首页

> 学术期刊知识库

首页 学术期刊知识库 问题

初中数学小论文主题

发布时间:

数学小论文初中主题

大家一起抄论文?大人抄,小孩也抄?(对学术界失望,初中,哪来论文?)

初中数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

数学小论文数学是生活中的一分子,它是在“生活”这个集体中生存的,离开了生活这个集体,数学将是一片死海,没有生活的数学是没有魅力的数学,同样,人类也离不开数学,离开了数学人类将无法生存。 著名数学家华罗庚说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日月之繁,无处不用到数学。”特别是二十一世纪的今天,数学的应用更是无所不在。那么,我们如何从小打下坚实的数学基础,究竟什么样的课堂教学才适合我们这些新一代的学生呢?我认为,在课堂中,由学生去担任学习的主角,才是我们的心愿。那么,数学活动课就是让我们充分体现自主学习的一种教学方式。 活动课上,在老师的指导下,我们可以分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,不仅培养了我们的动手能力,而且提高了我们的思维能力,又让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。例如,我们上《平行四边形面积的计算》这节课时,老师让我们分成几个小组,发一些平行四边形的小纸片,让同学们互相讨论,怎样使一个平行四边形经过剪贴、拼凑变成一个我们已经会计算面积的图形呢?大家七嘴八舌的讨论开了,一些同学发现可以从平行四边形的任意一条高剪开,就得到两个直角梯形,依然可以拼成一个同样大小的长方形。同学们通过观察、思考,认识到拼成的长方形的“长”和“宽”,分别就是原来平行四边形的“底边”和“高”。由此,大家终于可以通过自己的动手能力而找到了平行四边形面积公式为:S=ah。 在数学的世界里,我们还可以使用图象法解数学习题。图象法解数学习题的特点是把繁琐的演算及逻辑推理过程,在函数图象的辅助下加以简化和形象直观,解题思路清淅、直观、明了、可靠.然而,怎样才能在图象法解题过程中做到顺手沾来、得心应手、准确无误呢?我认为关键是要有丰富的初等函数图象知识。而要达到这一点,就得掌握初等函数在复合过程中引起的图象变换规律,以规律求拓宽,为图象法解题创造良好的基础条件。 在教学中老师若能恰当地把握传授知识与增减能力的关系,动用灵活的教学方法,充分发挥课本的功能,就可以事半功倍,提高课堂教学效果.笔者在教学实践中,始终抓住课本这个“纲”,在课本教学上狠下功夫,减少复习资料,不搞题海战术,既减轻学生负担,又培养了学生的多种能力. 我还认为老师要重视课本概念的阅读,培养学生的学习能力。 中学生往往缺乏阅读数学课本的习惯,这除了数学难以读懂以外,另外一个原因是我们许多数学教师在讲课时,也很少阅读课本,喜欢滔滔不绝的讲,满满黑板的写,使学生产生了依赖性.数学课本是数学基础知识的载体,课堂上指导学生阅读数学课本,不仅可以正确理解书中的基础知识,同时,可以从书中字里行间挖掘更丰富的内容.此外,还可以发挥课本使用文字的垂范作用,潜移默化培养和提高学生准确说练的文字表达能力和学习能力. 重视阅读数学课本,首先要老师引导,特别在讲授新课时,应当纠正那种“学生闭着书,光听老师讲”的教学方法,在讲解概念时,应让学生翻开课本,老师按课本原文逐字,逐句,逐节的阅读.在阅读中,让学生反复琢磨,认真思考,对书中的叙述的概念,定理,定义中有本质特征的关键词句要仔细品味,深刻理解其语意,并不时地提出一些反问:如,换成其它词语行吗?省略某字行吗?加上某某字行吗?等等.要读出书中的要点,难点和疑点,读出字里行间所蕴藏的内容,读出从课文中提炼的数学思想,观点和方法.教师在课堂上阅读数学课本,不仅可以节省不必要的板书时间,而且可以防止因口误,笔误所产生的概念错误,从而使学生能准确地掌握。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 人人学有价值的数学;人人都能获得必要的数学;不同的人在数学上得到不同的发展。基于这个目的,对我们初中数学来说,老师们必须要改变原来“应试”教育的教学方法,让同学们亲自体验和经历,让他们自己去探索知识的来源。 我认为老师也要换个角度来教学,为每个学生着想 ,我不时会听到同学们说:“书本儿上我看懂了的老师讲,而且不厌其烦的讲,不懂的老师一带而过,结果还是不懂”。这种讲课就是只备教材不备学生,没有为学生着想。比如讲一个概念,不要把定义直接抄在黑板上,接着就开始做题。而要讲如何去理解、体会它,从正面、反面、侧面去讲,并指出如何去理解它,运用它,提醒同学们理解中容易出现的误区,以及它与有关概念的差别和联系,把学生易犯的错误讲在前面。再如讲解一个结论的证明或一道题的解法时,重要的不是一步步按逻辑叙述,而是要指明其思考过程。一个班级里学生的知识水平,能力水平都有所差异,总有些思维水平较低的学生,老师要在备课时换个角度来教,效果就会有所提高。 总之,老师要引导学同学们善于思考生活中的数学,加强知识与实际联系,课堂上同学们通过活动获取知识,突出了知识的形成过程,掌握学习方法,训练学生思维。生活化课堂教学,能以课本为主源,又不受课本知识的禁锢,使同学们灵活掌握知识,培养同学们实践操作能力和思维能力,既能落实减轻学生负担,又能提高教学质量。

