首页

> 学术期刊知识库

首页 学术期刊知识库 问题

法学论文数据

发布时间:

法学论文数据

但法学专业的论文,其实可以直接写得很清楚第一时间就可以和他们的大专毕业的教授进行联系。

the大山学法指法治大山学法知法置业路大专学法,知法置业论文怎样写大专应该学法政论文。一般的不如是正经携带的心,大嘴,你这好学。

大专法学的论文其实写的还是很标准的,第一时间就可以报考,而且可以写得非常清晰的

Westlaw(法律全文数据库)万律智能化中国法律信息双语数据库seek68文献馆大型中外文献数据库汇总平台HeinOnline法学期刊全文数据库LexisNexis法律数据库北大法意网北大法宝Kluwer Law Online Journals数据库包含23种全文法律学术期刊(Journals)的全文信息ProQuest检索国外的法学学位论文

法学毕业论文实证数据

问题一:怎样进行论文数据分析 请在此输入您的回答,每一次专业解答都将打造您的权威形象数据源:(是什么) 研究区域描述:(如果你研究的是区域的话,要写出研究区域你要研究的那一方面的发展概况) 数据处理方法:你用了什么方法,仔细描绘,比如怎么选取变量,有 *** 参数或部分数据啦等等,怎么检验你处理的方法是否恰当啦 问题二:论文结果分析怎么写 结果是你实验过程中记录的各项变化和数据。列出图、表更直观一些。并且要做一下适当的说明。 分析是将这些结果说明了什么写出,即结论,同时是否与你的预期一致,还有你的实验结果有什么意义。 如果结果与预期不符,说明一下原因或可能的原因。 问题三:有数据了怎么写数据分析的论文 20分 数据了,写数据,分析的 问题四:论文的数据分析怎么写 你可以把数据发给我看看,我帮你看下 问题五:关于毕业论文的数据分析 我觉得你先要明白想用这些数据得出怎么样的结果 然后我就知道怎么样进行数据分析 数据分析只是方式,前提是你要明白自己的目的 问题六:论文中数据显著分析,怎么做是啊a,b,c 论文不难写的,不要抄袭,有自己的观点就行,不会写可以问我的。论文常指用来进行科学研究和描述科研成果的文章,简称之为论文。它既是探讨问题进行科学研究的一种手段,又是描述科研成果进行学术交流的一种工具。 问题七:急!!毕业论文实证分析中的样本选取和数据来源怎么写啊 20分 数据可以去公司里面,年鉴等地方找 不要相信其他人说的给你,什么没问题,都你的 我经常帮别人做数据分析的 问题八:毕业论文的假设检验进行数据分析后 有些没通过 影响大吗 最后的结论怎么写 要写哪些内容 25分 做的是什么假设检验:方差分析、卡方检验、秩和检验还是直线相关与回归 问题九:这个论文数据分析该找哪些数据,该怎么分析,求大神指导。 这个框架 没有办法判断 你需要把模型的设定 先做出来 才可能确定数据选择和收集 问题十:工程力学论文怎么写,其中的数据分析如何 1,定义:应用于工程实际的各门力学学科的总称。常指以可变形固体为研究对象的固体力学。广义的工程力学还包括水力学、岩石力学、土力学等。工程力学是研究有关物质宏观运动规律,及其应用的科学。 2,一般工程力学包括结构力学,理论力学,材料力学即三大力学。它们的关系是包括与被包括的关系。包括实验力学,结构检验,结构试验分析。模型试验分部分模型和整体模型试验。结构的现场测试包括结构构件的试验及整体结构的试验。实验研究是验证和发展理论分析和计算方法的主要手段。

做实证研究样本至少选一些代表性的从统计上说,至少30才可以,才算大样本。但是还是要看变量数,原则上说样本数至少比变量数多一个,这些是样本的最低要求。对于研究生毕业论文,对数据样本的选择可以根据研究课题进行调整,通常分析的的问题越复杂需要的数据量就会越大小包法律实证分析系统,帮助研究者进行数据收集、数据清洗、数据验证,可以创建如线性回归方式的高级模型,可以不断调整数据使实证显著。

法学论文研究数据来源

类似的知网、超星等,可以检索到法学专业相关的论文;相关的法学专业期刊或论文发表过的地方,其国外的相关论文较为新颖,是不错的论文写作参考出处之一

Westlaw(法律全文数据库)万律智能化中国法律信息双语数据库seek68文献馆大型中外文献数据库汇总平台HeinOnline法学期刊全文数据库LexisNexis法律数据库北大法意网北大法宝Kluwer Law Online Journals数据库包含23种全文法律学术期刊(Journals)的全文信息ProQuest检索国外的法学学位论文

论文数据来源置于图名称的下方, 黑体,小五号。 如果数据来源于网站, 须写明网址; 如果数据来源于期刊等论文按参考文献的格式写明。 如果图是自创无须数据来源。

1、如果采用的数据是表格的形式,可以在表格的下方加上:资料来源于......

