【激光武器原理】激光击毁目标有两个方面:一是穿孔,二是层裂。所谓穿孔,就是高功率密度的激光束使靶材表面急剧熔化,进而汽化蒸发,汽化物质向外喷射,反冲力形成冲击波,在靶材上穿一个孔。所谓层裂,就是靶材表面吸收激光能量后,原子被电离,形成等离体“云”。“云”向外膨胀喷射形成应力波向深处传播。应力波的反射造成靶材被拉断,形成“层裂”破坏。除此以外,等离子体“云”还能辐射紫外线或X光,破坏目标结构和电子元件。【激光武器】是用高能的激光对远距离的目标进行精确射击或用于防御导弹等的武器,也称为战术高能激光武器。具有快速、灵活、精确和抗电磁干扰等优异性能,在光电对抗、防空和战略防御中可发挥独特作用。激光武器的缺点是不能全天候作战,受限于大雾、大雪、大雨,且激光发射系统属精密光学系统,也受大气影响严重,如大气对能量的吸收、大气扰动引起的能量衰减、热晕效应、湍流以及光束抖动引起的衰减等。
一个激光武器系统一般由高能激光器、精密瞄准跟踪系统和控制发射系统等组成。 激光武器是多学科综合的高技术武器装备,研制的关键技术主要有:①高功率激光器技术;②高激光束质量技术;③快速、高精度的瞄准跟踪技术;④重量轻、机动性好的发射控制系统技术;⑤低成本耗能技术;⑥激光对各类目标材质的毁伤技术。解决好以上技术问题,是使激光武器成为实用化武器装备的关键。激光武器的另一项重要技术是反射镜技术。对于远程硬杀伤激光武器,都需要大直径的反射镜,用于传输和会聚高能激光束于攻击目标上。反射镜要求直径大、反射率高、面形好、有自适应调节能力。实用化的武器装备一般应具备的条件为:性能稳定性好、环境适应能力强、机动性好、使用耗费低、安全性高。 激光器是激光武器的核心组件,所以激光武器的性能主要由激光器的性能所决定。习惯上,激光武器主要按激光器的类别进行分类。激光器的种类很多,有固体激光器、气体激光器、半导体激光器、自由电子激光器、化学激光器、染料激光器、光纤激光器、准分子激光器、色心激光器等。目前,能作为激光武器的激光器有:化学激光器、气体激光器、固体激光器等,在它们中也只有很少几种高功率类型的激光器可开发为激光武器。 化学激光器是利用工作物质的化学反应所释放的能量激励工作物质产生激光。可用作激光武器的化学激光器有:氟化氘激光器、氟化氢激光器和氧-碘激光器等。化学激光器具有激光武器所需要的许多特性:比能量高(可达500~1000J/g);易制成高功率激光器(能制成数百万瓦或千万瓦功率的激光器);光束质量好;不需要外电源等。特别是氟化氘激光器,输出波长为μm,大气传输特性好。化学激光器的主要缺点是要排放有害气体。 适用于作为激光武器的气体激光器主要有气动CO2激光器和电激励CO2激光器。CO2激光器的发射功率可达兆瓦级以上,波长位于大气窗口(μm),光束穿透性好。气动CO2激光器是利用气体动力学原理,通过燃烧压缩的CO2和O2产生高压CO2气体,使其绝热膨胀而产生激光。气动CO2激光器的输出功率高,但体积大,能量转换效率低,光束质量不高。另一种CO2气体激光器是电激励CO2激光器,它是对由CO2、N2、He、Xe和H2O等构成的混合气体进行放电激励输出激光。电激励CO2激光器具有输出功率高、能量转换效率高、结构简单、工艺成熟等优点。缺点是电源技术不完善,光束质量不高。 固体激光器制成的激光武器适用于作软杀伤武器,目前可实现的平均输出功率在千瓦级或万瓦级,可在10km内损坏光电探测设备、目标指示设备以及使人眼暂时致盲或永久致盲。固体激光器体积小、重量轻、性能稳定,适用于制成便携式、车载和机载等轻型战术激光武器。目前,采用板条状的Nd:YAG激光器可实施8km内的设备和人员的软杀伤。
中国的攻击激光雷达包含着世界最尖端的5大核心技术:1、激光材料研究的突破,2、激光辐射材料物理机理及成像图谱研究的突破3、一次性快速跟踪定位控制技术的突破4、高密度能量可逆转换载体材料的突破5、激光成像技术的突破。
激光发展史激光以全新的姿态问世已二十余年。然而,发明激光器的历程却鲜为人知,至于发明者如何从事艰难曲折的探索,就更少人问津了。其实,每一项重大发明,都是科学家们智慧的结晶,里面包涵着他们的汗水和心血。自然,激光器的发明也不例外。 说得准确些,对激光的研究,只是到了20世纪50年代末才出现一个崭新阶段。在此之前,人们只对无线电波和微波有较深研究。科学家们把无线电波波长缩短到十米以内,使得世界性的通讯成为可能,那是30年代的事情。后来,随着速调管和空穴磁控管的发明,科学家便对厘米波的性质进行研究。二次世界大战中,由于射频和光谱学的发展,辐射波和原子只间的联系又重新被强调。大战期间,科学家们发明并研制了雷达(战争对雷达的制造起了推动的作用)。从技术本身来说,雷达是电磁波向超短波、微波发展的产物。大战以后,科学家又开创了微波波谱学,目的是探索光谱的微波范围并把其推广到更短的波长。当时,哥仑比亚大学有一个由汤斯()领导的辐射实验小组,他们一直从事电磁方面以及毫米辐射波的研究。1951年,汤斯提出了微波激射器(Maser全称Microwave Amplification by Stimulated Emission of Radiation)的概念。经过几年的努力,1954年汤斯和他的助手高顿(J. Cordon)、蔡格(H. Zeiger)发明了氨分子束微波激射器并使其正常运行。这为以后激光器的诞生奠定了基础。当时,汤斯希望微波激射器能产生波长为半毫米的微波,遗撼的是,激射器却输出波长为1。25cm的微波。微波激射器问世以后,科学家就希望能制造输出更短波长的激射器。汤斯认为可将微波推到红外区附近,甚至到可见光波段。1958年,肖洛()与汤斯合作,率先发表了在可见光频段工作的激射器的设计方案和理论计算。这又将激光研究推上了一个新阶段。现在,人们都知道,产生激光要具备两个重要条件:一是粒子数反转;二是谐振腔。值得注意的是,自1916年爱因斯坦提出受激辐射的概念以后,1940年前后就有人在研究气体放电实验中,观察到粒子反转现象。按当时的实验技术基础,就具备建立某种类型的激光器的条件。但为什么没能造出来呢?因为没有人,包括爱因斯坦本人没把受激辐射,粒子数反转,谐振腔联系在一起加以考虑。因而也把激光器的发明推迟了若干年。在研究激光器的过程中,应把引进谐振腔的功劳归于肖洛。肖洛长期从事光谱学研究。谐振腔的结构,就是从法——珀干涉仪那里得到启示的。正如肖洛自己所说:“我开始考虑光谐振器时,从两面彼此相向镜面的法——珀干涉仪结构着手研究,是很自然的。”实际上,干涉仪就是一种谐振器。肖洛在贝尔电话实验室的七年中,积累了大量数据,于1958年提出了有关激光的设想。几乎同时,许多实验室开始研究激光器的可能材料和方法,用固体作为工作物质的激光器的研究工作始于1958年。如肖洛所述:“我完全彻底地受到灌输,使我相信,可以在气体中做的任何事情,在固体中同样可以做,且在固体中做得更好些。因此,我开始探索、寻找固体激光器的材料…...”的确,不到一年,在1959年9月召开的第一次国际量子电子会议上,肖洛提出了用红宝石作为激光的工作物质。不久,肖洛又具体地描述了激光器的结构:“固体微波激射器的结构较为简单,实质上,它有一棒(红宝石),它的一端可作全反射,另一端几乎全反射,侧面作光抽运。”遗撼的是,肖洛没有得到足够的光能量使粒子数反转,因而没获成功。可喜的是,科学家迈曼()巧妙地利用氙灯作光抽运,从而获得粒子数反转。于是,1960年6月,在Rochester大学,召开了一个有关光的相干性的会议,会议上,迈曼成功地操作了一台激光器。7月份,迈曼用红宝石制成的激光器被公布于众。至此,世界上第一台激光器宣告诞生。激光具有单色性,相干性等一系列极好的特性。从诞生那天开始,人们就预言了它的美好前景。20多年来,人们制造了输出各种不同波长的激光器,甚至是可调激光器。大功率激光器的研制成功,又开拓了新的领域。1977年出现的自由电子激光器,机制则完全不同,它的工作物质是具有极高能量的自由电子,人们可以期望通过这种激光器,实现连续大功率输出,而且覆盖频率范围可向长短两个方向发展。