初中数学小论文主题

1、数学中的研究性学习2、数字危机4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论1、浅谈菲波纳契数列的内涵和应用价值2、一道排列组合题的解法探讨及延伸3、整除与竞赛4、足彩优化5、向量的几件法宝在几何中的应用6、递推关系的应用8、小议问题情境的创设9、数学概念探索启发式教学10、柯西不等式的推广与应用11、关于几个特殊不等式的几种巧妙证法及其推广应用12、一道高考题的反思13、数学中的研究性学习15、数字危机16、数学中的化归方法17、高斯分布的启示18、 的变形推广及应用19、网络优化20、泰勒公式及其应用22、数学选择题的利和弊23、浅谈计算机辅助数学教学24、数学研究性学习25、谈发展数学思维的学习方法26、关于整系数多项式有理根的几个定理及求解方法27、数学教学中课堂提问的误区与对策29、浅谈数学教学中的“问题情境”30、市场经济中的蛛网模型32、数学课堂差异教学33、浅谈线性变换的对角化问题34、圆锥曲线的性质及推广应用35、经济问题中的概率统计模型及应用36、通过逻辑趣题学推理37、直觉思维的训练和培养38、用高等数学知识解初等数学题39、浅谈数学中的变形技巧40、浅谈平均值不等式的应用41、浅谈高中立体几何的入门学习42、数形结合思想43、关于连通性的两个习题44、从赌博和概率到抽奖陷阱中的数学45、情感在数学教学中的作用46、因材施教与因性施教47、关于抽象函数的若干问题48、创新教育背景下的数学教学49、实数基本理论的一些探讨50、论数学教学中的心理环境51、以数学教学为例谈谈课堂提问的设计原则52、不等式证明的若干方法53、试论数学中的美54、数学教育与美育55、数学问题情境的创设56、略谈创新思维57、随机变量列的收敛性及其相互关系58、数字新闻中的数学应用59、微积分学的发展史60、利用几何知识求函数最值61、数学评价应用举例62、数学思维批判性63、让阅读走进数学课堂64、开放式数学教学65、浅谈中学数列中的探索性问题66、论数学史的教育价值67、思维与智慧的共享——从建构主义到讨论法教学68、 方程组中的若干问题69、由“唯分是举”浅谈考试改革70、随机变量与可测函数71、二阶变系数齐次微分方程的求解问题72、一种函数方程的解法73、微分中值定理的再讨论74、学生数学学习的障碍研究;76、数学中的美;77、数学的和谐和统一----谈论数学中的美;78、推测和猜想在数学中的应用;79、款买房问题的决策;80、线性回归在经济中的应用;81、数学规划在管理中的应用;82、初等数学解题策略;83、浅谈数学CAI中的不足与对策;84、数学创新教育的课堂设计;86、关于培养和提高中学生数学学习能力的探究;87、运用多媒体培养学生88、高等数学课件的开发89、 广告效益预测模型;90、最短路网络;91、计算机自动逻辑推理能力在数学教学中的应用;93、最优增长模型94、学生数学素养的培养初探96、 城市道路交通发展规划数学模型;97、函数逼近98、数的进制问题99、无穷维矩阵与序列Bannch空间的关系100、 多媒体课件教学设计----若干中小学数学教学案例101、一维,二维空间到欧氏空间102、初中数学新课程数与代数学习策略研究103、初中数学新课程统计与概率学习策略研105、数列运算的顺序交换及条件106、歇定理的推广和应用107、解析函数的各种等价条件及其应用108、特征函数在概率论中的应用109、数学史与中学教育110、让生活走进数学,数学方法的应用将数学应用于生活——谈xx111、数学竟赛中的数论问题112、新旧教材的对比与研究114、随机变量分布规律的求法115、简述概率论与数理统计的思想方法及其应用116、无穷大量存在的意义118、例谈培养数学思维的深刻性120、从坐标系到向量空间的基121 谈谈反证法122、一致连续性的判断定理及性质123、课堂提问和思维能力的培养125、函数及其在证明不等式中的应用126、极值的讨论及其应用127、正难则反,从反面来考虑问题128、实数的构造,完备性及它们的应用129、数学创新思维的训练 130、简述期望的性质及其作用131、简述概率论与数理统计的思想和方法132、穷乘积133、递推式求数列的通项及和134、划归思想在数学中的应用135、凸函数的定义性质及应用136、行列式的计算方法137、可行解的表式定理的证明140、充分挖掘例题的数学价值和智力开发功能141、数学思想方法的一支奇葩-----数学猜想初探142、关于实变函数中叶果罗夫定理的鲁津定理的证明143、于黎曼积分的定义144、微分方程的历史发展145、概率论发展史及其简单应用147、数学教学中使用多媒体的几点思考148、矩阵特征值的计算方法初探149、数形结合思想及其应用150、关于上、下确界,上、下极限的定义,性质及应用 151、复均方可积随机变量空间的讨论155、欧几里得第五公设产生背景及其对数学发展影响160、函数性质的应用163、中数学新课程空间与图形学习策略与研究167、函数的凸性及其在不等式中的应用171、数学归纳法教学探究174、关于全概率公式及其应用的研究176、变量代换法与常微分方程的求解188、不等式解法大观189、谈谈“ 隐函数 ”190、有限维矩阵的范数计算与估计191、数学奥赛中数论问题的解题方法研究193、微分方程积分因子的研究195、关于泰勒公式196、解析函数的孤立奇点的分类及其判断方法197、最大模原理的推广及其应用198、π的奥秘——从圆周率到统计199、对现代信息技术辅助数学及其发展的几点思考200、无理数e的发现及其应用202、闭区间套定理的推广和应用203、函数的上下极限及其应用205、关于多值函数的解析理论探讨208、比较函数法在常微分方程中的应用209、数学分析的直观与严密303、求随机函数的分布函数和分布密度的方法304、条件期望的性质及其应用308、凸函数的等价命题及其应用310、有界变差函数的定义及其性质311、初等函数的极值

