高炉炼铁生产是冶金(钢铁)工业最主要的环节。高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中,定期从铁口、渣口放出。 高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。本专题将详细介绍高炉炼铁生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。高炉冶炼目的:将矿石中的铁元素提取出来,生产出来的主要产品为铁水。付产品有:水渣、矿渣棉和高炉煤气等。高炉冶炼原理简介:高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。生产时,从炉顶(一般炉顶是由料种与料斗组成,现代化高炉是钟阀炉顶和无料钟炉顶)不断地装入铁矿石、焦炭、熔剂,从高炉下部的风口吹进热风(1000~1300摄氏度),喷入油、煤或天然气等燃料。装入高炉中的铁矿石,主要是铁和氧的化合物。在高温下,焦炭中和喷吹物中的碳及碳燃烧生成的一氧化碳将铁矿石中的氧夺取出来,得到铁,这个过程叫做还原。铁矿石通过还原反应炼出生铁,铁水从出铁口放出。铁矿石中的脉石、焦炭及喷吹物中的灰分与加入炉内的石灰石等熔剂结合生成炉渣,从出铁口和出渣口分别排出。煤气从炉顶导出,经除尘后,作为工业用煤气。现代化高炉还可以利用炉顶的高压,用导出的部分煤气发电。 高炉冶炼工艺流程简图:[高炉工艺]高炉冶炼过程:高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中,定期从铁口、渣口放出。高炉冶炼工艺--炉前操作:一、炉前操作的任务1、利用开口机、泥炮、堵渣机等专用设备和各种工具,按规定的时间分别打开渣、铁口,放出渣、铁,并经渣铁沟分别流人渣、铁罐内,渣铁出完后封堵渣、铁口,以保证高炉生产的连续进行。2.完成渣、铁口和各种炉前专用设备的维护工作。3、制作和修补撇渣器、出铁主沟及渣、铁沟。4、更换风、渣口等冷却设备及清理渣铁运输线等一系列与出渣出铁相关的工作。高炉冶炼工艺--高炉基本操作 :高炉基本操作制度:高炉炉况稳定顺行:一般是指炉内的炉料下降与煤气流上升均匀,炉温稳定充沛,生铁合格,高产低耗。操作制度:根据高炉具体条件(如高炉炉型、设备水平、原料条件、生产计划及品种指标要求)制定的高炉操作准则。高炉基本操作制度:装料制度、送风制度、炉缸热制度和造渣制度。 高炉冶炼主要工艺设备简介: [高炉设备]高炉 : 横断面为圆形的炼铁竖炉。用钢板作炉壳,壳内砌耐火砖内衬。高炉本体自上而下分为炉喉、炉身、炉腰、炉腹 、炉缸5部分。由于高炉炼铁技 术经济指标良好,工艺 简单 ,生产量大,劳动生产效率高,能耗低等优点,故这种方法生产的铁占世界铁总产量的绝大部分。高炉生产时从炉顶装入铁矿石、焦炭、造渣用熔剂(石灰石),从位于炉子下部沿炉周的风口吹入经预热的空气。在高温下焦炭(有的高炉也喷吹煤粉、重油、天然气等辅助燃料)中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气,在炉内上升过程中除去铁矿石中的氧,从而还原得到铁。炼出的铁水从铁口放出。铁矿石中未还原的杂质和石灰石等熔剂结合生成炉渣,从渣口排出。产生的煤气从炉顶排出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。高炉冶炼的主要产品是生铁 ,还有副产高炉渣和高炉煤气。 [高炉设备]高炉热风炉介绍 :热风炉是为高炉加热鼓风的设备,是现代高炉不可缺少的重要组成部分。提高风温可以通过提高煤气热值、优化热风炉及送风管道结构、预热煤气和助燃空气、改善热风炉操作等技术措施来实现。理论研究和生产实践表明,采用优化的热风炉结构、提高热风炉热效率、延长热风炉寿命是提高风温的有效途径。[高炉设备]铁水罐车:铁水罐车用于运送铁水,实现铁水在脱硫跨与加料跨之间的转移或放置在混铁炉下,用于高炉或混铁炉等出铁。 以上供你参考,希望对你有帮助,希望你能采纳,谢谢!!
砌筑技师论文(部分题目)多孔砖的砌筑工艺要点和质量控制措施 预拌商品砌筑砂浆配合比设计方法对墙体砌筑砂浆质量问题的探讨 不烧铝镁碳砖砌筑钢包衬的试验 大容积焦炉砌筑的实践经验 砌筑砂浆和芯柱混凝土材料性能对砌块砌体力学性能影响的试验研究 混铁炉综合砌筑工艺实践 粘贴法在回转窑砌筑中的应用 粉煤灰砌筑干粉砌体轴心受压性能试验研究 做好班组经济核算 砌筑降低成本基石 气态悬浮炉耐火砖砌筑耐火泥的选用 小型混凝土空心砌块砌筑操作技术 库区内竖井式机房的砌筑与防渗 用混凝土砌块砌筑墙梁的组合作用 影响砌筑砂浆强度的因素探讨 回转窑砌筑工艺及质量控制 碳素焙烧炉砌筑施工工艺 焦炉砌筑中应注意的若干问题石灰膏在砌筑砂浆中的作用混凝土小型空心砌块砌筑专用砂浆与灌孔混凝土用掺合料的生产和工程应用 砌筑砂浆贯入法统一测强曲线在福建地区的适用性研究 粉煤灰砖专用砌筑砂浆的探索 援佛泡衣崂水坝项目腹石砌筑优化方案 鞍钢新一号高炉陶瓷杯炉衬砌筑 材料因素对保温砌筑砂浆性能的影响 钢包透气砖砌筑工艺优化 贯入法检测砌筑砂浆抗压强度技术研究与应用 浅谈砌筑工程冬期施工的几种方法 用实验方法确定新型墙体材料砌筑的安全含水率 焦炉砌筑工序质量管理 小型混凝土空心砌块砌筑质量控制措施 小型混凝土空心砌块砌筑操作要点 影响贯入法检测砌筑砂浆抗压强度结果的原因 冬期施工砌筑工程质量通病及防治措施 绝热旋风筒循环流化床锅炉砌筑的质量控制 浅谈CFBB的炉墙砌筑 关于浆砌片石砌筑 正确砌筑小型混凝土空心砌块 贯入法检测砌筑砂浆抗压强度的应用体会 重视快装锅炉炉墙砌筑质量 砌筑、抹灰水泥的研究及应用 粉煤灰砌筑砂浆粘结强度的试验研究 贯入法检测砌筑砂浆抗压强度试验研究 浅谈如何保证毛石砌筑质量 电解槽侧部碳块砌筑工艺的改进 砌筑砂浆试块和进行强度评定的方法 如何保证防护工程的砌筑质量 浅谈硫酸干吸塔防腐砌筑技术 新型砌筑用保温砂浆的研制 新型砌筑用保温砂浆的研制 控制生产砌筑水泥 毛石砌体砌筑质量的探讨 弧形墙体的砌筑方法 构造柱处马牙槎的砌筑方法 气化炉砌筑技术改进对施工质量的影响 新型白色砌筑水泥 贯入法检测砌筑砂浆强度的应用实践 混凝土空心砌块墙体砌筑施工技术 利用电厂废弃物生产阿利特‐硫铝酸钙砌筑水泥 墙体砌筑后出现裂缝及控制措施 包钢4~#高炉热风炉砌筑施工技术 流化床锅炉飞灰生产砌筑水泥的试验研究 粉煤灰砌筑干粉在砌体结构中的应用试验研究 简谈微沫剂的掺入对砌筑砂浆抗压强度的影响 高炉炉底和炉缸内衬的砌筑施工规范及验收方法 蒸压粉煤灰加气混凝土砌块砌筑与普通抹灰施工工法 应用“EDTA”滴定法检测砌筑水泥沙浆配比 碳素制品在高炉上的砌筑施工实践 新标准砌筑水泥的生产 磷酸在燃煤型塔式锌精馏炉砌筑中的应用 观音山大坝细石混凝土砌筑料有关参数的选择 混凝土小型空心砌块砌筑填充墙的防裂措施 