2、如果采用的数据是以文字的形式插入内容中,如[1]、[2],在最后的参考文献中标注来源。

3、也有的数据是以文字的形式插入内容中,如[1]、[2],然后在每页的下方插入脚注,表明数据的来源。

论文数据来源标注的格式:作者,作品的名称,出版社,出版年份,引用页码,甚至可以将段落都标上去,尽量把引用的数据来源说明清楚。

扩展资料:

论文写作注意事项:

1、论文摘要中应排除本学科领域已成为常识的内容;切忌把应在引言中出现的内容写入摘要;一般也不要对论文内容作诠释和评论(尤其是自我评价)。

2、不得简单重复题名中已有的信息。

3、结构严谨,表达简明,语义确切。摘要先写什么,后写什么,要按逻辑顺序来安排。句子之间要上下连贯,互相呼应。摘要慎用长句,句型应力求简单。每句话要表意明白,无空泛、笼统、含混之词,但摘要毕竟是一篇完整的短文,电报式的写法亦不足取。摘要不分段。

4、用第三人称。建议采用“对……进行了研究”、“报告了……现状”、“进行了……调查”等记述方法标明一次文献的性质和文献主题,不必使用“本文”、“作者”等作为主语。

5、要使用规范化的名词术语,不用非公知公用的符号和术语。新术语或尚无合适汉文术语的,可用原文或译出后加括号注明原文。

6、除了实在无法变通以外,一般不用数学公式和化学结构式,不出现插图、表格。

7、不用引文,除非该文献证实或否定了他人已出版的著作。

参考资料来源:百度百科-论文写作

每个学校的要求是不一样的。但是统一的是,对于在论文正文中出现的文献,在论文最后的参考文献中是必须有的。 在正文中,可以选择加注的模式。

根据GB3469-83《文献类型与文献载体代码》规定,以单字母方式标识。引文应以原始文献和第一手资料为原则。所有引用别人的观点或文字,无论曾否发表,无论是纸质或电子版,都必须注明出处或加以注释。凡转引文献资料,应如实说明。

扩展资料

数据来源的渠道

1、专业行业网站或统计网站(年鉴)。这需要主要依据拟定的写作主题的相关专业、行业网站来获取数据,同时注意记录各种数据源。

2、相关热点新闻报道或学术文献。这主要是要通过相关的财务报告或新闻报道所披露的数据作为论文写作的数据源,还可以参考相应的学术报告从一些以前的数据,以及一些最新的数据更新。

3、上市公司年报或政府门户统计经济数据。一般来说,作为上市公司的数据可以通过相应的年度报告获得,更多的宏观数据可以通过国家统计网站获得。

数据算法研究论文

数据挖掘的算法及技术的应用的研究论文

摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。

关键词: 数据挖掘; 技术; 应用;

引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。

一、数据挖掘概述

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。

二、数据挖掘的基本过程

(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。

三、数据挖掘方法

1、聚集发现。

聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。

2、决策树。

这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。

四、数据挖掘的应用领域

市场营销

市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。

金融投资

典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。

结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。

参考文献

[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.

[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.

