实验、叶绿体的分离与荧光观察实 验 目 的 1. 通过植物细胞叶绿体的分离, 了解细胞器分离的一般原理和方法。 2. 观察叶绿体的自发荧光和次生荧光, 并熟悉荧光显微镜的使用方法。 实 验 原 理 将组织匀浆后悬浮在等渗介质中进行差速离心,是分离细胞器的常用方法。叶绿体的分离应在等渗溶液(氯化钠或蔗糖溶液)中进行, 以免渗透压的改变使叶绿体到损伤。将匀浆液1000r/min的条件下离心2min, 以去除其中的组织残渣和未被破碎的完整细胞。然后,在3000r/min的条件下离心5min,即可获得沉淀的叶绿体(混有部分细胞核)。分离过程最好在0~5℃的条件下进行;如果在室温下,要迅速分离和观察。 利用荧光显微镜对可发荧光的物质进行检测时,将受到许多因素的影响,如温度、光、淬灭剂等。因此在荧光观察时应抓紧时间, 有必要时立即拍照。另外,在制作荧光显微标本时最好使用无荧光载片、盖片和无荧光油。 实 验 用 品 一、器材 1.主要设备: 普通离心机、组织捣碎机、粗天平、荧光显微镜。 2.小型器材: 500ml烧杯2个, 250ml量筒1个, 滴管20支, 10ml刻度离心管20支, 试管架5个,纱布若干,无荧光载片和盖片各4片。 二、材料 新鲜菠菜。 三、试剂 氯化钠溶液,吖啶橙(acridine orange)。 实 验 方 法 一、叶绿体的分离与观察 1. 选取新鲜的嫩菠菜叶,洗净擦干后去除叶梗脉,称30g于150ml NaCl溶液中,装入组织捣碎机。 2. 利用组织捣碎机低速(5000r/min)匀桨3~5min。 3. 将匀浆用6层纱布过滤于500ml烧杯中。 4. 取滤液4ml在1000r/min下离心2min。弃去沉淀。 5. 将上清液在3000r/min下离心5min。弃去上清液,沉淀即不叶绿体(混有部分细胞核)。 6. 将沉淀用溶液悬浮、 7. 取叶绿体悬液一滴滴于载玻片上,加盖玻片后即可在普通光镜和荧光显微镜下观察。 (1)在普通光镜下观察。 (2)在荧光显微镜下观察叶绿体的直接荧光。 (3)在荧光显微镜下观察叶绿体的间接荧光:取叶绿体悬液一滴滴在无荧光载片上,再滴加一滴吖啶橙荧光染料, 加盖片后即可在荧光显微镜下观察。 二、菠菜叶手切片观察 用剔须刀片将新鲜的嫩菠菜叶切削出一斜面置于载玻片上,滴加1~2滴 NaCl溶液,加盖片后轻压,置显微镜下观察。 (1)在普通光镜下观察。 (2)在荧光显微镜下观察其直接荧光。 (3) 观察间接荧光:向手切片上滴加1~2滴吖啶橙染液,染色1min,洗去余液, 加盖片后可在荧光显微镜下观察间接荧光。 实 验 结 果 一、叶绿体的分离和观察 1. 普通光镜下,可看到叶绿体为绿色橄榄形,在高倍镜下可看到叶绿体内部含有较深的绿色小颗粒,即基粒。 2. 以Olympus荧光显微镜为例,在先用B(bule)激发滤片、B双色镜和O530(orange)阴断滤片的条件下,叶绿体发出火红色荧光。 3. 加入吖啶橙染色后,叶绿体可发出桔红色荧光,而其中混有的细胞核则发绿色荧光。 二、菠菜叶手切片观察 1. 在普通光镜下可以看到三种细胞 (1)表皮细胞: 为边缘呈锯齿形的鳞片状细胞; (2)保卫细胞: 为构成气孔的成对存在的肾形细胞;(3)叶肉细胞: 为排列成栅状的长形和椭圆形细胞。叶绿体呈绿色橄榄形,在高倍镜下还可以看到绿色的基粒。 2. 在荧光显微镜下,叶绿体发出火红色荧光,但其荧光强度要比游离叶绿体弱, 气孔发绿色荧光,两保卫细胞内的火红色叶绿体则环绕气孔排列成一圈。表皮细胞内的叶绿体数量要比叶肉细胞少。 3. 用吖啶橙染色后,叶绿体则发出桔红色荧光,细胞核可发出绿色荧光, 气孔仍为绿色。 作 业 1. 在普通光学显微镜下,用目微尺和台微尺测量一下叶绿体的长轴和短轴,分别测量5~10个叶绿体,求其平均值。 2. 在荧光显微镜下,观察叶绿体的自发荧光时,更换滤镜系统,叶绿体的颜色是否有变化?实验五、 植物染色体标本制备与观察实验目的学习植物染色体标本的制备技术,了解Feulgen反应的基本原理,学习其操作方法和压片法,初步掌握细胞分裂各期的主要特点.核酸是生物最重要的组成成分,核酸分为两大类,即脱氧核糖核酸(DNA)和核糖核酸(RNA).它们在细胞内的分布及化学性质均有所不同.DNA主要分布在核的染色质或有丝分裂过程中出现的染色体内.RNA分布在细胞质和核仁内.但在染色质及染色体中也含有少量的RNA,核仁中也有少量的DNA.在线粒体,叶绿体等细胞器内除含有RNA外,也含有少量的DNA.实验原理Feulgen反应的原理是根据DNA经弱酸(1mol/L)水解后,打开料嘌呤和脱氧核糖连接的键,在脱氧核糖的一端形成有离的醛基.这些醛基就在原位与Schiff试剂结合,形成含醌基( )的化合物,醛基是一个发色团所以具有颜色,因此凡有DNA的部位,就呈现紫红色.