干砌块石砌筑中应注意的问题回转窑窑口耐火砖改型与砌筑 窑衬砌筑锁缝模板的应用 砌筑水泥国标修订的几点建议 关于毛石基础砌筑质量的分析 DDS石灰窑砌筑工艺 砌筑砂浆强度评定标准应有待提高 水泥砂浆砌筑支护采空区回收采场特富矿柱方案在金窝子金矿的应用 顶杆法拱模砌筑小型沼气池池盖 砌筑水泥国标修订的几点建议 关于印发砌筑工等8个职业国家职业标准的通知 砌块填充墙的砌筑要点 也谈构造柱马牙槎砌筑新法 利用废弃的泡沫塑料生产保温砌筑砂浆 砌筑型湿排渣多管旋风除尘器的设计 环境协调型保温砌筑砂浆的试验研究 TJS砌筑砂浆外加剂的研制 砌筑砂浆的改性分析和试验研究 粉煤灰混凝土用于农田渠道砌筑现场工业试验 加热炉复合砌筑体界面温度的计算机模拟 砌筑砂浆塑化剂在工程中应用的问题 用电石渣改性湿排粉煤灰生产砌筑水泥试验 贯入法检测砌筑砂浆的强度 砌筑用粉煤灰砂浆性能研究 砌筑砂浆的改性分析和试验研究 优质结构工程中墙体砌筑粉刷施工技术 配筋砌筑结构在美国高层建筑中的应用 小型混凝土空心砌块砌筑操作施工技术 砖混砌筑45°角马牙槎留置的应用 研磨面混凝土单元空心砌块砌筑工法 提高焦炉砌筑工程质量的探讨 回转窑筒体局部变形的内衬砌筑方法 快装锅炉炉墙砌筑中的质量问题 装饰混凝土砌块墙体砌筑注意事项 使用干垒挡土墙块砌筑的立柱 小型空心砌块的砌筑砂浆和施工方法 双马水泥厂5~#回转窑内衬工程砌筑施工 胶凝材料总量对混凝土小型空心砌块专用砌筑砂浆和易性的影响 谈水工浆砌石砌筑施工措施 利用电炉钢渣作为砌筑水泥原料的试验研究 梯地埂坎砌筑技术 毛石砌筑质量通病及防治 建筑工程砌筑砂浆强度离散性偏大的原因与预防 DK高温胶泥在回转窑砌筑上的应用 砌筑砂浆达不到设计要求的事故原因分析 砌筑工程旁站监理存在的问题与对策 加气混凝土保温砌筑砂浆研制 毛石砌筑质量问题及施工控制措施 预制砖锚焊砌筑与不定型浇注结合在回转窑中应用 混凝土小型空心砌块专用砌筑砂浆粉的研制【提示】来自技师论文网。
1、提高入炉料含铁品位,优化入炉料结构2、提高焦炭质量。特别是焦炭的高温性能以上两条是强化高炉冶炼需要具备的条件,技术措施如下1、采用高顶压,采用无料钟炉顶.炉顶压力从原来的低压(通常在0.12 MPa左右)提高到0.2 MPa左右的高压。2、高风温,大修或新建的高炉均采用了高温内烧式热风炉,一般情况下风温在1200oC左右。3、高煤比,煤比达到150kg/t以上。4、取消渣口。停止放上渣5、采用中心加焦、大批重分装技术。6、高富氧,富氧率在2-3%。有需要的话,有相关论文可以发给你
技师是具备相关技术,掌握或精通某一类技巧、技能的人员。技师不同于一般工程师,技师属于职业资格,工程师属于职称。技师是企业中有丰富业务知识和熟练的操作技能的技术工人,他们在提高职工队伍素质,强化生产管理中具有示范和引领作用,应当合理使用。
摘要: 高炉煤气的利用方式很多,目前我国最主要的利用方式是高炉煤气发电项目(包括燃烧高炉煤气和高炉煤气、煤粉混烧)。分析燃煤锅炉掺烧高炉煤气和全烧高炉煤气后的工况变化,并提出改造措施,对钢铁行业的燃煤锅炉改造具有借鉴意见。 更多高炉煤气论文请进:教育大论文下载中心关键词:高炉煤气;燃煤锅炉;掺烧 在钢铁企业的生产过程中,消耗大量的煤炭、燃油和电力能源的同时,还产生诸如高炉煤气、焦炉煤气和转炉煤气等二次能源,所产生的这类能源,除了满足钢铁生产自身的消耗外,剩余部分用于其他行业或民用。高炉煤气是炼铁的副产品,是高炉中焦炭部分燃烧和铁矿石部分还原作用产生的一种煤气,无色无味、可燃,其主要可燃成分为CO,还有少量的H2,不可燃成分是惰性气体、CO2及N2。CO的体积分数一般在21%-26%,发热量不高,一般低位发热值为2760-3720kJ/m3。高炉煤气着火温度为600℃左右,其理论燃烧温度约为1150℃,比煤的理论燃烧温度低很多。燃烧温度低,使得高炉煤气难以完全燃烧,且燃烧的稳定性差。由于高炉煤气内含有大量氮气和二氧化碳,燃烧温度低、速度慢,燃用困难,使得许多钢铁企业高炉煤气的放散率偏高。利用高炉煤气发电,由于燃料成本低,系统简单,减少了燃料运输成本及基建费用,可以缓解企业用电紧张局面,减少CO对环境的污染,取得节能、增电、改善环境的双重效果,既能为企业创造可观的经济效益,又能创造综合社会效益。根据现在钢铁行业中高炉煤气的主要利用方式,本文对燃煤锅炉掺烧高炉煤气和燃煤锅炉改造为全燃高炉煤气锅炉做了理论分析和相应的改造措施。1 掺烧高炉煤气对锅炉性能的影响 对炉膛内燃烧特性的影响燃煤锅炉中掺烧高炉煤气时,由于高炉煤气的低位发热量很低(2760-3720kJ/m3),而一般的烟煤的低位发热量约为18000kJ/kg,因此,炉膛中的理论燃烧温度必定下降,导致煤粉燃烧的稳定性变差,煤粉颗粒的不完全燃烧量增多,从而增加飞灰含碳量,机械不完全燃烧损失增加,锅炉效率降低。另一方面,掺烧高炉煤气后,送入炉膛内的吸热性介质增多,烟气的热容量增大,火焰中心的温度水平下降,火焰中心位置上移,导致煤粉在炉膛内的停留时间缩短,也造成煤粉的不完全燃烧,飞灰含碳量增加。第三,掺烧高炉煤气后,炉膛内烟气量增加(表1),炉膛内的烟气流速增加,从而缩短了煤粉颗粒在炉膛内的停留时间,也造成了煤粉的不完全燃烧。第四,掺烧高炉煤气后,高炉煤气中存在的氮气等大量的惰性气体阻碍可燃成分与空气的充分混合,减少发生燃烧反应的分子间发生碰撞的几率,导致燃烧不稳定,煤粉颗粒燃烧不完全,增加了飞灰含碳量。可见,掺烧高炉煤气后,飞灰的含碳量增加,锅炉效率降低。试验证明[1],从飞灰含碳量的角度来看,如果不提高炉膛的温度水平,高炉煤气的最佳掺烧率应该在25%以内。表1燃料产生1MJ燃烧热的烟气量众所周知,固体的辐射能力远远大于气体,燃高炉煤气产生的烟气中所含有的具有辐射能力的三原子气体所占的份额远远低于燃煤,在燃气中占很大一部分的N2等双原子气体不具备辐射能力,而且,高炉煤气燃烧产生烟气中三原子气体主要是CO2和少量的H2O,CO2的辐射能力要低于H2O,因此,掺烧高炉煤气后,炉膛内火焰辐射能力减弱,更多的热量流往后面的过热器和尾部烟道。掺烧锅炉煤气后,炉膛内的热交换能力下降,对于以炉膛水冷壁为主要蒸发受热面的锅炉,如果锅炉结构不做调整,则锅炉的蒸发量下降。 对炉膛后烟道的传热特性影响以对流换热为主的过热器系统,吸收烟气热量主要取决于传热温压和传热系数。对于燃煤和掺烧高炉煤气的锅炉来说,两者的炉膛出口烟温相差不大[2],因而其传热温压也相差不大。但是掺烧高炉煤气锅炉的烟气体积流量要比燃煤锅炉大,对流受热面的烟气流速增加,因此提高了传热系数,使得过热器吸热量增加,导致过热器出口温度过热。同样,烟气量增加,如果炉膛后的受热面不改变,则布置在炉膛后烟道中的过热器,省煤器,空气预热器吸热量增多,但是不足以使得排烟温度降低到以前的温度水平,因而排烟温度升高,排烟热损失增加。2 全烧高炉煤气对锅炉性能的影响 对炉膛内燃烧特性的影响高炉煤气中大量的惰性气体N2、CO2等在燃烧时不参与燃烧反应,相反,还吸收大量可燃气体燃烧过程中释放的热量,使得高炉煤气的燃烧温度偏低。