如,开始认识大小、长短、多少,就有初步培养学生比较能力的问题。开始教学10以内的数和加、减计算,就有初步培养学生抽象、概括能力的问题。开始教学数的组成就有初步培养学生分析、综合能力的问题。这就需要教师引导学生通过实际操作、观察,逐步进行比较、分析、综合、抽象、概括,形成10以内数的概念,理解加、减法的含义,学会10以内加、减法的计算方法。如果不注意引导学生去思考,从一开始就有可能不自觉地把学生引向死记数的组成,机械地背诵加、减法得数的道路上去。而在一年级养成了死记硬背的习惯,以后就很难纠正。 (二)培养学生思维能力要贯穿在每一节课的各个环节中。不论是开始的复习,教学新知识,组织学生练习,都要注意结合具体的内容有意识地进行培养。例如复习20以内的进位加法时,有经验的教师给出式题以后,不仅让学生说出得数,还要说一说是怎样想的,特别是当学生出现计算错误时,说一说计算过程有助于加深理解“凑十”的计算方法,学会类推,而且有效地消灭错误。经过一段训练后,引导学生简缩思维过程,想一想怎样能很快地算出得数,培养学生思维的敏捷性和灵活性。在教学新知识时,不是简单地告知结论或计算法则,而是引导学生去分析、推理,最后归纳出正确的结论或计算法则。例如,教学两位数乘法,关键是通过直观引导学生把它分解为用一位数乘和用整十数乘,重点要引导学生弄清整十数乘所得的部分积写在什么位置,最后概括出用两位数乘的步骤。学生懂得算理,自己从直观的例子中抽象、概括出计算方法,不仅印象深刻,同时发展了思维能力。在教学中看到,有的老师也注意发展学生思维能力,但不是贯穿在一节课的始终,而是在一节课最后出一两道稍难的题目来作为训练思维的活动,或者专上一节思维训练课。这种把培养思维能力只局限在某一节课内或者一节课的某个环节内,是值得研究的。当然,在教学全过程始终注意培养思维能力的前提下,为了掌握某一特殊内容或特殊方法进行这种特殊的思维训练是可以的,但是不能以此来代替教学全过程发展思维的任务。 (三)培养思维能力要贯穿在各部分内容的教学中。这就是说,在教学数学概念、计算法则、解答应用题或操作技能(如测量、画图等)时,都要注意培养思维能力。任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。因此教学每一个概念时,要注意通过多种实物或事例引导学生分析、比较、找出它们的共同点,揭示其本质特征,做出正确的判断,从而形成正确的概念。例如,教学长方形概念时,不宜直接画一个长方形,告诉学生这就叫做长方形。而应先让学生观察具有长方形的各种实物,引导学生找出它们的边和角各有什么共同特点,然后抽象出图形,并对长方形的特征作出概括。教学计算法则和规律性知识更要注意培养学生判断、推理能力。例如,教学加法结合律,不宜简单地举一个例子,就作出结论。最好举两三个例子,每举一个例子,引导学生作出个别判断〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,与先把3和5加在一起再同2相加,结果相同〕。然后引导学生对几个例子进行分析、比较,找出它们的共同点,即等号左端都是先把前两个数相加,再同第三个数相加,而等号右端都是先把后两个数相加,再同第一个数相加,结果不变。最后作出一般的结论。这样不仅使学生对加法结合律理解得更清楚,而且学到不完全归纳推理的方法。然后再把得到的一般结论应用到具体的计算(如57+28+12)中去并能说出根据什么可以使计算简便。这样又学到演绎的推理方法至于解应用题引导学生分析数量关系,这里不再赘述。 三 设计好练习题对于培养学生思维能力起着重要的促进作用 培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般地说,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时往往要根据具体情况做一些调整或补充。为此提出以下几点建议供参考。 (一)设计练习题要有针对性,要根据培养目标来进行设计。例如,为了了解学生对数学概念是否清楚,同时也为了培养学生运用概念进行判断的能力,可以出一些判断对错或选择正确答案的练习题。举个具体例子:“所有的质数都是奇数。( )”如要作出正确判断,学生就要分析偶数里面有没有质数。而要弄清这一点,要明确什么叫做偶数,什么叫做质数,然后应用这两个概念的定义去分析能被2整除的数里面有没有一个数,它的约数只1和它自身。想到了2是偶数又是质数,这样就可以断定上面的判断是错误的。