现在,激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标志着新技术革命的发展。诚然,如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。 能发1954年制成了第一台微波量子放大器,获得了高度相干的微波束。1958年.肖洛和.汤斯把微波量子放大器原理推广应用到光频范围,并指出了产生激光的方法。1960年.梅曼等人制成了第一台红宝石激光器。1961年A.贾文等人制成了氦氖激光器。1962年.霍耳等人创制了砷化镓半导体激光器。以后,激光器的种类就越来越多。按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器4大类。近来还发展了自由电子激光器,其工作介质是在周期性磁场中运动的高速电子束,激光波长可覆盖从微波到X射线的广阔波段。按工作方式分,有连续式、脉冲式、调Q和超短脉冲式等几类。大功率激光器通常都是脉冲式输出。各种不同种类的激光器所发射的激光波长已达数千种,最长的波长为微波波段的毫米,最短波长为远紫外区的210埃,X射线波段的激光器也正在研究中。 除自由电子激光器外,各种激光器的基本工作原理均相同,装置的必不可少的组成部分包括激励(或抽运)、具有亚稳态能级的工作介质和谐振腔( 见光学谐振腔)3部分。激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的定向性和相干性。 激光工作物质 是指用来实现粒子数反转并产生光的受激辐射放大作用的物质体系,有时也称为激光增益媒质,它们可以是固体(晶体、玻璃)、气体(原子气体、离子气体、分子气体)、半导体和液体等媒质。对激光工作物质的主要要求,是尽可能在其工作粒子的特定能级间实现较大程度的粒子数反转,并使这种反转在整个激光发射作用过程中尽可能有效地保持下去;为此,要求工作物质具有合适的能级结构和跃迁特性。 激励(泵浦)系统 是指为使激光工作物质实现并维持粒子数反转而提供能量来源的机构或装置。根据工作物质和激光器运转条件的不同,可以采取不同的激励方式和激励装置,常见的有以下四种。①光学激励(光泵)。是利用外界光源发出的光来辐照工作物质以实现粒子数反转的,整个激励装置,通常是由气体放电光源(如氙灯、氪灯)和聚光器组成。②气体放电激励。是利用在气体工作物质内发生的气体放电过程来实现粒子数反转的,整个激励装置通常由放电电极和放电电源组成。③化学激励。是利用在工作物质内部发生的化学反应过程来实现粒子数反转的,通常要求有适当的化学反应物和相应的引发措施。④核能激励。是利用小型核裂变反应所产生的裂变碎片、高能粒子或放射线来激励工作物质并实现粒子数反转的。 激光器的种类是很多的。下面,将分别从激光工作物质、激励方式、运转方式、输出波长范围等几个方面进行分类介绍。 按工作物质分类 根据工作物质物态的不同可把所有的激光器分为以下几大类:①固体(晶体和玻璃)激光器,这类激光器所采用的工作物质,是通过把能够产生受激辐射作用的金属离子掺入晶体或玻璃基质中构成发光中心而制成的;②气体激光器,它们所采用的工作物质是气体,并且根据气体中真正产生受激发射作用之工作粒子性质的不同,而进一步区分为原子气体激光器、离子气体激光器、分子气体激光器、准分子气体激光器等;③液体激光器,这类激光器所采用的工作物质主要包括两类,一类是有机荧光染料溶液,另一类是含有稀土金属离子的无机化合物溶液,其中金属离子(如Nd)起工作粒子作用,而无机化合物液体(如SeOCl)则起基质的作用;④半导体激光器,这类激光器是以一定的半导体材料作工作物质而产生受激发射作用,其原理是通过一定的激励方式(电注入、光泵或高能电子束注入),在半导体物质的能带之间或能带与杂质能级之间,通过激发非平衡载流子而实现粒子数反转,从而产生光的受激发射作用;⑤自由电子激光器,这是一种特殊类型的新型激光器,工作物质为在空间周期变化磁场中高速运动的定向自由电子束,只要改变自由电子束的速度就可产生可调谐的相干电磁辐射,原则上其相干辐射谱可从X射线波段过渡到微波区域,因此具有很诱人的前景。 按激励方式分类 ①光泵式激光器。指以光泵方式激励的激光器,包括几乎是全部的固体激光器和液体激光器,以及少数气体激光器和半导体激光器。②电激励式激光器。大部分气体激光器均是采用气体放电(直流放电、交流放电、脉冲放电、电子束注入)方式进行激励,而一般常见的半导体激光器多是采用结电流注入方式进行激励,某些半导体激光器亦可采用高能电子束注入方式激励。③化学激光器。这是专门指利用化学反应释放的能量对工作物质进行激励的激光器,反希望产生的化学反应可分别采用光照引发、放电引发、化学引发。④核泵浦激光器。指专门利用小型核裂变反应所释放出的能量来激励工作物质的一类特种激光器,如核泵浦氦氩激光器等。 按运转方式分类 由于激光器所采用的工作物质、激励方式以及应用目的的不同,其运转方式和工作状态亦相应有所不同,从而可区分为以下几种主要的类型。①连续激光器,其工作特点是工作物质的激励和相应的激光输出,可以在一段较长的时间范围内以连续方式持续进行,以连续光源激励的固体激光器和以连续电激励方式工作的气体激光器及半导体激光器,均属此类。由于连续运转过程中往往不可避免地产生器件的过热效应,因此多数需采取适当的冷却措施。②单次脉冲激光器,对这类激光器而言,工作物质的激励和相应的激光发射,从时间上来说均是一个单次脉冲过程,一般的固体激光器、液体激光器以及某些特殊的气体激光器,均采用此方式运转,此时器件的热效应可以忽略,故可以不采取特殊的冷却措施。③重复脉冲激光器,这类器件的特点是其输出为一系列的重复激光脉冲,为此,器件可相应以重复脉冲的方式激励,或以连续方式进行激励但以一定方式调制激光振荡过程,以获得重复脉冲激光输出,通常亦要求对器件采取有效的冷却措施。④调激光器,这是专门指采用一定的 开关技术以获得较高输出功率的脉冲激光器,其工作原理是在工作物质的粒子数反转状态形成后并不使其产生激光振荡 (开关处于关闭状态),待粒子数积累到足够高的程度后,突然瞬时打开 开关,从而可在较短的时间内(例如10~10秒)形成十分强的激光振荡和高功率脉冲激光输出(见技术'" class=link>激光调 技术)。⑤锁模激光器,这是一类采用锁模技术的特殊类型激光器,其工作特点是由共振腔内不同纵向模式之间有确定的相位关系,因此可获得一系列在时间上来看是等间隔的激光超短脉冲(脉宽10~10秒)序列,若进一步采用特殊的快速光开关技术,还可以从上述脉冲序列中选择出单一的超短激光脉冲(见激光锁模技术)。⑥单模和稳频激光器,单模激光器是指在采用一定的限模技术后处于单横模或单纵模状态运转的激光器,稳频激光器是指采用一定的自动控制措施使激光器输出波长或频率稳定在一定精度范围内的特殊激光器件,在某些情况下,还可以制成既是单模运转又具有频率自动稳定控制能力的特种激光器件(见激光稳频技术)。⑦可调谐激光器,在一般情况下,激光器的输出波长是固定不变的,但采用特殊的调谐技术后,使得某些激光器的输出激光波长,可在一定的范围内连续可控地发生变化,这一类激光器称为可调谐激光器(见激光调谐技术)。 按输出波段范围分类 根据输出激光波长范围之不同,可将各类激光器区分为以下几种。①远红外激光器,输出波长范围处于25~1000微米之间, 某些分子气体激光器以及自由电子激光器的激光输出即落入这一区域。②中红外激光器,指输出激光波长处于中红外区(~25微米)的激光器件,代表者为CO分子气体激光器(微米)、 CO分子气体激光器(5~6微米)。③近红外激光器,指输出激光波长处于近红外区(~微米)的激光器件,代表者为掺钕固体激光器(微米)、CaAs半导体二极管激光器(约 微米)和某些气体激光器等。④可见激光器,指输出激光波长处于可见光谱区(4000~7000埃或~微米)的一类激光器件,代表者为红宝石激光器 (6943埃)、 氦氖激光器(6328埃)、氩离子激光器(4880埃、5145埃)、氪离子激光器(4762埃、5208埃、5682埃、6471埃)以及一些可调谐染料激光器等。