首页

> 学术期刊知识库

首页 学术期刊知识库 问题

二灰钢渣基层试验研究论文

发布时间:

二灰钢渣基层试验研究论文

二灰土是用石灰、粉煤灰和土三种无机材料,按一定比例,通过专用机具,加水、拌和均匀、再摊铺碾压成型的一种路面结构层。它的具体名称视所用土的不同而定,二灰与砂砾称二灰砂砾土,二灰与碎石称二灰碎石土,二灰土与细粒土称二灰土,二灰与工业废渣称二灰渣。二灰稳定土施工质量控制是保证工程质量的关键,只有科学组织施工,才能做出高质量的二灰土结构来。否则,就会出现弹簧、起皮、开裂等常见病害。因此在二灰稳定土施工中要进行严格控制。1、原材料控制严格控制原材料的质量,不使用不符合要求的材料。在选材上应做到质量经济比较,在满足质量要求的前提下,力求经济。石灰:要符合Ⅲ级以上石灰各项技术指标的要求,采用消解后的石灰,石灰要分批进料,做到既不影响施工进度,又不过多存放;尽量缩短堆放时间,如存放时间稍长应予覆盖,并采取封存措施,妥善保管。粉煤灰:粉煤灰在二灰土施工中,在石灰的激发下,有慢性固结作用,使后期强度有较多的增长。因此,应选用较细的,比表面积大的烧湿量小的粉煤灰,不应含有团块,腐植质或其他杂质,其中SiO2、AL2O3和Fe2O3的总含量不小于70%,烧失量不大于10%,比表面积大于2500cm2/g(或90%通过筛孔,70%通过筛孔)。湿粉煤灰的含水量不宜超过35%,场地集中堆放的粉煤灰,予以覆盖,以避免扬尘或雨水冲刷。在运输时保持潮湿,并加盖蓬布,以防止粉末飞扬,产生污染。土:宜采用塑性指数12-20的粘性土(亚粘土),土中土块的最大尺寸不大于15mm.有机质含量>10%的土不得使用。土中碎石、砾石颗粒的最大粒径不超过。在实际施工中,应结合当地土质情况,多做试验,多比较,同时考虑工程成本进行优选。水:凡饮用水皆可使用,遇有可疑水源,委托有关部门化验鉴定。2、施工过程施工参数的确定在高等级公路的施工前首先要选出一段试验段,通过试验路段施工确定以下几项内容:计算用土量。根据公式1-1计算土的松铺厚度。根据稳定土的宽度及计算出的厚度和所用车辆的吨位,计算出每车土的摊铺面积。公式1-1:H=ρ0Ph(1+ω)K/ρH-原材料松铺厚度;ρ0-混合料最大干密度;p-原材料干质量与混合料干质量之比;ω-原材料含水量;ρ-原材料湿松密度;h-混合料压实厚度;K-混合料压实度。计算粉煤灰(白灰)用量。根据公式1-1计算粉煤灰(白灰)的厚度,根据粉煤灰(白灰)的松湿密度及宽度和车辆吨位,计算每车粉煤灰(白灰)的摊铺面积。确定最佳的集料配合比与松铺系数确定合理的作业长度及铺筑厚度;确定施工机械的配套情况;确定摊铺及碾压机械的施工操作系数、集料含水量、密实度。路拌法施工工艺二灰稳定土施工工艺流程。准备下承层二灰稳定土的下承层表面应平整、密实,高程、宽度、横坡度符合设计规定,没有松散材料和软弱地点。测量放样恢复中线桩,并在两侧边缘外设指示桩,标出二灰稳定土层的边缘的松铺高程和设计高程。备料粉煤灰的准备,如采用湿的粉煤灰应在使用前几天运到现场,以便滤水,干的粉煤灰应在装运前适当加水运送或用封闭车辆运输,以免扬灰。堆放时必须使粉煤灰含有足够的水分(含水量15%-20%),以防飞扬,特别是干燥多风季节更应使料堆表面保持湿润或加覆盖。摊铺上料时指派专人在现场指挥,按进料顺序并考虑均匀布置的原则,分别指挥车辆分块卸料,并及时用平地机或推土机摊平,不足部分补齐,多的推走。二灰土的上料顺序为土、粉煤灰、消石灰,二灰渣的顺序为粉煤灰、消石灰、二灰渣。运输和摊铺按工艺流程图的层铺法进行。第一种材料摊铺均匀后,先用推土机排压1-2遍,然后再运送并摊铺第二种材料;同样在第二种材料层上铺第三种材料。拌和及洒水路拌法的拌和是在三层料都摊铺好后进行。工地上使用的是两种拌和机械,一种是稳定土拌和机,一种是拖拉机带铧犁加缺口圆盘耙。二灰渣最好是先将细料拌和一遍。拌和原则是先干拌,后洒水至最佳含水量湿拌。使用拌和机拌和时,是先干拌1-2遍,后湿拌2-3遍。使用拖拉机时,是先干拌2-3遍,后湿拌5-6遍。拌和深度应达到稳定层底,严禁拌和层底部残留素土夹层,应略破坏下承层表面1cm左右,不宜过多,以利上下层结合。拌和过程中及时检查含水量,如含水量不足则用喷管式洒水车将水均匀地洒在干拌后的混合料上,在考虑风干,在蒸发风干,蒸发的情况下,控制混合料含水量等于或略大于最佳含水量(1%左右)。在拌和过程中,要及时检查拌和深度,使全深度拌和均匀。撒的混合料上,在考虑风干,在蒸发风干,蒸发的情况下,控制混合料含水量等于或略大于最佳含水量(1%左右)。在拌和过程中,要及时检查拌和深度,使全深度拌和均匀。撒水车起撒处和调头处应超出拌和段2米以上,防止局部水量过大。混合料要色泽一致,无灰条、灰团和“花脸”,并且含水量适当。拌和时应注意杜绝夹层及接头处漏拌。整形混合料拌和均匀后,立即用平地机初步整平和整形。平整过程中应避免薄层补贴,尽可能采用刮削平整,用拉线检查控制标高,横坡。初步整形后检查混合料的松铺厚度,必要时进行补料或减料,松铺系数经试验段确定。然后用平地机、拖拉机或轮胎压路机快速碾压一遍,以暴露潜在的不平整,再重复以上步骤。碾压整平符合要求后,立即压实成型。碾压应遵循先静力稳压,后振压,再静压的原则压至规定的压实度。①根据路宽、压路机的轮宽和轮距的不同,制订碾压方案,应使各部分碾压到的次数尽量相同,路面的两侧应多压2-3遍。②整形后,当混合料的含水量为最佳含水量的(+1%-+2%)时,应立即用轻型压路机并配合18t以上压路机在结构层全宽内进行碾压。直线和不设超高的平曲线段,由两侧路肩向路中心碾压;设超高的平曲线段,由内侧路肩向外侧路肩碾压。一般需要碾压6-8遍。压路机的碾压速度,头两遍以采用为宜,以后宜采用。③严禁压路机在已完成的或正在碾压的路段上调头或急刹车,应保证稳定土层表面不受破坏。④碾压过程中,稳定土的表面应始终保持湿润,如水分蒸发过快,应及时补洒少量的水,但严禁洒大水碾压。⑤碾压过程中,如有“弹簧”、松散、起皮等现象,应及时翻开重新拌和(加适量的水泥)或用其他方法处理,使其达到质量要求。⑥在碾压结束之前,用平地机再终平一次,使其纵向顺适,路拱和超高符合设计要求。终平应仔细进行,必须将局部高出部分刮除并扫出路外;对于局部低洼之处,不再进行找补。接缝和调头处的处理两工作段的衔接处,应采用搭接。前一段拌和整形后,留5-8m不进行碾压,后一段施工时,前段留下未压部分,应再加部分生石灰重新拌和,并与后一段一起碾压。养护二灰土强度的形成的快慢,很大程度上取决于结构层的湿度和养护温度。养生过程对二灰土的强度增长,防止早期开裂,板体的形成都有重要的影响,但往往被忽视,因此,应做好保湿养生工作。保湿养生,养生期宜不少于7d。养生应及时,在碾压结束压实度检验合格后,立即开始养护。①二灰稳定土底基层分层施工时,下层二灰稳定土碾压完成后,在采用重型振动压路机碾压时,宜养生7d后铺筑上层二灰稳定土。在铺筑上层稳定土之前,应始终保持下层表面湿润。在铺筑上层稳定土时,宜在下层表面洒少量水。底基层养生7d后,方可铺筑基层。②每一段碾压完成并经压实检查合格后,应立即开始养生。③用洒水车经常洒水进行养生。每天洒水的次数应视气候而定。整个养生期间应始终保持稳定土层表面潮湿。④在养生期间未采用覆盖措施的二灰稳定土层上,除洒水车外,应封闭交通。在采用覆盖措施的二灰稳定土层上,不能封闭交通时,应限制重车通行,其他车辆的车速不应超过30km/、结论由于二灰土具有后期强度高,较好的扩散应力作用,以及在形成过程中,内部进行物理化学反应,形成致密整体,具有良好的水稳定性和抗冻性,并且二灰土具有废物利用,有利于环保等优点,因此,二灰土在公路施工中广泛被使用。所以控制好二灰土施工中的各个环节对提高公路工程质量非常重要。

扬灰层研究论文

关于9楼叫特殊楼层的原因主要有两种,一种是9楼的谐音是“旧楼”,而很多人普遍喜新厌旧,所以9楼比较特殊,另一种是认为9楼处于扬灰层,在这个高度,空气中的灰尘会形成一个悬浮层,因此会极大影响人的居住体验。但是根据科学研究,这种说法是不正确的,其实9楼是比较好的楼层。

关于扬灰层的说法,扬灰层是在房产界经常会遇到的一个概念一般认为,距离地面30米左右,也就是9到11层为所谓的“扬灰层” ,也叫做“浮尘层”或者“灰滞层”。在这个高度,空气中的灰尘会形成一个悬浮层,因此会极大影响人的居住体验。

这个说法最早起源于2003年一篇《售楼小姐真情自白》的网文。而9层正好是扬灰层,因此应该避免购买。但是根据科学研究,“扬灰层”、 “浮尘层”或者“灰滞层”根本不存在。

不是。所谓的9楼是“灰尘停留层”纯粹是个谣言。

针对高层楼房中“9至11层为扬灰层”的说法,中国科学院大气物理研究所研究员王庚辰表示,该说法没有科学依据。他介绍:就大家最关心的而言,因为其本身粒子很小,颗粒物本身沉降的作用比较小,不像大颗粒物受重力的影响大。在空气流动较好、上下混合比较好的时候,细颗粒物在空气中的分布是比较均匀的,不存在9-11层细颗粒物比较集中的现象。

北大环境与工程学院教授谢绍光也表示,细颗粒物在近地面对流层混合比较均匀,“一般越往高空走,颗粒物浓度会降低。但高度会很高,至少离地面200-300米的空间里,浓度不会有大的差距。”谢绍光介绍。

所以,随着高楼楼层的变化,浓度值变化与高楼楼层关系并不大。专家表示,“9-11层是扬灰层”的说法没有科学依据。一般情况下,近地面细颗粒物的分布比较均匀,其浓度值随楼层变化差别不大。

扩展资料:

所谓的“扬灰层”“浮尘层”“灰滞层”这些是谣言,这条谣言起源于2003年一篇《售楼小姐真情自白》的网文,根本就是一家之言,不仅没有科学道理,也没有实践的检验,更没有专业测试数据的依托。

在高楼林立的城市里,风速、风向、气温等很多气象条件都受到了建筑的影响,同时城市中的车流人流也进一步扰动了气流。因此,城市中的气流特点与平坦地势的气流特点差别很大。不同的建筑街道布局,会产生各种不同的气流模式。因此,灰尘在大气中的运动和浓度分布会呈现复杂、瞬息万变的特点,很难把握其规律。

参考资料:中国新闻网-网传9至11楼为“扬灰层”空气最差 专家称不科学

参考资料:百度百科-扬灰层

居住建筑扬灰层在9-11层,在30多米高度,而大气边界层高度在数百米到数千米,这一高度远高于居住建筑的9-11层。而且大气边界层通常具有城市高于远郊、白天高于夜晚的特点,并且随着温度、气候、风速的变化而变化,并不会停止在某一高度。