虽然高炉煤气是气体燃料,理论燃烧温度(-1150℃)要远低于煤粉颗粒(1800℃-2000℃),但是高炉煤气中含有的大量惰性气体会阻碍火焰传播,使火焰的传播速度变慢(例如层流火焰传播速度仅为),因此,要保证燃烧的稳定性,必须提高燃烧温度。高炉煤气中几乎不含灰分,燃烧时,火焰基本上不产生辐射能量,只有燃烧产生的烟气中的三原子气体具有辐射能力,高炉煤气中大量的氮气不具备辐射能力,所以燃高炉煤气的锅炉,炉膛中的烟气辐射传热能力要低于燃煤锅炉。因此,炉膛内水冷壁的吸热量降低,导致锅炉蒸发量减少。 对炉膛后烟道的传热特性的影响由于高炉煤气中几乎不含有灰尘,所以,燃烧高炉煤气产生的烟气中的飞灰可以忽略不计,因此,对流受热面的污染系数ξ很低,只有,而对于燃煤锅炉,当烟气流速为10m/s时,污染系数ξ为[3],可见,燃烧高炉煤气后,对流受热面的热有效系数增大,使得对流受热面的吸热量增多。高炉煤气中含有大量的惰性气体,产生相同燃烧能量的高炉煤气生成的烟气量要大于纯燃煤时产生的烟气量,因此流经对流受热面的烟气量增大,烟气流速增加,导致对流传热的传热系数变大,对流吸热量增大,因此,吸收对流受热面热量的过热蒸汽温度升高。同样,烟气量增加,如果炉膛后的受热面不改变,则布置在炉膛后烟道中的过热器,省煤器,空气预热器吸热量增多,但是还不足以使得排烟温度降低到以前的温度水平,排烟温度升高,排烟热损失增加。3 掺烧高炉煤气后的改造措施由以上的分析,为了解决掺烧高炉煤气后出现的一系列问题:炉膛温度下降;过热蒸汽温度升高;飞灰含碳量增加;排烟温度变大等,提出下面的解决方案。 改造燃烧器高炉煤气燃烧器一般布置在煤粉燃烧器的下部,当高炉煤气燃烧器具有充当锅炉启动燃烧器的功能时,这种布置可以获得燃烧和气温调节两方面的好处。如果以高炉煤气借助煤的燃烧来稳燃的话,则只对气温调节有利。由于混烧高炉煤气后,炉膛中火焰的中心位置上移,造成煤粉燃烧不完全,排烟温度升高等问题,因此,可以采取让燃烧器位置尽量下移,燃烧器喷嘴向下倾斜等方法,降低火焰中心位置,增加燃料在炉膛内的停留时间。选用能强化煤粉燃烧的燃烧器,如稳燃腔煤粉燃烧器[4],加强煤粉颗粒的燃烧,减少飞灰含碳量,提高锅炉效率。 改造过热器掺烧高炉煤气后,炉膛内辐射吸热量减少,对流吸热量增加,因此在实际允许的情况下,增加较多的屏式过热器,相应的减少对流过热器受热面,这样,可以照顾到全烧煤和掺烧高炉煤气工况下过热器的调温性能,避免过大的增加减温水量。 改造省煤器掺烧高炉煤气后,炉膛内的辐射吸热量减少,直接影响了锅炉蒸发量下降,导致锅炉出力降低,另外,掺烧高炉煤气后,烟气量变大,排烟温度升高,因此,在炉后烟道内增加省煤器换热面积,采用沸腾式省煤器,要保证其沸腾度不超过20%,否则因省煤器内工质容积和流速增大,使省煤器的流动阻力大幅增大,影响锅炉经济性。增加省煤器换热面积,提高了省煤器的吸热量,降低了过高的排烟温度,减小了排烟损失,提高了锅炉效率。4 全烧高炉煤气后的改造措施 炉膛改造燃煤锅炉的炉膛内辐射传热能量很大,炉膛内配置了相应的大量的水冷壁吸收辐射热,改燃高炉煤气后,炉膛内辐射能量减少,过多的水冷壁吸收大量的辐射热能会使得炉内的温度进一步下降,加剧了高炉煤气燃烧的不稳定,因此,敷设卫燃带,降低燃烧区下部炉膛的吸热量,进一步提高燃烧区炉膛温度,改善高炉煤气燃烧的稳定性。增加了卫燃带后,减少了水冷壁的面积,锅炉蒸发量减少,为了保证锅炉的蒸发量,就必然要提高高炉煤气量,提高炉膛的热负荷,但是,高的炉膛热负荷也提高了烟气量和炉膛出口温度,导致过热蒸汽超温和排烟温度升高,锅炉效率下降,因此不可能通过无限制的提高炉膛热负荷来提高锅炉的蒸发量。锅炉改烧高炉煤气后,炉膛内的热交换能力显著下降,对于以炉膛水冷壁作为其全部蒸发受热面的锅炉,如果锅炉的结构不允许做较大的改动,蒸发量必定下降。 燃烧器改造对于高炉煤气来讲,动力燃烧即无焰燃烧其火焰长度短、燃烧速度快、强度大、温度高,是一种比较合适的燃烧方式,但因其体积大、以回火、噪音高、负荷调节不灵活,且流道复杂,成本高,实际中采用很少。而采用扩散燃烧不但火焰太长,而且混合不好,燃烧不完全,不适合高炉煤气。实际中大多数采用预混部分空气的燃烧方式,这种形式的燃烧器结构简单、不易回火、负荷调节灵敏,在煤气的热值和空气的预热温度波动的情况下能保持稳定的工作,调节范围宽广,在锅炉最低负荷至最高负荷时,燃烧器都能稳定工作。燃烧器的布置主要考虑以下几点:火焰应处于炉膛几何中心区域,使火焰尽可能充满炉膛,使炉膛内热量得以均匀分配,受热面的负荷均匀,不会形成局部受热引起内应力增大,防止受热不均匀。对于布置高度,在不影响火焰扩散角的情况下,燃烧器低位布置,有利于增加煤气燃烧时间,保持炉温均匀。 过热器的改造改燃高炉煤气后,烟气量增大引起过热蒸汽超温,可以通过适当减少过热器的面积来控制过热蒸汽的温度在规定范围之内。也可以通过增加减温器的调温能力,来控制过热蒸汽的温度。 增加煤气预热装置加装煤气预热器一方面可以进一步降低排烟温度,提高锅炉效率,另外一方面,可以增加入炉能量,提高燃烧温度,增强火焰的辐射能力,改善高炉煤气的着火和燃尽条件。研究证明[5],高炉煤气温度每提高10℃,理论燃烧温度可以高4℃。但是由于高炉煤气的易燃性和有毒性,要求与烟气之间的换热过程严密而不泄露,理论上只能采用分离式热管换热器。 省煤器的改造改烧高炉煤气后,排烟温度升高,锅炉蒸发量下降,因此,增加省煤器面积,采用沸腾式省煤器可以提高省煤器的吸热量,降低过高的排烟温度,减小排烟损失,提高锅炉效率。另一方面,高炉煤气锅炉炉内火焰黑度和炉内温度低,故不宜单纯以增加敷设受热面的面积来提高锅炉蒸发量,而采用沸腾式省煤器来弥补锅炉蒸发量的减少,这是提高锅炉出力的有效措施。 尾部烟道的改造由于高炉煤气发热量低,惰性气体含量高,因此燃用高炉煤气时,锅炉的烟气量及阻力都讲增加,为此,一般须考虑扩大尾部烟道流通面积降低流动阻力及增加引风机的引风能力。 燃气安全防爆措施从安全方面考虑,有必要建立燃气锅炉燃烧系统,包括自动点火、熄火保护、燃烧自动调节、必要的连锁保护方面的自动化控制。同时为了减轻炉膛和烟道在发生爆炸时的破坏程度,燃气锅炉的炉膛和烟道上应设置防爆装置。此外燃气系统应装设放散管,在锅炉房燃气引入口总切断阀入口侧、母管末端、管道和设备的最高点、燃烧器前等处应布置放散点。采取了以上安全措施后,可以确保锅炉处在安全运行之中。参考文献:[1]湛志钢,煤粉、高炉煤气混烧对煤粉燃尽性影响的研究[D].[硕士学位论文].武汉:华中科技大学,2004.[2]姜湘山,燃油燃气锅炉及锅炉房设计[M].北京:机械工业出版社,2003.[3]范从振,锅炉原理[M].北京:中国电力出版社,1986.[4]陈刚、张志国等,稳燃腔煤粉燃烧器试验研究及应用[J].动力工程,1994(12).[5]刘景生、王子兵,全燃高炉煤气锅炉的优化设计[J].河北理工学院学报.