⑤近紫外激光器,其输出激光波长范围处于近紫外光谱区(2000~4000埃),代表者为氮分子激光器(3371埃)氟化氙(XeF)准分子激光器(3511埃、3531埃)、 氟化氪(KrF)准分子激光器(2490埃)以及某些可调谐染料激光器等⑥真空紫外激光器,其输出激光波长范围处于真空紫外光谱区(50~2000埃)代表者为(H)分子激光器 (1644~1098埃)、氙(Xe)准分子激光器(1730埃)等。⑦X射线激光器, 指输出波长处于X射线谱区(~50埃)的激光器系统,目前软X 射线已研制成功,但仍处于探索阶段[编辑本段]激光器的发明 激光器的发明是20世纪科学技术的一项重大成就。它使人们终于有能力驾驶尺度极小、数量极大、运动极混乱的分子和原子的发光过程,从而获得产生、放大相干的红外线、可见光线和紫外线(以至X射线和γ射线)的能力。激光科学技术的兴起使人类对光的认识和利用达到了一个崭新的水平。 激光器的诞生史大致可以分为几个阶段,其中1916年爱因斯坦提出的受激辐射概念是其重要的理论基础。这一理论指出,处于高能态的物质粒子受到一个能量等于两个能级之间能量差的光子的作用,将转变到低能态,并产生第二个光子,同第一个光子同时发射出来,这就是受激辐射。这种辐射输出的光获得了放大,而且是相干光,即如多个光子的发射方向、频率、位相、偏振完全相同。 此后,量子力学的建立和发展使人们对物质的微观结构及运动规律有了更深入的认识,微观粒子的能级分布、跃迁和光子辐射等问题也得到了更有力的证明,这也在客观上更加完善了爱因斯坦的受激辐射理论,为激光器的产生进一步奠定了理论基础。20世纪40年代末,量子电子学诞生后,被很快应用于研究电磁辐射与各种微观粒子系统的相互作用,并研制出许多相应的器件。这些科学理论和技术的快速发展都为激光器的发明创造了条件。 如果一个系统中处于高能态的粒子数多于低能态的粒子数,就出现了粒子数的反转状态。那么只要有一个光子引发,就会迫使一个处于高能态的原子受激辐射出一个与之相同的光子,这两个光子又会引发其他原子受激辐射,这样就实现了光的放大;如果加上适当的谐振腔的反馈作用便形成光振荡,从而发射出激光。这就是激光器的工作原理。1951年,美国物理学家珀塞尔和庞德在实验中成功地造成了粒子数反转,并获得了每秒50千赫的受激辐射。稍后,美国物理学家查尔斯·汤斯以及苏联物理学家马索夫和普罗霍洛夫先后提出了利用原子和分子的受激辐射原理来产生和放大微波的设计。 然而上述的微波波谱学理论和实验研究大都属于“纯科学”,对于激光器到底能否研制成功,在当时还是很渺茫的。 但科学家的努力终究有了结果。1954年,前面提到的美国物理学家汤斯终于制成了第一台氨分子束微波激射器,成功地开创了利用分子和原子体系作为微波辐射相干放大器或振荡器的先例。 汤斯等人研制的微波激射器只产生了厘米波长的微波,功率很小。生产和科技不断发展的需要推动科学家们去探索新的发光机理,以产生新的性能优异的光源。1958年,汤斯与姐夫阿瑟·肖洛将微波激射器与光学、光谱学的理论知识结合起来,提出了采用开式谐振腔的关键性建议,并预防了激光的相干性、方向性、线宽和噪音等性质。同期,巴索夫和普罗霍洛夫等人也提出了实现受激辐射光放大的原理性方案。 此后,世界上许多实验室都被卷入了一场激烈的研制竞赛,看谁能成功制造并运转世界上第一台激光器。 1960年,美国物理学家西奥多·梅曼在佛罗里达州迈阿密的研究实验室里,勉强赢得了这场世界范围内的研制竞赛。他用一个高强闪光灯管来刺激在红宝石水晶里的铬原子,从而产生一条相当集中的纤细红色光柱,当它射向某一点时,可使这一点达到比太阳还高的温度。 “梅曼设计”引起了科学界的震惊和怀疑,因为科学家们一直在注视和期待着的是氦氖激光器。 尽管梅曼是第一个将激光引入实用领域的科学家,但在法庭上,关于到底是谁发明了这项技术的争论,曾一度引起很大争议。竞争者之一就是“激光”(“受激辐射式光频放大器”的缩略词)一词的发明者戈登·古尔德。他在1957年攻读哥伦比亚大学博士学位时提出了这个词。与此同时,微波激射器的发明者汤斯与肖洛也发展了有关激光的概念。经法庭最终判决,汤斯因研究的书面工作早于古尔德9个月而成为胜者。不过梅曼的激光器的发明权却未受到动摇。 1960年12月,出生于伊朗的美国科学家贾万率人终于成功地制造并运转了全世界第一台气体激光器——氦氖激光器。1962年,有三组科学家几乎同时发明了半导体激光器。1966年,科学家们又研制成了波长可在一段范围内连续调节的有机染料激光器。此外,还有输出能量大、功率高,而且不依赖电网的化学激光器等纷纷问世。 由于激光器具备的种种突出特点,因而被很快运用于工业、农业、精密测量和探测、通讯与信息处理、医疗、军事等各方面,并在许多领域引起了革命性的突破。比如,人们利用激光集中而极高的能量,可以对各种材料进行加工,能够做到在一个针头上钻200个孔;激光作为一种在生物机体上引起刺激、变异、烧灼、汽化等效应的手段,已在医疗、农业的实际应用上取得了良好效果;在通信领域,一条用激光柱传送信号的光导电缆,可以携带相当于2万根电话铜线所携带的信息量;激光在军事上除用于通信、夜视、预警、测距等方面外,多种激光武器和激光制导武器也已经投入实用。 今后,随着人类对激光技术的进一步研究和发展,激光器的性能将进一步提升,成本将进一步降低,但是它的应用范围却还将继续扩大,并将发挥出越来越巨大的作用。
数量有限的话,无限量啊,收拾了几间酒吧,内容也将被删除。 哺乳动物新生儿的心脏可以受损后自愈[医疗]在得克萨斯大学西南医学中心在“科学”2月25日日刊研究人员报告说,小鼠实验表明,哺乳动物新生儿的心脏可以自行愈合完全损坏,这一发现为人类心脏疾病的治疗后,可能提供新的思路。 实验中,研究新生小鼠一周的心脏消融的15%,并发现,在三个星期内,受损的心脏再次长出完好,它的外观和功能同样作为一个正常的心脏。研究人员认为,仍然完好无损跳动的心脏细胞,也就是心肌细胞,是新生细胞的主要来源。这些将停止跳动的心肌细胞,分裂一段时间,从而提供新鲜的心肌细胞。 “心脏病是头号健康威胁的人在发达国家杀手,这是在心脏疾病治疗中的重要一步,看着朝马路。”助理教授,该研究的作者之一,希沙姆内科萨迪克说,“我们发现,哺乳动物新生儿的心脏可以自行修复,它只是在老龄化的发展过程中忘记了技能的挑战是要找到一种方法来帮助心脏中成年后回忆起如何重新自我修复。“此前的研究已经证明,一些可以重新长出鳍和鱼类和两栖动物等低等生物的尾巴也可能是受损的心脏再生的一部分。 “相反,成年哺乳动物心脏没有这种能力,重新长出丢失或受损的组织,其结果是,当心脏,例如心脏发作后,心脏变得越来越虚弱,最终导致心脏衰竭发生损坏。”萨迪克说。 另一位作者的报告,埃里克奥尔森博士,一位分子生物学家说,在事件,这是面临的心血管医学领域的一大障碍损伤后的成人心脏不能再生。这项工作表明,在“窗口期”出生后的时期,哺乳动物心脏再生是可能的,但这种再生能力,然后失去了它。有了这样的认识,未来将是通过药物,基因或者其他手段唤醒,并在成年人甚至成年大鼠心肌再生。 研究人员表示,下一步将采取心脏的优势,他们仍然要研究这个简短的“窗口期”的时候,再生能力,并找出如何以及为什么心脏是在生长发育的过程“关”这个答案非凡的能力。 (来源:科技日报陈丹)兰州重离子冷却储存环成功加速冷却元素铋[83]理化来源:近代物理研究所发布时间:2011-02 -25 BR /> 2月25日,近代物理所中科院,科技人员在兰州重离子研究装置(HIRFL)冷却储存环(CSR)成功实现主环件83铋离子(209Bi36 +)束和加速冷却到每核子170MeV的能量积累,铋,继C,氩气,倪,氪和氙等,HIRFL-CSR最重的新的加速离子。 209Bi36 +重离子束加速成功,不仅验证了HIRFL-CSR非常重离子加速,同时也是中国重离子加速器技术进入世界先进行列的重要标志。 在超导ECR离子源的铋的金属微粒进行加热SECRAL蒸发并离子化等离子体产生209Bi36 +离子,导致光束的形成。 209Bi36 + HIRFL-SFC回旋加速器束由九秒的积聚加速到每核子的能量,在主环(HIRFL-CSR主环),以×107离子,能量每核子能量170MeV实现加速(单离子动能)。