实验材料大麦、黑麦或小麦种子实验内容植物染色体标本的制备及DNA的显示法-Feulgen反应压片法细胞有丝分裂相的观察实验步骤(一)植物染色体标本的制备1、将植物种子放在潮湿的滤纸上,20°C发芽,待胚根长至1~2cm时,切取长的根尖部分。2、预处理:将切下的根尖浸入秋水酰素液中,室温下处理3~4小时。3、固定、水解及染色:Camoy固定剂固定10-30分钟 ➞ 95%酒精10分钟 ➞ 70%酒精10分钟 ➞ 蒸馏水 →(对照) 5%三氯醋酸 ➞ 90oC 15分钟 ➞ 1mol/L HCl ← 蒸馏水 ➞ 1mol/L HCl ➞ 60 oC 8分钟 ➞ Schiff试剂40 -60分钟 ➞ 亚硫酸水(1,2,3) ➞ 换3次,每次5分钟自来水 ➞ 将染色后的根尖漂洗干净,悬着染色效果好的材料 ➞ 蒸馏水 ➞ 压片 ➞ 镜检(二) 压片法压片的操作步骤如下,把根尖放在载片上,用刀片切取根尖(),纵切根尖,加一滴水,用解剖针将根尖纵向分成若干小条,保留1-2小条,加盖玻片,用铅笔端轻轻敲击盖玻片,使细胞分离,压平呈云雾状.(三)蚕豆(或洋葱)根尖压片的观察首先在低倍镜下,区分根尖的分生组织区及延长组织区的细胞,然后,在高倍镜下,观察细胞核的形态,注意在你的片子上,是否有有丝分裂细胞,如有,你能找到细胞分裂期的几个阶段,其特征如何 (可参照附录)做Feulgen反应时,应注意的几个问题固定剂的选择:一般常选用Carnoy固定液.其他的固定剂如Flemming固定剂及Champy固定剂等均可用,但不能使用Bouin固定剂.水解时间:水解时间一定要合适,不宜过长或不足,否则会影响实验结果.如用Carnoy固定液固定的材料,水解时间一般在8-15分钟之间.水解时间的长短要随不同的材料及不同的固定剂而定.Schiff试剂的质量:在做Feulgen反应时,重要的因素就是Schiff试剂的质量问题.实验时,要注意试剂颜色是否正常,有无SO2的气味.洗涤剂的重要性:漂洗时,所用的亚硫酸水,最好在每次实验前临时配制,以便保持较浓的SO2.实验对照组:一定要做对照片,以便说明实验结果的真实性.操作过程中,用镊子镊取根尖的生长区部位,切勿夹取根冠部位.鸦片过程中尽量使根尖分生组织细胞保持原来的分布状态.习题简述Feulgen反应的原理欲得到一张好的Feulgen反应制片,制片过程中应注意些什么 绘制细胞分裂图。实验六 植物原生质体的制备实验目的1.学习植物原生质体的分离制备技术,观察原生质体的形态。2.学习植物原生质体的融合技术,观察不同方法融合细胞的形态及变化。实验用品显微镜,擦镜纸,剪子,镊子,小平皿,吸管四支,直式漏斗,300目尼龙网,10ml离心管,载片,盖片。实验原理原生质体(protoplast)这个术语最早是由Hanstein在1880年提出来的。确切地说,食用菌原生质体是指细胞壁完全消除后余下的那部分包裹的裸露的细胞结构。植物的花瓣细胞在经过纤维素酶,离折酶处理后,纤维素和果胶成分遭到破坏,造成原生质体脱离细胞壁进入培养液中。植物花瓣细胞中的大液泡中存在有大量色素,且不同的细胞色素不同,因此可以在不对细胞染色的情况下,通过颜色范围辨认不同细胞的原生质体,以及同种间细胞融合和异种间细胞融合情况。PEG是一种高分子化合物,由于含有醚键而具有负极性,与水,蛋白质和碳水化合物等一些正极化基团形成氢键。当PEG分子足够长时,可作为邻近原生质体表面之间的分子桥而使之粘连。PEG也能连接Ca2+等阳离子。Ca2+可在一些负极化基团和PEG之间形成桥,因而促进粘连,在洗涤过程中,连接在原生质体膜上的PEG分子可被洗脱,这将引起电荷的紊乱和再分布,从而引起原生质体融合,高Ca2+高pH清洗则增加了质膜的流动性,因而大大提高了融合频率,洗涤时的渗透冲击对融合也可能起作用。实验试剂1.洗涤液:甘露醇 MCaCl2?2H2O 8 mM NaH2PO4?H2O 2 MmPh 实验步骤1.酶液的制备 把纤维素酶(EAS-867)溶于~摩尔/升甘露醇内,加10毫摩/升氯化钙溶液作稳定剂。酶溶解后,经4000转/分离心机沉降原生质体,20分钟后,取上清液。经针筒型过滤器,再经微米微孔滤膜过滤后,在无菌箱内把酶液分装在三角烧瓶内,贮存在冰箱里备用。2.材料准备 把生长在温室,苗龄60天以上的烟草植株,取上中部全展叶,在日光下照射2小时,使它萎蔫。也可以用温室生长的蚕豆叶作同样处理,或用大田收获的胡萝卜,放在0℃以上低温备用。萎蔫后的叶片浸在3%的漂白精片溶液中15~20分钟,再用无菌水冲洗干净,用无菌吸水纸吸干表面水分。3.酶解 用尖头镊子撕去叶片下表皮,剪成小块。胡萝卜则用刀片削去表皮和中柱,取用皮层部,切成小块。以上材料1克,放入盛有10毫升酶溶液的培养皿里,加盖。在28~30℃下保温~3小时。4.洗涤 叶片或其他组织经酶解后会出现圆形的游离原生质体,原生质体悬浮液内有未消化的组织、碎片、细胞和破裂的原生质体。