高炉卸料小车远程定位控制多采用刻度标尺精确定位系统、或APON无线定位测距仪,对其进行精确位置检测和自动控制。通过该技术的使用,可以时刻掌握各个料仓的实际料量,了解卸料小车的实时位置,实现自动定点或多点均匀卸料。
不是,你对这个一点也不懂,气化炉是用秸秆等农作物的,为的就是能为国家节省能源物质,如果用煤来转换哪还有什么意义呀!
"幸福校园"有不少形式的论文范文,参考一下吧,希望对你可以有所帮助。第1章 绪 论 温度控制系统的发展状况近几年来,在我国以信息化带动的工业化正在蓬勃发展,温度已成为工业对象控制中一种重要的参数,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。例如:在食品加工、冶金工业、化工生产、电力工程、造纸行业和机械制造等诸多领域中,广泛使用的各种锅炉、加热炉、热处理炉和反应炉等;燃料有煤气、天然气、油、电等。单片微型计算机的功能不断的增强,许多高性能的新型机种应运而生。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,成为自动化领域和其他测控领域中广泛应用的器件,在工业生产中成为必不可少的器件。在温度控制系统中,单片机更是起到了不可替代的核心作用。像用于化工生产的智能锅炉、用于融化金属的加热炉等都广泛应用。
不是,气化炉是节能产品,它的原料很多只要是能然烧的什么都可以,比如柴木草直物类的都可以用来做使用材料,结果如电罗丝火一样.
在生产短的foundationsof弄拉行业中。常用的参数,并被控在许多领域的温度测量和更多的工业生产中,人们都需要加热,热处理炉,燃烧炉和锅炉的温度的农业生产所有类型的温度测量,植物生长采用单 - 芯片温度检测不仅方便,简单的控制和灵活性的优势,但在温度测量的性能指标也大幅增加,这可以提高产品的的质量和设计的温度 contrllled多路温度检测系统,重点介绍单 - 片内温度测量系统的硬件和软件设计的四 - 路采集通道的温度测量,安培AD590温度传感器采集系统的温度测量探头的温度,微处理器控制芯片AT89S51 [大陆提示1]系统,通过多路A / D转换器ADC0809的温度值,并通过软件转换成单一 - 芯片程序控制比较结果的数值转换由一个单一的收购 - 芯片输出管为数字I / O定时的同时,实施基本人机界面功能,包括D按报警使用设置上限和较低的温度下当前的环境温度的设计还包括温度报警的测量系统温度超过设定温度范围内的值,报警的系统开始系统由的电击蜂鸣器,自激(NPN晶体管)和electroluminous。
温度控制系统的设计(555定时器) [单片机] 04-20摘要 在日常的生产与生活中,温度是一个非常重要的过程变量,因为它直接影响燃烧、化学反应、发酵、烘烤、煅烧、蒸馏、浓度、挤压成形、结晶以及空气流动等物理和化学过程。所以人们需要用到良好的温度检测及控制装置系统来解决这些问题。本文介绍了采用A/D ...http:// 化工液的温度控制与检测(程序+电路图+Protel原理图+PCB图)精品☆ [电子] 01-01摘 要 为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。本文利用单片机结合传感器技术而开发设计了这一温度监控系统。文中传感器理论单片机实际应用有机结合,详细地讲述了利用AD5 ...http:// 温度控制器的设计(AT89S51单片机)(程序+电路图+原理图+PCB图)☆ [单片机] 11-17摘 要 随着科技的不断进步,在工业生产中温度是常用的被控参数,而采用单片机对这些被控参数进行控制已成为当今的主流。本文介绍了以AT89C51单片机为核心的数字温度测量及自动控制系统的设计,该温度控制器可以实时显示和设定温度,实现对温度的自动控制。其 ...http:// MCS-51单片机智能温度控制系统设计 [单片机] 07-16温度控制在热处理工艺过程中,是一个非常重要的环节。控制精度直接影响着产品质量的好坏。本文研究的电炉是一种具有纯滞后的大惯性系统,传统的加热炉控制系统大多建立在一定的模型基础上,难以保证加热工艺要求。 ...http:// 基于AT89C2051单片机的温度控制系统的设计(程序+电路图)☆ [单片机] 07-16摘 要 :温度控制在工业生产中运用的非常广泛,其控制过程中存在着很大的时滞性和很强的干扰。采用一般的控制方法如PID控制,都不能很好地满足要求。而基于AT89C2051单片机的温度控制策略可以很容易的解决这些问题。 以AT89C2051单片机为基础,结合温度传感 ...http:// 基于单片机饮水机温度控制的设计(实物图+原理图+PCB图+程序)☆ [单片机] 07-16摘 要 温度是表征物体冷却程度的物理量,也是一种最基本的环境参数。在农工业生产及日常生活中,对温度的测量及控制始终占据着极其重要的地位。目前,典型的温度测控系统由模拟式温度传感器、A/D 转换电路和单片机组成。由于模拟式温度传感器输出的模拟信号必 ...http:// 基于AT89S51单片机核心的温度控制系统的设计 [单片机] 07-16摘要 本文介绍了以AT89S51单片机为核心的温度控制系统的工作原理和设计方法。温度信号由温度芯片DS18B20采集,并以数字信号的方式传送给单片机。文中介绍了该控制系统的硬件部分,包括:温度检测电路、温度控制电路、PC机与单片机串口通讯电路和一些接口电路 ...http:// 基于单片机的温度控制系统的设计 [单片机] 07-16摘 要 本文列举了单片机在锅炉中的一个实际应用,并对设计的温度控制系统的组成及主要电路的作用进行了详细的介绍。 文章介绍了用单片机控制的、基于数字温度传感器DS1820的温度测量和控制系统:重点阐述了DS1820的工作原理、指令系统、单片机与DS1820之间的 ...http:// 基于单片机的模糊PID温度控制系统设计 [单片机] 07-16摘 要 温度控制在热处理工艺过程中,是一个非常重要的环节。控制精度直接影响着产品质量的好坏。本文研究的电炉是一种具有纯滞后的大惯性系统,传统的加热炉控制系统大多建立在一定的模型基础上,难以保证加热工艺要求。因此本文将模糊控制算法引入传统的加热 ...http:// 嵌入式系统在多点温度控制中的应用 [嵌入式] 07-16第一章 概述 引言 嵌入式系统被定义为:以应用为中心,以计算机技术为基础,软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。实际上嵌入式系统是计算机的一种应用形式,是将先进的计算机技术、半导体技术和电子技 ...http://
你需要我帮忙吗?、、、、、 看我名联系
第1章 硬件电路分析第节 硬件电路概述该测温系统由五部分组成:电源模块、侦测模块、显示模块、控制模块、通讯模块。电源模块完成将200V,50Hz市电转换为稳定的直流+5V电源的任务,包含变压、整流、滤波和稳压四部分,其中稳压部分采用LM7805集成块。串口通信模块的任务是实现单片机与计算机的通信,通过软件将程序下载至单片机中进行运行调试以上内容来自5173论文网 点击参考更多