一、数学适应源于生活,用于创设问题情境 生活中充满了数学,数学就在我们周围,让学生学习数学,可从他们已有的经验和已有的知识出发,有目的的,合理地创设出一些贴近学生生活实际的问题情境,把生活中的实际问题抽象成有兴趣的数学问题,只要引起学生的兴趣,就会大大增加学生的求知欲,学生就会主动地去开启智慧之门。例如,在学习归一应用题时,我出示了这样一道习题,让学生练习。“使用139全球通手机,月租费50元,每分钟通话费元;而某一人用136神州行手机,没有月租费,每分钟通话费元,而这个人用136手机,每月计费150元以上,若他要换用全球通手机合算吗?”这些题目,是学生从示接触过的,又很贴近学一的现实生活。通过让学生业计算,既是让学生对所学知识的巩固,对现实生活的了解,又很好地创造了生活的新方法,激发了学生学习的兴趣。又例如,在学习“圆的面积”的时候,可以设置疑问。“为什么自来水的管道是圆形的而不是长方形的”、“你们有没有见过正方形的自来水管”,这样一个带有生活常识的问题。一提出,学生马上对它充满兴趣,交头接耳,议论纷纷,这样使教材的内容融入趣味的生活情节中,让学生带着兴趣去学习新知识,使学生尝试成功的喜悦,诱发学生再次学习的兴趣。 二、数学知识用于生活,使学生了解生活实际在数学教学中,除了要讲清概念外,使学生正确理解各个知识点和概念,更要注意知识的实用性,在练习的过程中,要把数学知识用到实际中来,要从多方面来考虑数学问题,来打开学开学生的眼界,增加学生信息量,了解生活的实际。如美国第三次全国进展评估中有这样一个试题是:每辆卡车可载36名士兵,现在有1128个士兵需要用卡车送到练营地,问需要多少辆卡车?乍一看,这是个很简单的除法应用题,测试的结果也表明,有70%的学生正确地完成了计算,即得出了36除1128商是31,余数为12。然而,在此基础上,只有23%的学生给出了32这一正确的答案,这说明了什么问题呢?这说明了学生没有把这一问题看成是真正的问题,没有从实际生活的角度去想这个问题,而只是把题目看成是虚构的数学问题,为了练习而杜撰的故事。他们所做的事就是进行计算把得数写出来,这也是一些学生的通病,只注重机械练习,而很少考虑其他问题。这只是数学教学中的小小一例,在教学中还有很多这样的例子,这就给了我们一个启示:我们的数学要加强真实感要把所学的知识用于解决实际问题,学数学要为生活服务,从而来增加学生的数学意识。 三、从数学实践活动入手,拓展数学视野开展数学实践活动,可以让学生体验到数学在生活中的应用,对于培养学生学习数学的兴趣、爱好、有着十分积极的意义。例如,在教学中,让学生到操场上去走走、跑跑、测测、量量,让学生感受50米、100米、400米的距离,并让学生辨别步测与目测的差别;让学生到食堂去看看、称称,根据各种水果、蔬菜的重量,使学生去感受100克、1千克、10千克的实际重量等等,这些活动深受学生的喜爱,不仅可获得数学知识,还能培养学生的数学意识,对数学学习充满乐趣。 一、走进生活,用数学眼光去观察和认识周围的事物:世界之大,无处不有数学的重要贡献。培养学生的数学意识以及运用数学知识解决实际问题的能力,既是数学教学目标之一,又是提高学生数学素质的需要。在教学中,要使学生接触实际,了解生活,明白生活中充满了数学,数学就在你自己的身边。例如在“比例的意义和基本性质”的导入中,我设计了这样一段:你们知道在我们人体上的许多有趣的比例吗?将拳头翻滚一周,它的长度与脚底长度的比大约是1:1,脚底长与身高长的比大约是1:7……知道这些有趣的比有很多用处,到商店买袜子,只要将袜子在你的拳头上绕一周,就会知道这双袜子是否合适你穿;如果你是一个侦探,只要发现罪犯的脚印,就可以估计出罪犯的身高……这些都是用身体的比组成了一个个有趣的比例,今天我们就来研究“比例的意义和基本性质”;此外教师还可结合学生年龄特点,设计一些“调查”、“体验”、“操作”等实践性强的作业,让学生在活动中巩固所学知识,提高各方面的能力:如教学“单价、数量、总价”三者关系应用题前可布置学生做一回小小调查员,完成下列表格:品名黄瓜白菜萝卜猪肉单价(元)数量(千克)总价(元)这样做,使学生对所学知识有了感性认识,减缓他们在学习上坡度,对他们深刻理解单价、数量、总价三者之间的关系有很大帮助。再如学习了三角形的稳定性后,可让学生观察生活中哪些地方运用了三角形的稳定性;学习了圆的知识后,让学生从数学的角度说明为什么车轮的形状是圆的,三角形的行不行?还可以让学生想办法找出锅盖、脸盆的圆心在哪儿;……这样大大丰富了学生所学的知识,让学生真正认识到周围处处有数学,数学就在我们生活中间,并不神秘,同时也在不知不觉中感悟数学的真谛,进而激起从小爱数学、学数学、用数学的情感,促进学生的思维向科学的思维方式发展,培养学生自觉地把所学的知识应用于实际生活的意识。 二、感悟生活,架构数学与生活的桥梁:“人人学有用的数学,有用的数学应当为人人所学”成了数学教学改革实验的口号。教学中我联系生活实际,拉近学生与数学知识之间的距离,用具体生动、形象可感的生活事例解释数学问题。1、运用生活经验解决数学问题在上“用字母表示数”一课的内容时,我用CAI课件演示李蕾同学拾金不昧的情景,紧接着播出一则“失物招领启事”:失物招领李蕾同学在校园升旗台附近拾到人民币A元,请失主前来少先队大队部认领。校少先队大队部 学生惊奇于数学课上老师怎么讲起了失物招领的事呢?我和学生通过分析、讨论A元所表示的意义,师:A元可以是1元钱吗?生1:A元可以是1元钱,表示拾到1元钱。师:A元可以是5元钱吗?生2:可以!表示拾到5元钱。师:A元还可以是多少钱呢?生3:还可以是85元,表示拾到85元钱。师:A元还可以是多少钱呢?生4:还可以是元,表示拾到5角钱。……师:那么A元可以是0元吗?生5:绝对不可以,如果是0元,那么这个失物招领启事就和大家开了一个大玩笑!师:为什么不直接说出拾到多少元,而用A元表示呢?……由于学生容易认识具体、确定的对象,而用字母表示的数是不确定的、可变的,因此开始学习学生往往难以理解。本题中的“失物招领启事”是学生所熟悉的活动,激发了学生学习新知的欲望,学生便能不由自主地参与到解题过程中去。在讨论交流中,集思广益,使学生在愉快的氛围理解了新知,并对所学的知识更理解,掌握地更牢固;另一方面也提高了人际交往能力,增强了相互帮助、合作的意识,受到良好的思想教育,也锻炼了学生对社会的洞察力。2、运用数学知识解决实际问题例如学习了长方形、正方形面积的计算及组合图形的计算后,我尝试着让学生运用所学知识解决生活中的实际问题。如:老师家有一间两室一厅的住房,如图:你能帮帮他算一算这两室一厅的住的面积有多大?要计算面积有多大我们先要测量哪些长度的面积?在给出一定的数据后让学生们计算;接下来我还让学生们回家测算一下自己家的实际居住面积。在这样一个实际测算的过程中,既提高了兴趣,又培养了实际测量、计算的能力,让学生在生活中学、在生活中用。 如,学过了100以内加减法之后,创设了“买汽车”的教学情境:微型汽车大削价,小林花去100元买了几辆汽车,他买了几辆汽车,是哪几辆?通过观察、思考、讨论,在我的鼓励指导下,同学们用式子有序地依次表示为:(1)把100元分解为两个数的和:(2)把100元分解为3个数的和:50+50=100 40+60=100 30+70=10020+80=100 60+20+20=100 50+20+30=100 40+40+20=100 30+30+40=100 (3)把100元分解为4个数的和(4)把100元分解为5个数的和40+20+20+20=100 20+20+20+20+20=100 30+30+20+20=100 学生以发现者的心态去探索、去求新、去寻觅独创性的答案,这也正验证了苏霍姆林斯基所说的:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。”这种图文并茂的应用题,使学生感到不是在解应用题,而是在解生活中的问题,锻炼了学生捕捉信息的能力,增强了应用题的应用味:漫画的形式更贴近于儿童的实际生活,学生从图中获得各种汽车价钱的信息,又从文字中获取“小林花去100元”的信息,由于问题具有现实意义,但又不能刻板地归为哪一种类型,要想解决“买了几辆汽车,是哪几辆?”的问题,联系生活实际,就能得到不同的解法。整个学习活动给学生提供了广阔的思维空间,让学生经历观察、分析、概括和归纳等学习过程。不仅巩固了100以内认识和加法,而且促进数学的交流,学生的分析、解决问题的能力得到培养,有利于因材施教,体现不同的人学习不同层次的数学,使学生感受到数学与生活的密切联系,体验到生活中处处有数学,感受数学的趣味与作用。 三、创造生活,解决生活中的数学问题两步应用题之后的教学,我让学生“创作”应用题,学生们积极思考,发挥自己的想象力:“一份鸡翅8元,一个汉堡包比它贵4元,我吃了一份鸡翅和一个汉堡包,你们说我用了多少元?”;“我的妈妈上午买了一斤青菜,买的萝卜是青菜的两倍,请问我的妈妈一共买了几斤菜?;《西游记》有62集,《西游记续集》比它多5集,《西游记续集》有多少集?”学生们编应用题时眉飞色舞的神态,夸张的动作,幽默风趣的语言常常引起哄堂大笑。由于题材来自学生所熟知的事物,学生发言积极、语言流畅,思维呈多极化和多元化,得出“雪融化后是春天而不是水”的新思路,因创造而倍感兴奋,更体会到生活中处处有数学。再如学习了“按比例分配”的知识后,让学生帮助爸爸妈妈算一算本住宅楼每户应付的水费(电费)是多少;学习了“利息”的知识后,算一算自己在银行存储的钱到期后可以拿多少本息;再如学习完“比例尺”一节的知识后,让学生绘制“我给未来的校园设计平面图”、“我给生活小区设计平面图”等等,其对图表内容的丰富和社会关注程度令人感叹!生活是教育的中心,“生活即教育”的理论为小学数学教学的改革开辟了广袤的原野。“让学生在生活中学数学” 使学生对数学有一种亲近感,感到数学与生活同在,增强了学生学习数学的主动性,发展了求异思维,培养了学生理论联系实际的学风和勇于探究、大胆创新、不断进取的精神,让学生亲自体会参与应用所学知识去解决实际问题的乐趣。 7回答者: wys575780554 - 二级 2010-10-5 10:06 我来评论>> 提问者对于答案的评价:xiexie相关内容• 数学小论文 生活中的数学 2010-11-1 • 数学小论文 生活中的数学 题材 14 2010-10-8 • 数学小论文,初一的.题目是生活中的数学.急 216 2010-2-3 • 给个生活中的数学1000字左右的数学论文 3 2010-10-13 • 急~!!!怎样写围绕生活中的数学小论文啊,说说怎样写就行 132 2008-3-9 更多相关问题>> 查看同主题问题: 数学 论文 论文 主题 等待您来回答更多0回答 关于十七届五中全会的论文如何撰写?要求写成学术论文型的。在哪可以... 0回答 写论文 怎么知道查什么书 分析成本作假的方法,找出治理的方法 0回答 5 关于学习中国旅游地理的心得,是我选修的论文 要求1500字左右....谁有... 2回答 关于能源危机的论文 0回答 10 数学小论文主题可以有哪些 1回答 20 求一篇8000字的数控技术专业的毕业设计论文 1回答 泰山的传说故事 1回答 15 长城的传说故事 没有感兴趣的问题?试试换一批其他回答 共 6 条有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 回答者: 编号89757001 - 二级 2010-10-4 21:42 烃,嶷,以,雕黪搂,同,专区时以 峻峭,凤, 回答者: .* 2010-10-5 12:18 活动意义 1、让学生知道数学与生活是密切联系的; 2、让学生体验数学与生活是能够联系的; 3、让学生展示数学与生活是怎么联系的; 4、让学生释放数学与生活相联系的能力。 参与对象 鼓楼区各小学1-6年级学生及指导教师。活动内容 高年段(五、六年级)活动内容: 1、应用数学知识为校园、教室、自己的家或者公共场所进行一项局部设计。设计要求:(1)要实用。或者改善周围环境,或者改进空间结构,或能改变传统认识。(2)有价值。设计的效果应该比原来更科学合理,更方便实用,更新颖美观,更富有创意。(3)有数学。设计要体现出设想、测量、计算、实际验证等具有数学意义、数学内容和有效数据真实资料,写一份图文并茂的《×××设计报告》。 2、应用数学知识做一个自己喜欢的专项研究,内容不限。写一份体现数学作用、研究数据真实、图文并茂的《×××研究报告》。