用滤纸或尼龙布滤去粗杂质,再把原生质体悬浮液移到离心管,用手摇离心机转动2分钟,吸去上清液(见图),再加入毫升甘露醇洗涤2~3次,最后就得到较为纯净的原生质体,可以供进一步培养或作其他实验用。实验七 细胞融合方法实验目的1、初步掌握动物细胞PEG融合的方法。2、学习细胞融合及其应用的有关知识。实验原理2个或2个以上的细胞合并为1个细胞的现象,称为细胞融合。细胞融合的主要方法有病毒法、聚乙二醇(PEG)法和电融合方法。用PEG处理细胞,能使质膜性质发生改变,导致细胞膜融汇,胞质流通,最后导致细胞融合。实验器材、材料与试剂1、仪器:光学显微镜,离心机,恒温水浴锅,C02培养箱,超净台,倒置显微镜等。2、材料新鲜鸡红细胞,无菌注射器,6号针头,刻度离心管,试管,载玻片,盖玻片。3、试剂50%PEG,Hanks液,甲醇,Giemsa染液,碘酒,75%乙醇实验方法(1)取新鲜鸡血以%生理盐水制成10%的悬液。 (2)称取克PEG(MW=4,000)放入试管内,在酒精灯上融化之,迅速加入预热的Hanks液混匀制成50%的PEG溶液。放入37℃水浴中待用。 (3)取上述10%的鸡红细胞悬液1ml放入离心管中,再加入5ml Hanks液混匀,然后以1,000rpm离心5分钟,小心弃去上清,用指弹法将细胞团块弹散。 (4)取上述50%PEG溶液,在1分钟内滴加到鸡红细胞悬液,边加边轻轻摇动混匀。待PEG全部加入后静置1分钟左右。此全部过程都要求在37℃水浴内进行。 (5)缓慢滴加9ml Hanks液以终止PEG的作用,在37℃水浴内静置5分钟。(6)离心弃上清后,取一滴融合后的细胞悬液滴片,加盖片镜检。
Pomace will be used cellulose degradation of cellulose to fermentable sugar, liquid further fermentation production of citric acid, solid waste residue on the apple production of citric acid fermentation process conditions (temperature, time, the end of concentration, Loading rate, and Aspergillus inoculation, methanol content, pH initial value), Guozha selected for the fermentation of bacteria, and to map out a 36 ℃ and 30 ℃ under the curve of fermentation. The results showed that the pomace solid fermentation the most appropriate conditions for the 36 ℃, do not add methanol, pH for the initial value, at the end of the water content of 70 percent, loading rate of percent, inoculation 4 x1011 / g substrate, fermented for three days , Citric acid concentrations up to percent, the yield was (reducing sugar can be fermented). Fermentation the most appropriate speed for a double 210 r / min, add nitrogen to the most appropriate type of NH4CI, the most appropriate Tianjialiangwei percent. Citric acid production rate of around 80 percent. 关键词Keywords:苹果渣Pomace;黑曲霉Aspergillus niger; 纤维素酶cellulose;发酵fermentation;柠檬酸citric acid
没老师带吗?细胞生物学太大了基本上就是细胞和细胞器的形态观察了吧 还有很多东西是未知的 各种不同的生物也有细小区别的
可以根据自己的专业确定一个大概方向,然后找以前学长们的论文参考一下,再找学校图书馆、期刊网搜索一下相关资料,一般论文都要改好多次的,所以要跟指导老师多沟通,这样在答辩的时候才容易通过。以上是个人的一点经验,希望对你有帮助!