即使在大气边界层内,根据很多测量结果的研究表明,污染物的浓度总体上随高度呈递减趋势,并不是累积在某一高度。其中,PM10浓度的递减趋势快于,尤其在郊区等远离市中心的地区较为明显,即一般情况下,在空中没有污染源的情况下,楼层越高,空气相对越干净。对于常见PM1,和PM10浓度随高度的变化规律研究,有数据显示当高度达到80m左右处(约26层楼高)时,PM1、和 PM10浓度衰减分别能达到20%、38%和40%左右。

是扬灰层8——11层是环境学上所谓的扬灰层,空气中的尘埃、有害物质在这个高度有个停留的过程 ,其实由于“峡谷效应”的影响(“峡谷效应”指的是周边有公交干道或工厂、以及高楼密集的住宅),在街道风的作用下,含有灰尘的气流不是平稳移动,而是在高楼之间的某个区间上下“徘徊”。近地面的污染物随气流上升到一定高度后又向下或水平方向消散。这个“高度”,大概在30米左右。也就是8-11层之间。眼下很多小区密集区高层住宅的中间位置有一个“污染物高密度区域”。说白了,这些楼宇的8-11楼之间灰尘会逗留其间,在此过程中,居住者会与灰尘“同呼吸共命运”一段时间后再“吻别”。 而且这里正好是噪音较大的空间,许多消费者以为身居高楼就能“远离尘嚣”,谁能想到,真正在一楼倾听车辆噪声,还不如在8-14层听得真切。

桩基水平试验研究论文

管桩的应用和研究现状分析论文

摘要: 管桩作为一种新桩型以其施工方便、承载力高、质量可靠、较为经济等优点越来越得到广泛的应用。本文根据管桩的承载力特性和受力状况,分析了影响管桩承载力的因素以及提高管桩承载力的方法,并基于对施工中常见问题的探讨,提出有效的防治措施。

关键词: 管桩;承载力;施工;质量控制

1 前言

管桩作为一种地基处理及桩基础形式从上个世纪初产生到现在已经得到了很大的发展,在各种建筑基础中得到广泛地应用,并发挥着巨大的作用。从国外管桩的发展来看,从1920年澳大利亚发明了离心法制作混凝土制品、1925年日本引进这种技术用于钢筋混凝土管桩,在1962年开发预应力混凝土管桩(PC管桩),到现在已有八九十年的历史,目前管桩已朝着全面取代传统实心桩方向发展。我国是1944年开始生产混凝土离心(RC)管桩,到SO年代末期研究成功预应力抽筋管桩,即采用后张法对桩身混凝土施加预应力。近15年,我国生产的预应力混凝土管桩无论从产品性能和产量上都达到了世界前列,呈现出布局面广,产品品种、规格齐全,生产技术成熟,配套应用技术日趋完善等特点。据资料反映,2004年福建省实际利用预制高强混凝土管桩就达2500万米。为了更合理利用管桩这一技术、有效地推广使用管桩,对管桩进行研究是极为必要的。

管桩的种类分为:钢管桩、预制混凝土管桩及钢管混凝土管桩。钢管桩及钢管混凝土管桩具有高强度、抗冲击疲劳性能好、贯入能力强、便于割接、质量可靠、运输方便、沉桩速度快及挤土影响小等优点,但造价高,约为预应力混凝土管桩的3-10倍。因此,一般只在必须穿越砂层或其它桩型无法施工和质量难以保证、或工期紧迫等情况下使用,或者是一些重要的特种工程的基础上,如海上钻井平台,港口平台等工程中使用。预制混凝土管桩之所以得到迅速发展和广泛的应用,主要是由于具有以下优点:

(a)施工工期短,施工方便、不受季节限制,工业化生产:

(b)对施工场地无污染,若采用静压式施工更无噪音,符合绿色环保施工要求;

(c)经济效益可观,同样的地基处理效果(竖向承载力及水平承载力)所使用的混凝土比实心桩节省30%-60%且抗腐蚀能力强,工作性能同钢管桩基本相似。

(d)对持力层起伏变化较大的地质条件适应性强,一般情况下,软土、粘性土、粉土、砂土及全风化岩体等地层条件均可采用。因此像高层建筑、码头工程、桥梁工程、高速公路、铁道工程等除必须采用钢管桩的特殊基础外,在工程中钢管桩已大部分被预制混凝土管桩所代替。现在我国预制混凝土管桩使用量已经相当可观。

2 管桩的承载特性及承载力分析

2.1 管桩的承载特性

管桩的底桩端部的桩尖(靴)形式主要有十字型、圆锥型和开口型。前两种属于封口型。采用封口型桩尖的管桩其承载力主要由桩周的侧摩阻力及桩端的端阻力组成;采用开口型桩靴的管桩则在沉桩过程中桩身下部1/3-1/2桩长的内腔被土体充塞,挤土效应较弱(与沉管桩、静压实心混凝土桩比),对周围建筑物及环境影响小,具有较高的环保性能。但是内腔土塞却为管桩提供了内侧摩阻力,使得管桩的承载力的组成变得更为复杂。影响管桩承载特性的因素很多,比如桩侧土性、桩端土性、桩径、开口管桩的壁厚、人土深度、施工顺序等。预制混凝土管桩通常只具备开口桩的功效。

2.2 管桩的受力分析

2.2.1 管桩的竖向承载性状和单桩极限承载力 确定管桩竖向承载力的方法很多,最可靠的方法是静力载荷试验法,目前比较常用的公式有两类:一是以土的物理力学指标和大量的试桩资料为依据,经统计分析建立桩侧和桩端阻力与土类指标之间的关系;另一类是以土的力学性能指标如土的标准贯入击数为依据,我国、欧洲及美国API-RP2A的地基基础规范均采用第一类公式。其表达式为

由于各地地质条件不同,地质结构比较复杂,桩的类型又多,沉桩工艺也多种多样,很难用单一形式的公式来反映工程实际。

从文献进行的破坏荷载试验得知,当桩顶竖向受压时,桩身上部首先产生垂直应力和弹性变形,并向桩身下部传递,自上而下逐步建立摩阻力,桩身处于弹性压缩阶段。当荷载较小时,变形量较小,桩基基本没有发生位移,桩端阻力为零。随荷载增加,当垂直应力传递到桩端时,桩端土逐步压缩,桩土相对变形加大,桩侧摩阻力进~步发挥。在加荷载最后阶段,随着桩端阻力的不断增加,桩顶部位侧阻力首先达到极限(摩阻力趋于定值),并向下逐步扩大极限阻力的'分布范围,在此过程中相对于荷载增量,作为抗力的摩阻力增量所占比例愈来愈小,而桩端阻力增量所占的比例则愈来愈大。最终导致桩端土出现塑性区并迅速扩展。桩因急剧下沉而失效,桩端土的刺入破坏先于桩身强度破坏。此时桩所承受的荷载就是桩的极限承载力。

2.2.2 管桩的水平承载性状和单桩极限承载力

随着我国工程技术的迅速发展,大陆架浅海石油的勘探和开发技术的进步以及陆上高层建筑的发展,使得这些管桩不仅要承受巨大的竖向载荷,还要承受巨大的水平载荷。而桩在侧向载荷作用分析是工程中非常重要但却尚未圆满解决的问题。文献采用卧式千斤顶施加水平力试验来测定单桩水平载荷,施加的水平荷载分级一般取预估水平极限荷载的1/10-1/15,每级荷载施加-后,恒载4min测桩的水平位移值,然后卸载至零,停2min测出桩的残余水平位移值,至此完成一个加卸载循环,如此循环5次便完成一级荷载的试验观测。多级加荷后,出现下列情况之一时可停止试验:1)桩身折断;2)水平位移超过40mm或达到设计要求的水平位移允许值。当桩身应力达到极限强度时的桩顶水平力使桩顶水平位移超过20-30mm,或桩侧土体破坏的前一级水平荷载,即是单桩水平极限承载力标准值。

2.2.3 影响管桩承载力的因素

2.2.3.1 偏斜

偏斜桩是指随着桩周土的水平运动,桩与土之间产生的水平压力导致桩身产生水平挠曲和弯矩,致使桩偏斜的被动桩。预应力管桩偏斜后,其极限承载力要低于铅直桩的极限承载力。偏斜预应力管桩的承载力减少程度不仅与其偏斜的程度有关,且与其所处的土层性质、入土桩长、桩与承台布置等均有一定的关系。

当遇到超过偏斜限量值的桩时,无论其是否发生裂缝,均应进行纠偏扶正处理,将其倾斜度控制在允许的范围内。较浅的(一般2-3m)可以将桩倾斜反向土方挖除后扶正;较深的可以用钻孔取土、高压水冲取土等方式将桩倾斜反向一侧土取出后扶正。然后对纠偏扶正的桩进行检测,看其是否在纠偏施工中发生异常情况,如无异常可进行下步施工。

2.2.3.2 裂缝

浅部裂缝——一般裂缝位置多发生在深度4-6m,也有的在3m以内,出现这种 情况多数是桩裂缝部位的下部有相对比较坚硬的土层。深部裂缝一裂缝位置发生在8-10m,出现此种情况多是地基土上部软土层较厚。裂缝的存在势必影响到桩基竖向永久性受荷特性,为确保桩基工程的安全使用,需对桩基进行加固处理。如接桩、补桩,一定情况下还需经计算确定。

2.2.3.3 偏心载

竖向荷载的偏心是预应力混凝土管桩产生弯曲荷载的重要原因,荷载的偏心也势必影响桩的竖向承载力。预应力混凝土管桩基础常采用柱下多桩承台,严格地讲,承台下大多数桩都处于偏心承载状态,对于偏心承载桩如何对桩的承载能力做出正确的评估,桩在正常使用极限状态下所能承受的偏心距临界值是多少,竖向荷载偏心距与桩的承载能力有何关系,这是预应力混凝土管桩基础设计要特别考虑的问题。

文献根据材料力学原理和现行钢筋混凝土结构设计规范的规定,提出预应力混凝土管桩在偏心荷载(或在桩顶水平位移)作用下内力与位移的计算方法,包括纯弯状态下桩身抗裂弯矩临界值;在轴心力和弯矩共同作用下桩身抗裂弯矩的极限值;桩顶允许承载力与竖向力偏心距(或桩顶水平位移)之间的相互关系式等。

3 管桩设计施工中的问题及质量控制

3.1 挤土效应

在沉桩过程中,土体向四周排挤,使周围的土受到严重的扰动,主要表现为径向位移,桩尖和桩周一定范围内的土体受到不排水剪切以及很大的水平挤压,产生较大的剪切变形,形成具有很高孔隙水压力的扰动重塑区,降低了土的不排水抗剪强度,促使桩周邻近土体会因不排水剪切而破坏,由于群桩施工中的迭加作用,会使已打入桩和邻近管线产生较大侧向位移和上浮。桩群越密越大,土的位移也越大。

施工遇到挤土效应采取的防治措施是:

①合理安排沉桩顺序、控制每日打桩的数量,减少孔隙水压力的迭加:

②采用先开挖基坑后沉桩的施工工序,可减少地基浅层软土的侧向位移和隆起,有利于降低沉桩所引起的超静孔隙水压力,从而减少地基深层土体变位。

③在场地设置袋装砂井或塑料排水板,创造排水条件以降低孔隙水压力。

④预钻孔辅助沉桩。

3.2 浮桩

浮桩现象是静压管桩挤土效应的一种表现形式。该问题表现得很隐蔽,并且往往是等到压桩工程完工后做静载检测时才发现,而此时桩机可能已退场。此时再来处理就非常被动。比较好的处理措施是:提前选取有代表性的桩进行测量监控,在桩施工结束后应立即用水准仪测量记录其桩顶标高,并在整个施工过程中定期复测,通过比较来检查桩身是否有上浮现象。如果发现有上浮现象,则需采取前面提过的控制压桩速率、重新调整压桩路线或钻孔取土等措施,减少挤土效应进而控制桩身上浮现象。如果采取上述措施后仍不能解决桩身上浮现象,则可采用复压的补救方法进行处理。

3.3 沉桩达不到设计要求

沉桩达不到设计的最终控制要求主要原因是:

①勘探点不够或勘探资料粗糙,对工程地质情况不明,尤其是对持力层起伏标高不明,导致设计考虑持力层或选择桩长有误。

②设计持力层选择不当,预应力管桩持力层宜选择强风化层,以达到较高承载力。但当强风化层埋深较深时,考虑到桩长限制,不得已选择全风化层作持力层时,承载力将受较大影响,特别是全风化层有遇水易软化特点,地下水可能通过桩管内从桩尖渗入,大大降低桩端承载力。

③设计对单桩承载力预估不准,导致实际桩长与压桩力不匹配。

④桩身断裂致使不能继续施压。

防治措施为首先详细探明工程地址地质情况,必要时应作补勘,正确选择持力层或标高;施工采用合适吨位桩机;根据工程地质条件,合理选择桩的施工方法及打桩顺序,避免断桩,确保桩身质量。科学设计,通过试桩确定合理终压标准。

3.4 断桩

断桩是预制混凝土管桩施工中常常遇到的问题,其产生的主要原因主要有:

①使用了厂家生产的未经检验的不合格的桩;

②桩尖碰到地下障碍物管桩被蹩断:

③管桩施工中垂直度没有控制好;

④管桩由软弱土层突然进入硬土层,桩机压力迅速升高,桩身受到瞬间冲击力而引起;

⑤基坑施工中,由于软土推挤隆起,基坑壁侧向移动造成断桩。

施工中若发现有断桩,就要采取补强加固方案处理。对预应力管桩浅层断桩可采用接桩。对深层断桩的接桩(包括部分错位桩纠偏后接头)要抽干桩内积水,确认桩的倾斜在允许范围内,放人钢筋笼,钢筋笼应伸到断桩下3m,用高等级混凝土灌注。接桩后要进行承载力检测。当断桩处错位,无法复原时,应重新补桩。对工程事故应分析问题的原因、补桩的可能性和对已施工桩的影响,考虑其它可利用条件以及经济和工期等要求。

4 结语

管桩作为一种新桩型以其桩身质量可靠、承载力高、施工速度快、现场整洁、较为经济等优点越来越得到广泛的应用。但由于管桩的应用时间不长,在研究和应用等方面都还存在着不少亟待解决的问题。而工程实践的发展已远远超过理论研究水平,使得管桩的应用受到严重制约。本文总结了管桩的承载力特性和受力分析、影响管桩承载力的因素以及提高管桩承载力的方法、施工中常见问题以及防治措施。但文中所涉及到的诸多问题目前都还没有得到圆满的解决,因此还需要通过大量的科学研究和工程实践来做进一步探讨。

王腾,张修占,朱为全 深水立管涡激振动单模态响应时频联合预报模型《中国石油大学学报》2010年 第1期,第60页王腾,王天霖 粉土p-y曲线的试验研究 《岩土力学》2009年 第5期 第王腾,张修占,朱为全 平台运动下深水隔水管非线性动力响应研究 《海洋工程》2008年 26卷3期 第21-26页王腾,孙宝江,深水井口结构套管水平承载机理研究 《中国石油大学学报》2008年 第5期 50-53王腾,孙宝江,软粘土中水平承载模型桩试验研究 《中国石油大学学报》2007,31(1),76-79王腾,水平荷载下套管桩基的非线性响应分析 《岩土力学》2006年 第27期 836-838 (EI收录)王腾,董胜土参数对桩基水平响应影响的研究,岩土力学,。(EI收录)王腾,董胜考虑桩土作用独桩海洋平台横向振动特性研究,中国海洋大学学报,。董胜,王腾防洪工程项目的风险评估,水利学报,。(EI收录)Wang Teng The vibration properties of jacket platforms embedded in layered soil,the 12th ISOPE, (EI收录)王腾,王奎华,谢康和变截面桩速度导纳的解析解, 岩石力学与工程学报,。王腾,王奎华,谢康和任意段变模量桩纵向振动的解析解,固体力学学报, 。王腾,王奎华,谢康和成层土中桩纵向振动特性,土木工程学报, 王腾,王奎华,谢康和 粘弹性桩纵向振动问题的积分变换解,工业建筑,。Wang Teng, Wang Kuihua An analytical solution to longitudinal vibration of a variable modulus pile of infinite segments,J. solid mechanics, (SCI收录)。王腾,王奎华,谢康和任意段变截面桩纵向振动的半解析解及应用,岩土工程学报,。(EI收录)。