镁法海绵钛爬壁钛生成量的初探沈俊宇(遵义钛业股份有限公司 贵州省 563004)摘要:在海绵钛的还原生产过程中,反应器的上部器壁会生成大量环状的爬壁钛,一炉产品爬壁钛的生成量少则500 kg左右,多则达800至1000 kg,爬壁钛不仅产品取出困难,增加操作人员劳动强度,而且其质量较差,经济损失大。本文分析了海绵钛爬壁钛的形成机理及生产过程中爬壁钛增多的原因,提出了还原中后期最大加料速度限制,以缓解反应剧烈程度和控制反应液面高度在1#范围内小幅波动,防止形成新的活性中心,是生产过程中减少爬壁钛生成量的主要途径。关键词:海绵钛 爬壁钛 生成量 加料速度 反应液面高度A Study the Production of the Titanium on Walls Produced in the Process of Sponge Producing by Magnesium ProcessJunyu,Shen(Zunyi Titanium 563004)Abstract:A quantity of annular titanium will be produced on upper walls of reactors during the reduction and distillation。The production per batch is from 500kg to 800 or 1,000kg. It is difficult for operators to take products out ,and also influences the quality .Therefore ,the titanium on walls not only strengthens the labor intensity ,but also causes a big loss The paper analyzes the formation mechanism of the titanium on wall and reasons why its production order to ease the strong reaction,make the liquid level in reaction waves no more than 1’’and prevents the formation of new active centers ,the paper introduces a main method to reduce the production of the titanium on walls,that is to retrict the speed in mid or late period of reduction and sponge the titanium on walls production feed speed liquid level in reaction 1 前言在海绵钛的还原生产过程中,反应器的上部器壁会生成大量环状的爬壁钛,如图1所示。爬壁钛会导致以下不良后果: 第一,由于目前使用双法兰反应器,反应器上部热损失较大(上部有三圈水套,反应器约300 mm高度在加热炉外),上部爬壁钛中的氯化镁很难被蒸发出去,使爬壁钛中含有较高的杂质元素氯,剥取产品时会看到反应器口部(爬壁钛的最上部)粘有大量的镁和氯化镁。第二,海绵钛还原、蒸馏反应器为铁制反应器,由于爬壁钛在反应器器壁上粘附较强,加之双法兰反应器上部热损失大,为保证反应器上部温度,蒸馏期间加热炉1#、2#加热电阻丝送电频率高且时间长,致使爬壁钛普遍有发亮现象,分析结果显示杂质元素铁含量较高。第三,爬壁钛在反应器上部空间极易被泄漏进的空气污染,使产品中杂质元素氮、氧含量较高。由表1可看出,产品分析爬壁钛质量级别基本上在3—5级(极少部分在2级以上),同时,也有少部分因杂质元素过高成为等外品。一炉产品爬壁钛的生成量少则500kg左右,多则达800至1000 kg,经济损失较大。另外,爬壁钛过多也给产品取出带来困难,增加操作人员劳动强度。为了减少爬壁钛生成量,降低损失,我们进行了控制液面高度及调整料速试验。表1 2007年下半年爬壁钛质量统计表分析批数(批) 2级品批数(批) 3~5级品批数(批) 等外品批数(批) 2级品影响因素 3~5级品、等外品影响因素75 12 51 12 HB、Fe、Cl、O、N HB、Fe、Cl2 爬壁钛形成机理镁还原TiCl4主要反应为:TiCl4+2Mg=Ti+2MgCl2,在还原反应刚开始时,加入的TiCl4大部分气化,发生气相TiCl4—气相Mg或气相TiCl4—液相Mg反应,同时也有一部分TiCl4液体未来得及气化,进入液镁中,发生液相TiCl4—液相Mg间的反应。还原刚开始在反应器铁壁和熔镁表面夹角处上,一旦有钛晶粒出现后,裸露在熔镁面上方的钛晶体尖峰或棱角便成为活性中心。[1] 镁还原TiCl4主要在此活性中心上进行。液镁靠表面张力沿铁壁和钛晶体毛细孔上爬,被吸附在活性中心上,与气相TiCl4反应生成最初的海绵钛颗粒。随着反应的进行,生成的海绵钛颗粒依赖其与反应器壁的粘附力和熔体浮力的支持沿反应器壁在熔体表面逐渐长大,并浮在熔体表面。随着生成的海绵钛块增厚、增大,加之排放氯化镁,失去熔体浮力支持的海绵钛块体大部份就会沉落在熔体底部,这样在反应器器壁上,将有环状海绵钛粘附在其上,其实,这部分也是最初的爬壁钛。另外,在还原反应初期,液镁有很大的蒸发表面,而空间压力较低,故镁具有很大的蒸发速度。还原反应中期,反应温度较高和对反应器底部加热时,也会有部分镁蒸发。镁蒸气挥发后,冷凝在反应器器壁和大盖底部,与气相TiCl4反应也会生成部份爬壁钛。海绵钛块沉落熔体底部后,熔体表面会重新暴露出液镁的自由面,还原反应将恢复到较大的速度。随着反应的进行,在熔体表面会重新生成海绵钛桥,通过排放氯化镁,钛桥被破坏,海绵钛块靠自重下沉,又为下一层海绵钛生长创造条件,爬壁钛也在这一过程中逐渐形成,还原反应如此周而复始进行,直至镁的利用达到65%—75%之后。3 生产中爬壁钛增多原因分析中后期加料速度随着还原反应的进行,特别是进入中期后,加料速度逐渐增加,反应进行的非常剧烈,熔体表面反应区中心部最高温度可达1200℃以上,而镁的沸点仅1105℃,此时镁处于沸腾状态。加之目前还原操作料速按玻璃转子流量计实际刻度与自动加料系统对照进行加料,因玻璃转子流量计出厂时是用水标定,当被测介质改为TiCl4时,其修正系数,经计算应为。当玻璃转子刻度显示最大加料量为150 kg /,实际料速已达160~170 kg /。这样更加剧了反应的剧烈程度,沸腾的液镁将不断吸附在最初反应器壁上已形成的少量环状爬壁钛上,通过钛晶体毛细孔上爬,与气相TiCl4反应生成新爬壁钛,使原环状爬壁钛增多、增厚。另外,由于反应剧烈程度增加,也加剧了液镁的气化,液镁蒸气挥发后,冷凝附着在反应器器壁上部和大盖底部,与气相TiCl4反应生成爬壁钛,这些爬壁钛主要粘附在反应器器壁上部和大盖底部。因此,最大料速持续的时间越长,生成爬壁钛也就越多(表2)。表2 部分大料速爬壁钛生成量统计表最大料速(kg /) 持续的时间(h) 爬壁钛占毛产量比例(%)生产炉-1 155~165 35 生产炉-2 145~155 40 生产炉-3 155~165 36 生产炉-4 155~165 40 生产炉-5 155~165 35 反应液面高度反应液面高度太低、波动范围过大会增加爬壁钛生成量,其原因如下:第一,当反应液面高度过低时,TiCl4距液镁表面间距面相对较远,发生液相TiCl4—液相Mg间的反应相对减少,气相TiCl4与镁蒸气反应相对增加,从而增加爬壁钛生成量。第二,因未定时、定量准确排放MgCl2,反应液面高度大幅上下波动,易在钛晶体活性中心之外,形成新的活性中心,液镁靠表面吸引力沿铁壁和钛晶体孔隙上爬,被吸附在活性中心上,这样在反应器壁上会粘附形成新的爬壁钛。因此,不控制好液面高度,及时准确排放MgCl2,也将增加爬壁钛的生成量(表3)。