xiān wéi sù méi
cellulase [21世纪双语科技词典]
纤维素酶(cellulase)是降解纤维素生成葡萄糖的一组酶的总称,它不是单成分酶,而是由多个酶起协同作用的多酶体系。人们已对纤维素酶的作用机制及工业化应用等方面进行了大量的研究,为纤维素酶的生产和应用打下了良好的基础。其在扩大食品工业原料和植物原料的综合利用,提高原料利用率,净化环境和开辟新能源等方面具有十分重要的意义。
纤维素酶的来源非常广泛,昆虫、微生物、细菌、放线菌、真菌、动物体内等都能产生纤维素酶。由于放线菌的纤维素酶产量极低,所以研究很少。细菌产量也不高,主要是葡萄糖内切酶,但大多数对结晶纤维素没有活性,并且所产生的酶是胞内酶或吸附在菌壁上,很少能分泌到细胞外,增加了提取纯化的难度,在工业上很少应用。目前,用于生产纤维素酶的微生物菌种较多的是丝真菌,其中酶活力较强的菌种为木霉属(Trichoderma)、曲霉属(Aspergillus)和青霉属(Penicillium),特别是绿色木霉(Trichodermavirde)及其近缘菌株等较为典型,是目前公认的较好的纤维素酶生产菌。现已制成制剂的有绿色木霉、黑曲霉、镰刀霉等纤维素酶。同时,反刍动物依靠瘤胃微生物可消化纤维素,因此可以利用瘤胃液获得纤维酶的粗酶制剂。另外,也可利用组织培养法获得所需要的微生物。
目前,纤维素酶的生产主要有固体发酵和液体发酵两种方法。
固体发酵法固体发酵法是以玉米等农作物秸秆为主要原料,其投资少,工艺简单,产品价格低廉,目前国内绝大部分纤维素生产厂家均采用该技术生产纤维素酶。然而固体发酵法存在根本上的缺陷,以秸秆为原料的固体发酵法生产的纤维素酶很难提取、精制。目前,我国纤维素酶生产厂家只能采用直接干燥法粉碎得到固体酶制剂或用水浸泡后压滤得到液体酶制剂,其产品外观粗糙且质量不稳定,发酵水平不稳定,生产效率较低,易污染杂菌,不适于大规模生产。
液体发酵法液体发酵生产工艺过程是将玉米秸秆粉碎至20目以下进行灭菌处理,然后送发酵釜内发酵,同时加入纤维素酶菌种,发酵时间约为70h,温度低于60℃。采用除菌后的无菌空气从釜低通入进行通气搅拌,发酵完毕后的物料经压滤机板框过滤、超滤浓缩和喷雾干燥后制得纤维素酶产品。液态深层发酵由于具有培养条件容易控制,不易染杂菌,生产效率高等优点,已成为国内外重要的研究和开发方向。
制酒在进行酒精发酵时添加纤维素酶可显著提高酒精和白酒的出酒率和原料的利用率,降低溶液的黏度,缩短发酵时间,而且酒的口感醇香,杂醇油含量低。纤维素酶提高出酒率的原因可能有两方面:一是原料中部分纤维素分解成葡萄糖供酵母使用;另外,由于纤维素酶对植物细胞壁的分解,有利于淀粉的释放和被利用。
将纤维素酶应用于啤酒工业的麦芽生产中可增加麦粒溶解性,加快发芽,减少糖化液中单一葡萄糖含量,改进过滤性能,有利于酒精蒸馏。
酱油酿造在酱油的酿造过程中添加纤维素酶、可使大豆类原料的细胞膜膨胀软化破坏,使包藏在细胞中的蛋白质和碳水化合物释放,这样既可提高酱油浓度,改善酱油质量,又可缩短生产周期,提高生产率,并且使其各项主要指标提高3%。
饮料加工日本有专利报道,用纤维素酶处理豆腐渣后接入乳酸菌进行发酵,可制得营养、品味俱佳的发酵饮料。将纤维素酶应用于果蔬榨汁、花粉饮料中,可提高汁液的提取率(约10%)和促进汁液澄清,使汁液透明,不沉淀,提高可溶性固形物的含量,并可将果皮综合利用。目前,有报道已成功地将柑橘皮渣酶解制取全果饮料,其中的粗纤维有50%降解为短链低聚糖,即全果饮料中的膳食纤维,具有一定的保健医疗价值。
纤维废渣的回收利用应用纤维素酶或微生物把农副产品和城市废料中的纤维转化成葡萄糖、酒精和单细胞蛋白质等,这对于开辟食品工业原料来源,提供新能源和变废为宝具有十分重要的意义。
此外,在果品和蔬菜加工过程中如果采用纤维素酶适当处理,可使植物组织软化膨松,能提高可消化性和口感。
将纤维素酶用于处理大豆,可促使其脱皮,同时,由于它能使细胞壁破坏,使包含其中的蛋白质、油脂完全分离,增加其从大豆和豆饼中提取优质水溶性蛋白质和油脂的获得率,既降低了成本,缩短了时间,又提高了产品质量。
植物纤维原料是地球上最丰富、最廉价而又可再生的资源,其主要成分是纤维素和半纤维素,纤维素和半纤维素的利用一直是国际国内的研究热点课题。利用的途径和整体思路是利用纤维素酶和半纤维素酶先将纤维素和半纤维素降解成可发酵糖,进而通过发酵制取酒精、单细胞蛋白、有机酸、甘油、丙酮及其他重要的化学化工原料。此外,纤维素、半纤维素通过纤维素酶的限制性降解还可制备成功能性食品添加剂,如微晶纤维素、膳食纤维和功能性低聚糖等。