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:=(千米),=(千米),=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是=(千米),=(千米),=189(千米)。所以正确答案应该是:=(千米),=(千米),=261(千米)和=(千米),=(千米),=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 大家一定从小就开始奇怪了,0到底是怎么来的呢?关于0的起源,有以下几种观点。①、古巴比伦的0的符号是用空位来表示的,例如要表示一百零一,古巴比伦写作1。1②、在古印度数学中,发现0的最早记载是公元876年,欧洲许多数学家都同意这一观点。公元6世纪,印度人就开始用“?”,后来变成了一个圆圈。到了公元九世纪就固定成了今天的“0”。③、0的故乡在中国。我国最早的诗歌总集《诗经》中就有0的记载,只不过当时0的意思是“暴风雨末了的小雨滴”。在我国远古时代的结绳记数法中,0是在对“有”的否定中出现的,意思是“没有”。总之,有关0的起源还没有一个定论。 但是无论如何,0自从一出现就具有非常旺盛的生命力,现在,它广泛应用于社会的各个领域。 在课堂上,常听老师说,0就是没有的意思,你有0元钱,就代表没有钱;你有0支笔,就代表你没有笔。在这样的情况下,温度表上的0度就代表着没有温度吗?答案肯定是否定的。纯净的冰水混合物的温度就是0度。 想一想我们四年级学的素数与合数吧!老师是这样解释的“自然数可以分成3类:1、素数与合数,一个自然数只有一和它本身两个因数的数是素数,因数大于3个就是合数,1单独为一种。”那0也是自然数,它是最小的自然数,0到底是质数还是合数呢?这个谁也说不清楚。 我还有一个关于0的问题,自然数也可以分成奇数与偶数,能被2整除的数就是合数,反之就是奇数。0是奇数还是偶数呢?看上去像偶数,但又说不准,到底是什么数谁也不清楚。 0还有许多奇妙有趣的事就在我们身边呢,大家一起来发现吧! 麻烦采纳,谢谢!
有趣的职业 小赵、小丁、小张分别是教师、医生和律师,只知道:1小赵比教师年纪大;2小张和教师不同岁;3小赵和律师是朋友,你能推断谁是教师,谁是律师,谁是医生吗? 根据1小赵比教师年纪大和3小赵和律师是朋友,可以推断小赵既不是教师,也不是律师,所以小赵是医生,再根据2小张和教师不同岁和小赵是医生可以看出小张是律师,所以剩下的小丁是个教师。 这道题目很简单,我运用了排除法,比如:根据条件1和3就可以看出,小赵既不是教师,也不是律师。以次类推就可以得出答案。在我们学习数学的过程中,我们只要掌握方法,就可以解决一切难题,想不到从数学中也能得到乐趣。
千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
模糊不过vncjhvb
数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 望采纳。
《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不著头脑,我心里琢磨著,不知道叔叔葫芦里卖的是什么药。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。” 听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊! 过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按著这样的方法,表弟连续做了13次。 看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小瑜呀,你可得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。” 是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,要努力学好数学,掌握好数学,更要学会在生活中灵活运用好数学。
第一页 居中 先写题目 第二行写班级、姓名 换页 找关于论文的主题的例子 写完一个例子写两行左右的说明,例如这题的做法是怎么样的 写三到五个例题即可 一般用WROD两页即可,建议多写,但不要写的题目太难,不符合你的年龄段