(五)护壁泥浆的拌制1、护壁泥浆要用优质泥浆,保持桩孔不坍、不缩,尤其对较厚的填土及淤泥质土要采用优质泥浆。2、在钻进时,由于旋挖钻机为静态泥浆无循环钻进,且成孔速度快,护壁泥皮薄,据地质勘查资料知本场区存在较厚的软塑性粘土层和粉砂地层,易造成缩孔和塌孔的事故,因而钻进时对泥浆性能要求较高。为了满足施工要求,在制作泥浆时,应注意以下几点:(1)膨润土必须充分水化搅拌,保证浆体均匀一致。造浆后应静置24小时之后方可使用,保证膨润土的充分水化,泥浆各项指标符合要求。(2)泥浆絮凝或沉淀过多时,泥浆必须用空压机送风反复搅动,符合要求后才可送入孔内使用,否则势必会造成孔内沉渣过多或其它孔内事故。(3)为了保证安全连续正常施工确保成孔速度、成孔质量及灌注成桩质量,开孔前泥浆总量应达到设计方量的倍左右方可开钻,质检员、技术员要随时观察泥浆性能的变化,及时检测泥浆的性能,不符合设计要求的泥浆禁止送入孔内,钻进时及时足量补充孔内泥浆,防止孔内泥浆落差太大,即泥浆液面深度低于护筒进浆口30cm以下,而造成孔壁坍塌。尤其不允许浆面落到护筒底以下。在雨天施工时,应注意泥浆性能的变化,及时根据实际情况调整泥浆原料的配比。钻机因故停钻时(如机械故障、修理钻具等),要及时向孔内补充泥浆,保持泥浆高度,以保证孔内安全。二次清孔时沉淀池泥浆容量要大,保证清孔时孔内大量泥沙的有效沉淀,使二次清孔达到设计要求,禁止孔内泥浆低于护筒溢浆口。比重 粘度(S) 含砂量(%)~ 16~22 ≤4(4)施工中做好现场泥浆配置、排污、更换工作,设专人进行泥浆管理,保持泥浆比重在~之间。随时跟踪、检查循环池内泥浆比重、粘度,确保钻进需要。泥浆指标如表: (5)对于固相含量过高,比重、粘度超过规定值,不宜稀释处理的废浆应及时排运出场外处理。(6)当地下水位较高时,为保证钻孔过程不坍孔、缩孔,必须保证孔内水头,且要将泥浆比重调大。在钻进过程中,要及时补浆,确保钻进过程中的水头高度。(7)在泥浆池边设好防护安全栏。(8)为了保护环境,钻孔泥浆经沉淀处理合格后将钻渣运往指定地点。(六)钻孔1、准备好以上工作后,请监理工程师现场检查,钻机开始钻进施工。2、由施工经验丰富的同志担任机班长,负责成孔钻进设备的操作,并对机长进行钻进注意事项交底,强调机长对地质状况进行掌握,要求将地质剖面图和柱状图悬挂在操作室,掌握每根桩的地质情况,根据实测深度并对照地层埋深,判断钻进进度,在地层变化处附近,捞取钻渣样品与地质资料核实,以精确控制换层时的钻进参数,确保成孔质量。3、开钻时应慢速钻进,待导向部位或钻头全部进入地层后,方可加速钻进。但是对于加夹层(粉砂层)钻进时,需要调整泥浆比重到左右,并且采取慢速钻进的方法进行施工。4、旋挖机钻进过程中,钻杆要保持垂直状态,严格控制垂直度在规范允许范围之内。5、钻机钻进过程中应采用减压钻进,即钻机的主吊钩始终要承受的钻压不超过钻具重力之和(扣除浮力)的80%。6、要安排专人定时检查孔内泥浆水头高度,发现不足并及时足量补充。钻孔内泥浆水头高度应不低于护筒排浆孔下30cm,并高于地下水位2米。7、合理控制起钻和下钻时速度,避免激动压力和抽吸力对孔壁的影响。 8、在提钻头除土或因故停钻时,应保持孔内具有规定的水位和要求的泥浆相对密度和粘度。处理孔内事故因故停钻,必须将钻头提出孔外。对于地质状况发生大的变化,旋挖钻机不能钻进时,及时更换小钻头试钻,如果还是不能继续钻进,需要换旋转钻机或冲击钻时,立即派人24小时内调用钻机进场,确保孔壁不坍塌,或发生其他以外情况。9、做好钻孔施工记录,记录必须与实际工序同步,真实、齐全、整洁。孔深、钻速、换层特别是持力层应记录清楚。(七)成孔检测及清孔1、钻孔达到设计标高后,对孔深、孔径进行检查,符合规范要求后方可清孔,准备下钢筋笼。孔深采用测绳进行测量,测绳必须经常进行校正、修订,以保证测量准确。孔径采取下探孔器的方法进行检查,探孔器直径为钢筋笼直径+,探孔器的长度为设计直径的4~6倍。成孔深度和孔径不小于设计值,泥浆比重、含砂率及粘度由试验人员在现场进行测定,泥浆比重为~以内,含砂率小于4%,粘度为16~22s,以上均符合要求后,并经监理工程师验收合格后,才允许钻机移位,并准备清孔、下钢筋笼。2、清孔可采用抽浆方法,在清孔排渣时,必须保证孔内水头高度,防止塌孔。清孔后孔底沉渣厚度不大于100mm,合格后在孔底提出泥浆式样进行性能指标试验,试验结果必须符合相关技术标准要求。钻孔桩成桩检测标准序号 项 目 允 许 偏 差1 孔 径 不小于设计孔径2 孔 深 不小于设计孔深3 孔位中心偏差 不大于50mm4 倾 斜 度 不大于1%5 灌注混凝土前孔底沉渣厚度 不大于设计要求(八)钢筋笼制作、安装1、钢筋笼所用钢筋规格、材质及各项性能指标均应符合设计及规范要求,有出厂证明或检验报告单。原材料进场堆放在钢筋底部衬垫枕木上,确保钢筋堆放离地面高30cm,保证底部排水畅通。钢筋放置过程中,需采用彩条布遮盖防雨防尘。现场施焊的焊缝应按规范要求并抽检试验。 2、设专用胎架和施工平台,按照设计图纸将钢筋笼按要求分段制作,加强箍筋间距按≤2m设置。3、钢筋加工严格按照设计图纸和相关技术规范的要求执行,主筋在制作前必须整直,整直后钢筋弯曲度应不大于长度的1%,并不得有局部弯折。主筋一般应尽量用整根钢筋,分段后的钢筋笼主筋接头应互相错开,接头长度内,同一根钢筋不得有两个接头,配置在接头长度内的受力钢筋,其接头截面积占总截面积百分率小于50%(接头长度为35d)。4、成型钢筋笼吊放、运输、安装,应采取预防变形措施,不得产生运输变形。为防止钢筋笼在吊装、运输、安装过程中变形,对钢筋笼加强筋处进行交叉加固,加固方式采取在钢筋笼内加十字撑的方式,并焊接牢固,当钢筋笼安装就位后将其拆除。钢筋笼分节起吊连接时,采用25t或35t汽车吊机大小钩配合起吊,并将吊点处采用扁担加固并起吊,以防止钢筋笼变形。5、按顺序逐节垂直下放钢筋笼,上下节钢筋笼各主筋应对准校正,节段间在孔口采用帮条焊接方式对称施焊,焊接长度满足规范要求。下钢筋笼时间要尽量缩短,并每隔2米在同一截面上按90度对称安置4个钢筋保护筋。6、桩基检测声测管采用Ф51mm热轧无缝钢管,壁厚3mm。安装声测管钢筋笼的要求将声测管伸入桩底部并用薄钢板堵焊,每隔2m用5号铁丝将声测管绑扎在主筋上及在加强钢筋上焊钢筋环固定,将声测管分节焊接,焊缝牢固、饱满,确保声测管不漏水、不泌水。将声测管内灌满水后,将上部用薄钢板堵焊,以防止钻孔泥浆或混凝土砂浆进入声测管而影响桩基检测。声测管焊接时,必须采用小焊条,防止将声测管焊破漏水。7、钢筋笼起吊时,吊点应拴牢并布置合理,使笼子吊起后处于自然铅垂状态,并无明显变形,下吊钢筋笼骨架过程中,不要碰撞孔壁,要采取措施让其沿孔中心垂直插入。在钢筋笼外侧焊设计图纸上的定位钢筋,以保证保护层的厚度。吊放钢筋骨架入桩孔时,均匀下落,保证钢筋笼居中。钢筋笼下到标高后,要检查钢筋笼顶部的中心偏差,使之<5cm,待全部入孔经确认符合要求后,将钢筋笼进行固定,避免下沉和灌注混凝土时上浮。8、钢筋骨架制安精度要求见下表:钻孔桩钢筋骨架制作安装标准序号 项 目 允 许 偏 差1 钢筋骨架在承台内埋置长度 ±100mm2 钢筋骨架直径 ±20mm3 钢筋间距 ±(d为钢筋直径)4 加劲筋间距 ±20mm5 箍筋间距或螺距 ±20mm6 钢筋骨架垂直线 1%(九)下导管、二次清孔1、下导管混凝土灌注导管采用快速卡口垂直提升导管。导管使用前进行试拼、水密承压和接头抗拉试验、长度测量、标码等工作,进行水密试验的试压压力不应小于6kg/cm2。导管内壁应光滑平顺,连接紧直,使用一段时间后,应检查其水密性。导管下孔时,必须加密封圈并抹黄油,保证密封,孔内导管必须丈量准确,满足孔深要求,下端出口处应距孔底20-40cm。吊装时,导管位于井孔中央,避免挂碰钢筋笼,并在灌注前进行升降试验。坚持实行导管使用的检查鉴证制度。提升导管时要掌握每次的提升高度,保证埋入深度2~6m,以免混凝土“洗澡”。卸下的导管要及时冲刷干净,绝不允许在连接处和丝扣处有水泥砂浆残留,并按一定编号放置。2、二次清孔导管就位后,立即进行第二次清孔,清孔采取气举反循环进行清孔,清孔后沉渣必须小于100mm才允许灌注混凝土。清孔时要适当转动和升降导管,以利于孔底边部钻渣清出,并注意空压机的送气量,以满足清出沉渣的要求。取泥浆样测试合格,并经监理共同检测孔底沉渣达标后应立即灌注混凝土,若等待时间过厂则在灌注混凝土前重新测定孔底沉淤厚度。(十)混凝土水下灌注1、桩身混凝土采用商品混凝土、砼搅拌车直接送入仓的方法施工。采用导管法进行水下灌注。2、灌注混凝土前应将灌注机具如储料斗、溜槽、漏斗等准备好。3、水下混凝土灌注必须保证良好的和易性,坍落度18cm~20cm,混凝土到达现场后,现场试验室值班技术员在现在再做坍落度试验。4、采用罐车运输混凝土至现场,直接倒入导管内进行灌注,混凝土接近桩顶时,改用吊斗倾倒以提高漏斗高度。5、灌注时要求首批混凝土方量应能满足导管首次埋置深度≥1m和填充导管底部的需要,具体首批混凝土计算见下式:所需混凝土数量可参考公式: V≥ (H1+H2) + h1式中:V-首斗混凝土方量(m3); D-桩孔直径(m); H1-桩孔底至导管底端间距,一般为;H2-初次导管埋深m,取; d-导管内径m; H-灌注混凝土时孔深度m; h1-桩孔内混凝土达到埋置深度H2时导管内部混凝土柱平衡导管外;根据公式HWr1=h1r2计算,其中r1为泥浆的比重,取;r2为混凝土的比重,取,h1按最大孔深度H计算,即考虑最不利情况。 桩径最大孔深度H布置及V的计算序号 直径(m) 最大孔深的墩位 最大孔深(m) h1(m) 导管直径(m) 首斗砼方量V(m3)1 Z154 Z171 Z140 、混凝土通过砼搅拌车运送到作业地点后,用汽车起重机配合灌注。为了保证混凝土灌注顺利进行,施工中作好下列工作:(1)灌注水下混凝土前,探测孔底沉淀物厚度,如不能满足要求,则要利用导管按反循环法进行再次清孔。(2)砍球前准备足够的混凝土储备量,保证砍球后导管的埋置深度大于1m以上。(3)砍球前,导管距孔底的高度适当,一般取20~40cm。(4)灌注过程中,注意观察导管内混凝土面下降和孔内水位升降情况,及时测量孔内混凝土面高度。(5)导管埋置深度适当,保证埋置深度不大于6m ,且不小于2m。导管提升缓慢,不挂钢筋笼。(6)混凝土灌注到达钢筋笼底部以下约1m时,适当放慢灌注速度,减小混凝土的冲击力,防止钢筋笼上浮。当混凝土上升到钢筋笼底部以上4m左右时,提升导管,使其底口高于钢筋笼底部2m以上,可恢复正常灌注速度。(7)灌注作业连续进行,不得中途停顿,保证整桩在混凝土初凝期内灌注完成。(8)发现问题,及时分析原因,果断采取措施,避免发生断桩事故。(9)混凝土灌注至桩顶以后,超出设计桩顶30~50cm,然后及时将已离析的混合物及水泥浆等清除干净。(10)每桩按照规范要求取试件2~4组,当桩身混凝土达到其设计强度的70%后,检测桩身混凝土的质量。(11)钻孔桩质量控制标准见下表:钻孔灌注桩实测项目项 次 检 查 项 目 规定值或允许偏差值1 混凝土强度(Mpa) 在合格标准内2 桩 位(mm) 群 桩 100 排 架 桩 503 倾 斜 度 1%4 沉淀厚度(mm) 摩 擦 桩 符合设计要求及施工规范 支 承 桩 5 钢筋骨架标高(mm) ±50(十一)桩头处理及检测待桩基混凝土的强度达到设计强度时,处理桩头混凝土至设计标高,对每根桩都进行小应变检测或超声波检测。(十二)钻孔灌注桩施工的注意事项1、钻孔前熟悉图纸,弄清地质情况,根据地质情况确定钻孔的方案方法,对于地质结构为砂层的地层,施工时一定要调整泥浆比重,尽量保证在左右,以使泥浆护壁可以起到保护孔壁的作用。2、钻孔前检查确认孔位地下是否有管线,光缆或其他物体。3、桩轴线的控制:钻机就位施钻时,将钻机底盘调成水平状态,开第一钻时,小心使锥尖对准设计中心,盖上封口板,卡上推钳,试转数圈,用全站仪监控钻杆垂直度,满足要求后,正式开钻,钻进过程中,随时有全站仪监控,保证倾斜度<1/100。4、碰到岩层无法钻进时,需要更换为回旋钻机或冲孔钻机进行施工。在开孔前就配备回旋钻机或冲孔钻机以备急用,以缩短钻孔的停放时间,避免坍孔或缩孔情况发生。5、旋挖钻机在钻进过程中,需要加长钻杆或依据地层更换钻头,在此间歇时间内,需要特别注意孔内情况,以防孔内坍孔。6、在钻孔时,钻机必须配置两套钻头以备更换,在钻进至粉砂层或砂层时,需要特别注意泥浆比重、孔内外水头差等,确保钻进安全、有效的进行。7、在桩基施工时,第一根桩基和第二根计划开钻的桩基要错开,需要跳开相邻桩位的桩基,待对角方向的桩基完毕后才开始施工相邻位置的桩基。8、在终孔和清孔后,应对成孔的孔位、孔深、孔形、孔径、垂直度、泥浆比重、孔底沉淀厚度等进行检验,要求满足设计规定。9、在桩基灌注过程中,必须配备一台砂石泵,如由于灌注过程中发生堵管、气阻或导管提离混凝土面,立即用砂石泵抽出已灌注混凝土,重新清孔后再进行灌注。10、对混凝土的强度、级配、坍落度及混凝土的流动性进行检查。混凝土拌合物应有良好的和易性,在运输和灌注过程中应无显著离析、泌水现象,混凝土保证有足够的初凝时间。灌注时应保持足够的流动性,其坍落度宜为180~200mm。混凝土拌和物中宜掺用外加剂、粉煤灰等材料;首批混凝土拌和物下落后,混凝土应连续灌注。11、必须对每根桩做好相应的施工记录,并按规定留取混凝土试验件,做出试压结果。将上述资料整理好,提交有关部门检查、验收。12、在所有的钻孔灌注桩完成以后,必须对施工场地进行清理,所有的钻渣和泥浆必须清理干净。(十三)钻孔及水下混凝土灌注过程中异常事故及处理办法1、坍孔原因分析:①护筒埋置过浅,周围封填不密漏水;②操作不当,如提升钻头或掏渣筒倾倒,或放钢筋骨架时碰撞孔壁;泥浆稠度小,起不到护壁作用;③泥浆水位高度不够,对孔壁压力小;向孔内加水时流速过大,直接冲刷孔壁;④在松软砂层中钻进,进尺太快。预防及处理措施:坍孔部位不深时,可改用深埋护筒,将护筒周围回填土,夯实,重新钻孔;轻度坍孔,可加大泥浆相对密度和提高水位;严重坍孔,用粘土泥膏投入,待孔壁稳定后采用低速钻进;汛期水位变化过大时,应采取升高护筒,增加水头或用虹吸管等措施保证水头相对稳定;提升钻头,下放钢筋管架应保持垂直,尽量不要碰撞孔壁;在松软砂层钻进时,应控制进尺速度,并用较好泥浆护壁。2、钻孔偏斜原因分析:①桩架不稳、钻杆导架不垂直,钻机磨耗,部件松动;②土层软硬不匀,致使钻头受力不均;③钻孔中遇有较大孤石、探头石;④扩孔较大处,钻头摆动偏向一方;⑤钻杆弯曲,接头不正。预防及处理措施:检查、纠正桩架,使之垂直安置稳固,并对导架进行水平与垂直校正和对钻孔设备加以检修;偏斜过大时,填入土石(砂或砾石)重新钻进,控制钻速;如有探头石,宜用用冲孔机低速将石打碎,倾斜基岩时,可用混凝土填平,待其凝固后再钻。3、卡钻原因分析:①孔内出现梅花孔、探头石、缩孔等未及时处理;②钻头被坍孔落下的石块或误落入孔内的大工具卡住;③入孔较深的钢护筒倾斜或下端被钻头撞击严重变形。预防及处理措施:对于向下能活动的上卡,可用上下提升法,即上、下提动钻头,并配以将钻杆左右拔移、旋转;卡钻后不宜强提,只宜轻提,经提不动时,可用小冲击钻锥冲或用冲、吸的方法将钻锥周围的钻渣松动后再提出;施工中注意保持护筒垂直,防止倾斜;钻头尺寸应统一,下钻应控制钻进速度,不要过快。4、扩孔及缩孔原因分析:①扩孔是因孔壁坍塌或钻机摆过大所致;②缩孔原因是钻锥磨损过甚,焊补不及时或因地层中有软塑土,遇水膨胀后使孔径缩小。预防及处理措施:注意采取防止坍孔和防止钻锥摆过大的措施;注意及时焊补钻锥,并在软塑地层采用失水率小的优质泥浆护壁;已发生缩孔时,宜在该处用钻锥上下反复扫孔以扩大孔径。5、沉碴厚度超标原因分析:清孔泥浆含砂率大、胶体率太小、比重过大。预防及处理措施:控制清孔后泥浆比重小于,保证泥浆的粘度、含沙量、胶体率等满足规范要求,并进行二次清孔,直到满足设计要求。6、水下混凝土灌注时导管进水原因分析:首批混凝土储量不足,或导管底口距孔底间距过大,混凝土下落后不能埋住导管底口以致泥水从底口进入。预防及处理措施:将导管和钢筋笼提出,将散落在孔底的混凝土拌合物用空气吸泥机或抓斗清除,重新灌注。7、导管卡管原因分析:①初灌时隔水栓卡管,或由于混凝土本身的原因如坍落度过小、流动性差、粗骨料过大、拌合物不均匀产生离析、导管接缝处漏水、大雨中运混凝土未加遮盖使混凝土中的水泥浆被冲走,粗骨料集中造成堵塞;②机械发生故障和其他原因使混凝土在导管内停留时间过长,或灌注时间持续过长,最初灌注的混凝土已经初凝,增大了管内混凝土的下落阻力,混凝土堵在管内。预防及处理措施:准备备用机械、掺入缓凝剂,做好配合比,改善混凝土的性能。拔管、吸渣重灌。8、钢筋笼上浮原因分析:导管埋深控制不好。固定钢筋笼的撑杆刚度不够。预防及处理措施:控制导管底口的位置及埋深,在混凝土接近钢筋笼底口时,加大导管埋深,并减缓灌注过程;加强撑杆,增加钢管支撑。

钢渣回收利用工艺研究论文

钢渣处理有多种方式:钢渣热泼、钢渣盘泼、钢渣水淬、钢渣热闷等等工艺,其中钢渣热闷是在钢渣热泼技术的基础上加以工艺调整,有效的提高了钢渣粉化的效率,提高了固废利用率,同时也大大减少了粉尘的污染。钢铁渣是钢铁生产的必然产物,每炼1吨钢产生―吨钢渣。钢渣中约有10%渣钢和钢渣黏连,回收渣钢困难,传统的热泼处理工艺只能回收50%的渣钢。 由北京科大国泰能源环境工程技术有限公司和北京科技大学共同创新研究的新型钢渣热闷处理技术,利用热力学和动力学原理,促进游离氧化钙和游离氧化镁的快速消解,提高钢渣冷却碎裂粉化率,经过钢渣热闷8到12小时变成8到10mm的钢渣,实现渣和钢的有效分离。与传统的多级破碎金属回收工艺相比,渣钢可直接返回炼钢和烧结使用,尾渣中金属铁含量由4%降低到2%以下。

,注意安全可以收集起来卖钱

对,一楼的回答就是我上次回答别人提问的内容,可以参考.如果需要参观,我们可以带你去看看学习一下.