想想,初中都学了那些?我在上中学时都没写过论文,现在上初中都要写论文啦?真是悲剧呀!但初中的数学还是很简单的,写一篇论文,可以联系到自己已经上过的知识。下面给你一些建议: 可以写,对任意的二元一次方程组的解转换为图形的交点问题。 还有,不知道三角函数有没有上,如果上了可以论证三角公式,比如说,(sinA)^2+(cosA)^2=1,(tanX)^2=(secX)^2-1

数学小论文数学是生活中的一分子,它是在“生活”这个集体中生存的,离开了生活这个集体,数学将是一片死海,没有生活的数学是没有魅力的数学,同样,人类也离不开数学,离开了数学人类将无法生存。 著名数学家华罗庚说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日月之繁,无处不用到数学。”特别是二十一世纪的今天,数学的应用更是无所不在。那么,我们如何从小打下坚实的数学基础,究竟什么样的课堂教学才适合我们这些新一代的学生呢?我认为,在课堂中,由学生去担任学习的主角,才是我们的心愿。那么,数学活动课就是让我们充分体现自主学习的一种教学方式。 活动课上,在老师的指导下,我们可以分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,不仅培养了我们的动手能力,而且提高了我们的思维能力,又让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。例如,我们上《平行四边形面积的计算》这节课时,老师让我们分成几个小组,发一些平行四边形的小纸片,让同学们互相讨论,怎样使一个平行四边形经过剪贴、拼凑变成一个我们已经会计算面积的图形呢?大家七嘴八舌的讨论开了,一些同学发现可以从平行四边形的任意一条高剪开,就得到两个直角梯形,依然可以拼成一个同样大小的长方形。同学们通过观察、思考,认识到拼成的长方形的“长”和“宽”,分别就是原来平行四边形的“底边”和“高”。由此,大家终于可以通过自己的动手能力而找到了平行四边形面积公式为:S=ah。 在数学的世界里,我们还可以使用图象法解数学习题。图象法解数学习题的特点是把繁琐的演算及逻辑推理过程,在函数图象的辅助下加以简化和形象直观,解题思路清淅、直观、明了、可靠.然而,怎样才能在图象法解题过程中做到顺手沾来、得心应手、准确无误呢?我认为关键是要有丰富的初等函数图象知识。而要达到这一点,就得掌握初等函数在复合过程中引起的图象变换规律,以规律求拓宽,为图象法解题创造良好的基础条件。 在教学中老师若能恰当地把握传授知识与增减能力的关系,动用灵活的教学方法,充分发挥课本的功能,就可以事半功倍,提高课堂教学效果.笔者在教学实践中,始终抓住课本这个“纲”,在课本教学上狠下功夫,减少复习资料,不搞题海战术,既减轻学生负担,又培养了学生的多种能力. 我还认为老师要重视课本概念的阅读,培养学生的学习能力。 中学生往往缺乏阅读数学课本的习惯,这除了数学难以读懂以外,另外一个原因是我们许多数学教师在讲课时,也很少阅读课本,喜欢滔滔不绝的讲,满满黑板的写,使学生产生了依赖性.数学课本是数学基础知识的载体,课堂上指导学生阅读数学课本,不仅可以正确理解书中的基础知识,同时,可以从书中字里行间挖掘更丰富的内容.此外,还可以发挥课本使用文字的垂范作用,潜移默化培养和提高学生准确说练的文字表达能力和学习能力. 重视阅读数学课本,首先要老师引导,特别在讲授新课时,应当纠正那种“学生闭着书,光听老师讲”的教学方法,在讲解概念时,应让学生翻开课本,老师按课本原文逐字,逐句,逐节的阅读.在阅读中,让学生反复琢磨,认真思考,对书中的叙述的概念,定理,定义中有本质特征的关键词句要仔细品味,深刻理解其语意,并不时地提出一些反问:如,换成其它词语行吗?省略某字行吗?加上某某字行吗?等等.要读出书中的要点,难点和疑点,读出字里行间所蕴藏的内容,读出从课文中提炼的数学思想,观点和方法.教师在课堂上阅读数学课本,不仅可以节省不必要的板书时间,而且可以防止因口误,笔误所产生的概念错误,从而使学生能准确地掌握。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 人人学有价值的数学;人人都能获得必要的数学;不同的人在数学上得到不同的发展。基于这个目的,对我们初中数学来说,老师们必须要改变原来“应试”教育的教学方法,让同学们亲自体验和经历,让他们自己去探索知识的来源。 我认为老师也要换个角度来教学,为每个学生着想 ,我不时会听到同学们说:“书本儿上我看懂了的老师讲,而且不厌其烦的讲,不懂的老师一带而过,结果还是不懂”。这种讲课就是只备教材不备学生,没有为学生着想。比如讲一个概念,不要把定义直接抄在黑板上,接着就开始做题。而要讲如何去理解、体会它,从正面、反面、侧面去讲,并指出如何去理解它,运用它,提醒同学们理解中容易出现的误区,以及它与有关概念的差别和联系,把学生易犯的错误讲在前面。再如讲解一个结论的证明或一道题的解法时,重要的不是一步步按逻辑叙述,而是要指明其思考过程。一个班级里学生的知识水平,能力水平都有所差异,总有些思维水平较低的学生,老师要在备课时换个角度来教,效果就会有所提高。 总之,老师要引导学同学们善于思考生活中的数学,加强知识与实际联系,课堂上同学们通过活动获取知识,突出了知识的形成过程,掌握学习方法,训练学生思维。生活化课堂教学,能以课本为主源,又不受课本知识的禁锢,使同学们灵活掌握知识,培养同学们实践操作能力和思维能力,既能落实减轻学生负担,又能提高教学质量。

初中科学小论文主题

酒给予的生命——鲜花保鲜与酒的关系研究各种常见的清洁剂对圆珠笔笔迹的去污效果各种颜色的吸热程度苹果变黄的原因以及保鲜方法的研究健康卫生的饮食——关于对街头食品的调查与研究中学生近视眼发病的原因与防治都是比较简单的,容易进行的。