表3 反应液面高度大幅波动量统计表反应液面高度波动范围 爬壁钛占毛产量比例(%)生产炉-6 1#~2# 生产炉-7 1#~2# 生产炉-8 1#~2# 生产炉-9 1#~2# 生产炉-10 1#~2# 生产炉-11 1#~2# 措施通过上述分析,可以知道爬壁钛是海绵钛生产过程中必然要形成的,但其生成量是可以控制的,因此,我们对加料速度以及反应液面高度进行了调整。结合生产实践,采取两项措施:第一,我们对部分处于通风不好而影响散热的炉子还原中期最大加料速度限制在135~140 kg /,以缓解反应剧烈程度,特殊炉次,因反应温度太低,可以适当提高至160~170 kg /,但持续时间不能太长,最多3~4 h;后期最大料速限制在105~110 kg /。第二,控制反应液面在1#范围内小幅波动,防止形成新的活性中心,以达到降低爬壁钛生成量的目的(表4)。表4 调整料速及排放MgCl2制度试验对比表料速及排放MgCl2制度 平均爬壁钛占毛产比例(kg) 平均钛坨重量(kg) 平均加料时间(h) 中期平均最大料速(kg /) 后期平均最大料速(kg /)调整前 5291 89 160 120调整后 5483 87 138 107从表4的统计数据可以看出,通过控制最大料速以及控制好液面高度及时准确的排放MgCl2,产品生成的爬壁钛占毛产比例大大下降,调整前平均爬壁钛为%,调整后平均爬壁钛%,平均下降%。在进行调整料速试验期间,对生产炉-59一炉产品还原中期加料再次进行提高料速到155~165 kg /试验,结果爬壁钛增至占毛产量的%,从这点也证明了加料速度对爬壁钛形成的影响。此外,调整前,钛坨平均重5291 kg,调整后,钛坨平均重5483 kg,平均毛产重量未受影响;调整前平均加料时间89小时,调整后平均加料时间87小时,加料时间也略有减少。试验在降低爬壁钛生成量的同时,缩短了还原生产周期,降低了还原电耗,取得了较好的效果。5 结论对处于通风不好而影响散热的炉子还原中期最大加料速度限制在135~140kg /,后期最大料速限制在105~110 kg / 控制反应液面高度在1#范围内小幅波动。本试验在巩固海绵钛钛坨产量的情况下,降低了爬壁钛生成量,试验取得了效果,为进一步研究探索海绵钛爬壁钛生成量打下了基础。参考资料[1] 莫畏, 邓国珠 ,罗方承 . 钛冶金[M].版次(第二版).北京:冶金工业出版社,1998:281-293
轮机工程技术论文范文篇二 燃气轮机在热电联产工程中的应用状况分析 摘要: 燃气轮机是21世纪乃至更长时间内能源高效转换与洁净利用系统的核心动力装备.介绍了燃气轮机的发展现状及其在热电联产工程中的应用,简述了联合循环和简单循环燃气轮机电厂的基本组合方式,并列举了目前应用在热电联产工程中的几种主要的燃气轮机.阐述了燃气轮机相对于常规火电机组的优点,分析了影响燃气轮机在热电联产工程中推广的因素,并对我国燃气轮机的发展前景进行了展望. 关键词: 燃气轮机; 联合循环电厂; 热电联产 中图分类号: TK 479文献标志码: A Analysis of the application of gas turbines in heat and power cogeneration projects SUN Peifeng, JIANG Zhiqiang (1. China United Engineering Corporation, Hangzhou 310022, China; 2. China Huadian Corporation, Beijing 100031, China) Abstract: The gas turbine is the core equipment of highefficiency clean energy systems in the 21st century and even longer period of time. The current situation of gas turbine development and its application in heat and power cogeneration projects were showed in this paper. Two types of application of gas turbines in heat and power cogeneration projects were briefly introduced, namely, the simple cycle gas turbine power plant and the combined cycle power plant, and gas turbines widely used at present in heat and power cogeneration plants were enumerated. The advantages of the gas turbine plant compared with conventional coalfired power units were described and factors which could influence the application of the gas turbine were analyzed. In addition, the prospects for the development of gas turbines in China were evaluated. Key words: gas turbine; combined cycle power plant; heat and power cogeneration 燃气轮机由压气机、燃烧室、透平、控制系统和辅助设备组成.燃气轮机的设计是基于布莱顿循环.压气机(即压缩机)连续地从大气中吸入空气并将其压缩;压缩后的空气送入燃烧室,与喷入的天然气混合,并点火燃烧;燃烧后产生的高温烟气随即流入燃气透平中膨胀做功,推动透平带动压气机叶轮一起旋转.加热后的高温燃气的做功能力显著提高,因此,透平在带动压气机的同时,还有余功作为燃气轮机的输出功输出. 由于燃气轮机的工质是高温烟气而不是水蒸气,故可省去锅炉、冷凝器、给水处理等大型设备.因此,燃气轮机电厂附属设备较少,系统简单,占地面积较少. 燃气轮机可分为重型燃气轮机、工业型燃气轮机和航改型燃气轮机三类.重型燃气轮机的零件较为厚重,大修周期长,寿命可在10万h以上,主要用于满足城市公用电网需求,例如日立的H25和H80系列燃气轮机、通用电气的F级燃气轮机、西门子的SGT-8000系列燃气轮机、三菱的M701系列燃气轮机和阿尔斯通的GT系列重型燃气轮机等.工业型燃气轮机的结构紧凑,所用材料一般较好,燃气轮机的效率较高,例如索拉的T130燃气轮机和西门子SGT-800燃气轮机,常用于热电联产工程.航改型燃气轮机是由航空发动机改装而成的燃气轮机,在航空领域运用较多,但也有应用于发电及相关工业领域,例如通用电气的 LM 系列航改型燃气轮机等.航改型燃气轮机的结构最紧凑,最轻巧,效率最高,但寿命较短[1-2]. 燃气轮机自上世纪30年代诞生以来发展迅速.当今国际上最新型的G型燃气轮机和H型燃气轮机,单机功率已达到292~334 MW,发电热效率已达到.其中,由G型燃气轮机组成的联合循环单机功率可达489 MW,发电热效率可达;由H型燃气轮机组成的联合循环机组的发电热效率可达60%[3-5].H型燃气轮机组成的联合循环机组是目前已掌握的热-功循环效率最高的大规模商业化发电方式.