首页

> 学术期刊知识库

首页 学术期刊知识库 问题

超导体最新研究论文题目

发布时间:

超导体最新研究论文题目

超导体的应用前景如下:迈斯纳效应使人们可以用此原理制造超导列车和超导船,由于这些交通工具将在悬浮无摩擦状态下运行,这将大大提高它们的速度和安静性,并有效减少机械磨损。另外利用超导悬浮还可制造无磨损轴承,将轴承转速提高到每分钟10万转以上。而超导材料的零电阻特性可以用来输电和制造大型磁体。超高压输电会有很大的损耗,而利用超导体则可最大限度地降低损耗。超导材料必须在一定的温度以下才会产生超导现象,这一温度称为临界温度。卡末林—昂内斯将汞冷却到才发现超导现象的,这一温度是一个极低的温度,无疑在这样的温度是不可能得到应用的。所以从超导现象发现的第一天起,科学家们就一直朝着室温超导而奋斗。到目前为止,科学家所发现的高温超导体主要有铜基高温超导材料和铁基高温超导材料等等。令我们感到自豪的是,我们中国科学家对这两种高温超导材料都做出了重大贡献,大大推动了超导研究的进展。

过渡金属原子的kagome晶格,为在几何受挫和非平凡能带拓扑存在的情况下,研究电子关联提供了一个激动人心的平台,并不断带来惊喜,在高鸿钧院士/汪自强教授《Nature》超导领域新发现后,来自美国波斯顿学院的Ilija Zeljkovic等研究者 同一天 报道了使用光谱成像扫描隧道显微镜发现一个新的kagome超导体CsV3Sb5中不同的对称破缺电子态作为温度的函数级联。相关论文以题为“Cascade of correlated electron states in a kagome superconductor CsV3Sb5”发表在Nature上。

论文链接:

由原子组成的量子固体排列在共享角三角形的晶格上(kagome晶格)是一个 探索 新的相关和拓扑电子现象的迷人游乐场。由于其固有的几何受挫,kagome系统预测具有一系列奇异的电子态,如键和电荷有序,自旋液相和手性超导等。到目前为止,大多数实验工作都集中在过渡金属kagome磁体上,例如Co3Sn2S2、FeSn和Fe3Sn2,其中不同形式的磁性主导了低温电子基态。在没有磁有序的情况下,电子关联在原则上有利于出现新的对称破缺电子态,但由于磁有序的趋势,这在许多现有的kagome材料中很难 探索 。

AV3Sb5 (A=K, Rb, Cs),是最近发现的一类不呈现可分辨磁序的kagome金属。这类材料已经在非平凡的拓扑环境中显示出了不寻常的电子行为,比如巨大的异常霍尔响应,源自于巨大的贝里曲率,以及kagome系统中罕见的超导现象。理论表明,AV3Sb5的能带结构具有非平凡的拓扑不变量,并结合显现的超导性,在铁基高 T c超导体家族中与拓扑金属形成有趣的平行关系。由于费米能级附近的van Hove奇点和费米表面的准一维区域造成的态密度大,也为在kagome晶格上寻找难以捉摸的相关态提供了理想的场所。虽然理论预测了kagome晶格电子结构的空间对称破缺的许多可能性,但它们的实验实现一直具有挑战性。

在这里,研究者利用光谱成像扫描隧道显微镜(SI-STM),在kagome超导体CsV3Sb5中发现了对称破缺相的级联与温度的函数关系,可检测为不同的电荷有序态和各向异性准粒子散射特征。这些相在正常状态下发展,并在超导 T c以下持续存在。实验证明,CsV3Sb5中的超导性,来自于本应破缺的旋转和平移对称的电子态,并与之共存。在远高于超导跃迁温度( T c~ K)的温度下,研究者揭示了一个具有2a0周期的三元电荷序,打破了晶格的平移对称性。当系统冷却到 T c时,研究者在费米能级上观察到一个显著的V型光谱缺口,并在超导跃变过程中持续破坏了六重旋转对称性。在微分电导图中,出现了额外的4a0单向电荷阶和强各向异性散射。后者可直接归因于钒kagome能带的轨道选择重正化。该实验揭示了可在kagome晶格上共存的复杂电子态,并提供了与高温超导体和扭曲双层石墨烯有趣的相似之处。

图1 表面表征。

图2 大尺度电子特性。

图3 低温下电荷有序。

图4 CsV3Sb5准粒子干涉(QPI)中旋转对称破缺的可视化研究。

未来的实验,应该通过更详细的温度、能量和掺杂相关的测量来解决不同相之间的竞争,同时也要寻找本征拓扑超导性和非平凡能带拓扑预计会出现的Majorana模式的证据。(文:水生)

超导技术的主体是超导材料,就是没有电阻、或电阻极小的导电材料,电能在流经过程中几乎不会损失。实现超导常须将导体下降至一定温度(起码零下一百多摄氏度),电阻才突然趋近于零。具有这种特性的材料称为超导材料。近年来,随看材料科学的发展,超导材料的性能不断优化,实现超导的临界温度在提高。 目前科学家虽已合成出在室温下具有超导性能的复合材料,但这还仅限于实验室中。至于它的应用前景(作用),具代表性的有以下几方面:(1)超导无电阻无损耗首先被想到用于长途输电线路中,但目前不可能,因为这不是一般的导线且需要降温。(2)接着被想到的是用于大容量的电气设备中,如超导大容量发电机,发电机线圈超导无电阻无损耗,发电效率极高,功率更大。 (3)还有就是应用到需要产生强磁的装置中,如磁力悬浮列车,核磁共振装置等。因为强磁的产生依赖于电磁线圈中的大电流。超导线圈就有超大电流,产生超强磁场。从实际出发,第(2)、(3)点才是今后超导技术应用的突破点。望采纳。