多媒体图像压缩技术姓名:Vencent Lee摘要:多媒体数据压缩技术是现代网络发展的关键性技术之一。由于图像和声音信号中存在各种各样的冗余,为数据压缩提供了可能。数据压缩技术有无损压和有损压缩两大类,这些压缩技术又各有不同的标准。一、多媒体数据压缩技术仙农(C.E.Shannon)在创立信息论时,提出把数据看作是信息和冗余度的组合。早期的数据压缩之所以成为信息论的一部分是因为它涉及冗余度问题。而数据之所以能够被压缩是因为其中存在各种各样的冗余;其中有时间冗余性、空间冗余性、信息熵冗余、先验知识冗余、其它冗余等。时间冗余是语音和序列图像中常见的冗余,运动图像中前后两帧间就存在很强的相关性,利用帧间运动补兴就可以将图像数据的速率大大压缩。语音也是这样。尤其是浊音段,在相当长的时间内(几到几十毫秒)语音信号都表现出很强的周期性,可以利用线性预测的方法得到较高的压缩比。空间冗余是用来表示图像数据中存在的某种空间上的规则性,如大面积的均匀背景中就有很大的空间冗余性。信息熵冗余是指在信源的符号表示过程中由于未遵循信息论意义下最优编码而造成的冗余性,这种冗余性可以通过熵编码来进行压缩,经常使用的如Huff-man编码。先验知识冗余是指数据的理解与先验知识有相当大的关系,如当收信方知道一个单词的前几个字母为administrato时,立刻就可以猜到最后一个字母为r,那么在这种情况下,最后一个字母就不带任何信息量了,这就是一种先验知识冗余。其它冗余是指那些主观无法感受到的信息等带来的冗余。通常数据压缩技术可分为无损压缩(又叫冗余压缩)和有损压缩(又叫熵压缩)两大类。无损压缩就是把数据中的冗余去掉或减少,但这些冗余量是可以重新插入到数据中的,因而不会产生失真。该方法一般用于文本数据的压缩,它可以保证完全地恢复原始数据;其缺点是压缩比小(其压缩比一般为2:1至5:1)。有损压缩是对熵进行压缩,因而存在一定程度的失真;它主要用于对声音、图像、动态视频等数据进行压缩,压缩比较高(其压缩比一般高达20:1以上。最新被称为“E—igen—ID”的压缩技术可将基因数据压缩1.5亿倍)。对于多媒体图像采用的有损压缩的标准有静态图像压缩标准(JPEG标准,即‘JointPhotographicExpertGroup’标准)和动态图像压缩标准(MPEG标准,即‘MovingPictureExpertGroup’标准)。JPEG利用了人眼的心理和生理特征及其局限性来对彩色的、单色的和多灰度连续色调的、静态图像的、数字图像的压缩,因此它非常适合不太复杂的以及一般来源于真实景物的图像。它定义了两种基本的压缩算法:一种是基于有失真的压缩算法,另一种是基于空间线性预测技术(DPCM)无失真的压缩算法。为了满足各种需要,它制定了四种工作模式:无失真压缩、基于DCT的顺序工作方式、累进工作方式和分层工作方式。MPEG用于活动影像的压缩。MPEG标准具体包三部分内容:(1)MPEG视频、(2)MPEG音频、(3)MP系统(视频和音频的同步)。MPEG视频是标准的核心分,它采用了帧内和帧间相结合的压缩方法,以离散余变换(DCT)和运动补偿两项技术为基础,在图像质量基不变的情况下,MPEG可把图像压缩至1/100或更MPEG音频压缩算法则是根据人耳屏蔽滤波功能。利用音响心理学的基本原理,即“某些频率的音响在重放其频率的音频时听不到”这样一个特性,将那些人耳完全不到或基本上听到的多余音频信号压缩掉,最后使音频号的压缩比达到8:1或更高,音质逼真,与CD唱片可媲美。按照MPEG标准,MPEG数据流包含系统层和压层数据。系统层含有定时信号,图像和声音的同步、多分配等信息。压缩层包含经压缩后的实际的图像和声数据,该数据流将视频、音频信号复合及同步后,其数据输率为1.5MB/s。其中压缩图像数据传输率为1.2M压缩声音传输率为0.2MB/s。MPEG标准的发展经历了MPEG—I,MPEG一2、MPEG一4、MPEG-7、MPEG一21等不同层次。在MPEG的不同标准中,每—个标准都是建立在前面的标准之上的,并与前面的标准向后的兼容。目前在图像压缩中,应用得较多的是MPEG一4标准,MPEG-是在MPEG-2基础上作了很大的扩充,主要目标是多媒体应用。在MPEG一2标准中,我们的观念是单幅图像,而且包含了一幅图像的全部元素。在MPEG一4标准下,我们的观念变为多图像元素,其中的每—个多图像元素都是独立编码处理的。该标准包含了为接收器所用的指令,告诉接收器如何构成最终的图像。上图既表示了MPEG一4解码器的概念,又比较清楚地描绘了每个部件的用途。这里不是使用单一的视频或音频解码器,而是使用若干个解码器,其中的每一个解码器只接收某个特定的图像(或声音)元素,并完成解码操作。每个解码缓冲器只接收属于它自己的灵敏据流,并转送给解码器。复合存储器完成图像元素的存储,并将它们送到显示器的恰当位置。音频的情况也是这样,但显然不同点是要求同时提供所有的元素。数据上的时间标记保证这些元素在时间上能正确同步。MPEG一4标准对自然元素(实物图像)和合成元素进行区分和规定,计算机生成的动画是合成元素的一个例子。