下面HIRFL-CSR主环上的DCCT +离子束电流监测期间加快209Bi36监控信号。 研究,以达到节能的单量子原子[物理] 据报道2月23日,美国国家标准学会物理学家首次在两个美国物理学家组织网单独的带电原子(离子)之间建立了直接运动耦合,实现能量的单量子原子之间交换。该技术简化了信息的处理可以在未来的量子计算机,量子模拟技术和网络中使用。相关研究发表在2月23日的“自然”杂志上。 研究人员解释说,他们让两人铍离子在电磁陷阱的冲击能量交换,交换能量的最小单位 - 量子来进行。这意味着离子被“耦合”在一起,向世人展示了诸如宏观摆,就像一个音叉“和谐震荡”,做重复的来回运动。 实验利用一个单一的离子阱中,并冷却到零下269摄氏度浸入液态氦浴。离子是40微米之间,浮动的势阱的表面上。微电极表面电位设备齐全,使两个离子靠得更近,以便产生更强的耦合。超低温热量可以被抑制,以避免扰乱离子行为。研究人员把陷阱来检测铍离子冲击脉冲频率。 研究者也由两个离子激光冷却运动减少,并且再反向两束紫外线激光束将被进一步冷却到静止状态的离子,调节势阱电极之间的电压,它打开的耦合。测量后,在离子交换每155只有几微妙量子的能量,但是当单量子达到218微秒较低的开关频率间隔。从理论上说,在离子交换过程之间的这种能量可以持续,直到它被热中断。 “首先,有轻微的震动,而另一个固定离子,然后传递到另一个离子振动时,它们之间能量的运动是能量的最小单位中的一个。”第一作者,标准的美国国家技术研究院博士后研究员坎顿布朗说,“我们可以调节耦合作用,影响速度和能量交换的程度,而且要控制的耦合作用的开启或终止。”电极电压来调整两个离子的频率,让他们留下更多近日,耦合效应开始了。当两个最接近的等离子体频率,耦合最强。由于带正电荷的离子之间的静电相互作用,倾向于相互排斥它们之间。耦合,使得每个离子有两个电子的特征频率。 在未来的量子计算机,上述技术可用于解决量子系统中,最广泛使用的今天破解的加密编码的复杂问题。直接耦合的逻辑运算离子的不同位置可以被简化,以帮助处理错误校正操作。该技术也可用于量子模拟,以在量子系统,如高温超导的原理机制解释复杂现象。 研究人员还指出,类似的量子交换作用,可用于连接不同类型的量子系统,如离子和光子的信息在未来的量子网络中的传输,如在超导离子的势阱的量子位(量子比特)和光子比特之间的“量子转换器”。 (来源:科技日报常丽君)的英特尔全新的连接技术的最高数据传输速率可达10Gb / s的[信息] 据英国广播公司(BBC)2日报道三月24日,美国芯片制造商英特尔公司推出了全新的高速连接技术的迅雷(迅雷),高达10Gb / s的,该技术有望为用户提供高速数据传输和高清屏它的理论最大数据传输速率显示。 迅雷技术,英特尔公布的2009光峰(Light Peak的)技术。光学技术是前用于连接计算机和连接在一起的其它设备,它不仅可以作为USB连接,可以传输文件,而且还可以传输视频和网络信号,由英特尔芯片的功能的数据传输需要负责管理。迅雷技术由英特尔控制芯片驱动,使用小型连接器。 但是,迅雷的技术仍无法达到其理论上的最大传输速率,因为英特尔现在使用的是铜,而不是光缆。不过,英特尔表示,未来将利用光纤技术打雷,即使该技术预计将达到的100Gb / s的传输速率。 英特尔称迅雷技术旨在满足高清媒体创造者的需求。迅雷技术提供更快的数据传输速度,不到30秒来传输全高清短片;这种技术可以同时传输多种信号类型,显示器和其他外围设备可以共享一个光纤电缆,从而减少用户连接到各种电脑设备与光缆所需数量;培养的新方法,如个人电脑的开发和使用。穆理堂,全球英特尔副总裁,他说:“高清媒体内容工作是当前计算机用户的任务是最关心的,迅雷的技术专业人士和普通消费者更快,更简单的方法应对这些新的内容。“Forrester的分析师·萨拉罗特曼伊普斯说,”消费者一直翘首以盼雷声技术并不是创新的技术,但它是消费者喜爱的技术之一,尤其是在视频传输方面,具有独特的优势“。出现迅雷的技术让消费者USB3和Firewire(火线),并在未来的其他连接标准提出了质疑。雷霆先进的数据传输10Gb / s的速度; Firewire400速度是400MB /秒,为包括Firewire800 800MB /秒; USB2是可达480Mb / s, Gb / s的USB3。 苹果将率先采用计算机技术系统迅雷制造商,苹果公司将组装在系统上他们的笔记本电脑。 抑制激光瞄准系统[军事] 高能激光一直被视为最有希望的21世纪的武器,它的长程和杀伤力得到在追求强大的军事强国。中国的军用激光技术起源于20世纪60年代,取得了一定的应用成果。发表在今年九月,台湾“全球防卫杂志”为此特别撰文,介绍了设备和使用激光武器的大陆。 文章指出,得益于数十年的经验积累,在中国的研究和开发,目前大约78种激光武器,包括战术激光武器又以配备舰艇和海军武器为多。这类“轻量级”激光武器的代表,配备了99式主战坦克的“激光瞄准系统的抑制。” 从外观来看,该系统由一个主控电脑,激光发射器,热成像仪和干扰机,通常安装在一个旋转平台上的坦克炮塔,车长和炮手可以操作的左后方。据估计,该设备可以继续排放约100兆焦耳的功率的蓝绿激光,其威力足以烧伤两公里敌方士兵的视网膜,或其它光电器件外造成直接伤害。 激光武器发展“激光瞄准压制系统”拥有被动和主动两种工作状态。当系统处于被动模式时,主要依靠敌人的位置检测报警装置,通过用一束微弱的激光标定目标位置的干扰发射;电脑确认由上突然提高了目标的激光束的功率后,从而形成“硬杀伤”。如果打开主动模式,该系统是第一次,具有低能量脉冲扫描可疑区域实施,一旦确定每个镜头瞄准仪器会自动昏暗的光线反射回火给毁了。换句话说,“搜索和摧毁”任务是打击它的最简单的概括。 基于“激光瞄准系统抑制,”致盲效果,有些人谁看到它是不人道的武器。在这方面,工作人员维克多将军韩前陆军参谋长告诉议会中的问题明确表示:“战争总是造成人员伤亡,即使激光武器让敌人失明的战士,这是比生命更好,以自己的坚强。” BR />事实上,美国和俄罗斯将已经开发出一种激光武器系统具有类似的功能,但它会与主战坦克相结合是中国第一。文章根据公布的报告大陆媒体认为,“激光瞄准系统抑制”已相当成熟,技术上处于世界领先地位。然而,受制于激光本身的物理特性,这种武器在战斗中会受到雨雾等恶劣天气,如果对手反射涂层,护目镜和反对它的破坏等手段将起到一定的折扣。 德国科学家发明“思动车组”来的想法?独自驾驶[交通] 据英国媒体报道,2月22日,可德国科学家的无线设备已经发明了汽车成为通用名副其实的“思动车”,驾驶员真的不能独自鼓捣思路上的“开放式”的汽车随处可见。 本组的科学家在德国柏林自由大学开发的系统。首先,与普通车载摄像机,雷达和激光传感器,这些设备完全可以坐汽车的环境,其次,驾驶员配备了16戴上特制的头盔传感器主要用于捕捉由大脑发出的信号。 一切准备就绪后,电脑可以安装在一辆汽车从大脑解读这些信号,然后将命令发送到车辆。在第一个试验中,“思动车”已经能够按照驾驶员的意图,开放向右或向左打开。在第二个试验中,“思动车”成功执行了加速和减速的命令。 但科学家承认,“思动车”技术还远未成熟,并希望它在路上这将是一段时间。 在南非地下发现地球“最古老水”存在约20十亿years [环境? ]今天从德国,加拿大等国科学家宣布,研究小组发现,有已经确定为大约20十亿years地下水约3000米的地下裂缝在南非,这很可能已经存在在地球上发现的最古老的水。研究人员发现钻井是一个重要的黄金产区南非兰特韦特瓦特斯以上的地下水盆地。此外,研究人员还发现,水在南非烟囱完全隔离环境中的岩石决心独自吸收无机矿物质水,能量生物。德国科学家说,他们很可能是地球上最古老的生命形式之一。 新型纳米给药或可用于疫苗的安全性[纳米] 麻省理工学院(MIT)的工程师最近设计了一种新型的纳米粒子,有望实现,如艾滋病,疟疾等疾病的疫苗安全,有效的传递。上 - “材料科学自然”(自然材料)发表于2月20日的结果。 制成的同轴脂肪球可携带仿病毒蛋白的合成成分的新的纳米粒子。