超导体最新研究论文

与传统超导材料相比,高温超导体在温度高得多的条件下,承担着零电阻导的电。自从30多年前被发现以来,由于其在磁悬浮列车和长距离电线等技术上具有革命性的潜力,使得人们对高温超导体产生了极大的兴趣,但是科学家们仍然不明白高温超导体的原理是什么。其中一个谜团是,电荷密度波(在材料中运行的电子密度高低的静态条纹)已经在高温超导体的主要家族之一铜基铜酸盐中发现。但这些电荷条纹是增强超导性,抑制超导性,还是起到了其他作用?在独立研究中,两个研究小组报告了在理解电荷条纹如何与超导相互作用方面取得的重要进展。这两项研究都是在美国能源部SLAC国家加速器实验室用x射线进行的。在发表于《科学进展》期刊上的研究论文中,伊利诺伊大学厄巴纳-香槟分校(UIUC)研究人员利用SLAC的Linac相干光源(LCLS) x射线自由电子激光器,观察了铜超导体中电荷密度波的波动。用传统激光的脉冲干扰电荷密度波,然后使用x射线共振非弹性散射(RIXS),观察这些波在几万亿分之一秒内的恢复,这个恢复过程遵循一个普遍的动态缩放定律:在所有的尺度上都是相同的,就像分形图案在放大或缩小时看起来是一样的。有了LCLS,科学家们第一次能够精确地测量电荷密度波波动的距离和速度。令人惊讶的是,研究小组发现,波动并不像铃声或蹦床的弹跳;相反,它们更像是糖浆的缓慢扩散:一种在固体中从未见过的液晶行为的量子模拟。美国伊利诺伊大学香槟分校彼得·阿巴蒙特教授团队的博士后研究员马泰奥·米特拉诺(Matteo Mitrano)说:我们在LCLS的实验建立了一种研究电荷密度波波动的新方法,这可能促使对高温超导体如何工作的新理解产生。这个团队还包括来自斯坦福大学、美国国家标准与技术研究所和布鲁克海文国家实验室的研究人员。发表在《自然通讯》上的另一项研究,利用斯坦福大学同步加速器辐射光源的x射线,发现了两种电荷密度波的排列方式,在这些波与高温超导之间建立了新的联系。在SLAC科学家李俊锡(Jun-Sik Lee)的带领下,研究小组利用共振软x射线散射(RSXS)来观察温度如何影响铜超导体中的电荷密度波。这解决了之前实验数据的不匹配问题,并为全面绘制这些奇异超导材料中电子行为的图谱开辟了新道路。相信, 探索 新的或隐藏排列方式,以及它们相互交织的现象,将有助于我们对铜酸盐高温超导性的理解,这将为研究人员设计和开发在更高温度下工作的新超导体提供信息。

目前有关高温超导磁悬浮的研究,主要集中在准静态宏观电磁特性上,包括悬浮力、导向力、刚度及力弛豫等。然而磁悬浮车在实际运行过程时,超导块材将不可避免经历不均匀的外磁场,会对超导体的悬浮性

拓扑超导是一类新的拓扑量子物态,其体态是有能隙的超导态,而边界上则存在无能隙的马约拉纳零能模。零维马约拉纳零能模具有非定域关联和非阿贝尔统计性质,可以对其进行编织操作,进而实现拓扑量子计算。因此近十年来,拓扑超导态的研究逐渐成为凝聚态物理的重要研究方向。

不同的对称群可以保护不同的拓扑物态,因此在各种对称群下对拓扑物态进行分类是发现新型拓扑物态的重要一步。最近 华中 科技 大学 研究团队(邹金雨博士、谢庆博士和徐刚教授)和 普林斯顿大学 宋志达博士在《国家科学评论》( National Science Review ,NSR) 发表研究论文, 提出了通过具有不同手征对称性本征值的马约拉纳零能模的相容性,来进行拓扑分类的新思路,并对一维定域磁群保护的超导量子线进行了系统研究,发现了新奇的拓扑超导态,以及局域在端点的马约拉纳零能模。

受定域磁群保护的一维超导线的拓扑分类

如上表所示,一维磁群独有的不改变格点位置的磁操作包括MxT、C2T、C4T、C6T。结合超导体系固有的粒子-空穴对称性P,可以给出手征对称性S。量子线端点的马约拉纳零能模也是手征对称性的本征态。通过判断零能模之间的相容关系,可以给出拓扑态的类型。

徐刚等发现:

在此基础上,作者构建了满足C4T的最小一维拓扑超导模型,计算其拓扑不变量,并数值和解析分析了其马约拉纳零能模。

(a)C4T不变的超导线。胞内同自旋耦合远大于自旋轨道耦合,因而一个元胞内四个态劈裂为反对称的简并态和对称简并态。为简单计,仅讨论反对称简并态。(b) 拓扑超导相图。(c) 拓扑超导态开边界时能谱,其中有四个马约拉纳零能模。

这类新奇的拓扑超导态拓宽了人们对拓扑超导的认识,为马约拉纳零能模的实现、奇异拓扑约瑟夫森效应等研究提供了新的思路。 该研究结果不仅丰富了一维拓扑超导态,还可通过铺陈、堆叠等方式构造二维及三维奇异拓扑超导体,实现无能隙的马约拉纳边界态或表面态。

最后,作者还讨论了在棋盘状反铁磁铁基超体中实现helical Z拓扑超导的可能性。

点击查看论文原文。

超导体最新研究论文参考文献

过渡金属原子的kagome晶格,为在几何受挫和非平凡能带拓扑存在的情况下,研究电子关联提供了一个激动人心的平台,并不断带来惊喜,在高鸿钧院士/汪自强教授《Nature》超导领域新发现后,来自美国波斯顿学院的Ilija Zeljkovic等研究者 同一天 报道了使用光谱成像扫描隧道显微镜发现一个新的kagome超导体CsV3Sb5中不同的对称破缺电子态作为温度的函数级联。相关论文以题为“Cascade of correlated electron states in a kagome superconductor CsV3Sb5”发表在Nature上。

论文链接:

由原子组成的量子固体排列在共享角三角形的晶格上(kagome晶格)是一个 探索 新的相关和拓扑电子现象的迷人游乐场。由于其固有的几何受挫,kagome系统预测具有一系列奇异的电子态,如键和电荷有序,自旋液相和手性超导等。到目前为止,大多数实验工作都集中在过渡金属kagome磁体上,例如Co3Sn2S2、FeSn和Fe3Sn2,其中不同形式的磁性主导了低温电子基态。在没有磁有序的情况下,电子关联在原则上有利于出现新的对称破缺电子态,但由于磁有序的趋势,这在许多现有的kagome材料中很难 探索 。

AV3Sb5 (A=K, Rb, Cs),是最近发现的一类不呈现可分辨磁序的kagome金属。这类材料已经在非平凡的拓扑环境中显示出了不寻常的电子行为,比如巨大的异常霍尔响应,源自于巨大的贝里曲率,以及kagome系统中罕见的超导现象。理论表明,AV3Sb5的能带结构具有非平凡的拓扑不变量,并结合显现的超导性,在铁基高 T c超导体家族中与拓扑金属形成有趣的平行关系。由于费米能级附近的van Hove奇点和费米表面的准一维区域造成的态密度大,也为在kagome晶格上寻找难以捉摸的相关态提供了理想的场所。虽然理论预测了kagome晶格电子结构的空间对称破缺的许多可能性,但它们的实验实现一直具有挑战性。

在这里,研究者利用光谱成像扫描隧道显微镜(SI-STM),在kagome超导体CsV3Sb5中发现了对称破缺相的级联与温度的函数关系,可检测为不同的电荷有序态和各向异性准粒子散射特征。这些相在正常状态下发展,并在超导 T c以下持续存在。实验证明,CsV3Sb5中的超导性,来自于本应破缺的旋转和平移对称的电子态,并与之共存。在远高于超导跃迁温度( T c~ K)的温度下,研究者揭示了一个具有2a0周期的三元电荷序,打破了晶格的平移对称性。当系统冷却到 T c时,研究者在费米能级上观察到一个显著的V型光谱缺口,并在超导跃变过程中持续破坏了六重旋转对称性。在微分电导图中,出现了额外的4a0单向电荷阶和强各向异性散射。后者可直接归因于钒kagome能带的轨道选择重正化。该实验揭示了可在kagome晶格上共存的复杂电子态,并提供了与高温超导体和扭曲双层石墨烯有趣的相似之处。