题目1、大气压是由于大气重力作用而产生的吗?2、二氧化碳是不是带给人们的只有害处呢?3、淡水资源大量的减少与二氧化碳有关吗?主题1、写二氧化碳的好处与坏处2、晚上把植物放在房间里植物会不会和你抢空气3、有没有微生物在寒冷的温度下繁殖的跟快而在常温下不会繁殖却死亡

本地区的土样调查可以考虑考虑

科学是埋葬形形 *** 褪了色的思想的坟场。我整理了,欢迎阅读! 1. 如何运用化学史培养学生的创新精神和科学态度 2. 化学史在中学化学教学中的作用 5. 怎样看待化学家的作用 7. 现代美国化学研究领先地位的确立及其原因 8. 资讯时代的化学教育前景 11. 论中学历史教材中应增加科学史的份量的必要性 12. 化学史在学生素质教育中的作用 15. 提高学生学习化学的兴趣 16. 略论在化学教学中如何积极开展探究式教学 18. 略论非智力因素在化学教学中的作用 19. 如何运用化学实验发展学生能力 20. 浅谈化学教学中创新意识的培养 22. 网路环境下的化学教学实践及思考 23. 浅谈数学知识在化学教学和学习中的应用 24. 化学实验教学与学生创新能力培养的探索 26. 利用化学实验对学生创新精神和实验能力的测量与评价研究 30. 计算机辅助教学在化学创新教育中的作用 31. 课堂“引导探究”教学模式 32. 论中学化学新教材的特点及教法 33. 优化课堂设计培养学生的创新素质 37. 中学化学实验教学改革初探 40. 浅谈中学化学计算题中数学知识的应用 43. 应试教育和素质教育在中学教育中的作用和地位分析 44. 中学生的早恋调查及分析 45. 中学厌学的家庭、社会原因分析 46. 义务教育阶段对辍学生的对策研究 47. 中学化学教学中如何培养学生化学 48. 如何提高中学生化学实验的动手能 49. “研究性学习”在化学教育中的实践 50. 农村沼气的开发利用研究 初中科学论文 初中科学实验模式探微 摘 要:初中科学是一门以实验为基础的综合学科。不仅具有一定的理论性,而且具有很强的实践性,因此初中科学教学必须重视实验教学,可以说实验教学是整个科学教学的核心,贯穿于整个科学教学过程中。《浙江省初中科学新课程标准》明确指出:“在科学课程中,学生将通过科学探究等方式理解科学知识,学习科学技能,体验科学过程与方法,初步理解科学本质,形成科学态度、情感与价值观,培养创新意识和实践能力。”而探究的其中一个重要手段就是实验。笔者试图以自己多年来在科学实验教学的一点浅见,抛砖引玉,与大家一起探讨初中科学实验的一些方法,以进一步提高学生的科学素养。 关键词:科学实验 变式教学 思维培养 中图分类号: 文献标识码:A 文章编号:1673-9795***2013***03***c***-0049-01 科学是一门以实验为基础的学科。学习科学的过程,是从观察现象、进行实验出发,经过形象思维和抽象思维形成概念、规律,然后再回到实践中去进行检验和运用的过程,即“实践―― 认识―― 再实践――再认识”。伽利略曾经说过:“一切推理都必须从观察与实验得来。”所以实验在学习科学基础知识的过程中具有很重要的意义,学习科学必须重视实验。然而,就目前的教学现状看,普遍存在着学生动手能力差,缺乏创新能力的现象。学生做实验只是根据教材中已经设计好的实验目的、器材、方法,按照规定的步骤按部就班地去做。对老师演示的实验只注重最后的实验现象、结论或资料,对课外的小实验都视而不见,甚至为了应试而忽略实验,最终影响了学生能力的培养与提高。鉴于上述原因,笔者在科学教学中十分注重在实验中培养学生的创新能力,并作了一系列的有益探索。 1 借助实验中的趣味故事,唤起实验兴趣 好奇心是科学家的一种重要品格,不断强化好奇心,锲而不舍地追求,便可能独辟蹊径。中学生特别是初中生好奇心强、创造欲高。因此,只要引导有方,他们具有的潜在的创造发明思想和灵感就会被激发起来,而利用实验使教育,既可以激发学生的好奇心,又可以唤起学生的创新意识。例如,在研究浮力跟排开液体重力关系的实验前,先给学生讲述那个著名的“王冠之谜”故事。正是这个故事才诞生了一个著名的定律―― 阿基米德原理。然后再做此实验,学生兴趣浓厚,做这个实验的欲望也更强烈了。最后告诉学生科学家也是从日常生活中的一些现象中去发现,寻找新的东西。 2 利用实验中的变式教学,培养创新思维 创新思维是创造力的源泉,是智力开发的核心,而创新思维的培养离不开实验。问题是现在的实验教学完全是为了应试教育:实验课题已知,方案已知,几乎没有留给学生一些创造性思维的余地。这样实验教学常会导致学生实验设计能力减弱,遇到结果与理论不相符时,很少想到要再做一次实验,检查一下实验中存在的问题,常常是把理论资料或结果作为自己的实验结论。因此,在演示实验和学生实验中,我们可以将原先的实验方案略作一些改进,以培养学生的创造性思维。 更换实验器材,培养思维的多维性 依据知识的内在联络,不断更换实验器材,不依常规寻求尽可能多的实验方案,并且利用科学的特点,把知识运用灵活,从而培养学生思维的多向性。例如:测一金属块浸没在水中受到的浮力。要求学生从求浮力的几种方法:***1***弹簧秤前后两次读数之差求浮力;***2***阿基米德原理求浮力;***3***浮力产生的原因求浮力等。设计出不同的实验方案,用到不同实验器材。如:弹簧秤、大烧杯、溢水杯、细线、量筒、小桶等等。通过设计不同的实验方案,使用不同的实验器材,最终得到相同的结果,从而让学生明白:事物的正确答案不止一个。还有许多演示实验和分组实验都可以从不同角度、不同器材去研究同一实验,达到相同的实验目的。由此可见,更换不同的实验器材去探索同一实验问题,对激化、深化、活化科学知识,培养学生思维的多向性是富有有效性和启迪性的。 变换实验形式,培养思维的独创性 传统的演示实验都是按事先设计好的程式,即“启发+问答+操作”的单向教学资讯传输通道,让学生按教师意图沿固定顺序、方向进行观察和思考。学生在教师“启发”的牵制下观察、思考,学生的思维被压缩在极其狭窄的单线性思维空间中,束缚了学生思维的自由度和想象力。造成思维的被动、狭窄及惰性;而变换实验的形式,则可以培养学生思维的独创性和主动性,让学生有更多的想象空间。因此,在实验教学中,教师应尽量地把验证性实验改为探索性实验,把演示实验改为边讲边实验,把习题中的叙述性实验改为操作性实验等。例如:鉴定一瓶无色溶液为硫酸,可以把它改成鉴定这一瓶无色溶液是什么?虽然难度增加了许多,但通过这个实验,学生巩固了酸、碱、盐的性质,又因为事先不知道实验现象,必须在实验中认真仔细观察和记录。实验得到什么结论又不知道,必须对实验的全部记录分析,最后得出结论。进过学生自己克服困难,百折不挠、开动脑筋而获得规律和知识,可以给学生无限的乐趣。 更改测量方法,培养思维的发散性 根据中学生的年龄特征,在学生比较透彻地理解教材的基础上,变换实验的测量方法,提出一些探索性的新问题,让学生思考解决,能有效地培养学生思维的发散性。例如,在初三复习电学内容是,在学生掌握了“伏安法”测电阻的原理后,让学生只用一只电表***电流表或电压表***一只定值电阻、一个电池组、导线、开关若干,来测定未知电阻Rx,启发学生从公式R=U/I来考虑,学生设计出很多的方案。并比较这些方案的优劣,并选取最佳实验方案。事实证明,通过不断更改实验测量方法,既能让学生从多个不同角度去思考问题,培养他们的发散性思维的能力,又能让学生懂得多中选优,择优选用的原则。 3 开展自主式的课外实验,培养实践能力 课外活动是课堂教学的延伸和补充,因此,通过课外活动的不同形式,把课堂教学和课外活动有机结合起来,培养学生观察和动手实践、分析和解决问题的能力,培养学生的创新能力和实践能力。 开展小制作、小发明活动 在活动中广泛应用所学的知识,有利于促进课堂教学;小制作、小发明活动可以培养学生的技能技巧,为学生参加经济建设和开展较复杂的科技活动打下基础。教师指导学生根据所学过的知识,利用周围常见的东西进行小制作、小发明活动。 组织实验竞赛 组织竞赛并非完全违背素质教育的规律,在很大程度上应该是一种促进作用。教师可在校内举办一些实验操作、自制仪器等竞赛。通过竞赛,同学之间竞争意识增强了,动手能力提高了,对科学的学习兴趣更加浓厚了,学习成绩也有相应的提高,同时也发现了一些动手能力较强的同学,并激发了他们强烈的创造欲望。另外,还可开展趣味实验、组织实地考察和参观、举办科普展览、讲座,开展社会调查,观看科技影片、实验录影,成立课外活动兴趣小组等。这一系列的活动,不仅扩大了学生的知识面,而且培养了他们既动脑又动手的综合实践能力,最终全面提高学生的科学素养。 总之,让实验教学贯穿于整个初中科学教学的始终,让学生在实验的海洋里尽情地遨游,在实验的乐趣中培养兴趣,掌握知识,拓展思维,提高能力,是每个科学教师的教学职责。 参考文献 [1] 浙江省初中科学新课程标准[S].