文章通讯作者达雷尔·欧文(欧文达雷尔)表示,该合成粒子能引发强烈的免疫反应,其效果可与活病毒疫苗的使用是相媲美,但比活病毒疫苗更安全。 在这项研究中,欧文和同事们试图使用在小鼠中的纳米颗粒被称为卵白蛋白(卵清蛋白)的蛋白质被传递。他们发现,低剂量的3免疫接种的疫苗引发了强的T细胞应答 - 小鼠杀伤性T细胞的30%,以产生特定的蛋白质的疫苗。欧文表示,这一水平可以看作是一个由疫苗诱导的蛋白质最强的T细胞反应,并可能导致比赛的实时病毒疫苗的程度,我们并不需要担心带来了活病毒的安全问题。重要的是,这样的纳米颗粒能引发抗体反应。 目前,除小鼠在研究体内递送持续的疟疾疫苗,欧文和他的同事仍然在癌症疫苗和艾滋病疫苗纳米颗粒的交付研究开发。 (科学张晓东网/编译)相关仪器:90Plus/ZetaPals Zeta电位和高解析度激光为基础的粒度分析仪JEM2100透射电子显微镜流式细胞仪通过完成:达雷尔 - 欧文研究小组 >实验室:霍华德休斯医学研究所,材料科学与工程,生物工程,科赫研究所综合癌症国家大分子成像中心在波士顿贝勒医学院的麻省理工学院阿拉贡学院科学家或发现新的乳腺癌基因[医疗] 预计需要制定更有效的治疗乳腺癌乳腺癌是女性最常见的恶性肿瘤之一,其发病常与遗传有关。近日,英国和加拿大的研究人员合作研究发现,一种名为ZNF703的基因过度活跃,会导致乳腺癌。研究人员说,这是第5年乳腺癌癌基因的科学家发现,乳腺癌的治疗意义。发表在研究成果“欧洲分子生物学研究所 - 分子医学”2月18日(EMBO分子医学)。 研究人员在剑桥大学和加拿大不列颠哥伦比亚省的研究小组,使用微阵列技术大学的大学,而在基因活性他们发现比较乳腺癌细胞和正常健康的细胞组织测试样本中的大量细胞一个在雌激素受体阳性乳腺癌肿瘤称为ZNF703基因非常活跃。通过分析,研究人员确定,ZNF703是一个新的雌激素受体阳性乳腺癌基因驱动。 研究人员认为,测试ZNF703基因活性,有助于判断肿瘤的癌症患者的发展,有针对性的治疗,可以相应地设计。而这一发现,因为它证实了更大规模的研究,将制定新的目标,以ZNF703基因治疗癌症的手段铺平道路。 研究论文的主要作者,剑桥大学的卡洛斯·卡尔达斯教授指出,通过检测该基因的活性水平,让医生了解标准激素疗法,如他莫昔芬(一种抗雌激素)或者芳香酶抑制剂是有效的,帮助医生确认符合病人的病情有针对性的药物。 英国癌症研究中心的莱斯利沃克博士表示,ZNF703是乳腺癌的第一个致癌基因五年探索,为乳腺癌新疗法的发展是非常重要的,希望建立一个更有效的癌症治疗方法。 (来源:科技日报刘海英)自由电子激光器[军事] 美国海军使用新型激光击落巡航导弹秒内于10:34 2月21日2011 据SIFY网2011年2月19日报道,美国海军创造了新的世界纪录的激光武器,利用新型高精度天基激光器,在数秒内摧毁巡航导弹。 据福克斯新闻,与海军研究办公室协调,科学家继续,直到达到320千伏电压的限制,从而创造了新的世界纪录注入500千伏加速器原型液体。 自由电子激光枪喷油系统的主任,他说,“这是一种创新的方法,这种方法并没有被使用过的世界。” 当被问及海军在测试过程中的重要意义,海军研究项目经理的办公室说,这更快的自由电子激光技术,更新,更强的方向发展。 “军方目前使用的多为晶体,玻璃的固态激光器,和使用有毒化学激光器液体材料,而自由电子激光器是由上述两种激光不同,只有电子被注入内部产生和这个过程需要能量的不断循环,换句话说,它是更节能比舰载武器的现有机队,并不会降低船舶的航行速度。“他说。 目前,自由电子激光加速器技术需要放在地下储存尺寸的足球场,在空间的小型健身房的大小,而且还充满了各种管线,导体,电缆。 海军目前需要确定如何利用电子束激光束,以及如何紧凑型加速器设备的驱逐舰。 自由电子激光FEL(自由电子激光,短FEL),正如它的名字所暗示的,工作是利用自由电子激光器。该受激辐射的原子发射的电子不绑定,一般在加速器的高能电子束的形式。它是第四代同步辐射光源后确认。本文从同步辐射开始,突出其原理,分析比较了一代又一代的自由电子激光同步辐射的继承和超越之前,并简要介绍了这方面的研究。 同步加速器辐射同步加速器辐射是高能电子(或其他带电粒子)插入垂直光束磁场中,电子受体洛伦兹力偏转发射的辐射沿切向跟踪。省略某些复杂的物理分析,可以得到的总辐射功率取决于两个参数的单个电子的:电子束能量和磁场强度的偏转。水平在现有加速器,峰值亮度可以与旋转阳极X射线管的幅值高10命令进行比较。 如傅立叶他们的问题,当给定的圆周运动与频域分析,获得的光谱特性。辐射的光谱分布是平滑连续的除去上述的高通量,高亮度和连续的宽的光谱特性,可以计算,同步加速器辐射以及以下特征:高极化。线性偏振的轨道平面,在其他平面椭圆偏振。一般的X射线源没有这个属性。 准直性好。辐射集中在一个小范围内的开度角的附近的轨道平面。 脉冲时间结构。几万光脉冲长度,以几百皮秒到纳秒光脉冲微秒数量级的时间间隔,并且非常固定的。 超高真空清洁的环境,以确保发出的光的光谱纯度。 光稳定性。 正如上面的分析,将弯曲从单个二极管磁场的线索,这是第一代的结构特点和第二代同步辐射光源发出的光。所不同的是在第一代的杂光仅在高能加速器,而不是特定的,而第二代光源是一个专用机。在使用约17台第一代同步辐射光源的世界,而第二代同步辐射光源多达23台。北京正负电子对撞机寄生同步辐射光源(BSRF)属于第一代,和合肥同步辐射装置(NSRL)属于第二代。 扭摆和波荡第一第二代同步辐射光源是一个平滑的连续光谱。虽然本实验中,以便它可以支持一个宽的光谱范围内,但在一定意义上也限制了极端的输出功率的辐射光谱。扭摆装置(扭摆)和波荡器(波荡)等进入引入元件,来克服这个问题,进一步提高特定波长的辐射输出功率。 扭摆和波荡器实际上是一组磁铁组成周期阶段N和S极。它们被安装在该线段的真空箱的底部。分布的磁场沿z方向的正弦图案,同时在磁场中的电子和向下和白色,也为正弦曲线扭摆运动的近似值。在每个短圆周运动,辐射仍然遵循法律上的部分。沿z方向的方向是光。 两者之间的差异是大的摇摆器的磁场,但数量相对较少的磁铁的周期。和波荡器场小,周期短,该磁场的许多数目的长度。 作为周期扭摆的小而较长时间,因此,从摇摆器产生的基本上是从2极磁铁出的相同的辐射特性相同的同步加速器辐射的特性,仍然是平滑连续的频谱数量。扭摆的效果是,它可以提供更大的局部磁场中,移动到辐射方向的较短波长的辐射功率可以提高,与周期成正比磁铁N_u数。 作为波荡器,它不被使用,以改善出射光子能量的特性,只是为了提高发射的光子的数目。事实上,这是干涉原理的应用:波荡得到加强光子干涉,提升,需要在两个相邻顶点E,光的波长的整数倍的差别转动位置干扰的合规情况。因为在波荡器的轴向前进速度的电子非常接近光速的速度,所以实际上电子和光子向前同步辐射的z方向上几乎同步运动。如果考虑到同步辐射具有列的波长短,在不同发射相同的电子波荡领域的实际光相互干涉即可。但请注意,不同的辐射发射的电子是不均匀的,因为在初始阶段,不能发生干涉;即强度正比于电子N_c的数量。 只是由于干扰加强特定波长,所以在插入后的波荡器基本上是单色的。同时,由于电子实际上周期振荡的x方向上的磁场幅度小,辐射的在水平平面内的角分布是进一步浓缩。最重要的是,在不同时期的各部分所产生的干扰光的影响加在一起相干,其结果是同步加速器辐射的亮度增加数百倍。 在插入元素的专用同步辐射光源构成的第三代光源,如中国的基本特征将很快投入使用的上海光源(SSRF)的设计介绍。与插入元件技术是成熟的,它也被广泛地用来改善现有同步加速器辐射源。例如上就引入扭摆装置的合肥同步辐射光源,该磁场增大到扭摆的6T,特征能量从增加到,大大提高了性能。 自由电子激光波荡介绍,虽然干涉,极大地提高了亮度,但归根到底,辐射的自发辐射的应用。它广受激辐射已知的(就是我们通常所说的激光)是相对于自发辐射具有许多优点。现在的问题是,是否受激辐射和同步辐射的原理相结合。自由电子激光器是这样一个成功的组合。 日本研究人员使脑细胞再生新方法不会半途而废[医疗] 土耳其地震前兆[地球] ......