图1 表面表征。

图2 大尺度电子特性。

图3 低温下电荷有序。

图4 CsV3Sb5准粒子干涉(QPI)中旋转对称破缺的可视化研究。

未来的实验,应该通过更详细的温度、能量和掺杂相关的测量来解决不同相之间的竞争,同时也要寻找本征拓扑超导性和非平凡能带拓扑预计会出现的Majorana模式的证据。(文:水生)

作者 | 施郁(复旦大学物理学系)

2021年度“墨子量子奖”授予“开创了超导量子电路和量子比特中一系列早期关键技术”的三位科学家:加州大学伯克利分校的约翰·克拉克 (John Clarke) 、耶鲁大学的米歇尔·德沃雷 (Michel H. Devoret) ,以及日本理化学研究所的中村泰信 (Yasunobu Nakamura) 。

John Clarke

Michel H. Devoret

Yasunobu Nakamura

简单地说,他们的工作是超导量子比特实验的开端。本文介绍这个领域的科学背景和发展历程,从中看到这三位科学家的贡献。

超导和超流

超导和超流经常被称作“宏观量子现象”。但是通常情况下,它们只是微观量子行为的宏观表现,并不是宏观变量的量子化。

超导悬浮

液氦超流

按照统计性质,量子粒子分为两种。一种叫做玻色子,可以处于相同状态。另一种叫做费米子,任何两个费米子都不能处于相同状态。在量子力学中,同种粒子,比如两个电子或者两个光子,是绝对完全一样的,叫做全同粒子。由2个质子和1个中子组成的原子核叫做氦3原子核,它与2个电子组成电中性的氦3原子,是费米子。由2个质子和2个中子组成的原子核叫做氦4原子核,它与2个电子组成电中性的氦4原子,是玻色子。

因此在系统总能量最低时,简单来说 (忽略相互作用) ,大量的全同玻色子都处在相同的最低能量状态,叫做玻色-爱因斯坦凝聚。超流就是玻色-爱因斯坦凝聚的后果。最常见的超流是氦4超流。

玻色-爱因斯坦凝聚

而费米子可以由某种机制导致两两配对,形成“库珀对”,近似于玻色子。库珀对的近似玻色-爱因斯坦凝聚也导致超流。最常见的费米子超流是固体中的电子超流,一般称作超导电性 (因为电子带电) ,简称超导。也存在电中性的费米子超流,如氦3的超流。

库珀对卡通示意图

基于库珀对凝聚的超导理论于1956年由巴丁 (John Bardeen) ,库珀 (Leon Cooper) 和施里弗(John Robert Schrieffer)提出,库珀对的总自旋 (内禀角动量) 为0。而氦3超流的库珀对总自旋为1。对氦3超流的理论做出贡献的莱格特 (Anthony J. Leggett) 因此获得2003年诺贝尔物理学奖。安德森 (Philip Anderson) 等人对此也有重要贡献。

玻色-爱因斯坦凝聚、超流或者超导都可以由一个序参量描写,有时被称为宏观波函数,它是一个复数函数。粒子之间作用力比较弱时,可以用平均场理论来描述,假设所有全同粒子的波函数一样,它们相乘在一起,就构成系统的整体波函数。每个全同粒子的单体波函数就是序参量 (通常再乘以粒子数的平方根) 。对于相互作用较强的情况,序参量是规范对称自发破缺所导致的场算符的期望值,或者是单玻色子或者双费米子约化密度矩阵的最大本征值的本征函数 (这个说法对应于Penrose-Onsager和杨振宁的非对角长程序) 。

不管理论上以何种方式得到,这个序参量 (或称宏观波函数) 的一个重要特征是相位。相位随着位置的变化驱动了超流。约瑟夫森效应体现了这个相位的物理真实性。对于由绝缘体薄层隔开的两个超导体,两个超导体的宏观波函数的相位差直接导致穿过绝缘体的超导电流,电流强度正比于相位差的正弦函数,这就是约瑟夫森效应。它是剑桥大学研究生约瑟夫森 (Brian Josephson)在 学习Philip Anderson的超导课程时,用多体微观理论得到的结论。宏观波函数的相位差是一个宏观变量,但是由于粒子数涨落很大,相位成为一个经典变量。

约瑟夫森结

约瑟夫森结的 I-V 曲线

粒子数与相位是量子共轭算符

对于小约瑟夫森结,相位也有涨落,粒子数与相位都成为量子力学算符,而且它们具有共轭关系,类似位置和动量之间的关系,也就是互不对易 (改变作用顺序,结果不同) 。这也使得它们之间也服从海森堡的不确定关系。

1980年,Leggett指出 [1] ,通常所谓的“宏观量子系统”,即超导和超流,以及磁通量子化和约瑟夫森效应这些后果,并没有表明量子力学原理适用于宏观系统,因为其中并没有宏观上的不同状态之间的量子叠加 (如假想的薛定谔猫) ,但是由于在超导或超流状态下,耗散低,超导器件特别是SQUID (超导量子干涉仪,即具有两个约瑟夫森结的超导环) ,通过特别的设计,适合于寻找不同宏观状态之间的量子叠加或量子隧穿。这引领了几十年约瑟夫森结的量子效应的研究,包括超导量子比特的兴起。

作者与Leggett教授(摄于2003年10月诺贝尔奖宣布后伊利诺伊大学立即为Leggett举行的庆祝会)

约瑟夫森结量子行为的首次实验观察

1985年,加州大学伯克利分校John Clark教授带领两位学生John Martinis和Michel Devoret,首先观察到偏电流约瑟夫森结的量子行为 [2] 。偏电流是指外电流。具体来说,他们观察到量子化的能级,表明了约瑟夫森结的相位差确实是一个量子力学算符,实验结果与理论一致。

描述这个系统的方程类似于一个质点的一维运动,约瑟夫森结相位差对应于质点位置。对应后,质点所受的势能作为位置的函数,是倾斜的余弦函数。在约瑟夫森结中,这个倾斜由偏电流引起。约瑟夫森结的零电压态对应于质点的势能低点 (叫做势阱) 。量子力学预言,在势阱中,质点处于所谓束缚态 (指束缚在势阱中) ,而且所能具有的能量是分立的,叫做能级——也就是说,只有某些特定的数值才被允许,这叫能量量子化。原子中的电子就具有这个性质。具有如此能级结构的人工器件有时被称作人造原子,可以用约瑟夫森结实现,也可以用半导体量子点实现。

Clarke和两位学生将约瑟夫森结用微波辐照,发现当微波频率 (乘以普朗克常数) 等于分立能级之差时 (几个GHz) ,“质点”逃逸率 (逃逸出势阱的概率) 大大增加,也就是说,约瑟夫森结两端的电压以及导致的电流大大增强。这是一种共振,类似于,如果电磁波的频率 (乘以普朗克常数) 与原子中的电子能级差相等,低能级的电子就会吸收光子,跃迁到高能级。他们观测到,随着温度升高,逃逸率从量子共振激发过渡到经典热激发。