数学小论文初中论题

数学论文 —————兴趣是快乐学习数学的最好方法 孔子说,知之者不如好之者,好之者不如乐之者。带着兴趣学习数学,才能让自己更上一层楼。在深夜里,你会不会看着一串串数字而心生疲倦?在课堂上,你会不会听着老师的讲课而早已神游天外?在练习中,你会不会看着拦路虎而烦躁?久而久之,成绩下降了,你更加不愿学习它了。这可怎么办呢?你不如静下心来,慢慢体会数学中的乐趣,喜爱上数学。学习数学,有人觉得很简单,还有些同学则感到非常吃力,关键就在于是不是带着兴趣学。从小,祖冲之的小脑袋里就充满了各种奇思妙想,对于天地之间的秘密非常感兴趣。有一天,祖父带祖冲之去拜访一个精通天文的官员何承天。何承天很喜欢聪明伶俐的祖冲之,就问祖冲之:“研究天文不但很辛苦,而且既不能靠它升官,也不能靠它发财,你为什么还要钻研它呢?”祖冲之挺着小胸脯说:“我不求升官司发财,只想弄清天地的秘密。”打那以后,祖冲之经常去找何承天研究天文历法和数学,还研究各种机械造等,通过刻苦的钻研和丰富的实践,祖冲之终于成为杰出的数学家、天文学家。可见,兴趣是点燃智慧的火花,是探索知识的动力。而著名的居里夫妇却与中子的发现擦肩而过。1932年1月,约里奥.居里夫妇用放射性元素钋所放出的a粒子轰击铍核,发现从铍核发出一种看不见的穿透力很强的中性射线,这种射线能量达到55兆电子伏,能将石蜡等含氢物质中的质子击出,他们认为这种中性粒子是光子。虽然很难解释光子会有这样大的能量能够把质子撞出来,他们仍认为这是发生了类似康普顿效应的某种特殊现象。英国科学家卢瑟福早在1920年就预言了中子的存在,他的学生查德威克一直在想办法通过实验寻找中子。查德威克从约里奥.居里夫妇所做的实验受到启发,认为这很可能就是他正在寻找的中子,他重复了同样的实验并用云雾室作为探测器,从1932年2月2日开始狂热地投入工作状态,正是由于兴趣,他每天只睡3小时觉,仅用10天就成功地证实了这种射线是名为中子的中性粒子流,并计算出中子的质量。中子的发现对认识原子核内部结构是一个转折点,具有重大理论意义,由此也可以这样认为兴趣帮助查德威克获得1935年诺贝尔物理奖。"机遇只偏爱有准备的头脑”,查德威克由于有明确的指导思想,因而在实验中能拨开云雾,认清现象的本质,约里奥.居里夫妇的类似实验由于缺乏明确的指导思想,而与中子的发现这一殊荣擦身而过。明白了兴趣对激发学习潜力的神奇作用,我们就该有意识地培养自己对数学的兴趣,而不是把它看做是我们的负担或者烦恼。有的同学只对物理感兴趣,不喜欢数学,其实向纵深研究物理时发现数学是其基础,因此我们就应该提高对数学的兴趣,从而带动其它学科。小时候,我们都玩过“巧算24点”这个游戏。别看这个游戏方式简单易学,它也考验了脑子的灵活性。玩游戏也是有技巧的,比如:你可以利用3×8=24、4×6等于24、2×12=24求解,这个方法用得最多,成功率也很高。经计算机准确计算,一副牌(52张)中,任意抽取4张可有1820种不同组合,其中有458个牌组算不出24点。是不是很奇妙呢?一个小小的游戏,都包含了数学知识,何况我们的生活呢!主动去学习,去探索,发现更多的乐趣,让兴趣成为我们学习数学的最好方法。自己写的。。供参考、、

用数学精打细算 ——探究如何选购电热水壶问题的提出金融危机的来临,怎样为自己的家庭节省开支成为最热门的话题。其实,生活中处处有值得我们去发现的。比如现在,方便快捷的电热水壶已经普遍地进入我们的生活,使得我们烧水的时间大大的缩短,深受我们的青睐。故如今市场上的电热水壶的款式各式各样,型号种类也各不相同,可是如何为自己的家庭选择适当的电热水壶呢?分析与探究例:于是我对热得快与电热水壶烧开水的耗电量进行研究。我发现电热水壶上有如图所示的标记,如图2所示为电热水壶的标牌,通过我的调查,这两种型号的电器的寿命均为三年,热得快的市场价格为250元,电热水壶的市场价格为270元(每度电为元)水的体积(ml)水的体积(ml)电流(安)时间(秒)热得快电热水壶3500220/850求(1)当某家庭的日烧开水量为3500ml时,应购买哪一种更经济节能? (2)当某家庭的日烧开水为7000ml时,应购买哪一种更经济节能?解:(1)设耗电量为W,费用为S对于热得快:W1=UIT=220V**700s*(3500ml)/(1750ml)=1386000J=三年的用电费=千瓦时*365天*3*元=元S1总=元对于电热水壶:W2=PT=850s**1000W=1275000J=17/48kwhS2三年的电费=17/48千瓦时*365天*3*元=元S2总=元因为元>元 所以购买热得快更经济节能(2)对于热得快:W1=UIT=220V**700s*(7000ml)/(1750ml)=2772000J=三年的用电费=千瓦时*365天*3*元=元S1总=元对于电热水壶:W2=PT=1500W*850s*(7000ml)/(3500ml)=2550000J=17/24kwhS2三年的用电费=17/24千瓦时*365天*3*元=元S2总=元因为元<元,所以购买电热水壶更经济节能。小结通过两次的数据比较,当家庭的日烧水量3500ml时,用热得快更经济,当家庭的日烧水量为7000ml时,用电热水壶更经济。可见根据家庭一天的烧水量不同,应选用的产品种类型号也不尽相同。我们就可以根据自己家的实际情况来购买又实用又节能的热水器。总结以上只是根据个别的实例来进行计算比较,市场上各个产品的功率型号不尽相同,为了让每个家庭都能根据自己的实际情况来购买,由此,我想推出一条普适性的公式 设:水的体积(ml)功率(w)时间(S)热得快V1P1T1电热水壶V2P2T2设一个家庭每日的烧水量为xml,热得快的市场价格为a元,电热水壶的市场价格为b元,使用寿命均为3年,(每度电为元)当[(x/V1)*p1*T1]/(*10^6)*3*365*<[(x/V2)*p2*T2]/(*10^6)*3*365*化简得:[(x/V1)*P1*T1*(x/V2)*P2*T2*]/(*10^6)<(b-a)X[(p1*T2/V1)-(P2*T2/V2)]<(480000/73)*(b-a)时购买热得快更经济节能反之,当X[(p1*T2/V1)-(P2*T2/V2)]>(480000/73)*(b-a)时购买电热水器更经济节能经过以上的探究,你看到了购买中的学问了吗?赶快调查一下自己家中一天的烧水量,看看自己家的热水壶是否是做到最经济划算了呢?问题解决的反思怎样可以更经济划算的购买家电?这是一个值得探究的问题。我们应该从自己的实际情况入手,结合市场,来为自己挑选最适合的。从以上这个论题中,我们可以明白,数学可以改变生活,甚至可以改善生活。如我们可以探究如何节能减排,如何为自己精打细算等等。生活处处有数学,我们在享受生活的同时,也留心身边的数学,把学到的知识运用到实处,为自己也为他人寻求更多的窍门。