小学数学论文写法如下:1.科学性教学论文是教学经验的科学总结,首先要立论正确,论据严谨,符合教学规律。2.实用性教学论文是教学经验的升华,既来源于教学又服务于教学。因此,所引用的材料应该翔实可信,所介绍的方法应该切实可行,能够为同行所借鉴,有一定的推广价值。3.独创性教学论文必须具有论文的共性,即应该要么在理论上有创见,或者至少有新的认识,要么在方法上有创新,或者至少有新的体会,这样才能对教学和教学研究起到推动作用。4.可读性教学论文必须具有文章的共性,即要有章法,要有风采,要有吸引力。遣词造句要符合人们的阅读习惯,容易让人理解。
数学的色彩 清晨,鲜红的太阳露出半个笑脸,和谐的阳光洒满人间,我的心情真是好极了。突然接到爷爷的电话,叫我巧算九块五加九十九块五,我马上告诉爷爷:九加九十九,再加一,不就等于一百零九吗?爷爷说我的算法还不算巧,如果凑整减零头就好算得多。我马上打断爷爷的话,告诉他:10+100-1=109(元)。这时爷爷夸我,说我还算灵巧。这是早晨的数学题,我把数学定为红色。 上午,爸爸从银行交完电费回来,叫我计算电费。用电量是从1079-1279(度),每度电单价是元,我用心算整好200度,我把单价变为分数是38/100,列式:200×(38/100),先约分再乘,等于76元。爸爸说没错,和电脑算得一样。我很得意,这时已近中午,我把数学定为黄色。 下午,我和妹妹在家里切西瓜,把半个西瓜再均匀地切两刀,其中的两份就是2/3,我问妹妹这两份是整个西瓜的几分之几呢?妹妹开学才上一年级,当然不会算,我告诉她把西瓜整体看作1,第一分率是1/2,它的分率是2/3,相乘的结果就是这两份是整个西瓜的2/6,约分后就是1/3。这时我想爷爷曾说七色阳光为白色,那么,这个数学就定为白色吧。 夜晚在蓝色的星空下,我和妈妈在一起看电视,我怎么也弄不懂考古学家是怎样从腿骨的化石推算出大艾尔恐龙的身高呢?妈妈说这蓝色的数学等你长大了,本事大了自然就会了。 生活中的数学简直是太多了,真是绚丽多彩,它随时在你身边出现。我爱数学,我要学好数学。
小学数学论文写法如下:1.科学性教学论文是教学经验的科学总结,首先要立论正确,论据严谨,符合教学规律。2.实用性教学论文是教学经验的升华,既来源于教学又服务于教学。因此,所引用的材料应该翔实可信,所介绍的方法应该切实可行,能够为同行所借鉴,有一定的推广价值。3.独创性教学论文必须具有论文的共性,即应该要么在理论上有创见,或者至少有新的认识,要么在方法上有创新,或者至少有新的体会,这样才能对教学和教学研究起到推动作用。4.可读性教学论文必须具有文章的共性,即要有章法,要有风采,要有吸引力。遣词造句要符合人们的阅读习惯,容易让人理解。
五年级数学小论文500字! 今天,我和妈妈在做数学题。妈妈问我:“阳阳,你会算组合图形的面积吗?”我自以为是地说:“当然会了,这么简单!”妈妈拿出8个完全相同小正方体,摆成一个正方形,问我:“总面积怎么算?”我用直尺量了量,一个正方形的一条边大约是3厘米,我说出算式:“一条边3厘米,那么一个正方形的一个面就是3×3=9(平方厘米),一个正方形有6个面,就是9×6=54(平方厘米),8个就是54×8=432(平方厘米)。”妈妈好像很沮丧,说:“你犯了一个致命的错误!既然是组合图形,有些面肯定会重合了!”我恍然大悟:“对哦。”我又重算了一下:重合了1、2、3、4、5……24个面,24×9=216(平方厘米),432-216=216(平方米)。现在对了吧? 过了一会,妈妈又摆出了另一种组合图形,这个图形上下8个,左右都是2个,前后都是4个,问我:“面积怎么算?”我说:“用 12×6=72(平方厘米)就是上面的面积,再用6×3=18(平方厘米)就是左边的面积,再用12×3=36(平方厘米)就是前面的面积,最后用(72+18+36)×2=252(平方厘米)。”妈妈说:“没有发现一些规律吗?”我看了看,真有嘞!“每个正方体它的上面是什么下面就是什么,左边是什么右边就是什么,前后也一样。”我有些感触。妈妈欣慰地笑了,说“我的女儿真聪明!” 哦,原来如此,组合图形的面积算好前面后面就不要算了,算好上面下面就不要算了,算好左边右边就不要算了。太好了,以后算组合图形的面积就很方便了,你们学会了吗