就这样,约瑟夫森结的量子行为首次得到证明,而且表明可以通过电路对它进行控制,并能将多个约瑟夫森结连结起来。短短两年后,Clark因此获得了低温物理的菲列兹·伦敦奖 (Fritz London Memorial Prize) 。

他们的约瑟夫森结材料是Nb-NbOx-PbIn,中间的氧化铌是绝缘体,两边的铌和铅铟合金是超导体。后来人们改用Al-Al2O3-Al, 即铝-氧化铝-铝,它的耗散更低[3]。

小约瑟夫森结

约瑟夫森结的能量来自两个互相竞争的部分。一是库珀对带来的充电能,等于充电能常数 (一对库珀对的充电能) 乘以库珀对数目 (减去一个所谓的门电荷数) 的平方。另一个是约瑟夫森隧道耦合能,是库珀对隧穿导致的负能量 (当库珀对波函数是隧道两边的叠加态时,能量降低) ,等于负的约瑟夫森能量常数 (临界电流乘以磁通量子,除以2π) 乘以相位差的余弦。

1990年代,很多研究组研究小约瑟夫森结 [4] 。代尔夫特工业大学的J. E. Mooij组研究了约瑟夫森结阵列 [5] ,哈佛大学的Tinkham组观察到超导单电子晶体管的电流-电压关系中的2e周期性 [6] ,当时在法国Saclay原子能委员会的Devoret组也证实了这个结果 [7] ,J. E. Mooij组证明了相位与电荷( 库珀对数目乘以电子电荷) 之间的海森堡关系 [8] 。

量子计算的兴起

固态“人造原子”有其优点,它可以借由电路实现仔细的调控,因为相对于真正的原子,更容易调控各种参数,而且也容易和传统的技术整合,便于扩展到很多量子比特。

任何用来实现量子计算的物理系统,首先要解决的问题是量子比特的物理实现,包括单个量子比特以及不同量子比特的耦合。下文主要回顾单个超导量子比特的实现。

超导量子比特

超导量子比特有很多种。当充电能比约瑟夫森能大很多时,相位涨落大,库珀对数目接近明确,所实现的量子比特叫做电荷量子比特,又叫库珀对盒子。当约瑟夫森能比充电能大很多时,粒子数涨落大,相位明确,所实现的量子比特叫做相位量子比特,也可实现磁通量子比特。另外还有quantronium, transmon, flxonium,等等。

电荷量子比特

相位量子比特

1998年,Devoret组证明了电荷量子比特叠加态的存在性 [9] 。

1999年,当时在日本NEC实验室的中村泰信及其合作者Pashkin和Tsai实现了电荷量子比特的叠加态 [10] 。他们用电压脉冲,实现了相差一对库珀对的两个粒子数本征态的量子叠加。虽然相干时间 (维持叠加态的时间) 只有2纳秒,但是脉冲时间只有100皮秒。后来,他们又实现了在微波作用下,这两个电荷本征态之间的拉比振荡 [11] 。

2000年,纽约州立大学石溪分校的Lukens组 [12] 和代尔夫特的Mooij组 [13] 分别在特别设计的、包含3个约瑟夫森结的超导环中,实现了不同电流方向(顺时针和逆时针)的量子叠加态。这也叫磁通量子比特,因为两个方向的电流对应不同的、穿过环路的磁通量。但是量子叠加的证据是间接的,来自光谱 [14] 。

2002年,在Saclay和耶鲁大学的Devoret组用围绕一个库珀对盒子巧妙设计的超导电路,以哈密顿量的两个本征态作为量子比特,实现了任意幺正演化 (包括拉比振荡) 以及投影测量 [15] 。他们自己称这个量子比特为quantronium。这是电荷-磁通混合量子比特 [14] ,自由演化时,对电荷和磁通噪声都不敏感,等效于电荷量子比特,而读出时又改变控制参数,对磁通敏感,等效于磁通量子比特。

与之同时,堪萨斯大学的韩思远组发表了偏电流约瑟夫森结的两个本征态之间的拉比振荡[16]。当时在科罗拉多的NIST的Martinis组也观察到同样的现象。偏电流约瑟夫森结也就是1985年Clarke、Martinis和Devoret最初研究的系统,它的两个本征态对磁通噪声敏感度低于磁通量子比特 [14] 。它们被称为相位量子比特 [18,19] ,因为约瑟夫森能比充电能大很多。

2003年,Mooij组实现了磁通量子比特的拉比振荡和读出 [20] 。当时中村泰信在该组访问,是该工作的合作者。

后来这个领域又取得了长足的进展,包括双量子比特和多量子比特的耦合,直到最近用几十个量子比特实现量子优越性 [21,22] 。这里不再赘述。

置于微波腔中的超导量子电路还导致所谓电路量子电动力学,电磁波显示出量子行为。比起基于腔量子电动力学 (原子与光子耦合) 的量子门和读出,基于电路量子电动力学的量子门和读出快1000倍,但是退相干也快1000倍,不过电路量子电动力学能获得大量数据[3]。

Leggett一直在推动用SQUID检验是否存在宏观不同的状态的量子叠加 [23] 。最近的一个磁通量子比特实验说明,至少对于10纳秒、170纳安培的电流,存在两个方向电流状态的量子叠加 [24] 。

小结

通过我们的回顾综述,可以看到,J. Clarke和他的学生和. Devoret最早通过偏电流约瑟夫森结,首次观察到约瑟夫森结的量子行为。后来Devoret又做了一系列工作,包括1998年证明了电荷量子比特叠加态的存在性, 2002年实现电荷-磁通混合量子比特的拉比共振和其他演化及投影测量。中村泰信1999年和2001年分别首先实现超导量子比特的量子叠加和拉比振荡,是在电荷量子比特中。他2003年还参与Mooij组实现了磁通量子比特的拉比振荡和读出。

本文经授权转载自《墨子沙龙》公众号。

参考文献:(滑动浏览更多)

[1] . Leggett, Macroscopic quantum systems and the quantum theory of measurement, Progr. Theor. Phys. (Suppl.) 69 (1980), 80

[2] , . Devoret and J. Clarke, Energy level quantization in the zero-voltage state of a current-biased Josephson junction, Phys. Rev. Lett. 55 (1985), 1543

[3] , . Devoret and J. Clarke, Quantum Josephson junction circuits and the dawn of artificial atoms, Nature Physics volume 16, pages234–237 (2020)

[4] J. E. Mooij, The first Delft qubit, QuTech Blog.