不仅如此,燃气轮机与以煤为燃料的蒸汽轮机相比,它具有重量轻、体积小、效率高、污染少、启停灵活等优点.燃气轮机发电机组能在无外界电源的情况下迅速启动,机动性好.在电网中用它带动尖峰负荷和作为紧急备用电源,还能携带中间负荷,能较好地保障电网的安全运行,所以得到广泛应用[6]. 国内外科技界与产业界已经认识到燃气轮机将是21世纪乃至更长时期内能源高效转换与洁净利用系统的核心动力装备. 1燃气轮机在热电联产工程中的应用方式 燃气轮机在热电联产工程中的应用形式主要有两种:一种是燃气轮机联合循环热电厂;另一种是燃气轮机简单循环热电厂. 燃气轮机联合循环热电厂由燃气轮机、余热锅炉、蒸汽轮机(背压式、抽背式或者抽凝式)和发电机共同组成.燃气轮机排出的做功后的高温烟气通过余热锅炉回收烟气中的热量而得到高温水蒸气,水蒸气注入蒸汽轮机发电.蒸汽轮机的排汽或者部分在蒸汽轮机中做功后的抽汽用于供热,形式有:燃气轮机、蒸汽轮机同轴推动一台发电机的单轴联合循环;燃气轮机、蒸汽轮机推动各自的发电机的多轴联合循环.单轴的燃气轮机联合循环电厂规模较大,例如通用电气的9F系列机组.而多轴的联合循环机组常见于中小型的燃气轮机联合循环电厂.因此,对于电厂规模相对较小的热电联产工程来说,常选择多轴的燃气轮机联合循环机组. 燃气轮机简单循环热电厂由燃气轮机和余热锅炉组成.该类型燃气轮机热电厂不配置蒸汽轮机,通过余热锅炉直接对外供热.因此该类型燃气轮机热电厂发电热效率相对联合循环燃气轮机热电厂较低,约为30%~35%之间;热电比和供热成本的指标方面,简单循环燃气轮机热电厂也低于联合循环燃气轮机热电厂[7]. 由此可见,燃气轮机联合循环可大大提高发电厂整体发电热效率.即使只有燃气轮机和余热锅炉组成的不配置蒸汽轮机的简单循环燃气轮机发电厂,其发电效率也高于常规的小型燃煤热电厂. 2热电联产工程中燃气轮机机型选择 热电联产工程遵循“以热定电”原则,首先满足外界对蒸汽负荷的需求,一般对发电量的需求相对较少.因此,对于热电联产工程来说,大功率的重型燃气轮机使用相对较少,常配置一些中小型的燃气轮机. 世界主要的中小型燃气轮机有:索拉的T130燃气轮机;日立的H25和H80燃气轮机;通用电气的6F和LM系列的航改型燃气轮机;西门子的SGT-800燃气轮机.各机型的主要技术参数如表1(见下页)所示(表中数据来自各个燃气轮机厂家产品宣传手册,且会因计算的天然气热值等参数变化而发生微小的变化). 表1各中小型燃气轮机相关性能参数 Performance parameters of some gas turbines 表1中,H25,H80 和6F为重型燃气轮机;SGT-800和T130为工业型燃气轮机;LM6000为航改型燃气轮机.从表1可知,工业型和航改型燃气轮机单机发电热效率相对重型燃气轮机的单机发电效率明显更高,但燃气轮机的排烟温度相对较低.由于排到余热锅炉的高温烟气所包含的热量相对较少,因此对于整个联合循环热电厂,工业型和航改型燃气轮机联合循环热电厂的整体发电热效率反而低些[8-9].简单循环的燃气轮机热电厂若选择工业型燃气轮机及航改型燃气轮机,其热电厂发电热效率会较高. 对于配置蒸汽轮机的燃气轮机联合循环,重型燃气轮机因其排烟温度较工业型燃气轮机和航改型燃气轮机高,排到余热锅炉的高温烟气所包含的热量相对较多,余热锅炉产出的供蒸汽轮机发电用的高温高压的蒸汽也更多.因此,重型燃气轮机联合循环整体发电热效率比工业型燃气轮机和航改型燃气轮机联合循环的发电热效率高.燃气轮机联合循环热电厂中大多选择重型燃气轮机. 从能量的充分利用和逐级利用角度讲,相比于燃气轮机简单循环热电厂,燃气轮机联合循环热电厂更具有优势.目前我国燃气轮机热电联产工程中,大多选择重型燃气轮机组成的联合循环燃气轮机热电厂,如浙江省的某热电厂,采用6F级燃气轮机匹配余热锅炉和蒸汽轮机组成燃气轮机联合循环机组对外供热供电,燃气轮机联合循环热电厂整体发电热效率约60%. 但是对于某些对占地面积有严格要求的场合,如海上油气平台井等,一般可选择结构紧凑、效率高的工业型燃气轮机或者航改型燃气轮机机. 具体燃气轮机机型的选择可根据各工程的实际情况进行分析、计算、确定,如热电厂的对外供热参数和供热量、装机容量、机组数量、占地面积、整体热效率等. 3燃气轮机联合循环热电联产工程相对于常规火力发电热电联产的优势[10] 相对于常规燃煤的小型火力发电的热电联产电厂,燃气轮机联合循环热电厂的优势主要有: (1) 高效:燃气轮机联合循环的发电热效率已经达到甚至突破60%,这是一般常规火电机组无法比拟的,甚至高于目前最先进的超超临界机组而稳居各类火电机组之首. (2) 单位造价低:燃气轮机联合循环机组单位容量造价约400美元·kW-1,而常规火电机组造价为600~1 000美元·kW-1;若我国国产燃气轮机的制造加工水平进一步提升,燃气轮机联合循环机组单位容量造价还有非常大的下降空间. (3) 低排放:燃气轮机联合循环不排放SO2以及飞灰和灰渣;NOx的排放量也非常低,一般都可以达到 mg·m-3以下,甚至可以根据需要达到小于 mg·m-3的水平,CO2的排放量可以做到 mg·m-3;环保性能居于现有各种火电机组之上. (4) 节水:燃气轮机联合循环机组以燃气轮机发电为主,燃气轮机发电机功率占总容量的70%,联合循环机组所需用水量约为常规燃煤机组的1/3.这在某些缺水的地区显得尤为重要.若选择燃气轮机和余热锅炉配置的简单循环,整个电厂对机组冷却水量的需求相对于常规火电厂的冷却水量更是大幅度减少. (5) 省地:燃气轮机联合循环机组因附属设备较少,无需储煤场、输煤设施,占地面积仅为加脱硫装置的常规火电厂的1/3.这在城市边缘及城区的供热电厂显得尤为重要. (6) 建设工期短:燃气轮机联合循环机组最适合模块化设计,燃气轮机各部件模块可工厂化生产,运至现场吊装,因而大大缩短了燃气轮机电厂的建设工期. (7) 调峰性能好:通过余热锅炉的旁路烟囱,不运行蒸汽轮机及发电机组的情况下,一般在20 min 内就能达到燃气轮机及发电机组的100%负荷,而燃气轮机及其发电机组负荷占整个燃气轮机联合循环电厂额定负荷的70%左右,这保证了燃气轮机联合循环的良好调控性能,实现机组的日启夜停和调峰功能. (8) 操作运行和维护人员少:因为燃气轮机联合循环电厂自动化程度高,采用先进的控制系统,电厂对员工数量的需求大幅下降.一般情况下占同容量常规燃煤电厂人员的20%~25%就足够了. 4影响燃气轮机在热电联产工程中推广的主要因素 燃气轮机联合循环电厂在国外已经得到了普遍发展,近几年已占据美国电力市场的重要地位,欧洲的燃气轮机联合循环电厂也获得了长足的发展.目前我国燃气轮机联合循环电厂能否获得大力推广和发展,主要受制于如下三个因素: (1) 我国能提供多少天然气资源供燃气轮机发电工业使用;当前国内已有部分燃气轮机联合循环电厂因受制于燃料供应,每年运行的时间远远少于常规燃煤机组. 2012年,随着“西气东输”二线最后几条干线的建成投产,整个输气管道实现每年输气300亿m3.未来中国甚至有可能规划修建“四线”或者“五线”,进一步便于西部地区的天然气输送到东部地区开发利用. 另外,海上(东海、南海)天然气的开发、沿海港口城市液化天然气(LNG)的进口,也为联合循环发电扩充了气源供应条件.国内已经探明了华北、东北、西北三大煤层气资源储量,并将逐步开采. 随着天然气来源渠道的扩大,燃气轮机联合循环电厂的应用范围将大大突破西气东输管网和海上天然气所能影响的地区. (2) 如何合理确定天然气价格,使燃气轮机联合循环发电成本能够与严重污染的以煤为燃料的常规火电相竞争. 