总之,纤维素酶具有非常广阔的应用前景,但由于液态发酵生产技术含量较高,在大规模生产上还有一定的困难,因此对纤维素酶液态发酵的研究与开发具有重要的现实意义。今后若能加强这方面的研究,则可以使之早日进入工业化生产,一方面可以提高纤维素酶的产量和质量;另一方面可以较好地解决纤维素的生物转化问题,创造良好的社会效益和经济效益。
纤维素酶
Cellulase
康彼身;康彼申;bizym
消化系统药物 > 助消化药物
。
每片含有胰酶220mg,相当于脂肪酶(lipase)74OOu(FIP),蛋白酶(protease)420u(FIP),淀粉酶(amylase)7000u(FIP);含米曲菌提取酶120mg,相当于纤维素酶(cellulase)70u(FIP),蛋白酶(protease)10u(FIP),淀粉酶(amylase)170u(FIP)。
用于各类消化不良症状,老年人消化不良。治疗胰酶分泌不足,在肠液中消化脂肪、碳水化合物及蛋白质,起促进食欲的作用。
对纤维素酶过敏者、急性胰腺炎患者禁用。
纤维素酶不可嚼碎。
偶有腹泻及软便。
每次2片,每日3次,饭前服。
不宜与酸性或堿性药物同服。
我国是一个饲料资源十分紧张的国家,土地少、人口多,人畜争粮的矛盾十分突出。要保持我国饲料工业和畜牧业的持续发展,必须解决好饲料问题,否则将严重制约其发展。纤维素是自然界中十分丰富的资源,是800-1200个葡萄糖分子聚合而成。因此,可通过微生物发酵充分利用农副产品下脚料、秸秆、糠生产纤维素酶添加剂,用于提高畜禽生产性能,提高饲料利用率,改善饲料的营养价值,降低饲料成本和提高经济效益,具有广阔的开发前景,今后应进一步加强纤维素酶研究和开发工作。主要有如下几方面:进一步加强纤维素酶的作用机制研究纤维素酶应用于饲料,作用于动物消化道,其机制尚未清楚。从理论上决定其添加量还很困难,受影响因素很多,往往效果不够理想。对于单用多种原料的纤维素酶最佳添加量也研究不多,这将严重制约纤维素酶的推广应用。酶的产量和活性都不高,成本偏高今后应加强菌种选育和发酵工艺等基础研究工作,以提高其产量和活性,特别是要注意利用DNA基因重组技术的应用,来选育出活性高、产酶量大的菌种。加强纤维素酶检测方法研究虽然纤维素酶的检测方法很多,但真正能适合饲料的检测方法还没有,这给实际应用工作带来困难,如无法比较不同厂家的产品质量,确定纤维素酶添加量也很困难,应组织有关力量,制订出统一的检测方法标准,供生产中应用。
纤维素酶的最适pH一般在。葡萄糖酸内酯能有效的抑制纤维素酶,重金属离子如铜和汞离子,也能抑制纤维素酶,但是半胱氨酸能消除它们的抑制作用,甚至进一步激活纤维素酶。植物组织中含有天然的纤维素酶抑制剂;它能保护植物免遭霉菌的腐烂作用,这些抑制剂是酚类化合物。如果植物组织中存在着高的氧化酶活力,那么它能将酚类化合物氧化成醌类化合物,后者能抑制纤维素酶。
您好。褐腐霉和白腐霉菌。可以把废纸里面的木质素和纤维素降解为,乙二醛和葡萄糖。这个本质上是一种氧化反应,所以需要在大量氧气和大量的水分,的存在下才可以完全分解。白腐真菌降解木质素的机理是:在适宜的条件下,白腐真菌的菌丝首先利用其分泌的超纤维素酶,溶解表面的蜡质,然后菌丝进入内部,并产生,纤维素酶、半纤维素酶、内切聚糖酶、外切聚糖酶,降解木质素和纤维素,使其成为含有酶的糖类。其中关键的两类过氧化物酶———木质素过氧化物酶和锰过氧化物酶,在分子氧的参与下,依靠自身形成的H2O2,触发启动一系列自由基链反应,实现对木质素无特异性的彻底氧化。
摘 要 厌氧消化技术能够实现废弃物污染防治和综合利用的双重目标,是有机固废处理与处置的趋势。对厌氧消化技术处理有机固废的微生物学机理、因素以及消化工艺的进展进行了综述。 关键词 厌氧消化 有机固体废物 两相消化 有机固体废物通常是指含水率低于85%~90%可生化降解的有机废物,它们一般具有可生化降解性。这些废物中蕴含着大量的生物质能,有效利用这类生物质能源,对实现环境和的可持续发展具有重要意义。 有机固体废物处理的很多。由于有机固废的可生化降解性高,利用生物技术处理有机废物具有潜在优势。生物处理法包括好氧堆肥法和厌氧消化法。近几年来,欧洲各国纷纷将目光投向厌氧消化,兴建有机固废厌氧消化处理厂,日本等国也先后建设了有机固废厌氧消化处理示范工程。但在国内,尽管早有小型沼气池的,高浓度有机污水及污泥处理中也普遍采用厌氧消化的工艺,但应用于固废处理领域的实践很少。因此,很有必要针对国内的实际情况,对有机固废的厌氧消化进行系统研究。