[5] . Geerligs, M. Peters, . de Groot, A. Vebruggen and . Mooij, Charging effects and quantum coherence in regular Josephson junction arrays, Phys. Rev. Lett. 63 (1989), 326

[6] . Tuominen, . Hergenrother, . Tighe and M. Tinkham, Experimental evidence for parity-based 2e periodicity in a superconducting single-electron tunneling transistor, Phys. Rev. Lett. 69 (1992), 1997

[7] P. Lafarge, P. Joyez, D. Esteve, C. Urbina and . Devoret, Two-electron quantization of the charge on a superconductor, Nature 422 (1993), 422

[8] . Elion, M. Matters, U. Geigenmüller and . Mooij, Direct demonstration of Heisenberg’s uncertainty principle in a superconductor, Nature 371 (1994) 594

[9] Quantum coherence with a single Cooper pair, V. Bouchiat, D. Vion, P. Joyez, D. Esteve and . Devoret, Physica Scripta T76 (1998), 165

[10] Y. Nakamura, . Pashkin and . Tsai, Coherent control of macroscopic quantum states in a single-Cooper-pair box, Nature 398 (1999), 786

[11] Y. Nakamura, . Pashkin and . Tsai, Rabi oscillations in a Josephson-junction charge two-level system, Phys. Rev. Lett. 87 (2001), 246601

[12] . Friedman, V. Patel, W. Chen, . Tolpygo and . Lukens, Quantum superposition of distinct macroscopic states, Nature 406 (2000), 43

[13] . van der Wal, . ter Haar, . Wilhelm, . Schouten, . Harmans and . Mooij, Quantum superposition of macroscopic persistent-current states, Science 290 (2000), 773

[14] A. J. Leggett, Superconducting Qubits--a Major Roadblock Dissolved? Science 296 (2002), 861-862

[15] D. Vion, A. Assime, A. Collet, P. Joyez, H. Pothier, C. Urbina, D. Esteve and . Devoret,Manipulating the quantum state of an electrical circuit, Science 296 (2002), 887

[16] Y. Yu, S. Han, X. Chu, Chu, Z. Wang, Coherent Temporal Oscillations of Macroscopic Quantum States in a Josephson Junction, Science 296 (2002), 889-892

[17] . Martinis, S. Nam and J. Aumentado, Rabi oscillations in a large Josephson-junction qubit, Phys. Rev. Lett. 89 (2002), 117901

[18] J. Clarke, Flux qubit completes the hat trick, Science 299 (2002), 1850

[19] J. Q. You and Franco Nori, Superconducting Circuits and Quantum Information, Physics Today, November 2005, 42-47

[20] I. Chiorescu, Y. Nakamura, . Harmans and . Mooij, Coherent quantum dynamics of a superconducting flux qubit, Science 299 (2003), 1865.

[21] F. Arute, et al., Quantum supremacy using a programmable superconducting processor, Nature, 574, 505 (2019).

[22] Y. Wu et al., Strong quantum computational advantage using a superconducting quantum processor, Phys. Rev. Lett. 127, 180501 (2021).

[23] A. J. Leggett,公众演讲:“日常世界真的服从量子力学吗?”,主持并翻译:施郁,对话嘉宾:潘建伟、陈宇翱,2020年12月27日,

[24] George C. Knee, Kosuke Kakuyanagi, Mao-Chuang Yeh, Yuichiro Matsuzaki, Hiraku Toida, Hiroshi Yamaguchi, Shiro Saito, Anthony J. Leggett & William J. Munro, A strict experimental test of macroscopic realism in a superconducting flux qubit, Nature Communications volume 7, Article number: 13253 (2016).

制版编辑 -小圭月-

1911年,就像很多科学的始端都是一次意外一样,卡末林·昂内斯就意外地发现了在- 时,汞的电阻突然消失;而且后来他发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性 。这个意外带来的另一个“意外”是,他获得了诺贝尔奖。 1913年就是这个卡末林·昂内斯在诺贝尔领奖演说中说低温下金属电阻的消失“不是逐渐的,而是突然的”,水银在进入了一种新状态,由于它的特殊导电性能,可以称为“超导态” 。超导体就这样诞生了。 1932年又是这个卡末林·昂内斯都在实验中发现,隔着极薄一层氧化物的两块处于超导状态的金属,没有外加电压时也有电流流过。 1933年荷兰的迈斯纳和奥森菲尔德共同发现了超导体的一个极为重要的性质,超导体一旦进入超导状态,体内的磁通量将全部被排出体外,磁感应强度恒为零。这就是迈斯纳效应。 1935年德国人伦敦兄弟提出了一个超导电性的电动力学理论。 1950年美籍德国人弗茹里赫与美国伊利诺斯大学的巴丁经过复杂的研究和推论后,同时提出:超导电性是电子与晶格振动相互作用而产生的。接着,美国伊利诺斯大学的三个人巴丁、库柏和斯里弗提出超导电量子理论-“巴库斯理论”。这一理论使超导研究进入了一个新的阶段。 1953年毕派德推广了德国人伦敦兄弟提出的超导电性的电动力学理论,并得到与实验基本相符的超导穿透深度的数值。 1960-1961年美籍挪威人贾埃瓦用铝做成隧道元件进行超导实验,直接观测到了超导能隙,证明了巴库斯理论。 1962年一个20多岁的年青人,剑桥大学实验物理研究生约瑟夫逊提出约瑟夫逊效应。约瑟夫森效应成为微弱电磁信号探测和其他电子学应用的基础。 70年代超导列车成功地进行了载人可行性试验。车辆在电机牵引下无摩擦地前进,时速可高达500千米。 1986年1月在美国国际商用机器公司设在瑞士苏黎世实验室中工作的科学家柏诺兹和缪勒,首先发现钡镧铜氧化物是高温超导体,将超导温度提高到30K;紧接着,日本东京大学工学部又将超导温度提高到37K。 1987年1月初日本川崎国立分子研究所将超导温度提高到43K;不久日本综合电子研究所又将超导温度提高到46K和53K。中国科学院物理研究所由赵忠贤、陈立泉领导的研究组,获得了48.6K的锶镧铜氧系超导体,并看到这类物质有在70K发生转变的迹象。 1987年,这一年发生了很多值得纪念的事情。2月16日美国国家科学基金会宣布,朱经武与吴茂昆获得转变温度为98K的超导体。2月20日中国也宣布发现100K以上超导体。3月3日,日本宣布发现123K超导体,3月12日中国北京大学成功地用液氮进行超导磁悬浮实验。 3月27日美国华裔科学家又发现在氧化物超导材料中有转变温度为240K的超导迹象。12月30 美国休斯敦大学宣布,美籍华裔科学家朱经武又将超导温度提高到。另外,这一年日本铁道综合技术研究所的“MLU002”号磁悬浮实验车开始试运行。 1991年10月日本原子能研究所和东芝公司共同研制成核聚变堆用的新型超导线圈,达到世界最高水准。这个新型磁体使用的超导材料是铌和锡的化合物。 1992年1月27日第一艘超导船“大和”1号在日本神户下水试航。 1992年一个以巨型超导磁体为主的超导超级对撞机特大型设备,于美国得克萨斯州建成并投入使用,耗资超过82亿美元。 1996年改进高温超导电线的研究工作取得进展,制成了第一条地下输电电缆。 2001年4月,340米铋系高温超导线在清华大学应用超导研究中心研制成功,并于年末建成第一条铋系高温线材生产线。 2008年在沉寂了一段时间后超导又火了一把,就是铁基超导体。中国科学家赵忠贤、王楠林、陈仙辉等合成了一系列铁基化合物,其超导临界温度达到55K,说明这个体系是一类高温超导体。 2014年德国马普所的Eremets通过实验证实了吉林大学崔田教授的预测,获得了临界温度为190K的硫化氢,一年后,临界温度被提高到了203K,干冰温区突破了。 2018年,21岁的麻省理工学院博士曹原一天之内在NATURE杂志上连续发表两篇文章,论述了双层石墨烯在重叠角度为 时,会产生超导现象。虽然其临界温度只有,但这是首次发现超导行为与结构如此特别的对应关系,这一发现开辟了超导物理乃至凝聚态物理研究的新方向,无数学者正在跟进。这个成果是2018年十大科研进展之一。 2019年德国马普所的Eremets等人再接再厉,在氢化镧体系中实现了250K的临界温度,但是同时需要极高的压强。 这只是超导技术发展的的一段简史,并不完全。但是可以看出我们的科学家们一直在努力。如果有朝一日我们能够在室温下实现超导,那就会彻底改变人类的未来,让我们拭目以待。