必须指出,天然气的价格对燃气轮机及联合循环的运行成本有着决定性的影响.在燃气轮机三项发电成本的组成中(设备折旧成本、机组运行维护成本、燃料成本),燃料成本的比例高达60%~65%,即使在天然气的产地,运输过程费用大为降低,天然气价格相对东南沿海地区更加便宜,其成本占燃气轮机发电成本的比例仍然是非常高的[4].在天然气价格居高不下的今天,燃料成本高已经成为制约燃气轮机发电大力推广的一个关键性因素. 当前,作为工业企业及城市基础设施的重要组成部分的许多中小型燃煤热电厂,通常地处城市之中或者城市郊区,因此不可避免地会对当地大气环境质量产生很大影响.中小型燃煤热电厂改造为燃气轮机联合循环热电厂,对当地环境质量的改善效果非常明显,也最容易得到人民群众的接受和支持. 热电厂的燃料从煤炭改造为天然气,虽然合理调整了能源结构,提高了能源利用效率,减少了煤炭运输环节的损失和浪费,但是对燃气轮机联合循环热电厂来说,燃料成本必然要增加,能源代价必然会提高,因此争取群众和企业的理解和参与,合理分担部分天然气成本因素,是解决天然气市场和成本关系的一条合理途径. 政府在制定燃气轮机联合循环热电厂上网电价和外供蒸汽价格时,应考虑到燃气轮机的环境效益,适当提高上网电价和外供蒸汽价格,这也是对天然气成本过高的一种消化. (3) 从长远的角度看,我国燃气轮机整体行业水平的提高是决定我国燃气轮机及联合循环电厂能否大力推广的一个重要因素. 燃气轮机的发展水平代表着一个国家的重大装备制造业的总体水平.当前我国的燃气轮机技术水平与世界先进水平之间的差距还很大,燃气轮机的核心部件依赖于进口,燃气轮机的每次大修花费很大.若某些燃气轮机的大修只能运回美国等发达国家进行,则其费用更大. 近年来,为了推动燃气轮机工业的发展,按照“市场换技术”的原则,我国对规划批量建设的燃气轮机发电站工程项目采取“打捆”式招标采购模式,由国外先进燃气轮机制造企业与国内制造企业相互结合组成联合体,进行燃气轮机联合循环电站工程项目的竞争投标,以吸收和引进国外先进技术.在这一过程中,我国同时引进了世界三大动力集团(通用电气、西门子、三菱)的F级重型燃气轮机.在实现燃气轮机设备制造本土化和国产燃气轮机技术开发方面都取得了良好的成果.在吸收和引进国外先进燃气轮机技术的基础上,逐步实现了燃气轮机联合循环电站设备研发和制造的国产化、本地化和知识产权自主化[11-12]. 2008年,我国具有完全自主知识产权的110 MW级R0110燃气轮机进行了点火及实验验证,其性能已经接近于目前国际上先进的F级燃气轮机,对我国的燃气轮机设计、制造和加工的整体水平是一个巨大的提升[13-14]. 目前,我国燃气轮机技术水平与国际先进水平之间的差距正在不断缩小,我国的燃气轮机自主研发、生产制造等方面取得了重大进展.2012年9月12日,上海市科委重大专项课题“高温合金叶片制造技术研究”通过专家验收,这标志着我国在燃气轮机核心部件国产化、自主化生产的道路上迈出了坚实的一步. 从制约燃气轮机联合循环电厂发展的三个因素及我国目前的相应情况可知,我国大力发展燃气轮机联合循环的条件已经具备,燃气轮机联合循环电厂的快速发展在近期将成为可能. 5总结 实现节能减排,提高能源利用率是我国能源结构调整的目标.随着我国天然气资源的开发、利用及液化天然气资源的引进,我国燃气轮机联合循环机组将不断增加.燃气轮机联合循环以其高效、清洁和灵活的特点,必将成为我国未来大力发展的电厂类型. 目前可用于热电联产的中小型燃气轮机容量和整个热电厂供热能力与我国广泛使用的蒸汽轮机热电机组的规格十分接近,因而可在不改变外部系统,不增加发电容量和不间断供热、发电的前提下,以较短的时间、较低的投资和较合理的电、热成本实现对热电厂以气代煤的改造.这也是燃气轮机联合循环热电厂可获得大力推广的现实条件. 总之,燃气轮机联合循环机组在我国电力工业中的作用将逐渐增强,发展燃气轮机联合循环热电厂任重而道远,但是前景是非常光明的. 参考文献: [1]李孝堂.燃气轮机的发展及中国的困局[J],航空发动机,2011,37(3):1-7. [2]马悦,纪锦锋.燃气-蒸汽联合循环电站机组配置及选型分析[J].能源工程,2011(6):52-57. [3]蒋洪德.重型燃气轮机的现状和发展趋势[J].热力透平,2012,41(2):83-88. [4]清华大学热能工程系动力机械与工程研究所,深圳南山热电股份有限公司.燃气轮机与燃气-蒸汽联合循环装置[M].北京:中国电力出版社,2007. [5]刘红,蔡宁生.重型燃气轮机技术进展分析[J].燃气轮机技术,2012,25(3):1-5. [6]张荣刚,李文强.浅析燃气轮机在电力行业中的应用[J].企业技术开发,2011,30(10):122-123. [7]徐迎超,阎波,樊泳,等.燃气-蒸汽联合循环(CCPP)发电在首钢迁钢公司中的应用[J].冶金动力,2012(1):27-29. [8]刘祖仁,李达,张阳.海上燃气轮机余热资源计算[J].中外能源,2012,17(5):99-103. [9]李达,张阳,孙毅.海上冷、热、电、惰气四联供护技术探讨[J].石油和化工节能,2012(5):11-14. [10]黄勇.我国发展联合循环机组的背景和条件[J].中国科技博览,2011(29):372. [11]刘华强,汪晨晖.燃气轮机在我国应用情况分析[J].中国新技术新产品,2012,(6):149. [12]杨连海,沈邱农.大型燃气轮机的自主化制造[J].燃气轮机技术,2006,19(1):11-14. [13]崔荣繁,陈克杰,郭宝亭.R0110重型燃气轮机的研制[J].航空发动机,2011,37(3):8-11. [14]包大陆.R0110重型燃气轮机气缸结构研究[J].中国新技术新产品,2012(9):109. 看了“轮机工程技术论文范文”的人还看: 1. 轮机工程技术个人简历免费模板 2. 船舶轮机管理论文 3. 船舶最新技术论文 4. 农业机械技术论文 5. 电厂工程技术管理论文
前言第1章绪论低温余热发电的现状水泥窑炉低温余热发电干熄焦余热发电烧结低温余热发电低温余热热力发电的主要技术低温余热发电的两种主要热力循环利用LNG冷能有机朗肯循环发电有机朗肯循环发电技术研究现状低温余热发电有机朗肯循环技术研究的意义第2章低温余热发电有机朗肯循环原理及一般特性低温余热的特性余热介质物性参数的计算方法余热所具有的能量低温余热烟气的腐蚀性低温余热发电有机朗肯循环的原理与组成有机朗肯循环的原理与组成纯工质有机朗肯循环的类型低沸点混合工质有机朗肯循环有机朗肯循环中余热锅炉的类型与特点有机工质余热锅炉的类型有机工质余热锅炉的主要特点有机工质余热锅炉的一般热力特性低温余热发电有机朗肯循环系统的冷端形式低温余热发电有机朗肯循环炯分析炯损失分布畑效率第3章有机朗肯循环工质的选择及物性有机朗肯循环工质的选择原则纯工质热力性质计算方法状态方程纯工质导出参数的热力学关系式状态方程求解及气液相平衡计算混合工质热力性质计算方法混合工质PR状态方程及混合规则混合工质比摩尔焓、比摩尔嫡及组元逸度系数计算混合工质气液相平衡的计算工质迁移性质的计算方法动力黏度的计算导热系数的计算表面张力的计算第4章有机工质管内流动沸腾换热管内流动加热的换热过程有机工质管内对流换热单相流体管内强制对流换热关联式管内过冷沸腾换热关联式管内饱和气泡状沸腾换热和两相强制对流换热关联式管内湿蒸气强制对流换热关联式有机工质管内流动沸腾换热的实验研究实验目的实验装置实验原理实验结果及分析第5章低温余热发电有机朗肯循环系统模拟第6章有机朗肯循环热力系统的优化设计方法结束语参考文献