比如,一幅完整的图像可以包含一幅实际的背景图,并在前面有一幅动画或者有另外一幅自然图像。这样的每一幅图像都可以作最佳压缩,并互相独立地传送到接收器,接收器知道如何把这些元素组合在一起。在MPEG一2标准中,图像被看作一个整体来压缩;而在MPEG一4标准下,对图像中的每一个元素进行优化压缩。静止的背景不必压缩到以后的I帧之中去,否则会使带宽的使用变得很紧张。而如果这个背景图像静止10秒钟,就只要传送一次(假设我们不必担心有人在该时间内切人此频道),需要不断传送的仅是前台的比较小的图像元素。对有些节目类型,这样做会节省大量的带宽。MPEG一4标准对音频的处理也是相同的。例如,有一位独唱演员,伴随有电子合成器,在MPEG一2标准下,我们必须先把独唱和合成器作混合,然后再对合成的音频信号进行压缩与传送。在MPEG一4标准下,我们可以对独唱作单独压缩,然后再传送乐器数字接口的声轨信号,就可以使接收器重建伴音。当然,接收器必须能支持MIDI放音。与传送合成的信号相比,分别传送独唱信号和MIDI数据要节省大量的带宽。其它的节目类型同样可以作类似的规定。MPEG一7标准又叫多媒体内容描述接口标准。图像可以用色彩、纹理、形状、运动等参数来描述,MPEG一7标准是依靠众多的参数对图像与声音实现分类,并对它们的数据库实现查询。二、多媒体数据压缩技术的实现方法目前多媒体压缩技术的实现方法已有近百种,其中基于信源理论编码的压缩方法、离散余弦变换(DCT)和小波分解技术压缩算法的研究更具有代表性。小波技术突破了传统压缩方法的局限性,引入了局部和全局相关去冗余的新思想,具有较大的潜力,因此近几年来吸引了众多的研究者。在小波压缩技术中,一幅图像可以被分解为若干个叫做“小片”的区域;在每个小片中,图像经滤波后被分解成若干个低频与高频分量。低频分量可以用不同的分辨率进行量化,即图像的低频部分需要许多的二进制位,以改善图像重构时的信噪比。低频元素采用精细量化,高频分量可以量化得比较粗糙,因为你不太容易看到变化区域的噪声与误差。此外,碎片技术已经作为一种压缩方法被提出,这种技术依靠实际图形的重复特性。用碎片技术压缩图像时需要占用大量的计算机资源,但可以获得很好的结果。借助于从DNA序列研究中发展出来的模式识别技术,能减少通过WAN链路的流量,最多时的压缩比率能达到90%,从而为网络传送图像和声音提供更大的压缩比,减轻风络负荷,更好地实现网络信息传播。三、压缩原理由于图像数据之间存在着一定的冗余,所以使得数据的压缩成为可能。信息论的创始人Shannon提出把数据看作是信息和冗余度(redundancy)的组合。所谓冗余度,是由于一副图像的各像素之间存在着很大的相关性,可利用一些编码的方法删去它们,从而达到减少冗余压缩数据的目的。为了去掉数据中的冗余,常常要考虑信号源的统计特性,或建立信号源的统计模型。图像的冗余包括以下几种:(1) 空间冗余:像素点之间的相关性。(2) 时间冗余:活动图像的两个连续帧之间的冗余。(3) 信息熵冗余:单位信息量大于其熵。(4) 结构冗余:图像的区域上存在非常强的纹理结构。(5) 知识冗余:有固定的结构,如人的头像。(6) 视觉冗余:某些图像的失真是人眼不易觉察的。对数字图像进行压缩通常利用两个基本原理:(1) 数字图像的相关性。在图像的同一行相邻像素之间、活动图像的相邻帧的对应像素之间往往存在很强的相关性,去除或减少这些相关性,也就去除或减少图像信息中的冗余度,即实现了对数字图像的压缩。(2) 人的视觉心理特征。人的视觉对于边缘急剧变化不敏感(视觉掩盖效应),对颜色分辨力弱,利用这些特征可以在相应部分适当降低编码精度,而使人从视觉上并不感觉到图像质量的下降,从而达到对数字图像压缩的目的。编码压缩方法有许多种,从不同的角度出发有不同的分类方法,比如从信息论角度出发可分 为两大类:(1)冗余度压缩方法,也称无损压缩,信息保持编码或熵编码。具体讲就是解码图像和压缩 编码前的图像严格相同,没有失真,从数学上讲是一种可逆运算。(2)信息量压缩方法,也称有损压缩,失真度编码或熵压缩编码。也就是讲解码图像和原始图像是有差别的,允许有一定的失真。应用在多媒体中的图像压缩编码方法,从压缩编码算法原理上可以分类为:(1)无损压缩编码种类 •哈夫曼编码 •算术编码 •行程编码 •Lempel zev编码(2)有损压缩编码种类 •预测编码:DPCM,运动补偿 •频率域方法:正文变换编码(如DCT),子带编码 •空间域方法:统计分块编码 •模型方法:分形编码,模型基编码 •基于重要性:滤波,子采样,比特分配,矢量量化(3)混合编码 •JBIG,H261,JPEG,MPEG等技术标准衡量一个压缩编码方法优劣的重要指标(1)压缩比要高,有几倍、几十倍,也有几百乃至几千倍;(2)压缩与解压缩要快,算法要简单,硬件实现容易;(3)解压缩的图像质量要好。四、JPEG图像压缩算法1..JPEG压缩过程JPEG压缩分四个步骤实现:1.颜色模式转换及采样;变换;3.量化;4.编码。2.1.颜色模式转换及采样RGB色彩系统是我们最常用的表示颜色的方式。JPEG采用的是YCbCr色彩系统。