发展新型的精密瞄准跟踪系统。激光武器对目标的瞄准、跟踪精度非常高,否则不能够精确击中目标,目前研制的微波雷达是无法满足要求的。国际上正在开展红外跟踪、电视跟踪和激光雷达等装备发展光学跟踪技术的研究,重点放在激光雷达跟踪系统的研究。
开展制造大型反射镜的新型材料和新型加工工艺的研究。激光武器反射镜越大,发出的光束的发散角越小,聚焦性能好。
而反射镜的直径超过1米,不仅加工复杂,造价极高,而且体积、重量增大后,主镜的定向器的转动惯量加大,不能满足对目标的跟踪速度和对付多目标的能力。为此,美国等西方国家下一步开展制造反射镜材料及新型加工工艺的研究。
如美国拟采用石墨纤维复合材料作基底的反射镜,镜面镀硅并抛光,其热膨胀系数接近于零。反射镜拟采用多块镜面拼装而成,放宽了加工要求。这一工艺的突破,将有可能使反射镜的造价降低,轻便性和热稳定性能都会有所改进。
积极开展强激光在大气中传输所出现的大气湍流和“热晕”的研究。目前对于激光在大气中传输,对于湍流和“热晕”的效应所造成的有害影响,正在探索和研究之中,对于大气击穿的“热晕”效应,有人提出先用低强度高重复频率的先行光束来驱除光路上的气溶胶粒子,然后发射强激光,还有人拟采用自适应光学来抵消湍流和“热晕”效应。这些方法都是正在和将要研究的课题。
加强基础研究。产生粒子束的主要方法是利用线性感应加速器。但是,由于这种加速器太笨重,因此无法投入战场使用。目前正在加紧研制体积小的线性感应加速器,其方法是以一个线性为中心,然后象卷饼一样向上盘绕,以便让粒子束可以在现有的小型感应加速器中环流。
小型环流感应加速器的原理是通过同一加速器,连续再循环脉动的粒子束,以便把能量逐渐加到每次通过的粒子束上。这种小型加速器能否投入陆军战场使用,尺寸和重量是关键因素。
重视高能转换技术的研究。重视能量转换技术的研究,以便形成高速粒子脉冲。美国空军研究机构称,传统的可控硅开关和火花放电开关的研究已经完成,下一步将开展磁性开关研究。这种开关是基于饱和的电磁感应原理,具有很高的重复率。
重视中功率微波武器的研究。所谓中功率微波武器是其功率低于大功率微波武器,而高于现行干扰机。专家预测,对中功率微波,只要有合适的高脉冲重复率、频带宽度和脉冲形状,就会得到比现有干扰机高得多的损伤效应。
电子干扰机只起到迷惑、欺无线电和雷达的操作手使其无法正常工作的作用,而中功率微波武器的作用是影响电子设备本身,从而使操作人员无法工作。在21世纪初叶,这种中功率微波武器将可能研制成功,以取代现使用的电子干扰机。
重视解决微波武器的使用对友邻系统的影响的研究。美国空军目前正在研究一种性能优良的防护微波武器的装置,以克服在未来战场上使用微波武器时,不致影响对友邻部队设备的使用。
海军用舰载微波武器有可能首先投入使用。由于各军种对微波武器都有特殊的要求。美国陆军提出的战术微波武器应能够安装到大型履带上,不仅其体积要小,而且要把定向性极高的天线装在直立的桅杆上,以利于最佳瞄准。
空军则要求这种武器体积要小,功率低并采用专用天线。海军用舰载微波武器则具有功率高、天线大和作用距离远等特点。
在三军中,由于海军对微波武器在重量、空间和功率方面提出的限制条件较少。因此,海军型微波武器有可能在未来10~20年内首先投入使用。
激光武器(lainwetaon)是一种利用一定方向发射的激光束攻击目标的定向能武器,具有快速、灵活、精确和抗电磁干扰的优异性能。激光在光电对抗、防空和战略保卫中发挥独特作用。激光分为战术激光武器和战略激光武器。由于激光武器的速度是光速,所以使用时一般不需要计算提前量,但因为激光容易受天气影响,所以直到今天也没有普及激光武器。激光武器利用高速光聚焦一点,然后产生大量热辐射,有很大的发展前景。激光可以摧毁目标三个方面:一是穿孔,二是裂缝。2014年2月19日,美军计划2014年夏天在波斯湾游览庞塞号浮动基地安装激光武器。激光武器具有强大的杀伤力。自20世纪70年代以来,美国和苏联在激光武器的研发和试验中取得了许多成功例子,引起军事界的关注。激光武器的强大杀伤力完全归功于三大绝招:1.烧蚀。因为激光单色好,能量相当高,一旦射向目标,所中部位立即被消化,导致目标热爆炸。2.波浪。当目标被照射产生汽化时,气体会迅速喷射形成激波。目标在激光和激波的夹击下,瞬间爆裂。3.辐射。激光击中目标时,还可以发射紫外线和x射线,如光束。其辐射效应对目标内电子和光学设备的破坏力比激光直接辐射的破坏更为有效。因为激光有这些独创的技术,无论在战略武器和战术武器领域,以光弹为未来作战武器,都可以向人们展示明天战场的新情况。
2002年南开大学报道了在掺Yb3 + 双包层光纤器中得到了脉宽4. 8ns 的自调Q 脉冲输出和混合调Q 双包层光纤激光中得到峰值功率大于8kW ,脉宽小于2ns 的脉冲输出。2003年南开大学报道了利用脉冲泵浦获得100kW 峰值功率的调Q 脉冲,以及得到的60nm 可调谐的调Q 脉冲。2003年11月20日报道,上海科学家在激光领域取得新成果,成功开发出输出功率高达107W的光纤激光器。此激光器的全称为“高功率掺镱双包层光纤激光器”,与已有的激光器相比它的维护费用和功率消耗都要低得多,寿命是普通激光器的几十倍。该课题组的负责人之一楼祺洪研究员告诉记者,激光打印有着广泛的应用前景,与市民生活直接相关的如食品的生产日期、防伪标志等,若以激光打印代替油墨打印清晰度高、永不褪色、难以仿冒、利于环保,具有国际流行的新趋势。上海科学家研制的光纤激光器使光纤激光输出功率又上升了一个新台阶,最大输出功率达107W,已经遥遥领先于全国同行。2004年,南开大学又报道了连续泵浦206kW峰值功率的调Q 脉冲。2004年12月3日,烽火通信继推出激光输出功率达100W以上的双包层掺镱光纤后,经过艰苦的攻关再创佳绩,将该类新型光纤的输出功率成功提高至440W,达到国际领先水平。2012年,国内首台拥有自主知识产权的1000W工业级光纤激光器在西安诞生。这一科研成果的产业化,不仅将满足我国工业加工领域对高功率光纤激光器的市场需求,同时也将打破国外高功率光纤激光器的市场垄断局面,推动我国光纤激光加工产业进一步发展。2012年11月,华工科技旗下华工激光与锐科公司共同研制的4千瓦光纤激光器,通过了省级科技成果鉴定。鉴定专家组主任委员、中国光学学会理事长周炳琨院士指出,这项技术填补了国内空白,达到国际先进水平,获得4项国家发明专利。[5]光纤激光器作为第三代激光技术的代表,具有其他激光器无可比拟的技术优越性。不过,我们认为,在短期内,光纤激光器将主要聚焦在高端用途上随光纤激光器的普及,成本的降低以及产能的提高,最终将可能会替代掉全球大部分高功率CO2激光器和绝大部分YAG激光器。
光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。 光纤激光器应用范围非常广泛,包括激光光纤通讯、激光空间远距通讯、工业造船、汽车制造、激光雕刻激光打标激光切割、印刷制辊、金属非金属钻孔/切割/焊接(铜焊、淬水、包层以及深度焊接)、军事国防安全、医疗器械仪器设备、大型基础建设等等。 2.光纤激光器的优势 光纤激光器作为第三代激光技术的代表,具有以下优势: (1)玻璃光纤制造成本低、技术成熟及其光纤的可饶性所带来的小型化、集约化优势; (2)玻璃光纤对入射泵浦光不需要像晶体那样的严格的相位匹配,这是由于玻璃基质Stark 分裂引起的非均匀展宽造成吸收带较宽的缘故; (3)玻璃材料具有极低的体积面积比,散热快、损耗低,所以上转换效率较高,激光阈值低; (4)输出激光波长多:这是因为稀土离子能级非常丰富及其稀土离子种类之多; (5)可调谐性:由于稀土离子能级宽和玻璃光纤的荧光谱较宽。 (6)由于光纤激光器的谐振腔内无光学镜片,具有免调节、免维护、高稳定性的优点,这是传统激光器无法比拟的。 (7)光纤导出,使得激光器能轻易胜任各种多维任意空间加工应用,使机械系统的设计变得非常简单。 (8)胜任恶劣的工作环境,对灰尘、震荡、冲击、湿度、温度具有很高的容忍度。 (9)不需热电制冷和水冷,只需简单的风冷。 (10)高的电光效率:综合电光效率高达20%以上,大幅度节约工作时的耗电,节约运行成本。 (11)高功率,目前商用化的光纤激光器是六千瓦。 3.高功率的光纤激光器及其包层泵浦技术 双包层光纤的出现无疑是光纤领域的一大突破,它使得高功率的光纤激光器和高功率的光放大器的制作成为现实。