小学数学教学论文--在小学数学教学中培养学生的思维能力 培养学生的思维能力是现代学校教学的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。小学数学教学从一年级起就担负着培养学生思维能力的重要任务。下面就如何培养学生思维能力谈几点看法。 一 培养学生的逻辑思维能力是小学数学教学中一项重要任务 思维具有很广泛的内容。根据心理学的研究,有各种各样的思维。在小学数学教学中应该培养什么样的思维能力呢?《小学数学教学大纲》中明确规定,要“使学生具有初步的逻辑思维能力。”这一条规定是很正确的。下面试从两方面进行一些分析。首先从数学的特点看。数学本身是由许多判断组成的确定的体系,这些判断是用数学术语和逻辑术语以及相应的符号所表示的数学语句来表达的。并且借助逻辑推理由一些判断形成一些新的判断。而这些判断的总和就组成了数学这门科学。小学数学虽然内容简单,没有严格的推理论证,但却离不开判断推理,这就为培养学生的逻辑思维能力提供了十分有利的条件。再从小学生的思维特点来看。他们正处在从具体形象思维向抽象逻辑思维过渡的阶段。这里所说的抽象逻辑思维,主要是指形式逻辑思维。因此可以说,在小学特别是中、高年级,正是发展学生抽象逻辑思维的有利时期。由此可以看出,《小学数学教学大纲》中把培养初步的逻辑思维能力作为一项数学教学目的,既符合数学的学科特点,又符合小学生的思维特点。 值得注意的是,《大纲》中的规定还没有得到应有的和足够的重视。一个时期内,大家谈创造思维很多,而谈逻辑思维很少。殊不知在一定意义上说,逻辑思维是创造思维的基础,创造思维往往是逻辑思维的简缩。就多数学生说,如果没有良好的逻辑思维训练,很难发展创造思维。因此如何贯彻《小学数学教学大纲》的目的要求,在教学中有计划有步骤地培养学生逻辑思维能力,还是值得重视和认真研究的问题。 《大纲》中强调培养初步的逻辑思维能力,只是表明以它为主,并不意味着排斥其他思维能力的发展。例如,学生虽然在小学阶段正在向抽象逻辑思维过渡,但是形象思维并不因此而消失。在小学高年级,有些数学内容如质数、合数等概念的教学,通过实际操作或教具演示,学生更易于理解和掌握;与此同时学生的形象思维也会继续得到发展。又例如,创造思维能力的培养,虽然不能作为小学数学教学的主要任务,但是在教学与旧知识有密切联系的新知识时,在解一些富有思考性的习题时,如果采用适当的教学方法,可以对激发学生思维的创造性起到促进作用。教学时应该有意识地加以重视。至于辩证思维,从思维科学的理论上说,它属于抽象逻辑思维的高级阶段;从个体的思维发展过程来说,它迟于形式逻辑思维的发展。据初步研究,小学生在10岁左右开始萌发辨证思维。因此在小学不宜过早地把发展辩证思维作为一项教学目的,但是可以结合某些数学内容的教学渗透一些辩证观点的因素,为发展辩证思维积累一些感性材料。例如,通用教材第一册出现,可以使学生初步地直观地知道第二个加数变化了,得数也随着变化了。到中年级课本中还出现一些表格,让学生说一说被乘数(或被除数)变化,积(或商)是怎样跟着变化的。这就为以后认识事物是相互联系、变化的思想积累一些感性材料。 二 培养学生思维能力要贯穿在小学数学教学的全过程 现代教学论认为,教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展(包括思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握与思维能力的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断、推理;另一方面,在学习数学知识时,为运用思维方法和形式提供了具体的内容和材料。这样说,绝不能认为教学数学知识、技能的同时,会自然而然地培养了学生的思维能力。数学知识和技能的教学只是为培养学生思维能力提供有利的条件,还需要在教学时有意识地充分利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的目的。如果不注意这一点,教材没有有意识地加以编排,教法违背激发学生思考的原则,不仅不能促进学生思维能力的发展,相反地还有可能逐步养成学生死记硬背的不良习惯。 怎样体现培养学生思维能力贯穿在小学数学教学的全过程?是否可以从以下几方面加以考虑。 (一)培养学生思维能力要贯穿在小学阶段各个年级的数学教学中。要明确各年级都担负着培养学生思维能力的任务。从一年级一开始就要注意有意识地加以培养。例如,开始认识大小、长短、多少,就有初步培养学生比较能力的问题。