一、新兴河北工程技术有限公司干法钢渣回收利用技术介绍

目前国内钢渣二次处理工艺有:

1.传统干法加工工艺:目前国内大部分钢铁厂所采用的钢渣处理方式多为简单的破碎磁选工艺,所采用的设备为颚式破碎机1~2台或圆锥破碎机1台+带式除铁器若干或干式磁选机1~2台。工序繁多,渣、铁分离不彻底,回收废钢品位低(TFe含量约40%),不利于炼钢使用;尾渣MFe含量高(约6%),造成资源大量浪费,经济效益差。

低品位渣钢对炼钢生产的影响如下:

a、钢渣中硫磷等有害元素回到钢水中并不断富集,影响钢水质量;

b、因杂质多,造成渣量增大,喷溅严重;

c、冶炼过程中因不能准确确定金属液的重量而影响钢水化学成分的准确控制,浇注时,因钢液重量不足,容易造成短尺废品;

d、钢渣中的主要成分SiO2会降低碱度,改变熔渣的组成,这对脱磷及提高炉衬的使用寿命不利。

此工艺一般小型钢铁厂应用较多。

2. 水磨湿选法: 投资大,占地多、小粒度产品品位高,不适合大块钢渣处理,处理大块渣需与其它粗选法配合,尾泥须浓缩、沉淀、脱水、烘干处理才可利用,既污染环境又增加占地、投资,经济效益差。此工艺的致命缺点是:

a、尾渣泥处理成本高。目前尾泥处理使用自然沉淀法和机械法。自然沉淀法需要建设大规模的沉淀池系统,沉淀时间长,效果差;机械法以湘潭钢铁为代表,使用斜板沉淀器和压滤机及配套水池、泵、管网系统处理尾渣泥浆。无论哪种方式,都大幅提高了投资及运营成本。

b、脱水后的尾渣含水量也较大,且经细磨水洗后活性丧失,已不能用于钢渣粉的生产,基本丧失利用价值。且经水洗选出的废钢易生锈,铁锈主要成分是Fe(OH)2,在炉内分解会增加钢种的氢含量,影响钢材质量。

c、尾渣泥沉淀池系统需占用大量土地,且由于尾泥无利用价值只能扔掉,需占用大量土地,污染环境。

国内使用此工艺的钢铁厂较多,代表钢厂为湘潭钢铁厂。

如何利用简洁高效的工艺装备处理钢渣,生产优质废钢、铁精粉及容易利用的干尾渣,是实现钢渣高附加值利用的技术关键。

为克服传统干法工艺和水洗球磨机处理工艺的缺陷,新兴河北工程技术有限公司借鉴日本、韩国先进钢渣处理工艺,消化吸收,开发出全新的钢渣处理新工艺。此工艺采用钢渣专用棒磨机对钢渣进行破碎,通过湿度、粒度、给料量的综合控制及其它手段,实现对渣、钢的彻底剥离。且产品粒度比较均匀,过粉碎矿粒少,产品粒度在3mm左右。配之以特殊结构的可变磁场干式磁选机将金属全部回收。

本工艺处理后的钢渣所有产品质量好,可利用途径广泛。所得废钢品位~90%,完全可满足炼钢使用要求;所得铁精粉品位>65%,完全可满足烧结使用要求;所得尾渣磁性铁含量<1%,且为干尾渣,可制砖、生产微粉、作为集料等,用途广泛,可利用价值高。

本技术在新疆特钢和济源钢铁厂实际应用,回收效果良好。

1、采用成熟、可靠、实用的先进工艺技术,结合项目实际情况和原料条件,使工序配置合理、顺畅,技术装备水平达到国内领先、国际同类型破碎磁选生产线先进水平。

2、控制系统设计要求先进实用,稳定可靠,以确保该项目顺利投产。

3、重视项目生产中粉尘、噪音的处理,采用可靠、完善的环保设施。设计符合国家和企业所在地颁布的安全、卫生、环保标准。改善劳动条件,提高生产效率。

4、采用节能技术,合理利用能源。

5、设计理念中体现严、精、细、实的原则,进行优化设计,控制投资规模,提高装备水平。

6、项目实施过程中,尽量不影响现有设施的正常生产,并充分考虑设施的检修通道。

7、贯彻执行国家、行业、地方的有关法律、法规、标准和规定,特别是环保、能源、安全卫生、消防标准和法规。

1、分三级粒度分别处理。

2、利用棒磨激振力促使渣、钢分离。

3、三项参数(湿度、粒度、给料量)综合控制,工艺优化精准,确保渣、钢彻底分离。

4、废钢品位高,尾渣MFe铁含量低,能耗低。

1、“钢渣热焖—干式磁选”处理技术可实现整个钢渣处理过程的机械化和连续化,从各方面最大程度地降低了投产运行后的经营成本,因此,采用该方案进行钢渣处理在经济方面可实现其效益的最大化。

2、通过新兴干法钢渣破碎磁选工艺处理后的钢渣,渣、钢分离彻底,所得废钢产品品位高,可很好得满足炼钢厂的使用要求。避免了低品位钢渣给炼钢厂造成的硫磷等有害元素富集、渣量大喷溅、不能准确称量造成浇铸缺陷等影响。

3、通过新兴干法钢渣破碎磁选工艺处理后的钢渣,尾渣中金属铁含量低于,最大限度地回收了钢铁料,节约资源,避免浪费。

测试试验研究论文

岩石的变形特性及试验方法研究论文

岩石的变形特性是指岩石在外力作用下岩石中的应力与应变的关系特性,它是影响建筑物稳定的重要因素。岩石在较小的力的作用下首先发生变形,变形量随作用力增大而增大,当作用力和变形量超过一定的限度后就会发生破坏,在作用力不断增大的过程中,岩石的变形和破坏是一个统一的、连续的过程。工程岩体如果变形过大就会导致上面的建筑物失稳危及安全,因此工程勘察期间必须获得可靠的变形参数,才能据此在施工时采取适当措施防止其对工程的影响,保证建筑物的安全。下面分别从岩石的变形特性、变形阶段和试验方法等方面进行探究

1岩石变形的特性

岩石的变形性质通常用应力一应变曲线表不,它通过测量岩石试样受压时的应力一应变关系得到。山于岩石的组成成分及其结构与构造比较复杂,所以岩石的应力一应变关系也比较复杂,岩石变形过程中表现出弹性、塑性、勃性、脆性和延性等性质。

1. 1弹性

在一定应力范围内,物体受外力作用产生变形,去除外力后能够立即恢复原状的性质,这种变形称为弹性变形。

塑性

物体受外力作用后发生变形,去除外力后不能完全复原状的性质,这种变形称为塑性变形或永久变形。

勃性

物体在外力作用下变形不能立刻完成,应变速率随应力增大而增大的性质,这种变形称为流动变形。

脆性

物体受力后,变形很小时就发生破裂的性质。

延性

物体能承受较大塑性变形而不丧失其承载力的'性质。

另外,岩石的变形和破坏的性质还会随着受力状态的变化而变化。岩石在三向受力状态下与单向受力状态下的应力一应变关系有很大的区别,随着围压增大,三向抗压强度增加,峰值变形增加,弹性极限增加,岩石山弹脆性向弹塑性、应变硬化转变。

2岩石变形的阶段

根据单向无侧限逐级维持荷载法应力一应变关系曲线曲率的变化,可将岩石变形过程划分为四个阶段:

2. 1孔隙裂隙压密阶段

岩石中原有的微裂隙逐渐被压密,曲线呈上升形,岩石变形多为塑性变形,曲线斜率随应力增大而逐渐增大,表不微裂隙的变化开始较快,随后逐渐减慢,对于微裂隙发育的岩石,本阶段较明显,但致密坚硬的岩石很难划出这个阶段,此阶段末点对应的应力称为压密极限强度。

2. 2弹性变形至微破裂稳定发展阶段

岩石中的微裂隙进一步闭合,孔隙被压缩,原有裂隙基本上没有新的发展,也没有产生新的裂隙,应力与应变基本上呈线性关系,曲线近于直线,岩石变形以弹性为主。此阶段末点对应的应力称为弹性极限强度。

2. 3塑性变形至破坏峰值阶段

当应力超过弹性极限强度后,岩石中产生新的裂隙,同时已有裂隙也有新的发展,应变的增加速率超过应力的增加速率,应力一应变曲线的斜率逐渐降低呈下降形,体积变形山压缩转为膨胀,随着应力增加裂隙进一步扩展,岩石局部破损,且破损范围逐渐扩大形成贯通的破裂面,导致岩石破坏,岩石变形不再恢复,此段末点对应的应力称单轴极限抗压强度。

2. 4破坏后峰值跌落阶段至残余强度阶段

岩石破坏后,经过较大的变形,应力下降到一定程度开始保持常数,此段末端对应的应力称为残余强度。

3岩石变形的试验方法

3. 1单轴压缩变形试验

这是室内测定岩石变形参数最常用的方法,是指试件在轴向压力下产生轴向压缩、横向膨胀,最后导致破坏的试验。适用于能制成圆柱体(高径比2~2:1)试件的各类岩石,可在不同含水状态下进行试验,同一含水状态下每组试件应为3个。可采用电阻应变片法或千分表法,坚硬和较坚硬的岩石宜采用电阻应变片法,较软岩和软岩宜采用千分表法。一般采用一次连续加载法或逐级一次循环法,最大循环载荷为预估极限载荷的50%,试验时以每秒0. 5~1. 0Pa的速度逐级加载,施加一级载荷后立即测读相应载荷下的纵向和横向变形值,一分钟后再读一次,再施加下一级载荷,读数不少于10组。用电阻应变片法时轴向或径向的应变片的数量可采用2片或吐片且应牢固地贴在试件上;用千分表法时轴向和径向的千分表各采用2只或吐只且应分别安装在试件直径的对称位置上。测试完成后根据测得的应力和应变值绘制应力应变关系曲线,可分别计算岩石的弹性模量、变形模量和泊松比等变形参数。

3. 2三轴压缩变形试验

这是室内测定岩石变形参数较少用的方法,一般在测定三轴压缩强度的同时测读三轴压缩变形数据。适用于能制成圆柱体试件的各类岩石(高径比2 ~ 2. 5:1),同一含水状态下每组不少于5个试件,5个试件分别在5级(一般按等差数列来分)不同的侧压下做试验。试验时将岩石试件放在密闭容器内,先以每秒0. 05MPa的速度同步施加侧压和轴压至预定的侧压值,并在试验过程中保持不变,再以每秒0. 5~1. OMPa的速度连续施加轴向荷载,直至试件破坏。在加压过程中同时测定不同荷载下的轴向变形值,每个试件测值不少于10组。测试完成后绘制轴向与侧向应力差与轴向应变的关系曲线,可根据需要分别计算弹性模量、变形模量等三轴压缩变形参数。