自1988年E Snitzer首次描述包层泵浦光纤激光器以来,包层泵浦技术已被广泛地应用到光纤激光器和光纤放大器等领域,成为制作高功率光纤激光器首选途径。 包层泵浦技术,由四个层次组成:①光纤芯;②内包层;③外包层;④保护层。如图(1)所示,将泵光耦合到内包层(内包层一般采用异形结构,有椭圆形、方形、梅花形、D形及其六边形等等),光在内包层和外包层(一般设计为圆形) 之间来回反射,多次穿过单模纤芯被其吸收。这种结构的光纤不要求泵光是单模激光,而且可对光纤的全长度泵浦,因此可选用大功率的多模激光二极管阵列作泵源,将约70%以上的泵浦能量间接地耦合到纤芯内,大大提高了泵浦效率。 包层泵浦技术特性决定了该类激光器有以下几方面的突出性能。 1、高功率 一个多模泵浦二极管模块组可辐射出100瓦的光功率,多个多模泵浦二极管并行设置,即可允许设计出很高功率输出的光纤激光器。 2、无需热电冷却器 这种大功率的宽面多模二极管可在很高的温度下工作,只须简单的风冷,成本低。 3、很宽的泵浦波长范围 高功率的光纤激光器内的活性包层光纤掺杂了铒/镱稀土元素,有一个宽且又平坦的光波吸收区(930-970nm),因此,泵浦二极管不需任何类型的波长稳定装置 4、效率高 泵浦光多次横穿过单模光纤纤芯,因此其利用率高。 5、高可靠性 多模泵浦二极管比起单模泵浦二极管来其稳定性要高出很多。其几何上的宽面就使得激光器的断面上的光功率密度很低且通过活性面的电流密度亦很低。这样一来,泵浦二极管其可靠运转寿命超过100万小时。 目前实现包层泵浦光纤激光器的技术概括起来可分为线形腔单端泵浦、线形腔双端泵浦、全光纤环形腔双包层光纤激光器三大类,不同特色的双包层光纤激光器可由该三种基本类型拓展得到。 OFC-2002的一篇文献采用如图2所示腔体结构,实现了输出功率为、阈值为,倾斜效率高达85%的新型包层泵浦光纤激光器[1]。在产品技术方面,美国IPG公司异军突起,已开发出700W的掺镱双包层光纤激光器,并宣称将推出2000W的光纤激光器。 4.新型的光纤激光器技术 早期对激光器的研制主要集中在研究短脉冲的输出和可调谐波长范围的扩展方面。今天,密集波分复用(DWDM)和光时分复用技术的飞速发展及日益进步加速和刺激着多波长光纤激光器技术、超连续光纤激光器等的进步。同时,多波长光纤激光器和超连续光纤激光器的出现,则为低成本地实现Tb/s的DWDM或OTDM传输提供理想的解决方案。就其实现的技术途径来看,采用EDFA放大的自发辐射、飞秒脉冲技术、超发光二极管等技术均见报道。 5.我国光纤激光器目前研究进展 2002年南开大学报道了在掺Yb3 + 双包层光纤器中得到了脉宽4. 8ns 的自调Q 脉冲输出和混合调Q 双包层光纤激光中得到峰值功率大于8kW ,脉宽小于2ns 的脉冲输出。 2003年南开大学报道了利用脉冲泵浦获得100kW 峰值功率的调Q 脉冲,以及得到的60nm 可调谐的调Q 脉冲。 2003年11月20日报道,上海科学家在激光领域取得新成果,成功开发出输出功率高达107W的光纤激光器。此激光器的全称为“高功率掺镱双包层光纤激光器”,与目前已有的激光器相比它的维护费用和功率消耗都要低得多,寿命是普通激光器的几十倍。该课题组的负责人之一楼祺洪研究员告诉记者,激光打印有着广泛的应用前景,与市民生活直接相关的如食品的生产日期、防伪标志等,若以激光打印代替现在的油墨打印清晰度高、永不褪色、难以仿冒、利于环保,具有国际流行的新趋势。上海科学家研制的光纤激光器使光纤激光输出功率又上升了一个新台阶,最大输出功率达107W,已经遥遥领先于全国同行。 2004年,南开大学又报道了连续泵浦206kW峰值功率的调Q 脉冲。 2004年12月3日,烽火通信报道,继推出激光输出功率达100W以上的双包层掺镱光纤后,经过艰苦的攻关再创佳绩,将该类新型光纤的输出功率成功提高至440W,达到国际领先水平。这是烽火通信在特种光纤领域迈出的重要一步,同时也是我国在高功率激光器用光纤领域的重大突破。掺镱双包层光纤激光器是国际上新近发展的一种新型高功率激光器件,由于其具有光束质量好、效率高、易于散热和易于实现高功率等特点,近年来发展迅速,并已成为高精度激光加工、激光雷达系统、光通信及目标指示等领域中相干光源的重要候选者。双包层掺镱激光器的主要激光增益介质是双包层掺镱光纤,因此双包层掺镱光纤的性能直接决定了该类激光器的转换效率和输出功率。烽火通信作为国内唯一一家进行双包层掺镱光纤研究的单位,在成功推出输出功率达100W以上的完全可商用的双包层掺镱光纤产品后,又加大的研发力度,使得其输出功率实现440W以上,达到国际领先水平。 6.结论 光纤激光器作为第三代激光技术的代表,具有其他激光器无可比拟的技术优越性。不过,我们认为,在短期内,光纤激光器将主要聚焦在高端用途上随光纤激光器的普及,成本的降低以及产能的提高,最终将可能会替代掉全球大部分高功率 CO2激光器和绝大部分YAG激光器。
在经济学的论文中引用参考文献,具有重要的标志功能、评价功能、保护功能和链接功能,可以反映经济学论文的研究基础和科学依据,可供进一步检索有关资料,共享资源。下面我将为你推荐经济学论文参考文献的内容,希望能够帮到你!
[1]刘思华.生态马克思主义经济学原理[M].北京:人民出版社.2006
[2]叶耀丹.马克思主义生态自然观对中国生态文明建设的启示[D].成都:成都理工大学.2012
[3]陆畅.我国生态文明建设中的政府职能与责任研究[D].长春:东北师范大学.2012
[4]俞可平.科学发展观与生态文明[M].上海:华东师范大学出版社.2007:18
[5]朴光诛等.环境法与环境执法[M].北京:中国环境科学出版社.2004:23
[6]罗能生.非正式制度与中国经济改革和发展[M].北京:中国财政经济出版社.2002: 19
[7]党国英.制度、环境与人类文明一关于环境文明的观察与思考[N].新京报.2005-2-13
[8]张婷婷.生态文明建设的科技需求及政策研究[D].锦州:渤海大学.2012
[9]秦书生.生态文明视野中的绿色技术[J].科技与经济.2010(3): 82-85
[10]陈池波.论生态经济的持续协调发展[J].长江大学学报(社会科学版)2004(1):97-102
[11]张首先.社会主义与生态文明[J].理论与现代化.2010(1): 23-26
[12]黄光宇.陈勇.生态城市理论与规划设计 方法 [M].北京:科学出版社.2002
[13]张首先.生态文明研究[D].成都:西南交通大学.2010
[14]马仁忠.地理环境对种族、民族特征的影响[J].宿州 教育 学院学报.2002(4):
[15]冒佩华.王宝珠.市场制度与生态逻辑[J].教学与研究.2014(8):37-43.
[1]陈凌.应丽芬.代际传承:家族企业继任管理和创新〔J〕.管理世界.2003 ( 6): 89-9
[2]伯纳德‘萨拉尼着.陈新平、王瑞泽、陈宝明、周宗华译.税收经济学〔M〕.北京:中国人民大学出版社.2009:143-144.
[3]彼德·德鲁克.大变革时代的管理〔M〕.上海:上海译文出版社.1999版.
[4]陈凌.信息特征、交易成本和家族式组织〔J〕.经济研究.1998(7):27-33.
[5]. Toward an Economic Theory of Income Distribution〔 C〕.Cambridge, MA: MITPress, 1974,123:137-139.
[6]. The Wealth of Nations ( 1776 )〔M〕.Chicago: University of Chicago Press,1976(reprint): 391.
[7]沈建法.城市化与人口管理[M].北京:科学出版社.1999
[8]张志强.徐中民.程国栋.生态足迹的概念及计算模型[J].生态经济.2000(10) : 8-10
[9]张恒义.刘卫东.林育欣.等.基于改进生态足迹模型的浙江省域生态足迹分析[J].生态学报.2009(5):2738-2748
[10]贺成龙.吴建华.刘文莉.改进投入产出法在生态足迹中的应用[J].资源科学.2008 (12) : 1933-1939,2008 (2) : 261-266
[11]郭军华.幸学俊.中国城市化与生态足迹的动态计量分析[J].华东交通大学学报.2009 (5) : 131-134.