初中数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!

《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

数学小论文初中题目

1、数学中的研究性学习2、数字危机4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论1、浅谈菲波纳契数列的内涵和应用价值2、一道排列组合题的解法探讨及延伸3、整除与竞赛4、足彩优化5、向量的几件法宝在几何中的应用6、递推关系的应用8、小议问题情境的创设9、数学概念探索启发式教学10、柯西不等式的推广与应用11、关于几个特殊不等式的几种巧妙证法及其推广应用12、一道高考题的反思13、数学中的研究性学习15、数字危机16、数学中的化归方法17、高斯分布的启示18、 的变形推广及应用19、网络优化20、泰勒公式及其应用22、数学选择题的利和弊23、浅谈计算机辅助数学教学24、数学研究性学习25、谈发展数学思维的学习方法26、关于整系数多项式有理根的几个定理及求解方法27、数学教学中课堂提问的误区与对策29、浅谈数学教学中的“问题情境”30、市场经济中的蛛网模型32、数学课堂差异教学33、浅谈线性变换的对角化问题34、圆锥曲线的性质及推广应用35、经济问题中的概率统计模型及应用36、通过逻辑趣题学推理37、直觉思维的训练和培养38、用高等数学知识解初等数学题39、浅谈数学中的变形技巧40、浅谈平均值不等式的应用41、浅谈高中立体几何的入门学习42、数形结合思想43、关于连通性的两个习题44、从赌博和概率到抽奖陷阱中的数学45、情感在数学教学中的作用46、因材施教与因性施教47、关于抽象函数的若干问题48、创新教育背景下的数学教学49、实数基本理论的一些探讨50、论数学教学中的心理环境51、以数学教学为例谈谈课堂提问的设计原则52、不等式证明的若干方法53、试论数学中的美54、数学教育与美育55、数学问题情境的创设56、略谈创新思维57、随机变量列的收敛性及其相互关系58、数字新闻中的数学应用59、微积分学的发展史60、利用几何知识求函数最值61、数学评价应用举例62、数学思维批判性63、让阅读走进数学课堂64、开放式数学教学65、浅谈中学数列中的探索性问题66、论数学史的教育价值67、思维与智慧的共享——从建构主义到讨论法教学68、 方程组中的若干问题69、由“唯分是举”浅谈考试改革70、随机变量与可测函数71、二阶变系数齐次微分方程的求解问题72、一种函数方程的解法73、微分中值定理的再讨论74、学生数学学习的障碍研究;76、数学中的美;77、数学的和谐和统一----谈论数学中的美;78、推测和猜想在数学中的应用;79、款买房问题的决策;80、线性回归在经济中的应用;81、数学规划在管理中的应用;82、初等数学解题策略;83、浅谈数学CAI中的不足与对策;84、数学创新教育的课堂设计;86、关于培养和提高中学生数学学习能力的探究;87、运用多媒体培养学生88、高等数学课件的开发89、 广告效益预测模型;90、最短路网络;91、计算机自动逻辑推理能力在数学教学中的应用;93、最优增长模型94、学生数学素养的培养初探96、 城市道路交通发展规划数学模型;97、函数逼近98、数的进制问题99、无穷维矩阵与序列Bannch空间的关系100、 多媒体课件教学设计----若干中小学数学教学案例101、一维,二维空间到欧氏空间102、初中数学新课程数与代数学习策略研究103、初中数学新课程统计与概率学习策略研105、数列运算的顺序交换及条件106、歇定理的推广和应用107、解析函数的各种等价条件及其应用108、特征函数在概率论中的应用109、数学史与中学教育110、让生活走进数学,数学方法的应用将数学应用于生活——谈xx111、数学竟赛中的数论问题112、新旧教材的对比与研究114、随机变量分布规律的求法115、简述概率论与数理统计的思想方法及其应用116、无穷大量存在的意义118、例谈培养数学思维的深刻性120、从坐标系到向量空间的基121 谈谈反证法122、一致连续性的判断定理及性质123、课堂提问和思维能力的培养125、函数及其在证明不等式中的应用126、极值的讨论及其应用127、正难则反,从反面来考虑问题128、实数的构造,完备性及它们的应用129、数学创新思维的训练 130、简述期望的性质及其作用131、简述概率论与数理统计的思想和方法132、穷乘积133、递推式求数列的通项及和134、划归思想在数学中的应用135、凸函数的定义性质及应用136、行列式的计算方法137、可行解的表式定理的证明140、充分挖掘例题的数学价值和智力开发功能141、数学思想方法的一支奇葩-----数学猜想初探142、关于实变函数中叶果罗夫定理的鲁津定理的证明143、于黎曼积分的定义144、微分方程的历史发展145、概率论发展史及其简单应用147、数学教学中使用多媒体的几点思考148、矩阵特征值的计算方法初探149、数形结合思想及其应用150、关于上、下确界,上、下极限的定义,性质及应用 151、复均方可积随机变量空间的讨论155、欧几里得第五公设产生背景及其对数学发展影响160、函数性质的应用163、中数学新课程空间与图形学习策略与研究167、函数的凸性及其在不等式中的应用171、数学归纳法教学探究174、关于全概率公式及其应用的研究176、变量代换法与常微分方程的求解188、不等式解法大观189、谈谈“ 隐函数 ”190、有限维矩阵的范数计算与估计191、数学奥赛中数论问题的解题方法研究193、微分方程积分因子的研究195、关于泰勒公式196、解析函数的孤立奇点的分类及其判断方法197、最大模原理的推广及其应用198、π的奥秘——从圆周率到统计199、对现代信息技术辅助数学及其发展的几点思考200、无理数e的发现及其应用202、闭区间套定理的推广和应用203、函数的上下极限及其应用205、关于多值函数的解析理论探讨208、比较函数法在常微分方程中的应用209、数学分析的直观与严密303、求随机函数的分布函数和分布密度的方法304、条件期望的性质及其应用308、凸函数的等价命题及其应用310、有界变差函数的定义及其性质311、初等函数的极值