4岩石变形参数的确定

4. 1弹性模量

应力应变曲线上直线段的斜率,对同一岩石在极限弹性范围内接近常数,反映的是岩石在弹性变形范围内的平均弹性模量,是最常用的变形参数。

4. 2割线模量(变形模量)

应力应变曲线上任意一点与原点的连线的斜率,工程勘察通常取抗压强度50%处的点来计算,也叫割线弹性模量。

4. 3泊松比

应力应变曲线上任意一点横向应变跟纵向应变的比值,对同一岩石在极限弹性范围内接近常数,工程勘察通常用抗压强度50%处的点来计算,反映的是岩石在弹性变形范围内的平均泊松比,这也是常用的变形参数。

4. 4初始模量

应力应变曲线在原点处的切线的斜率。

4. 5切线模量

应力应变曲线上任意一点的切线的斜率。

5岩石变形试验的改进

在普通柔性试验机上做岩石压缩试验时,绝大多数试件破坏时突然崩溃、碎块四射,只能测得峰值前的应力一应变曲线,无法记录下峰值后的情况,其根本原因是试验机的刚度不够大,为了获得包括峰值后变形在内的全过程应力应变曲线,就需要提高试验机的刚度,同时降低岩石试件的刚度。这可从以下四个方面来改进:

1架构的截面积并减小其长度;2增加液压柱的截面积并减小其长度;3减小岩石试件的截面积并增加其长度;4增加伺服控制系统,控制岩石变形速度恒定。

6结语

综上所述,岩石的变形特性虽然很复杂,但在实际工程中,建筑物作用于岩石的应力远低于单轴极限抗压强度,岩石所处变形多为弹性变形状态,因此可在一定程度上将岩石看作准弹性体,用弹性模量来表不其变形特征,一般只需测定抗压强度50%处的弹性模量和泊松比就可以了。另外在弹性极限压力之内单轴压缩变形和三轴压缩变形试验结果参数值基本接近,而单轴压缩试验更简单易行,故一般采用单轴压缩试验来测定岩石的变形指标。

对包装产品质量进行最后把关的包装测试技术,是包装这是我为大家整理的包装测试技术论文,仅供参考!

[摘要]以培养应用型人才为教学目的,本文首先分析了包装工程专业学生的基础素质和测试技术课程的特点,然后从教学目的、教学内容与教学方法和实践环节三个方面进行了教学改革探索,通过三年的教学实践,提出了本课程未来教学改革的发展方向。

[关键词]测试技术 包装工程 教学改革

[中图分类号]G 642 [文献标识码]A

《包装测试技术》是包装工程专业大学四年制学生的专业必修课程,随着包装产业的自动化程度越来越高、产品包装的标准化程度提高,掌握该课程的知识显得尤为重要,为取得教学效果,我们对本课程进行了教学改革的探索。本文首先分析包装工程专业学生的基础素质和测试技术课程的特点,然后在教学目的、教学内容与教学方法和实践环节三个层次上介绍了教学改革探索的进展和思考。

一、 学生素质和课程特点

包装工程专业的学生基本上来自中学阶段成绩中等的学生,学习的主动性、理解能力、动手能力较弱,但思想活跃、表现欲望较强;此外,女生较其他工科专业多,男女生比例接近于1:1,女生在学习的主动性与认真程度上高于男生。宽基础、厚专业是我校教学的主导教学方针,着力于培养学生宽广的知识、更多的专业积淀。《测试技术》在机械、能源、化工等专业均属于专业基础课程,内容涉及信号分析处理、系统的动态特性、传感器原理、工程量的测试、测试仪器的原理等等,知识面广,既有理论性很强的频谱分析知识,也有实践性很强的传感器与信号处理的应用知识。综合学生的基础素质和学校的教学指导方针,我校本课程的课堂教学减少到36学时,实验、实践环节仍维持为18学时。

二、 教学改革的探索

《测试技术》作为一门广泛开设的课程,广大教学工作者一直在进行教学教研的改革。郭建亮等[1]将虚拟仪器Labview为课程的突破口,结合测试的概念、测试的方法进行教学改进;朱春梅[2]对课程的教学进阶作了调整,强调了学习的实践性与生产应用的结合;王雪[3]采用了创新实验的方法,即学生自己构思实验、设计实验方案,进行实验数据的描述,并通过答辩评分,变“要我学”为“我要学”。徐巧玉等[4]通过让学生参加科研提高其实践动手能力;吴世雄等[5]采用应用型实验改善学生的主动性;化春键等[6]通过引入新传感器、新测试方法激发学生的学习热情。可见,所有的教学改革都以提高学生的学习主动性、培养实践动手能力为主要目的,下面介绍我们在本课程进行的教学改革探索。

(一)教学目的的改革

明确教学目的是首要的任务。包装工程专业面向包装机电装备、包装材料、印刷包装设计、运输物流等行业培养人才,行业跨度大,各专业课程的学习方法和思维特征差别大,若以有限的课时平均分配这些潜在就业岗位所对应的课程,则将面临教师教学无特色、学生无所适从的困境。我校的包装工程专业隶属于机电学院,在机械设计、机电一体化方面的师资配备与教学仪器上具备特色,结合学生的特点与社会的人才的需求,在办学过程中逐渐明确本专业的教学目的是培养包装机电装备的设计和包装材料的应用型研发人才,要求学生具备开发包装设备、设计包装材料测试方案并具有动手能力。

(二)教学内容与方法的改革

根据教学目的,首先制定教学内容的重点,即讲授传感器在包装工业中的应用方法,并以此为核心,介绍误差的处理、动态频率特性的概念和包装测试方法与标准。例如,电涡流式接近开关是包装设备中应用最多的一种传感器,其基本原理与内部的调制电路涉及复杂的线性放大、调制电路,学生较难理解,而且作为成熟的产品,已经全部封装到产品内部,就只介绍其原理,不作理解上的要求;而把其输出信号的采集作为重点,针对NPN集电极开路输出,讲授输出需接上拉电阻的原理,并在课堂上演示,用万用电表观察其输出电平的变化。

其次,从课堂内容的真实感和调动学生学习的主动性与积极性入手。现在学生每人一部手机,随时都想玩手机,除强调课堂纪律外,主要靠教师的课堂内容吸引其注意力。教学既要强调知识的系统性与理论性,也要强调实用性。如果纯粹为了知识的完整性,必定会比较枯燥乏味,课堂缺乏生动性,而应用性的视频、实物、实验、动手编程等都是吸引学生,变被动学习为主动操作,并能吸引全班同学的注意力。例如,在讲授测试系统的频率特性时,让学生回忆电工电子的知识,引出电容、电感的阻抗计算方法,采用板书的方法推导一阶阻容串联回路的频率特性,然后适当进行电路的变形,让学生上讲台现场解答,接着,拿出信号发生器和示波器,在阻容回路的输入端变化正弦信号的频率,用示波器观察输出信号的变化。

针对80后、90后学生表现欲望强烈的特点,在传感器的工程应用讲授完之后,让学生观察身边的事物、查阅文献资料,分小组攥写传感器应用的报告,教师评阅这些报告后,留出一堂课的时间,让优秀的报告获得上台讲述的机会,并进行名次的评比,评分与期末成绩挂钩,促进学生主动学习,掌握查阅文献的一般方法,培养学生表述专题知识的能力、幻灯片设计与团队合作能力。

再次,课程内容前后联系、理论与软件联系的方法,加深学生对理论知识的理解。例如传感器、滤波器与先前讲述的频率特性进行关联讲解;结合运用美国微芯公司提供的滤波器设计软件FilterLab,设计一阶、二级、三阶滤波器,让学生感受到滤波器的设计并不是那么高深莫测;再运用信号发生器和示波器,观察传感器和测试系统的频率特性,发现频率特性的测试目的;进一步运用Matlab的传递函数分析工具性,观察Bode图,顺便引入Matlab软件,让学生掌握一种新的数据分析软件,培养他们科学分析数据的能力。

最后,结合包装行业的特征,讲授包装物测试、包装容器测试、运输包装测试等应用性测试方法与相关的国家标准,引导学生把课程知识与专业应用结合。为避免讲述的枯燥性,通过观看视频、设计包装测试方案的作业,促进其对测试技术在生产应用中的了解,为今后工作中快速上手培养基础。 (三)实践环节的改革

实践是突出传感器应用为重点的课程设计思想的重要抓手。把课程实践分为两个层次,第一层次是实验环节,利用CSY-3000传感器实验台,让学生感受电阻应变片、电涡流传感器、光电传感器和电桥、滤波电路的特点,并培养误差数据的处理能力;利用包装测试实验室的瓦楞纸测试仪器和密封测试仪器,理解包装行业的测试项目和测试标准。通过这一层次的实践,初步把理论与实践进行了关联。第二层次是针对有学习自觉性强、求知欲强烈的学生,开设实践兴趣小组,进行项目教学。由学生上报感兴趣的测试项目,通过教师筛选,选择一个和专业联系紧密,但又能满足短期内可实现的项目进行知识应用能力的培养。指导学生设计项目的实现方案,然后开始传感器、电子元器件的采购、电路的焊接与调试,要求进行数据的测量,培养数据处理能力。

通过各个环节的教学改革,已经使学生初步具备了设计包装机械测试系统、自动检测传感单元的能力,并在随后的《包装机电控制》、《液压与气动》等课程中,坚持进行项目教学,通过持续的培养与努力,最终实现专业教学的目的。

三、 存在的问题与未来教学改革的方向

《测试技术》的教学方法已经通过了3年的实践,培养了一部分学生的学习兴趣与动手能力,测试的概念与方法在毕业设计环节获得了应用,但还存在一些问题,例如某些学生的学习兴趣还没有调动起来,项目教学的教学效果还不甚理想,原因是多方面的,例如我们中小学推行的压迫式的应试教学,挫伤了不少学生的学习主动性和创造性。我们认为教学改革是一项系统工程,需要多门课程协调推进。本课程未来本课程教学改革的方向包括:

1)创新教材体系,使之适应时代的发展;

2)统筹规划,不仅设计好实践环节,而且要在师资配备、师生的奖励环节进行改进;

3)开展全国性的学科竞赛,增进不同高校之间的交流。

[参考文献]

[1]郭建亮,郑书华.地方高校《机械工程测试技术》课程的改革[J].宁波工程学院学报,2009,(1):118-120

[2]朱春梅,黄民.机械类专业“测试技术”课程教学改革初探[J].中国电力教育,2009,139:89-90

[3]王雪,王伯雄,罗秀芝.《测试与检测技术基础》课程的教学改革与创新[J].理工高教研究,2009,(04):130-132

[4]徐巧玉,蔡海潮,尚振东,武充沛,杨建玺.测试技术实验教学改革的研究与实践[J].中国现代教育装备.2009,81:107-108

[5]吴世雄,王成勇.“机械工程测试技术”教学改革的探索[J].广东工业大学学报(社会科学版).2007,7(增刊1):108-109

[6]化春键,尤丽华,周一届.测试技术类课程的教学改革与创新研究[J].江南大学学报(教育科学版).2008,(01):69-72

(作者单位:浙江大学宁波理工学院)

【摘 要】产品的包装在产品运输过程中起着重要的作用,为了保证运输过程的可靠性,包装件有很多测试标准。本文主要解读了联邦快递FEDEX包装测试标准,解析了该标准中包装件的分类以及超过和不超过150磅包装件的测试项目及方法,并且与ISTA包装测试标准中的一些异同点进行对比分析。

【关键词】包装 测试 标准 FEDEX ISTA

引言

在产品运输流通过程中,产品的包装有至关重要的意义[1],它不仅起到方便运输的作用,而且还能起到保护产品的作用[2]。如果产品的包装在运输环境中失效,则产品就可能因为运输过程中受到的强烈冲击作用而发生异常甚至报废[3]。为了保证运输包装件产品在运输过程中的可靠性,需要在运输之前就提前对包装件进行运输包装测试[4]。目前包装测试标准很多,本文主要解读联邦快递FEDEX包装测试标准,并与ISTA包装测试标准中的一些异同点进行对比分析。