1 厌氧消化机理 在研究方面,国内外一些学者对厌氧发酵过程中物质的代谢、转化和各种菌群的作用等进行了大量的研究,但仍有许多需进一步探讨。对厌氧消化的微生物学认识,经历了一个由肤浅到逐渐完善的过程。20世纪30年代,厌氧消化被概括地划分为产酸阶段和产甲烷阶段,即两阶段理论。70年代初Bryantlzgl等人对两阶段理论进行了修正,提出了厌氧消化的三阶段理论,突出了产氢产乙酸菌的地位和作用。与此同时,Zeikuslao等人提出了厌氧消化的四类群理论,反映了同型产乙酸菌的作用。该理论认为厌氧发酵过程可分为四个阶段,第一阶段(水解阶段):将不溶性大分子有机物分解为小分子水溶性的低脂肪酸;第二阶段(酸化阶段):发酵细菌将水溶性低脂肪酸转化为H2、CH3000H、CH3CH2OH等,酸化阶段料液pH值迅速下降;第三阶段(产氢产乙酸阶段):专性产氢产乙酸菌对还原性有机物的氧化作用,生成H2、HCO3-、CH3COOH。同型产乙酸细菌将H2、HCO3-转化为CH3COOH,此阶段由于大量有机酸的分解导致pH值上升;第四阶段(甲烷化阶段):产甲烷菌将乙酸转化为CH4和CO2,利用H2还原CO2成CH4,或利用其他细菌产生甲酸形成CH4。无论是三阶段理论,还是四类群理论,实质上都是对两阶段理论的补充和完善,较好地揭示了厌氧发酵过程中不同代谢菌群之间相互作用、相互影响、相互制约的动态平衡关系,阐明了复杂有机物厌氧消化的微生物过程。 2 厌氧消化影响因素 底物组成 研究发现不同底物组成,其可生化降解性大不相同(5%~90%)。Borja等研究了不同底物组成和浓度的有机固废的厌氧消化过程,认为在其他条件相同时沼气产量相差很大,甚至达到65%。这个结果与Jokela等的研究所得基本一致。另外,底物组成不同,在发酵过程中的营养需求与调控也不同。对于像以秸秆为主的底物,须补充N源的营养,以达到厌氧消化适宜的C/N比。国内外很多机构开展了生活垃圾、污泥及畜禽粪便联合厌氧消化产沼的研究。联合发酵可以在消化物料间建立起一种良性互补,从而提高产气量,而且仪器设备的共享在提高经济效益方面的作用也是非常明显的。Kayhanian评估了以城市固体垃圾生物可降解部分为底物的高固体厌氧消化示范试验。结果表明,美国典型B/F(可降解垃圾与总物料之比)的垃圾缺乏活跃而又稳定降解所需要的宏量或微量元素,若补充以富含营养的污泥和畜禽粪便,可以提高B/F,大大提高产气率并增加过程的稳定性。国内在这方面的研究仅限于实验室水平,未见相关工程应用的报道。 温度 有机固废厌氧消化一般在中温或高温下进行,中温的最佳温度为35℃左右,高温为55℃左右。Ghosh等利用厌氧消化处理垃圾衍生燃料(RDF),对比了单相式和两相式反应器的处理效果,发现在传统单相式反应器中高温(55℃)比常温(35℃)消化的甲烷产量仅提高7%;RDF粒径从降至在中温消化下对甲烷产量无明显影响,但当反应条件转变为高温消化时甲烷产量可提高14%。高温消化可以比中温消化有更短的固体停留时间和更小的反应器容积。然而高温消化所需热量多,运行也不稳定。最近有研究表明厌氧消化在65℃时水解活性可进一步提高。还有将超高温水解作为一个专门的反应器,对厌氧消化进行处理研究。 高温可以比中温产能多,但高温需要更多的能量,在实际情况中加热所需的能量往往与多产出的能量差不多。虽然沼气产量和生物反应动力学都表明高温消化更有优势,但理想的条件决定于底物类型和使用的系统情况。 pH值 产甲烷菌对pH值的要求非常严格,pH值的微小波动有可能导致微生物代谢活动的终止。在发酵初期由于产生大量有机酸,若控制不当容易造成局部酸化,延长发酵周期,进而破坏整个反应体系。研究发现pH值为~范围内,水分含量为90%~96%时产甲烷速率较高;pH值低于或高于时,产甲烷菌可能会停止活动。 一般说来酸化相对保持略偏酸性,产甲烷相需要略偏碱性,但没有一个绝对合适的量,只需系统能够保持稳定高效便是最佳状态。pH值是厌氧消化过程的重要监测指标和控制参数。 抑制 厌氧消化过程中抑制作用非常普遍,包括pH抑制、氢抑制、氨抑制、弱酸弱碱抑制、长链脂肪酸(VFA)抑制等。 许多学者都研究了厌氧消化中氨抑制的问题。当氨氮浓度从740mg/L至3 500mg/L时,葡萄糖降解速度急剧下降,可以认为氨积聚对糖酵解过程有一定的抑制作用。Sung等研究了以有机固废为底物的常温厌氧消化过程中氨氮浓度对甲烷产气量的影响,常温消化当总氨氮浓度(TAN)从依次升至、、、时,反应器内呈现慢性抑制的现象。TAN为或时,甲烷产量分别降低39%和64%。