[1] 刘毅. 现代性语境下的正当性与合法性:一个思想史的考察[D]. 中国政法大学 2007
[2] 刘毅. 树突状细胞在兔动脉粥样硬化模型中作用的研究[D]. 南方医科大学 2009
[3] 刘毅. 硅基微环谐振腔光信号处理与布里渊光纤激光器的理论和实验研究[D]. 天津大学 2014
[4] 刘毅. 未来移动通信系统中的协作传输技术研究[D]. 北京邮电大学 2010
[5] 刘毅. 基于图割的交互式图像分割算法研究[D]. 南京理工大学 2013
[6] 刘毅. 基于iTRAQ技术对HBV相关性肝癌血浆差异蛋白的鉴定及功能学研究[D]. 重庆医科大学 2014
[7] 刘毅. 整体性治理视角下的县级政府社会管理体制创新研究[D]. 华中师范大学 2014
[8] 刘毅. 几类切换模糊系统的镇定控制设计[D]. 东北大学 2009
[9] 刘毅. 区域循环经济发展模式评价及其路径演进研究[D]. 天津大学 2012
[10] 刘毅. β-抑制蛋白2对哮喘小鼠CD4~+T细胞表达和产生IL-17的影响及其机制研究[D]. 中南大学 2011
[11] 刘毅. SIRT3在原发性肝癌中的表达及其抑瘤作用的研究[D]. 中南大学 2012
[12] 刘毅. 南中国海与东南极中晚全新世气候环境变化记录与研究方法探索[D]. 中国科学技术大学 2012
[13] 刘毅. 晚期糖基化终产物对心肌微血管内皮细胞及糖尿病心肌缺血再灌注损伤的影响及机制[D]. 第四军医大学 2012
[14] 刘毅. 华喦花鸟画研究[D]. 南京艺术学院 2012
[15] 刘毅. 三甲基芹菜素阻断多种心脏钾通道与增加迟钠电流的作用研究[D]. 华中科技大学 2012
[16] 刘毅. 面向人群的并行多目标疏散模型研究[D]. 武汉理工大学 2012
[17] 刘毅. 采用外周血进行肿瘤分子诊断的转化医学研究[D]. 中国人民解放军军事医学科学院 2012
猜你喜欢:
1. 会计毕业论文参考文献
2. 人力资源会计论文参考文献
3. 国际贸易论文
4. 经济学论文参考文献
5. 有关经济学论文参考文献
激光技术杂志是经国家科学技术部(原国家科委)批准向国内外公开发行的学术性刊物,是我国无线电电子学、电信技术类及物理类中文核心期刊,属国家级科学技术刊物。本刊紧密跟踪国内外高技术的进展和开拓性新领域的动态,主要报道国内外与激光有关的光学、电子学等领域内不同发展时期的新材料、新工艺、新技术、新元件、新的工程应用中有创新的学术论文和有创见的综述性文章。期刊名称:激光技术英文名称:Laser Technology主办单位:西南技术物理研究所出版周期:双月出版地:四川省成都市语言种类:中文期刊尺寸:大16开国际标准刊号:ISSN 1001-3806国内统一刊号:CN 51-1125/TN邮发代号:62-74复合影响因子:综合影响因子: 现用刊名:激光技术创刊时间:1971 CA 化学文摘(美)(2011)SA 科学文摘(英)(2011)JST 日本科学技术振兴机构数据库(日)(2012年计划收录)Pж(AJ) 文摘杂志(俄)(2011)中国科学引文数据库(CSCD—2008) 1.激光在线修整青铜金刚石砂轮数值仿真与试验 陈根余,陈冲,卜纯,贾天阳,CHEN Gen-yu,CHEN Chong,BU Chun,JIA Tian-yang2.基于全光纤M-Z干涉仪的单通道光开关研究 罗华栋,黄勇林,LUO Hua-dong,HUANG Yong-lin3.激光合金化引入亚微米MC型增强相的研究 韩甜,王爱华,彭锦,吴宝业,黄朝,HAN Tian,WANG Ai-hua,PENG Jin,WU Bao-ye,HUANG 偏振光对光折变屏蔽光伏空间孤子的影响 吉选芒,姜其畅,刘劲松,JI Xuan-mang,JIANG Qi-chang,LIU Jin-song5.电子束蒸发制备掺钕钇铝石榴石薄膜特性研究 任豪,曾群,庞振华,周应恒,梁锡辉,REN Hao,ZENG Qun,PANG Zhen-hua,ZHOU Ying-heng,LIANG Xi-hui6.铝合金连续-脉冲激光焊接工艺对比实验研究 张大文,张宏,刘佳,石岩,ZHANG Da-wen,ZHANG Hong,LIU Jia,SHI Yan7.基于激光散射图像小麦叶片叶绿素检测研究 张翠红,张小娟,朱大洲,王成,ZHANG Cui-hong,ZHANG Xiao-juan,ZHU Da-zhou,WANG Cheng8.用于CO2探测的高功率1572nm可调谐光源 程杰,傅焰峰,龚威,CHENG Jie,FU Yan-feng,GONG Wei9.基于特殊激光微造型工艺的平面阵列加工研究 符永宏,高兴东,华希俊,潘国平,符昊,FU Yong-hong,GAO Xing-dong,HUA Xi-jun,PAN Guo-ping,FU Hao10.严格耦合波法计算体布喇格光栅衍射效率 张茜,赵尚弘,楚兴春,ZHANG Xi,ZHAO Shang-hong,CHU Xing-chun11.多参考光合成孔径DMIPH术的细胞相位重构 巩文迪,卢兆林,刘佳毅,GONG Wen-di,LU Zhao-lin,LIU Jia-yi12.八边形低色散高非线性光子晶体光纤的设计 陈娟,葛文萍,王晓薇,CHEN Juan,GE Weng-ping,WANG Xiao-wei13.激光大气传输光波相位不连续性问题研究进展 葛筱璐,冯晓星,范承玉,GE Xiao-lu,FENG Xiao-xing,FAN Cheng-yu14.自然地物对星载激光测高仪回波特性的影响 崔云霞,牛燕雄,颜国强,冯丽爽,王彩丽,张鹏,CUI Yun-xia,NIU Yan-xiong,YAN Guo-qiang,FENG Li-shuang,WANG Cai-li,ZHANG Peng15.气泡尾流光束衰减测量中的复散射校正 鲁刚,孙春生,张晓晖,LU Gang,SUN Chun-sheng,ZHANG Xiao-hui
《光学与光电技术》杂志,由华中光电技术研究所;湖北省光学学会主办的双月刊;2003年创刊,还没有入选过北大核心期刊目录,不是核心,目前是一般省级期刊ISSN: 1672-3392CN: 42-1696/O3邮发代号: 38-335《光学与光电技术》当前的影响因子是:复合影响因子: 综合影响因子:
《激光杂志》创刊于1975年,市科委主管(原四川省科委主管单位,名称:四川激光),重庆市光学机械研究所主办,重庆科技发展战略研究院有限责任公司和重庆市光学机械研究所出版。是国家新闻出版局批准的国内外公开发行的刊物,以报导光电与激光技术为主的科技期刊。1992年被列为中国科技论文统计源刊物 ,所刊登论文曾被美国《EI》检索。是首批进入中国期刊方阵的来源期刊,是中文核心期刊、中国科学核心期刊(CSCD)、武汉大学中国科学评价研究中心评为RCCSE中国扩展核心学术期刊、中国科技核心期刊,中国科学引文数据库(CSCD)核心库来源期刊,清华大学知网数据库来源期刊。 《激光杂志》是中华医学会激光医学专委会会员单位 重庆市光学学会常务理事单位重庆激光医学专委会主任委员单位。 综合评述、激光器件与原件、实验装置与技术、光通信与网络传输、激光应用与系统、仪器测控与计量,激光医学。
可以上光学期刊网查看,上面囊括了国内光学相关的所有期刊。
绿光亮度高,光束清晰人的视觉神经对绿色是十分敏感的亮度高,质量好东莞市蓝宇激光有限公司十年专业激光应用解决方案制造商
半导体泵浦532nm 绿光激光器由于具有波长短,光子能量高,体积小,效率高,可靠性高,寿命长,在水中传输距离远和对人眼敏感等优点,近几年在光谱技术,激光医学,信息存储,彩色打印,水下通讯等领域展示出极为重要的作用,从而成为各国研究的热点。 半导体泵浦532nm 绿光激光器适用于大学近代物理教学中的非线性光学实验。本实验以808nm 半导体激光泵浦Nd 3+: YVO 4激光器为研究对象,在激光腔内插入倍频晶体KTP ,产生532nm 倍频光,观察倍频现象、测量倍频效率、相位匹配角等基本参数。一、实验目的1、 掌握光路调整基本方法,观察横模,测量输出红外光与泵浦能量的关系,斜效率和阈值;2、 测量半导体激光器注入电流和功率输出的变化关系,了解激光原理及倍频等激光技术。二、实验原理光与物质的相互作用可以归结为光与原子的相互作用。爱因斯坦从辐射与原子的相互作用的量子论观点出发提出:在平衡条件下,这种相互作用过程有三种,也就是受激吸收,受激辐射和自发辐射。假定一个原子,其基态能量为E 1,第一激发态的能量为E 2,如图1所示。如果原子开始处于基态,在没有外界光子入射时,原子的能级状态将保持不变。如果有一个能量为2121hv E E =-的光子入射,则原子就会吸收这个光子而跃迁到第一激发态。原子的跃迁必须符合跃迁选择定则,也就是入射光子的能量21hv 等原子的能级间隔21E E -时才能被吸收(为叙述的简单起见,这里假定自发辐射是单色的)。激发态的寿命很短,在不受外界影响时,它们会自发地返回到基态并发射出光子。自发辐射与外界作用无关,由于原子的辐射都是自发地,独立地进行的,所以不同原子发射的光子的发射方向和初相位都是随机的,各不相同的,如图2所示。如果有一个能量为2121hv E E =-的光子入射,则原子就会在这个光子的激励下产生新的光子,即引起受激辐射,如图3所示,受激辐射发射的光子与外来光子的频率、发射方向、偏振态和初相位完全相同。激光就是受激辐射过程产生的。
同属激光器。红光激光器商用最早,绿光和蓝光商用晚一些。绿光和蓝光用在光盘系统中,因为衍射极限的问题,会比红光分辨率更高,从而在单位面积的上的存储容量更大。
当然不是,颜色都是和发光介质有关的,大功率的一般都是红外线。一般最多的是氦氖激光器,红光, 绿光的是由红光通过KTP晶体等转换过来的,因为绿色好看。这两种功率小,成本低,自然比较常见