1 FEDEX包装测试标准中包装件的分类

FEDEX包装测试标准分为两部分,第一部分适用于大于150磅(68kg)的包装件,第二部分适用于不超过150磅的包装件,该标准中这类包装件又分为3种:扁平形包装件、长条形包装件、标准型包装件,不同类型包装件的测试要求有所不同。几种包装件具体区别如表1所示。

相比FEDEX包装测试标准中包装件的分类,ISTA包装测试标准中也规定了包装件的分类。但是ISTA除以上三种类别之外,还规定了一类为小型包装件。具体参数为:最长棱小于35cm(14in),体积小于13110cm3(800in3),质量不大于(10磅)。

2 FEDEX包装测试标准中大于150磅(68kg)的包装件的测试要求

FEDEX包装测试标准中,对于大于150磅的包装件,根据表2,不同类别包装件要进行各自需要的测试。

表2中具体测试项目的测试参数及流程如下。

(1)斜面冲击试验(Side impact test):斜面冲击最慢速率为175cm/s( ft/s),包装件的每个面都进行试验。

(2)底部冲击试验(Bottom impact test):将试验样品底部升高到冲击面以上(8in),然后释放样品进行跌落。

(3)22度角冲击试验(Tip test):把试验样品底面沿一条棱倾斜,使底面与冲击面形成22°,然后释放回到最初角度。然后沿底面其他三条棱重复以上试验。

(4)卷边冲击试验(Raised edge impact test):把试验样品底面沿一条棱倾斜,使底面相对棱高于冲击面(10in),然后释放回到初始位置。然后沿底面其他三条棱重复以上试验。

(5)卷角冲击试验(Raised corner impact test):将试验样品底面沿一角升高使样品由该角被冲击面支撑,使样品底面的对角线的边角距冲击面(10in),接着释放使样品回到冲击面上。然后沿底面其他四个边角重复以上试验。

(6)抗压试验(compression test):在动态压缩试验机上进行,压缩速率为(),当达到以下条件之一时结束试验:①达到停止载荷F(磅)=×(108-H)×L×W×F,其中H、L、W为高、长、宽,F为湿度、时间、堆叠因子;②屈服检测比例达到15%时;③偏差为(1in)时。

(7)正弦振动试验(Rotary vibration test):①将试验样品放到竖直振动台上,竖直方向上不进行固定,水平方向可能安装防样品掉落装置,然后从要求最低频率开始振动,保持振动位移为(1in),然后缓慢增加频率,直至试验样品有瞬间离开振动台的情况,停止试验记录该频率;②在该频率下对样品的某一方向进行正弦振动试验,固定位移为,试验时间t(min)=14200/(f×60);③对其他两个方向进行同样的正弦振动试验。对于长条型的包装件,则可只进行最长棱和最短棱的正弦振动试验。

(8)随机振动试验(Random vibration test):在竖直振动台上对样品某方向进行随机振动试验。第一步先按卡车随机振动程序进行振动(Grms取),第二步按飞行器随机振动程序(Grms取)进行振动,最后再按卡车随机振动程序进行振动。两种振动程序图如图1和图2所示。对于国内运货的货物,每步振动15min;对于国际运货的货物,每步振动30min。然后对其他两个方向进行同样的试验。

大于150磅(68kg)的包装件,FEDEX标准与ISTA标准有一定异同点。主要如下:ISTA标准中需要进行的测试包括:①固定位移振动试验;②底部冲击试验、斜面冲击、水平冲击试验任选其一;③若顶面不能冲击时还需选旋转棱跌落试验,测试项目没有FEDEX标准中测试项目多。ISTA标准中固定位移振动试验与FEDEX标准中正弦振动试验相同。底部冲击试验中,ISTA标准中样品被升高至离地面(6in),这与FEDEX标准中(8in)不同。ISTA标准中旋转棱跌落试验与FEDEX标准中卷边冲击试验主要区别是,旋转棱跌落试验中底面一条棱被一个垫木支起,而卷边冲击试验中底面一条棱直接被冲击面支撑。

3 FEDEX包装测试标准中不超过150磅(68kg)的包装件的测试要求

FEDEX包装测试标准中,对于不超过150磅的包装件,根据表3,不同类别包装件要进行各自需要进行的测试。

(1)自由跌落试验(Free-fall drop test):把包装件按以下次序依次进行自由跌落到钢质冲击面上,最易碎边角着地→该边角处最短棱着地→该边角处次短棱着地→该边角处最长棱着地→某一最小面着地→另一相对最小面着地→某中等面积面着地→另一相对中等面积面着地→某一最大面着地→另一相对最大面着地。跌落高度由包装件的质量决定,具体如下:不大于75磅(34kg)对应高度(30in),75磅到100磅()对应高度为61cm(24in),100磅到150磅(68kg)对应高度为(18in)。 (2)集中冲击试验(Concentrated impact test):将一长宽高各为(12in)的木质箱子内装上沙袋,使其重21磅(),底部某棱上包裹角铁。将扁平形包装件平放在钢质面上。标出包装件正中心及木质盒子带角铁棱的中心,将木质箱沿底部角铁棱倾斜并升高到(30in)且箱子与包装件最长边平行,然后自然跌落使带角铁的棱跌落到包装件上,并且跌落后带角铁的棱中心与包装件正中心重合。具体冲击示意图如图3所示。

(3)桥架冲击试验(Bridge impact test):将长条形包装件的两端垫在两个(4in)高的积木上,找出包装件的正中心。将一长宽高各为(12in)的木质箱子内装上沙袋,使其重21磅(),底部某棱上包裹角铁,并找出棱的中心。将木质箱子沿底部带角铁棱倾斜并升高到(30 in)且箱子与包装件最长边垂直,然后自然跌落使带角铁的棱跌落到包装件上,并且跌落后带角铁棱中心与包装件正中心重合。具体冲击示意图如图4所示。

(4)抗压试验:与超过150磅的包装件抗压试验相同。

(5)正弦振动试验:与超过150磅的包装件正弦振动试验相同。

(6)随机振动试验:与超过150磅的包装件随机振动试验相同。

(7)重复自由跌落试验(Second free-fall drop test):对于国际运输的货物,在振动测试之后还要进行第二次自由跌落试验。

可见FEDEX包装测试标准中不超过150磅的包装件与超过150磅的包装件主要区别在于冲击测试的种类有所不同,超过150磅的包装件的冲击测试种类明显多于不超过150磅的包装件,这正说明了更重的包装件其冲击测试的严酷性。对于不超过150磅的包装件,FEDEX标准与ISTA标准也有一定异同点。主要如下:ISTA标准中,包装件的类型还包括小型包装件;两个标准中的冲击测试项目有所不同,FEDEX标准和ISTA标准的冲击测试对于长条形包装件都包括集中冲击试验,对于扁平形包装件都包括桥架冲击试验,但是两个标准中冲击的高度不同,FEDEX标准中高度为(30in),而ISTA标准中高度为(16in)。此外,FEDEX标准中冲击测试还有两角两棱六面次序的自由跌落,而ISTA标准中冲击测试还有三棱两角两棱两面次序的自由跌落试验、倾翻试验、旋转跌落试验;ISTA标准中有温湿度试验的预处理,FEDEX标准中则没有该预处理;振动试验方面两个标准也差别较大,而且ISTA标准中还有低气压随机振动试验。

结语

本文主要解读了FEDEX包装测试标准,并与ISTA包装测试标准进行了对比。由以上解读分析可见,包装件的测试项目很多,不同标准的测试流程及参数也会有差异[5]。但是对于不同标准要求的包装件,相关测试完成后,该包装件就能达到所要求的运输环境的可靠性。

参考文献

[1]汤志强,曲红.包装在现代物流中的重要作用[J].包装工程,2002,23

(3):77-78.

[2]金国斌.物流链中的运输包装优化问题[J].包装工程,2005, 26(3):93-95.

[3]曹国荣.包装标准化基础[M].北京:中国轻工业出版社,2006:87-92.

[4]李沛生.我国运输包装工业现状与发展趋势[J].物流技术与应用,2004(8):54-58.

[5]金国斌.物流链中的运输包装优化问题[J].包装工程,2005,26(3):93-95.

[6]向红.《包装设计工程基础》[M].国防科技大学出版社,2002:34-38.