开始教学10以内的数和加、减计算,就有初步培养学生抽象、概括能力的问题。开始教学数的组成就有初步培养学生分析、综合能力的问题。这就需要教师引导学生通过实际操作、观察,逐步进行比较、分析、综合、抽象、概括,形成10以内数的概念,理解加、减法的含义,学会10以内加、减法的计算方法。如果不注意引导学生去思考,从一开始就有可能不自觉地把学生引向死记数的组成,机械地背诵加、减法得数的道路上去。而在一年级养成了死记硬背的习惯,以后就很难纠正。 (二)培养学生思维能力要贯穿在每一节课的各个环节中。不论是开始的复习,教学新知识,组织学生练习,都要注意结合具体的内容有意识地进行培养。例如复习20以内的进位加法时,有经验的教师给出式题以后,不仅让学生说出得数,还要说一说是怎样想的,特别是当学生出现计算错误时,说一说计算过程有助于加深理解“凑十”的计算方法,学会类推,而且有效地消灭错误。经过一段训练后,引导学生简缩思维过程,想一想怎样能很快地算出得数,培养学生思维的敏捷性和灵活性。在教学新知识时,不是简单地告知结论或计算法则,而是引导学生去分析、推理,最后归纳出正确的结论或计算法则。例如,教学两位数乘法,关键是通过直观引导学生把它分解为用一位数乘和用整十数乘,重点要引导学生弄清整十数乘所得的部分积写在什么位置,最后概括出用两位数乘的步骤。学生懂得算理,自己从直观的例子中抽象、概括出计算方法,不仅印象深刻,同时发展了思维能力。在教学中看到,有的老师也注意发展学生思维能力,但不是贯穿在一节课的始终,而是在一节课最后出一两道稍难的题目来作为训练思维的活动,或者专上一节思维训练课。这种把培养思维能力只局限在某一节课内或者一节课的某个环节内,是值得研究的。当然,在教学全过程始终注意培养思维能力的前提下,为了掌握某一特殊内容或特殊方法进行这种特殊的思维训练是可以的,但是不能以此来代替教学全过程发展思维的任务。 (三)培养思维能力要贯穿在各部分内容的教学中。这就是说,在教学数学概念、计算法则、解答应用题或操作技能(如测量、画图等)时,都要注意培养思维能力。任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。因此教学每一个概念时,要注意通过多种实物或事例引导学生分析、比较、找出它们的共同点,揭示其本质特征,做出正确的判断,从而形成正确的概念。例如,教学长方形概念时,不宜直接画一个长方形,告诉学生这就叫做长方形。而应先让学生观察具有长方形的各种实物,引导学生找出它们的边和角各有什么共同特点,然后抽象出图形,并对长方形的特征作出概括。教学计算法则和规律性知识更要注意培养学生判断、推理能力。例如,教学加法结合律,不宜简单地举一个例子,就作出结论。最好举两三个例子,每举一个例子,引导学生作出个别判断〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,与先把3和5加在一起再同2相加,结果相同〕。然后引导学生对几个例子进行分析、比较,找出它们的共同点,即等号左端都是先把前两个数相加,再同第三个数相加,而等号右端都是先把后两个数相加,再同第一个数相加,结果不变。最后作出一般的结论。这样不仅使学生对加法结合律理解得更清楚,而且学到不完全归纳推理的方法。然后再把得到的一般结论应用到具体的计算(如57+28+12)中去并能说出根据什么可以使计算简便。这样又学到演绎的推理方法至于解应用题引导学生分析数量关系,这里不再赘述。 三 设计好练习题对于培养学生思维能力起着重要的促进作用 培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般地说,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时往往要根据具体情况做一些调整或补充。为此提出以下几点建议供参考。 (一)设计练习题要有针对性,要根据培养目标来进行设计。例如,为了了解学生对数学概念是否清楚,同时也为了培养学生运用概念进行判断的能力,可以出一些判断对错或选择正确答案的练习题。举个具体例子:“所有的质数都是奇数。( )”如要作出正确判断,学生就要分析偶数里面有没有质数。而要弄清这一点,要明确什么叫做偶数,什么叫做质数,然后应用这两个概念的定义去分析能被2整除的数里面有没有一个数,它的约数只1和它自身。想到了2是偶数又是质数,这样就可以断定上面的判断是错误的