想要用JPEG基本压缩法处理全彩色图像,得先把RGB颜色模式图像数据,转换为YCbCr颜色模式的数据。Y代表亮度,Cb和Cr则代表色度、饱和度。通过下列计算公式可完成数据转换。Y=+128人类的眼晴对低频的数据比对高频的数据具有更高的敏感度,事实上,人类的眼睛对亮度的改变也比对色彩的改变要敏感得多,也就是说Y成份的数据是比较重要的。既然Cb成份和Cr成份的数据比较相对不重要,就可以只取部分数据来处理。以增加压缩的比例。JPEG通常有两种采样方式:YUV411和YUV422,它们所代表的意义是Y、Cb和Cr三个成份的资料取样比例。2.变换DCT变换的全称是离散余弦变换(Discrete Cosine Transform),是指将一组光强数据转换成频率数据,以便得知强度变化的情形。若对高频的数据做些修饰,再转回原来形式的数据时,显然与原始数据有些差异,但是人类的眼睛却是不容易辨认出来。压缩时,将原始图像数据分成8*8数据单元矩阵,例如亮度值的第一个矩阵内容如下:JPEG将整个亮度矩阵与色度Cb矩阵,饱和度Cr矩阵,视为一个基本单元称作MCU。每个MCU所包含的矩阵数量不得超过10个。例如,行和列采样的比例皆为4:2:2,则每个MCU将包含四个亮度矩阵,一个色度矩阵及一个饱和度矩阵。当图像数据分成一个8*8矩阵后,还必须将每个数值减去128,然后一一代入DCT变换公式中,即可达到DCT变换的目的。图像数据值必须减去128,是因为DCT转换公式所接受的数字范围是在-128到+127之间。DCT变换公式:x,y代表图像数据矩阵内某个数值的坐标位置f(x,y)代表图像数据矩阵内的数个数值u,v代表DCT变换后矩阵内某个数值的坐标位置F(u,v)代表DCT变换后矩阵内的某个数值u=0 且 v=0 c(u)c(v)=1/>0 或 v>0 c(u)c(v)=1经过DCT变换后的矩阵数据自然数为频率系数,这些系数以F(0,0)的值最大,称为DC,其余的63个频率系数则多半是一些接近于0的正负浮点数,一概称之为AC。3.3、量化图像数据转换为频率系数后,还得接受一项量化程序,才能进入编码阶段。量化阶段需要两个8*8矩阵数据,一个是专门处理亮度的频率系数,另一个则是针对色度的频率系数,将频率系数除以量化矩阵的值,取得与商数最近的整数,即完成量化。当频率系数经过量化后,将频率系数由浮点数转变为整数,这才便于执行最后的编码。不过,经过量化阶段后,所有数据只保留整数近似值,也就再度损失了一些数据内容,JPEG提供的量化表如下:2.4、编码Huffman编码无专利权问题,成为JPEG最常用的编码方式,Huffman编码通常是以完整的MCU来进行的。编码时,每个矩阵数据的DC值与63个AC值,将分别使用不同的Huffman编码表,而亮度与色度也需要不同的Huffman编码表,所以一共需要四个编码表,才能顺利地完成JPEG编码工作。DC编码DC是彩采用差值脉冲编码调制的差值编码法,也就是在同一个图像分量中取得每个DC值与前一个DC值的差值来编码。DC采用差值脉冲编码的主要原因是由于在连续色调的图像中,其差值多半比原值小,对差值进行编码所需的位数,会比对原值进行编码所需的位数少许多。例如差值为5,它的二进制表示值为101,如果差值为-5,则先改为正整数5,再将其二进制转换成1的补码即可。所谓1的补码,就是将每个Bit若值为0,便改成1;Bit为1,则变成0。差值5应保留的位数为3,下表即列出差值所应保留的Bit数与差值内容的对照。在差值前端另外加入一些差值的霍夫曼码值,例如亮度差值为5(101)的位数为3,则霍夫曼码值应该是100,两者连接在一起即为100101。下列两份表格分别是亮度和色度DC差值的编码表。根据这两份表格内容,即可为DC差值加上霍夫曼码值,完成DC的编码工作。AC编码AC编码方式与DC略有不同,在AC编码之前,首先得将63个AC值按Zig-zag排序,即按照下图箭头所指示的顺序串联起来。63个AC值排列好的,将AC系数转换成中间符号,中间符号表示为RRRR/SSSS,RRRR是指第非零的AC之前,其值为0的AC个数,SSSS是指AC值所需的位数,AC系数的范围与SSSS的对应关系与DC差值Bits数与差值内容对照表相似。如果连续为0的AC个数大于15,则用15/0来表示连续的16个0,15/0称为ZRL(Zero Rum Length),而(0/0)称为EOB(Enel of Block)用来表示其后所剩余的AC系数皆等于0,以中间符号值作为索引值,从相应的AC编码表中找出适当的霍夫曼码值,再与AC值相连即可。例如某一组亮度的中间符为5/3,AC值为4,首先以5/3为索引值,从亮度AC的Huffman编码表中找到1111111110011110霍夫曼码值,于是加上原来100(4)即是用来取[5,4]的Huffman编码1111111110011110100,[5,4]表示AC值为4的前面有5个零。由于亮度AC,色度AC霍夫曼编码表比较长,在此省略去,有兴趣者可参阅相关书籍。实现上述四个步骤,即完成一幅图像的JPEG压缩。