在现代技术中,理化检验是指借助一些测量工具进行物理、化学方面的测试和检验,因而又称“器具检验”。下面是我精心推荐的一些理化检验技术论文,希望能对大家有所帮助!理化检验技术论文篇一:《试谈理化检验质量控制考核中有关技术》 【摘要】 随着最近几年国家科学技术的飞速发展,各项科研工作也不断扩大。理化检验是我国进行科学研究检测的重要组成部分,尤其是在卫生监督管理方面。而理化研究由于其高要求的精密性而要求在检测的过程中必须提高检测的准确率,质量控制是一种提高准确率非常行之有效的方式,对于不同的检测,质控控制的技术也不一样。 【关键词】 理化检验;质量控制;技术分析;物理;化学 理化检验就是借助一些测量工具进行物理、化学方面的测试和检验,因而又称“器具检验”,这种测量工具或器具都是非常精密,比如说一般常用的测量工具有千分尺、千分表、验规、显微镜等等。随着我国对于卫生行业的改革和对卫生监督管理的加强,卫生部门在进行检测的时候就提出了更高的要求,而理化检验是卫生检测的一种重要手段,它为监督执法提供更加精确的检测数据,在劳动卫生监督管理工作中具有重要作用。 1 理化检验质量控制考核中有关技术 根据多年来众多研究者不断的探索发现和 总结 ,理化检验质控考核主要可以分为以下几个方面。 滤膜上沉着的金属含量分析 这种技术就是运用化学 方法 ,通过添加相关化学剂使其沉淀然后过滤,对过滤金属进行类型、含量多少等分析。滤膜沉着的金属样品的稳定性比较高,在正常环境下不会随着自然环境的变化而发生损失,在进行滤膜上沉着的金属含量分析的过程中需要注意防止灰尘的污染,提取考核样品的时候应注意对工具的消毒、干燥处理,以免发生污染,致使考核结果数据不准确。考核完成后要将样品放入洁净的干燥器中。 固体盐中金属含量分析 顾名思义,这中理化检验考核技术就是通过对固体盐类中的金属含量和类型进行考核,同滤膜沉着的金属样品一样,固体盐中金属样品也具有较好的稳定性。在提取样品的时候应注意样品量不宜过多,在提取样品前一定要对其进行干燥处理,干燥的时间至少在一个小时以上,考核完成后要将样品放入洁净的干燥器中。 活性炭管吸附有机毒物含量分析 这种技术考核原理是化学亲和力的作用,因为活性炭管的吸附有机会具有很强的吸附能力,如果运用物理办法则不容易对其进行分离,用化学亲和力将其分离和样品考核分析。在日常的样品保存中要注意防尘和防潮。因而,活性炭管吸附有机毒物样品不适宜保存在冰箱里。 水溶液中毒物含量分析 水溶液中待检测的毒物考核样品很多,比如:水溶液中氯化氢含量、水溶液中三氧化铬含量等,水溶液中待检测的毒物考核样品的稳定性比较差,在正常自然状态下会随着环境的变化而发生变化,比如当环境温度升高了,就会增大样品水分的自然蒸发,在样品保存的时候,如果水溶液瓶盖密闭不严也会导致水分蒸发。所以,考核水溶液样品的保存非常重要,在保存的时候要注意放在温度不会发生变化的环境里,冰箱或者冷藏箱就是很好的方式,同时还要注意样品瓶是否密封好。 2 样品考核过程中应注意的问题 样品考核流程要严格按照规范标准 对于理化检验的质量考核,国家出台了相关的流程规范标准。因此,在实际的操作中要严格按照规范标准,以防出现错误或者测试不准。在考核前应将操作分析的计划详细书写清楚,按照相关指标和标准配置试剂,同时要取少量的考核样品先试验分析,主要是检测其浓度,以决定分析所用考核样品的取样量。在实际的考核过程中,首先做好标准曲线,包括空白点共五个点,每点做六份,计算变异系数小于百分之二,列出回归方程,计算回归系数。为了提高考核的准确率,应该取考核样品3份按标准曲线同样的方法进行操作,然后计算这三次测定的平均值作为最终测定结果,注意还要计算其相对标准值,标准值应小于百分之五,否则就说明误差过大,数据不能作为测定结果。注意书写过程中各种格式及单位等要严格按照标准格式。 考核过程中各器具及试剂运用的注意事项 首先是实验所用的吸液管,要求必须使用取得计量认证的单位生产的标准计量器具,或者是经过了考核人员本人的校正,因为吸液管的指标参数也会影响着测试的准确性。整个分析考核样品的过程中,要特别注意吸取标准试剂和考核样品溶液的剂量。其次是对实验所用的蒸馏水的注意,样品分析过程中,蒸馏水的质量会深深影响着化学分析铅的空白值,最终影响着分析结果。而分析试剂的纯度也会对分析结果造成很大的影响。因此,在实际考核中,为了保证考核样品结果的准确性,应使用重蒸馏水和分析纯以上试剂,气相色谱的考核用GR级色谱纯试剂。 3 结 语 理化检验质量控制考核并非一项复杂的工程,但是由于其检测结果的重要性就要求了检测结果必须更加的精确,因此在考核过程中必须要保证各项操作严格按照标准规范进行,保护样品不受污染,检测结果 报告 一定按照相关格式要求,全面、准确。通过各方面的规范操作来加强理化检验的质量控制。 参考文献 [1] 黄家钿,李诚,杜宏,张茵,方辰.卫生检验与检疫技术专业实践教学新模式的构建[A].浙江省医学会.2012年浙江省医学 教育 学学术年会论文集[C].浙江省医学会,. [2] 关于举办全国材料理化测试与产品质量控制学术研讨会暨《理化检验》创刊40年庆典活动的征文通知(第一号)[J].理化检验(物理分册),2012,02:92. [3] 张云霞,蔡望伟,周代锋.以素质教育为导向,深化医学院生物化学实验教学改革[J].海南医学,2011,15:135-137. [4] 张秀丽,廖兴广,张蒙,高葆真.2010年河南省食品卫生微生物检验质量控制考核结果的评价与分析[J].中国卫生检验杂志,2011,07:856-857. 理化检验技术论文篇二:《浅谈茶叶理化检验样品制备技术》 摘要:本文初步分析研究了茶叶理化检验样品的制备技术,并且从挑选与加工新鲜叶子、预处理与磨碎毛茶、均匀混合与分装磨碎样品、检验样品的均匀稳定性、检测特性数值等方面对茶叶理化检验样品制备技术进行了分析,最终提出了对标准化样品进行定值时,可以把定值根据转向实验室所提供的检测相关数据等发展建议,希望可以为我国的茶叶质检事业发展添砖加瓦并且奉献自己的力量。 关键词:茶叶 理化检验 制备样品 全球三大饮料之一便是茶叶,与 其它 饮料相比茶叶更加的实惠和经济,因此茶叶的饮用范围也在逐渐的扩大,拥有越来越大的消费人群,并且已经成为了21世界健康饮品的首先选择对象。可是,伴随着迅速发展壮大的商品经济,日益激烈的市场竞争环境,出现了各种各样的伪劣产品,茶叶也不能被排除之外。为了能够满足商品市场的要求,对各种形式的假茶叶进行严厉打击,有效整顿非常混乱的茶叶市场,迫切需要对茶叶进行理化检验。 一、茶叶理化检验标准化样品概述 对茶叶进行检测的内容包含了检验茶叶的品质、理化标准以及卫生标准等。其中,理化检验程序重点是对出物水浸、水分、茶多酚、咖啡碱等指标进行检验;卫生检验则是对存在于茶叶中的六六六成分等各种残留农药实施检测,以及重金属与微生物等项目的科学检验。 标准化样品具体是指一种或是各种均匀充足以及特点价值已经确定了的物质材料,主要用途是对设备仪器、评测方式以及材料具有的赋值进行校准。当前,通过国家生态环境科学研究院等有关单位研究制作、并且由我国标准物质机构特定销售的是存在于茶叶中的具备赋值特点的无机元素的茶叶标准样品。其它能够对茶叶理化各个指标体现的赋值标准化样品始终没有地方购买。为了可以有效提升全国检测茶叶机构的工作能力,加强检测机构对数据进行测定的可靠性,势必要设计针对茶叶理化各个指标所产生复制标准化样品,这也成为了各个检测单位对实验室检测茶叶项目技术水平客观了解的事实根据。 二、茶叶理化检验标准化样品制备技术 (一)挑选与加工新鲜叶子 影响茶叶理化指标数值的因素主要包括茶树的种类、产茶的时间、原材料的鲜嫩程度以及加工环节等。要想从根本上对原材料整体质量进行控制就需要挑选相同的种类、相同的茶园、根据一致的采摘要求对鲜叶实施采摘。并且在相同的步骤下加工生产等级相同的毛茶样品。需要关注两个方面:一方面是对毛茶所含水平有效控制。保证茶叶品质的重要因素就是茶叶所含的水分,毛茶样品要想成为标准化的茶叶样品,其含有的水分应当在以下。另一方面是对原材料的鲜嫩程度进行合理控制。加工茶叶使用鲜嫩程度良好的茶叶,不仅消耗较高的成本,同时出现较多的绒毛也对制备均匀样品非常不利。制作茶叶标准化样品,最好选择一芽的对夹叶或者三四叶的新鲜叶子作为原材料,使用二级或者二级以下作为毛茶的原材料。曾经根据以上的要求制作了一些茶叶的相关样品,已经被实验室国家认可组织作为了验证茶叶能力的标准化样品。不但具有较低的成本,并且在开始就已经对其均匀性获得了保障。 (二)预处理与磨碎毛茶 刚刚加工出来的毛茶通常会包含一些杂物。为了能够确保整批毛茶统一的质量标准,迫切需要挑剔全部茶叶,同时除去茶梗与石粒等,可以避免这些杂物对指标 产生的影响。国际相关标准对茶叶理化检验样品进行了规定必须使用磨碎之后的茶叶,因此,在预处理的前提条件下,必须磨碎处理毛茶的样品。磨碎之前,首先要清理干净磨碎设备,其次放入一小部分样品实施磨碎,并且清理掉这些磨碎样品。最后开始对样品正式进行磨碎,选择孔径在毫米到1毫米之间的筛子对磨碎样品进行筛选并且将其作为制备样品。 (三)均匀混合与分装磨碎样品 制备标准化的样品与平常检测使用的样品不同。制备一次样品的数量比较大,为了能够确保样品具有较高的均匀性,必须在进行分装操作之前充分混合均匀筛选后的磨碎样品。样品在混合均匀之后分别盛放在干燥清洁的设备中,盖紧瓶盖,为保存茶叶样品提供一个密闭、干燥、避免阳光照射的环境。 (四)检验样品的均匀稳定性 随机在整体样品中选择超过10个样品后检验其均匀性。检验均匀性可以使用待测项目,选择具有代表性或者对不均匀样品产生敏感的项目。对每一个抽取的样品,通过相同的检测人员在不变的环境条件下测试2次以上。应用单因子方差对检验结果进行分析,充分验证样品之间不会存在显著的差异性,只有这样才能证明其是均匀的样品。在验证茶叶能力所需样品的均匀性检验工作中,选择了总灰分和粗纤维等相关项目检验均匀性。由于前期制备均匀样品工作操作正确,应用单因子方差对上述检验均匀性结果进行验证表明其具有均匀性。上述茶叶项目在密闭与干燥的环境中状态稳定,因此,上述项目应用的样品可以不进行稳定试验。 (五)检测特性数值 检测某一个特性数值,通过需要具备检测茶叶能力的几十家实验室,根据国家规定的检测方法,应用各个实验室之间的联合检测方法,联合定值对应的特质数值。也就是根据相关准则规定的方法,统计和计算各个实验室获得检测结果,最终确定标准化样品各个特性数值体现出的测量的不确定性。 三、茶叶理化检验样品的发展 我国当前正在努力对各种能力开展计划验证,在验证茶叶能力的各项活动中,参与单位具有极高的积极性,参加个别项目的实验室超过了百家。开展工作的过程中,工作人员深刻的意识到制备大量样品非常不容易,在制备样品过程中,怎样保证样品具有均匀性以及对其进行有效检验等工作耗费了较多的财力与精力。因此,相关工作人员认为可以凭借验证茶叶能力这个机会,增加制备验证样品的数量。由于每一次验证茶叶能力之后剩余的样品都已经通过了均匀性检验,同时在验证能力过程中进一步获得确认;通过验证能力又可以产生一些具有较高技术水平的优秀实验室。所以,对标准化样品进行定值时,可以把定值根据转向这些实验室提供的检测相关数据。比如:可以将某种样品相关项目所需的标准数值规定为各个实验室得出的测定数值中的中位值,把标准化的IQR定义为标准偏差。假如能够科学有效的应用这些资源,不但能够大量减少制备与验证茶叶标准化样品所需的成本,同时也促使定值的结果更加无限接近真实数值,符合了各个质检单位对茶叶理化检验标准样品产生的要求。 结束语 目前,在制备茶叶标准样品工作上,茶叶工作者具备了丰富专业的茶叶背景优势,可是要想将验证茶叶能力提升为茶叶的标准化样品,还要对相关的研究程序作出进一步的分析理解,以便可以制备出具有稳定结果、准确定值、均匀样品同时充分发挥法律效力的茶叶标准化样品,也为我国发展茶叶质检工作贡献自己的力量。 参考文献: [1]GB/T8303―2002.茶磨碎试样的制备及其干物质含量测定[M].中华人民共和国国家标准,2009. [2]CNAS-GL03.能力验证样品均匀性和稳定性评价指南[M].中国合格评定国家认可委员会2008. 理化检验技术论文篇三:基于工作过程的《食品理化检验技术》课程教学过程设计 食品理化检验技术作为食品营养与检测专业的一门重要的核心课程之一,该课程的教学会直接影响到学生的培养质[]量,因此,需要对课程进行教学过程的设计,来培养学生学习的积极性、主动性和创造性,调动学生的学习兴趣,从而提高教学的课堂效果,教学过程是知识、 经验 、方法、能力的整体综合体现,教学过程既要体现做事的方式方法,又要重视知识的掌握和应用[1-2]。为了搞好该课程的教学工作,本文对《食品理化检验技术》课程进行教学过程设计,通过教学过程设计来保证课堂的教学效果,达到合乎企业要求的人才培养目标。 一、食品理化检验技术课程开发 食品理化检验技术课程的开发是以企业的理化检验的工作过程为导向进行的,将理化检验的工作过程设计成企业岗位需要的工作任务,并以该工作任务为载体设计学习情境,确定开发的流程,具体为首先对食品营养与检测专业进行调研,写出 调研报告 ,分析企业理化检验工作岗位所要求的职业能力和工作能力,根据职业能力和工作能力的要求,分析食品理化检验技术的课程结构,优化出该课程的课程体系,从而分析出课程的教学内容,制定出课程标准和实验实训指导书,然后进行教学设计。 二、教学内容的选择和课程内容结构 在食品理化检验技术课程的教学内容选取上,根据国家和地方食品企业行业发展以及高职食品营养与检测专业的培养目标,按照食品理化检验的工作岗位对学生知识、能力、素质的要求,根据“够用、必需”原则来选取教学内容,按照职业性、实践性的原则选取食品理化实训教学项目。 三、食品理化检验技术教学过程的设计 食品理化检验技术课程的教学过程采用具体的工作任务来引领学生学习的整个过程,按照食品理化检验工作岗位的流程进行设计该课程的教学过程,从工作岗位所需的工作任务来选择理化检验项目,检验项目选择完成后,学生根据检验项目查找资料进行方案设计,方案设计确定出来后,需要教师和学生共同进行反复讨论、修改,通过后才能实施,根据确定的方案,学生在教师的指导下完成实验实训的各项准备工作,然后开始进行实训操作,操作完成,对实训的结果进行分析,再广泛收集教师和学生们的意见,最后教师把问题反馈给学生,避免学生下次出现同类错误。《食品理化检验技术》课程的教学过程设计见图1。 图1 食品理化检验技术教学过程的设计 四、推行基于工作过程的项目导向、任务驱动教学法

相关百科

热门百科

首页
发表服务