最新半导体研究论文

研究硅和锗的电子结构。研究硅和锗的电子结构:可以揭示半导体材料的性质,为硅和锗的应用提供理论指导,研究硅和锗的局域密度泛函理论:通过对硅和锗的局域密度泛函理论的研究,可以提出更加准确的性质模型。硅和锗是一种半导体材料,具有重要的应用价值,第一性原理计算是研究半导体材料性质的基础理论,因此,硅和锗的第一性原理论文具有重要的研究价值。

第一作者:Pin-Chun Shen, Cong Su, Yuxuan Lin, Ang-Sheng Chou

通讯作者:Pin-Chun Shen, Lain-Jong Li,Jing Kong

通讯单位: 麻省理工学院(MIT),台湾积体电路制造公司(TSMC)

先进的超越硅电子技术既需要通道材料,也需要发现超低电阻接触。原子薄的二维半导体具有实现高性能电子器件的巨大潜力。但是,到目前为止,由于金属引起的间隙态(MIGS),金属-半导体界面处的能垒(从根本上导致高接触电阻和较差的电流传输能力)限制了二维半导体晶体管。最近, 麻省理工学院(MIT)Pin-Chun Shen和Jing Kong,台湾积体电路制造公司(TSMC)Lain-Jong Li 等人 在国际知名期刊 “Nature” 发表题为 “Ultralow contact resistance between semimetal and monolayer semiconductors” 的研究论文。他们报道了半金属铋与半导体单层过渡金属硫化合物(TMDs)之间的欧姆接触,其中MIGS被充分抑制,TMD中的简并态与铋接触形成。通过这种方法,他们在单层MoS2上实现了零肖特基势垒高度,接触电阻为123欧姆微米,通态电流密度为1135微安/微米。就他们所知,这两个值分别是尚未记录的最低和最高值。他们还证明了可以在包括MoS2、WS2和WSe2在内的各种单层半导体上形成出色的欧姆接触。他们报道的接触电阻是对二维半导体的实质性改进,并接近量子极限。这项技术揭示了与最新的三维半导体相媲美的高性能单层晶体管的潜力,从而可以进一步缩小器件尺寸并扩展摩尔定律。

图1:半金属-半导体接触的间隙态饱和的概念

原文链接:

关于超声最新论文题目

超声医学是将超声技术应用于医学各部门而形成的一门学科。下面是由我整理的关于超声医学的论文范文,谢谢你的阅读。

超声医学学科建设构想分析

【摘 要】超声医学是将超声技术应用于医学各部门而形成的一门学科。目前超声医学在学科建上设依然存在一些问题。超声医学学科建设需要从科室建设,临床管理,优质服务等方面来着手,积极发挥科研和人才的关键作用,全方位、多层次地进行推进。

【关键词】超声医学;学科;学科建设

【中图分类号】 【文献标识码】A 【文章编号】1004-7484(2013)03-0089-02

随着超声医学的建设和发展,超声已经不仅仅被应用于临床诊断,超声治疗也已经成为了重要的治疗手段。超声技术可以与一些强势学科进行有效合作,可以在介入治疗,手术影像检测评估,以及生育学的超声检测中发挥重要作用。超声学科在承担诊断和医疗任务的同时,还肩负着医疗科研,甚至医疗教学等重要任务。

相对于一些临床学科,超声医学是一门全新学科,是将超声技术应用于医学各部门而形成。但是其与医院的一些其他辅助科室比较,超声学科的地位和作用又是十分突出的。随着超声医学与临床联系越来越紧密,超声医学学科已经实现了多领域渗透。从医院进行超声学科建设的角度进行分析可以看到,超声学科的建设的根本在于有效进行科室建设,实现诊疗科研的严格管理,以及优质服务的全面突破。

一、超声医学学科的建设重点在于科室建设

超声医学学科建设的首要任务是命名。在超声科室的命名中需要考虑的是超声功能的涵盖,即使是乡镇小医院也不能简单地命名为B超室,因为随着科技和经济的发展,三维甚至于四维彩超也已经被引入了县乡医院,所以在科室命名上要充分考虑到这一因素。另外超声医学已经脱离了简单的诊断功能,目前已经与临床治疗紧密联系在了一起,各种临床的诊断和治疗都与超声密切相关,所以通常情况下可以将科室命名为超声科。

超声科室的有效建构是超声学科建设的重要方面,超声学科与临床联系日益紧密,诊疗与教研需要紧密结合,但是目前的情况是多数医院在超声科室建设中结构分散、系统性差,加之技术水平参差不齐,所以造成了设备资源的很大浪费。我们需要有效建设完整的超声科室,实现人力、物力最大程度上的结合。对超声科室的建构可以从检查、治疗和教研三个方面有效的推进。

超声学科的建构中需要具有全科素质的团队领导者,科室主任可以从院内外聘请具有威望的中青年专家担任,因为中青年人才更具有发展潜力和魄力。在设立科室主任和副主任的基础上,可以设立诊断和诊疗、教研组长,实现对行政和业务的有效领导。超声科室的一般性工作可由超声医师,以及超声技师联合完成,医师进行诊断和操作,而技师进行录入和报告的出具工作。超声科室还需要数名护士,对患者进行术前准备,以及术后的观察。器械工程师可以选聘专职或者兼职都可以,但是需要保证检修的快速和及时。在超声科室的技术配比中需要高、中、初级互相合理配合。

二、超声医学学科建设的根本在于临床管理

从医院的建设角度来说,各学科建设的基本立足点在于临床的有效应用。超声医学的学科建设需要紧密地和解剖、生理和病理科室联系在一起,积极拓展超声和基础医学的联系。在临床诊疗中需要用规范医学条例来指导医生的患者意识,以及科研意识,在临床上做到有品质和有内涵。在全面理顺本学科建制的基础上,超声医学学科需要积极地进行跨学科协作。超声诊断是临床的前置环节,而临床可以有效的对超声诊断形成验证,所以超声临床需要建立严格的随访,以及反馈机制,超声医师下病房,以及参阅诊疗意见都是必要的。在超声学科的临床上,不仅仅需要增强科室内部的凝聚力,还需要有效的增加医院内部的向心力,以及与患者的亲和力。