Fujishima等研究了常温下污泥含水率对厌氧消化的影响,发现污泥的含水率低于91%时甲烷产量减少,这主要由于系统中高氨含量对氢营养甲烷菌的抑制作用。 Salminen指出渗滤液回流与pH值调节相结合可以降低酸积累的抑制效应,加速消化降解速率。然而当系统中活性产酸菌和产甲烷菌数量较少时,回流渗滤液会引起VFA积聚。Clarkson和Xiao对废报纸进行厌氧消化的研究发现,水解反应是其中限制性步骤,高浓度的丙酸盐对其具有抑制作用。 搅拌 当消化底物为固态时,水解通常成为整个反应的限制性阶段。很多经典中强调了消化过程中应充分混和搅拌以促进反应器中酶和微生物的均匀分布。然而近年来有试验表明降低搅拌程度可以提高反应器的效率。Vavilin .常温消化下搅拌强度的,试验表明当有机负荷偏高时,搅拌强度加大会导致反应器运行失败,低强度搅拌是消化过程顺利完成的关键;当有机负荷偏低时,搅拌强度对反应无明显影响。由此Vavilin .提出搅拌阻碍反应器中甲烷区形成的假设,认为甲烷区的形成对抵抗酸化过程中产生的抑制起重要作用。在此基础上他提出了均质柱形反应器的二维分布式模型(2D distributed models),模型基于以下假设:在维持产甲烷菌繁殖代谢处于较优水平的前提下,反应器中甲烷区所占空间存在一个最小值。通过对消化过程的模拟,认为有机负荷高时,反应初始阶段甲烷区与产酸区在空间上分离是固废物转化为甲烷的关键因素,而初始阶段甲烷区中生物量的多少则是这些活性区保留的决定性因素。此时如果高强度搅拌,甲烷区由于VFA的抑制作用会逐渐萎缩直至消失。然而当有机负荷偏低时,大部分甲烷区均能幸存并逐步扩大到整个反应器。 Stroot等学者认为剧烈搅拌会破坏微生物絮团的结构,从而打乱了厌氧体系中有机体间的相互关系。一个连续运转的消化器在启动阶段应逐步增大有机负荷以避免运转失败。当产甲烷阶段是限制性反应时高强度搅拌并不合适,因为产甲烷菌在这种快速水解酸化的环境中很难适应,因此在启动阶段应采取适量搅拌。如果水解阶段为限制性反应,此时反应器内底物浓度较大,高强度搅拌对水解起促进作用。因此为达到有机物厌氧转化的最佳条件,应综合考虑搅拌所带来的积极和负面影响。 预处理 根据现有的研究发现,固体厌氧消化的速度较慢,对固体废物采用物理法、化学法、生物法等预处理可以提高甲烷产气量。Liu等人通过对消化底物进行240℃的蒸汽热处理5分钟,使甲烷产气率提高一倍,最终的甲烷产量增加40%。木质素和纤维素由于其本身结构,是公认的难降解物质,也是很多厌氧消化过程中的限制性因素。Clarkson等对废报纸进行厌氧消化研究,发现碱预处理可以显著提高废纸的可生物降解性,但延长浸泡时间或增大反应温度并不能提高转化率。 Hartmann等在传统的厌氧反应器前端设计了一个生物活性反应器,对厌氧消化进行预处理研究。该反应器用于68℃对底物进行超高温水解,这种反应器分离的设计是为了更大程度降解有机物为VFA,从而获得更高的产气量,同时超高温反应器可以有效去除氨的影响。结果表明VS去除率为78~89%,产气量640~790mL/g。超高温反应器中氨负荷降低7%。 对固态厌氧消化底物的物理和化学预处理研究较多,对生物预处理的研究则较少。Peter等从高温反应器中分离到能分解有机固体废物的嗜温微生物,用该微生物对污水污泥进行预处理,在1~2d内近40%的有机物被分解,而且与没有经过该预处理相比,厌氧消化过程中沼气产量提高50%;Ejlertsson研究表明,在消化开始阶段进行间歇曝气能有效去除易降解的固废,克服高浓度VFA带来的抑制;Mshandete等研究了纸浆厌氧发酵系统中,启动阶段进行9h堆肥预处理后甲烷产量提高26%;Katsura和Hasegawa进行了类似的预处理研究,对污泥进行微好氧热处理后甲烷产量提高50%。研究者认为高温好氧菌分泌的胞外酶比一般蛋白酶在溶解污泥方面更具活性。 3 厌氧消化工艺 厌氧消化处理固体废物,通过技术革新逐步形成了以湿式完全混合厌氧消化、厌氧干发酵、两相厌氧消化等为主的工艺形式。 湿式完全混合厌氧消化工艺(即湿式工艺)的最早也最为广泛。此工艺条件下固体浓度维持在15%以下,其液化、酸化和产气3个阶段在同一个反应器中进行,具有工艺过程简单、投资小、运行和管理方便的优点。这种工艺条件下浆液处于完全混合的状态,容易受到氨氮、盐分等物质的抑制,因此产气率较低。 厌氧干发酵又称高固体厌氧消化,在传统的厌氧消化工艺中固体含量通常较低,而高固体消化中固体含量可达到20%~35%。高固体厌氧消化主要优点是单位容积的产气量高、需水量少、单位容积处理量大、消化后的沼渣不需脱水即可作为肥料或土壤调节剂。