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。

偶们今天数学文化节考的论文题目是“圆”,围绕着圆写一段文章; 偶也再顺便帮你想两个题目(偶也是初一的噢): 初中数学是一个整体。初二的难点最多,初三的考点最多。相对而言,初一数学知识点虽然很多,但都比较简单。很多同学在学校里的学习中感受不到压力,慢慢积累了很多小问题,这些问题在进入初二,遇到困难(如学科的增加、难度的加深)后,就凸现出来。 现在中考网的初二学员中,有一部分新同学就是对初一数学不够重视,在进入初二后,发现跟不上老师的进度,感觉学习数学越来越吃力,希望参加我们的辅导班来弥补的。这个问题究其原因,主要是对初一数学的基础性,重视不够。我们这里先列举一下在初一数学学习中经常出现的几个问题: 1、对知识点的理解停留在一知半解的层次上; 2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力; 3、解题时,小错误太多,始终不能完整的解决问题; 4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏; 5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点; 以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。相反,如果能够打好初一数学基础,初二的学习只会是知识点上的增多和难度的增加,在学习方法上同学们是很容易适应的。 那怎样才能打好初一的数学基础呢? (1)细心地发掘概念和公式 很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢? 我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。 2)总结相似的类型题目 这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。 我们的建议是:“总结归纳”是将题目越做越少的最好办法。 (3)收集自己的典型错误和不会的题目 同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。 我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。 (4)就不懂的问题,积极提问、讨论 发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐。 讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。 我们的建议是:“勤学”是基础,“好问”是关键。 (5)注重实战(考试)经验的培养 考试本身就是一门学问。有些同学平时成绩很好,上课老师一提问,什么都会。课下做题也都会。可一到考试,成绩就不理想。出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。做题速度慢的问题,需要同学们在平时的做题中解决。自己平时做作业可以给自己限定时间,逐步提高效率。另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。 我们的建议是:把“做作业”当成考试,把“考试”当成做作业。 以上,我们就初一数学经常出现的问题,给出了建议,但有一点要强调的是,任何方法最重要的是有效,同学们在学习中千万要避免形式化,要追求实效。任何考试都是考人的头脑,决不是考大家的笔记记的是否清楚,计划制定的是否周全。 有理数(什么是有理数;有理数的几种分类方法;有理数在生活中的体现……) 数轴(什么是数轴;数轴可以干哪些事;在生活中数轴有什么用处……) 棱柱(棱柱的定义;生活中何处可以见到棱柱;棱柱有哪几种类别……) 棱锥(同上); 七巧板(七巧板是如何形成的;七巧板的妙用;用七巧板可拼出多少个凸多边形,如何证明……); 三视图(不同情况下的三视图……)

数学小论文数学是生活中的一分子,它是在“生活”这个集体中生存的,离开了生活这个集体,数学将是一片死海,没有生活的数学是没有魅力的数学,同样,人类也离不开数学,离开了数学人类将无法生存。 著名数学家华罗庚说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日月之繁,无处不用到数学。”特别是二十一世纪的今天,数学的应用更是无所不在。那么,我们如何从小打下坚实的数学基础,究竟什么样的课堂教学才适合我们这些新一代的学生呢?我认为,在课堂中,由学生去担任学习的主角,才是我们的心愿。那么,数学活动课就是让我们充分体现自主学习的一种教学方式。 活动课上,在老师的指导下,我们可以分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,不仅培养了我们的动手能力,而且提高了我们的思维能力,又让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。例如,我们上《平行四边形面积的计算》这节课时,老师让我们分成几个小组,发一些平行四边形的小纸片,让同学们互相讨论,怎样使一个平行四边形经过剪贴、拼凑变成一个我们已经会计算面积的图形呢?大家七嘴八舌的讨论开了,一些同学发现可以从平行四边形的任意一条高剪开,就得到两个直角梯形,依然可以拼成一个同样大小的长方形。同学们通过观察、思考,认识到拼成的长方形的“长”和“宽”,分别就是原来平行四边形的“底边”和“高”。由此,大家终于可以通过自己的动手能力而找到了平行四边形面积公式为:S=ah。 在数学的世界里,我们还可以使用图象法解数学习题。图象法解数学习题的特点是把繁琐的演算及逻辑推理过程,在函数图象的辅助下加以简化和形象直观,解题思路清淅、直观、明了、可靠.然而,怎样才能在图象法解题过程中做到顺手沾来、得心应手、准确无误呢?我认为关键是要有丰富的初等函数图象知识。而要达到这一点,就得掌握初等函数在复合过程中引起的图象变换规律,以规律求拓宽,为图象法解题创造良好的基础条件。 在教学中老师若能恰当地把握传授知识与增减能力的关系,动用灵活的教学方法,充分发挥课本的功能,就可以事半功倍,提高课堂教学效果.笔者在教学实践中,始终抓住课本这个“纲”,在课本教学上狠下功夫,减少复习资料,不搞题海战术,既减轻学生负担,又培养了学生的多种能力. 我还认为老师要重视课本概念的阅读,培养学生的学习能力。 中学生往往缺乏阅读数学课本的习惯,这除了数学难以读懂以外,另外一个原因是我们许多数学教师在讲课时,也很少阅读课本,喜欢滔滔不绝的讲,满满黑板的写,使学生产生了依赖性.数学课本是数学基础知识的载体,课堂上指导学生阅读数学课本,不仅可以正确理解书中的基础知识,同时,可以从书中字里行间挖掘更丰富的内容.此外,还可以发挥课本使用文字的垂范作用,潜移默化培养和提高学生准确说练的文字表达能力和学习能力. 重视阅读数学课本,首先要老师引导,特别在讲授新课时,应当纠正那种“学生闭着书,光听老师讲”的教学方法,在讲解概念时,应让学生翻开课本,老师按课本原文逐字,逐句,逐节的阅读.在阅读中,让学生反复琢磨,认真思考,对书中的叙述的概念,定理,定义中有本质特征的关键词句要仔细品味,深刻理解其语意,并不时地提出一些反问:如,换成其它词语行吗?省略某字行吗?加上某某字行吗?等等.要读出书中的要点,难点和疑点,读出字里行间所蕴藏的内容,读出从课文中提炼的数学思想,观点和方法.教师在课堂上阅读数学课本,不仅可以节省不必要的板书时间,而且可以防止因口误,笔误所产生的概念错误,从而使学生能准确地掌握。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 人人学有价值的数学;人人都能获得必要的数学;不同的人在数学上得到不同的发展。基于这个目的,对我们初中数学来说,老师们必须要改变原来“应试”教育的教学方法,让同学们亲自体验和经历,让他们自己去探索知识的来源。 我认为老师也要换个角度来教学,为每个学生着想 ,我不时会听到同学们说:“书本儿上我看懂了的老师讲,而且不厌其烦的讲,不懂的老师一带而过,结果还是不懂”。这种讲课就是只备教材不备学生,没有为学生着想。比如讲一个概念,不要把定义直接抄在黑板上,接着就开始做题。而要讲如何去理解、体会它,从正面、反面、侧面去讲,并指出如何去理解它,运用它,提醒同学们理解中容易出现的误区,以及它与有关概念的差别和联系,把学生易犯的错误讲在前面。再如讲解一个结论的证明或一道题的解法时,重要的不是一步步按逻辑叙述,而是要指明其思考过程。一个班级里学生的知识水平,能力水平都有所差异,总有些思维水平较低的学生,老师要在备课时换个角度来教,效果就会有所提高。 总之,老师要引导学同学们善于思考生活中的数学,加强知识与实际联系,课堂上同学们通过活动获取知识,突出了知识的形成过程,掌握学习方法,训练学生思维。生活化课堂教学,能以课本为主源,又不受课本知识的禁锢,使同学们灵活掌握知识,培养同学们实践操作能力和思维能力,既能落实减轻学生负担,又能提高教学质量。

相关百科

热门百科

首页
发表服务