超声医学学科的临床建设关键在于保证医疗质量,全面地提高诊断的正确率,积极推进超声医学的临床治疗。又快又好地完成超声诊疗的关键是减少预约,基本上做到“零预约”。在超声临床的建设中积极突出超声介入治疗,有效发挥超声在治疗中的引导作用。全面推进超声介入治疗在造影,引流和造瘘临床上的应用,突出超声在评估和靶向穿刺方面的特色。超声学科临床建设的目的和意义在于及时地解决临床问题,积极地推动和使用新技术和新手段,紧密的联系学科前沿,为患者解除疾病所带来的苦难。目前对于医院来讲,最重要的是要积极地在超声介入诊断、肝脏移植、临床诊断分析、男子不孕不育和风湿疾病诊断中做精做细。

三、超声医学学科建设的亮点在于优质服务

从客观角度来讲,因为各个地区的医院层次、以及软硬件设施具有明显的区别,所以说超声医学在学科建设上基本上难以一整套办法全面推进,但是从另一个方面来讲,其实各个医院在提高服务质量上却是相通的。超声医学的学科管理在于便捷性,因为超声检查是一项普通的医疗检查,所以说做到快速、便捷是服务的关键。超声科室的服务应该说具有两重性,其一是对患者的服务,其二是对临床的服务,所以有效的实现与医院,甚至于多所医院联网是关键。通过局域网可以进行有效的预约和排号,通过超声的信息管理可以实现临床医生快速了解结果。通过远程网络患者可以挂号,疑难病历可以得到快速的协助诊断和处理。

超声科室的服务还在于超声医师诊断结论的快速生成报告,对一些非常规的病例可以由高级医生处理,在最短的时间内进行治疗和诊断。对患者的资料进行大型的数据库管理,便于网络的直接调取。超声科室可以与医院的网络联系,最终实现与互联网的连接,实现信息资源的共享。患者公平的排号就诊,对特殊的病历做好前期准备工作,同时计划安排好超声技师和临床护理人员。超声科室还需要开设必要的临时观察室,以便于一些小风险治疗项目可以在门诊进行直接的治疗,手术后对患者进行有效的24小时观察。

四、超声医学学科建设的未来在于科研和人才

我们之所以说超声学科建设的未来在于科研和人才,是因为超声医学的未来应用空间和领域是十分广阔的。虽然目前超声医学还局限在临床诊断上,在临床治疗上也逐步取得了丰硕的成果,但是其依然有很多需要提升之处。在科研方面最主要是要将科研工作与临床紧密结合,良好的科研可以带动学科发展。在提高超声诊断质量的同时,我们需要重点发展射频消融,超声辐射力成像,心脏超声等技术。超声医学还需要与多学科实现联合攻关,与临床科室和纳米材料科室紧密合作。还需要积极的推进科研成果转化,有效地将科研成果向适宜的三级以及基层医疗机构进行输送,推动超声在介入、造影,以及肿瘤、治疗方面的临床应用;促进乳腺靶向造影,以及纳米级造影剂的申报,转化和应用。

另外,在超声医学人才培养方面可以有效借助平台力量,加大选拔力度,培养重点人才。要将院内培养和院外联合培养结合在一起,努力为超声医学人才提供展示自己才华的机会。在待遇上要向青年学科领军人物倾斜,鼓励青年医生申报各种创业基金,以此为超声医学人才的脱颖而出提供充分的锻炼机会和物质保证。

参考文献:

[1] 赵佳琦,章建全;借鉴戴明循环理论增进超声医学科研管理[J];中华医学科研管理杂志;2011年01期

[2] 王鹏,褚洪光,孟春荣,李倩;超声医学科建设构想浅谈[J];中外医疗;2012年01期

[3] 刘守君;加强超声学科建设提高医疗服务水平[J];现代医院管理;2005年01期

[4] 杨益虎;超声医学科建设构想浅谈[J];实用医技杂志;2007年21期

[5] 何林丰;对我区超声医学工程队伍建设的几点建议[J];西藏科技;2000年06期

作者简介:

刘希文(1957―)宁夏青铜峡人,宁夏青铜峡铝业集团公司医院工作,研究方向超声医学(从事超声工作37年)。

点击下页还有更多>>>关于超声医学的论文范文

随着社会的发展和人们道德、价值、法律观念的增强,现代社会要求一名合格医生应该具备丰富的专业知识同时具备良好的个人素质。医生应该本着严于律己的精神不断学习完善自己,提高个人的素质,而医学生的素质教育为其形成良好的职业素质打下了重要的基础。下面是搜索整理的临床医学论文题目大全105个,供大家参考阅读。临床医学论文题目大全一: [1]定西市疑似风疹标本ELISA与RT-PCR法检测分析[2]居家吞咽康复操在老年脑卒中患者中的应用及效果观察[3] MR扩散加权成像与不同成像序列联合应用对乳腺良恶性病变定性诊断价值临床研究[4]经静脉内耳钆造影MRI对可疑梅尼埃病的诊断价值[5]基于三种试剂盒分析新型冠状病毒特异性抗体的动态变化[6]基于罗伊适应模式的护理干预对双相情感障碍患者社会缺陷及认知功能的影响[7]驻地医院联合整建制驰援医疗队救治新型冠状病毒肺炎的护理管理实践[8]宫颈癌术后延伸野螺旋断层放疗与固定野调强放疗剂量学比较[9]新型冠状病毒感染患者恢复期肛拭子中SARS-CoV-2核酸检测结果评价[10]数字OT训练系统结合作业疗法对脑卒中患者上肢功能及ADL的影响[11]肌内效贴技术结合针刀治疗卒中后肩痛的临床研究及安全性分析[12]吞咽功能训练配合低频电刺激治疗脑卒中吞咽障碍的临床疗效[13]穴位肌电生物反馈联合rood技术对脑卒中后足下垂患者平衡功能的影响[14]三种不同免疫检验方法检测HIV抗体的价值比较[15]探讨认知护理对高血压性脑出血患者治疗依从性的影响[16]综合护理措施在手术室切口部位感染预防的应用研究[17]气管切开稳定期慢性阻塞性肺病患者的肺康复护理体会[18]优质护理应用于宫颈球囊在足月妊娠促宫颈成熟促进自然分娩的实践效果[19]社区心理护理干预对脑卒中患者康复的影响[20]集束化护理在重症监护室护理中的应用效果分析[21]基于快速康复理念的护理干预对胃癌根治术患者术后恢复的影响[22]鼻内镜下鼻窦开放术治疗慢性鼻窦炎围手术期的临床护理分析[23]试论医务社会工作在静脉输液治疗安全环境构建过程中的作用[24]~(125)I粒子源剂量计算参数模拟研究[25]左氧氟沙星联合哌拉西林/他唑巴坦对产超广谱β-内酰胺酶耐碳青霉烯类肺炎克雷伯菌的防耐药突变浓度及耐药机制的研究[26]2009—2018年浙江省宁波市吸毒人群HIV、梅毒和HCV感染状况及其行为特征[27]临床护理路径在新型冠状病毒肺炎患者中的应用效果[28]沙门氏菌主要流行血清型耐药性的研究进展[29]学龄后腭裂术后语音障碍患者语音训练方法研究[30]不同严重程度认知障碍组脑内血管周围间隙研究[31]多系统萎缩患者轻度认知功能障碍的静息态低频振幅研究[32]脑静息态功能磁共振局部一致性分析在轻度认知障碍患者中的初步研究[33]静息态fMRI评价脑瘫患儿手术前后的脑功能[34]自闭症儿童早期大脑过度发育的sMRI研究[35]老年重症监护室糖尿病患者血糖难控制的原因分析及护理措施分析临床医学论文题目大全二: [36]磁共振血管造影侧枝血管在卒中机械取栓术后预后中的应用价值[37] T单体素磁共振波谱成像离体及在体检测2-羟基戊二酸效能初探[38]基于心脏磁共振特征追踪技术的高血压患者早期左房功能障碍的定量研究[39]心脏磁共振成像技术对OSAHS患者心脏的研究[40]IVIM-DWI技术对前列腺癌内分泌治疗效果的应用研究[41]骨折内固定术后复查MAVRIC-SL序列去金属伪影的研究[42]大脑中动脉闭塞致缺血性脑卒中患者FVH-DWI匹配性与预后的相关性分析[43]磁共振动态增强成像联合扩散加权成像对乳腺良恶性疾病鉴别诊断价值[44]磁共振诊断精囊腺囊肿并结石1例[45]干燥综合征腮腺MRI的研究进展[46]磁共振弹性成像技术对肝纤维化诊断的新进展[47]重症胰腺炎并发腹腔高压的影像学研究进展[48]腹针加头针联合艾司唑仑片治疗原发性失眠45例[49]康复护理在颅脑损伤中的应用[50]骨科术后患者康复锻炼的重要性[51]X光片和多排螺旋CT、MR对骨关节创伤的诊断对比[52]急性心肌梗死合并完全左束支阻滞的心电图诊断价值[53]二维联合三维超声在胎儿唇腭裂中的应用价值[54]心脏超声与心电图对高血压性心脏病的诊断效果及检出率影响分析[55]浅析CT影像学技术应用于周围性小肺癌中的诊断价值[56]胎儿肢体及手足畸形产前超声诊断及图像分析[57]CT三维重建对微小肺癌早期诊断的价值[58]眼内肿瘤超声弹性成像的鉴别诊断价值[59]临床与影像护理的有效配合对脑卒中患者磁共振检查中的作用分析[60]低、高频探头超声联合在急性阑尾炎诊断中的应用[61]肝纤维化分期诊断中磁共振弹性成像技术的临床应用[62]小儿肾病综合征并肺动脉栓塞的CT表现及临床护理[63]腹部CT检查对诊断结肠肿瘤性肠梗阻的价值[64]CT增强扫描中离子型与非离子型碘造影剂副反应对比效果分析[65]磁共振弥散加权成像和动态增强诊断前列腺疾病临床效果观察[66]临床护理路径(CNP)标准在CT增强护理中的应用疗效分析[67]核磁共振波谱检查在前列腺癌诊断及病情判断中的应用疗效分析[68]老年终末期肾病患者腹膜透析对肾功能及心功能的影响[69]百里醌通过激活SIRT1/STAT3通路对脓毒症所致大鼠肝损伤和糖代谢紊乱的保护作用[70]艾滋病模型中关键指标SIV DNA绝对定量微滴式数字PCR技术的创新应用临床医学论文题目大全三: [71]113例肠杆菌科细菌血流感染临床特征与病原分析[72]多模态多维信息融合的鼻咽癌MR图像肿瘤深度分割方法[73]断层径照治疗局部中晚期下咽癌的剂量学研究[74]尼帕病毒Taqman qRT-PCR检测方法的建立[75]利用宏基因组纳米孔测序方法检测模拟临床样本中的基孔肯雅病毒和辛德毕斯病毒[76]三维全容积成像技术评价高血压是否合并超体重患者左心室容积及收缩功能[77]康复者血浆治疗新型冠状病毒肺炎疗效分析1例[78]辽宁省社区老年高血压患者自我管理能力和生活质量的相关性[79]批量新型冠状病毒肺炎患者救治护理工作实践与思考[80]重症监护室肺癌患者拔管后经鼻高流量氧疗与储氧面罩吸氧有效性的比较[81]血液透析、腹膜透析及肾移植对终末期肾病患者生存质量的影响及影响因素分析[82]应用PDCA循环法护理神经外科手术患者的效果[83]方舱CT技术进展与临床应急使用现状[84]应用上肢康复操视频对乳腺癌改良根治术后患者生活质量的干预效果[85]发热门诊与隔离病房无缝隙对接在疑似新冠肺炎患者管理中的效果研究[86]快速康复护理对骨折术后患者康复的影响研究[87]血清C肽与糖化血红蛋白检验诊断糖尿病的临床效果评价[88]优质护理措施在小儿糖尿病酮症酸中毒治疗中的应用分析[89]综合护理对糖尿病甲状腺癌患者术后临床疗效及相关内分泌激素水平的影响[90]社区糖尿病患者管理流程的探讨[91]老年糖尿病疾病护理管理中应用优质护理的效果评价[92]品管圈在提高居家胰岛素笔废弃针头回收率中的应用[93]目标策略的针对性护理干预在老年阑尾炎合并糖尿病患者围手术期中的应用观察[94]糖化血清白蛋白检测在糖尿病血液透析患者中的临床意义[95]电话随访联合IMB模型的健康教育对初诊2型糖尿病患者治疗依从性及自护能力的影响[96]综合性护理对老年糖尿病合并心律失常行心脏起搏器置入术后患者心理状态及生活质量的影响[97]糖尿病患者的内科综合护理干预方法及其有效性分析[98]全面护理干预在结石性胆囊炎合并2型糖尿病患者围手术期中的应用观察[99]目标性护理干预在肺癌合并糖尿病围手术期的应用研究[100]探讨护理对策及生活方式指导对糖尿病性脑血管疾病的影响[101]72例2型糖尿病患者腹腔镜下胃旁路手术治疗后的护理[102]健康行动过程取向理论指导下的护理干预在妊娠期糖尿病患者中的应用观察[103]静脉微量泵应用前列地尔注射液治疗糖尿病下肢血管病变中不良反应的观察及护理对策[104]动态血糖监测指导下的个体化营养联合瑜伽运动在妊娠期糖尿病患者中的应用观察[105]整体护理在糖尿病肾病血液透析患者中的临床价值分析以上就是关于临床医学论文题目大全的分享,希望对你有所帮助。

相关百科

热门百科

首页
发表服务