论文数据处理方法

①根据某些特定的标准剔除过多的数据,比如:spss,SAS,EXCEL;②对余下的数据进行处理,;③数据过多的时候,把相类似的数据看作是一个数据群,再基于这些群进行研究;④可以尝试一下SPSs里面的聚类分析之类的功能。补充:数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。 数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。数学建模是使用数学模型解决实际问题。

请在此输入您的回答,每一次专业解答都将打造您的权威形象数据源:(是什么)研究区域描述:(如果你研究的是区域的话,要写出研究区域你要研究的那一方面的发展概况)数据处理方法:你用了什么方法,仔细描绘,比如怎么选取变量,有无修正参数或部分数据啦等等,怎么检验你处理的方法是否恰当啦

创建论文数据分析计划提示:

1、系统化

学生可以通过将研究数据系统化来开始论文数据分析。收集想法,思考哪些方面是重要的,而哪些会让自己的想法变得混乱。思考自己所收集信息的真正价值,信息的数量不会帮助论文写作,质量更加重要。

2、结构

组织论文分析。对于学生和读者来说,一切都应该非常清楚。无论主题多么复杂,都应该将其分成几部分,并按顺序排列,使人们能够对问题的所有要点有一个很好的了解。每一章都应该是自己的一个小想法。

3、词汇

论文中不应该有自己不理解的任何词汇,因为很可能读者也不会理解。对于不理解的术语,或者在写作过程中学到的术语,应该在创建论文分析时进行解释。

4、因果关系

在收集数据并将材料系统化后,学生应该退后一步,考虑因果关系。应分析关键点的有效性。如果已经做好了系统和结构部分,这应该不会太复杂。

5、重要性

从理论和实践上思考论文的要点。如果不了解大局,就无法制定好的论文数据分析计划,这就是整篇论文的意义所在。

6、简化

最后,论文数据分析计划可以帮助写作。不要浪费太多时间将已经很复杂的任务复杂化。目标应该清晰,过程要简化。

单纯的数字数据还好,可以直接应用统计软件

相关百科

热门百科

首页
发表服务