随着固体浓度的加大,干发酵工艺中需设计抗酸抗腐蚀性强的反应器,同时还得解决干发酵系统中输送流体粘度大以及高固体浓度带来的抑制问题。两相厌氧消化工艺即创造两个不同的生物和营养环境条件,如温度和pH等。Ghosh最早提出优化各个阶段的反应条件可以提高整体反应效率,增加沼气产量,从而提出了两相厌氧消化。动力学控制是两相系统促进相分离最常用的手段,根据酸化菌和产甲烷菌生长速率的差异来进行相分离。还有一些技术可促进厌氧系统的相分离,如滤床在处理不溶性的有机物时可用来达到相分离。渗析、膜分离和离子交换树脂等也可用于相分离。 大多数观点认为,采用相分离技术创造有利于发酵细菌的生态环境,避免有机酸的大量积累,会提高系统的处理能力。Ghosh等利用厌氧消化处理垃圾衍生燃料(RDF),对比了单相式和两相式反应器的处理效果,发现两相消化比传统单相式反应器,甲烷产量提高20%左右。Goel等人对茶叶渣进行两相厌氧消化研究,发现每去除1kgCOD,平均产气量为,COD去除率93%,甲烷含量73%。 两相厌氧工艺的主要优点不仅是反应效率的提高而且增加了系统的稳定性,加强了对进料的缓冲能力。许多在湿式系统中生物降解不稳定的物质在两相系统中的稳定性很好。虽然两相工艺有诸多的优点,但由于过于复杂的设计和运行维护,实际应用中选择的并不多。目前为止,两相消化在应用上并没有表现出明显的优越性,投资和维护是其主要的限制性因素。4 结语 Edelmann利用生命周期(LCA)认为,厌氧消化是最适宜的有机固废处理方法。有机固废的厌氧消化技术已引起国内外的广泛关注,它们在消纳大量有机废物的同时,可获得高质量的堆肥产品和沼气,实现生物质能的多层次循环利用。 我国目前在有机垃圾厌氧消化工程应用方面的研究很少,厌氧消化的研究主要集中在水处理方面。各种厌氧发酵工艺实际应用中所存在的最大问题是规模化运行的自动化程度较低,技术装备差。因此,对厌氧消化的最佳生物转化条件、生态微环境以及设计完善的过程控制系统等方面,还需要进一步深入研究,以达到最佳的处理效果。 文献1 Borja R,Rincon B,Raposo F et al.Kinetics of mesophilic anaerobic digestion of the two-phase olive mill solid waste[J].Biochemical Engineering Journal,2003(15)2 Ghosh, S,Henry ,Sajjad A et al.Pilot-scale gasification of municipal solid wastes by high-rate and two-phase anaerobic digestion[J].Water Science and Technology,2000(3) 3 Hinrich Hartmann,Birgitte K. Ahing.A novel process configuration for anaerobic digestion of thermophilic post-treatment[J].Biotechnology and bioengineering,2005(7)4 Peter F. Pind,Irini Angelidaki,Birgitte . Dynamics of the Anaerobic Process: Effects of Volatile Fatty Acids[J].Biotechnology and Bioengineering,2003(7)5 Ejlertsson J,Karlsson A,Lagerkvist A et al.Effect of co-disposal of wastes containing organic pollutants with municipal solid waste-a landfill simulation reactor study[J].Adv Environ,2003(7)
(1)①环节需要的微生物能产生纤维素酶,这样的微生物在富含纤维素的环境中较多,可用碳源为纤维素的选择培养基获得.刚果红可以与像纤维素这样的多糖物质形成红色复合物,但并不和水解后的纤维二糖和葡萄糖发生这样的反应.因此要鉴定纤维素分解菌,可向培养基中加入刚果红染料,若存在纤维素分解菌,会产生透明圈.(2)将上述筛选出的菌进行培养,则②中获得的酶是纤维素酶.该酶至少包括C1酶、Cx酶和葡萄糖苷酶三种组分,前两种酶能将纤维素分解为纤维二糖,葡萄糖苷酶能将纤维二糖分解为葡萄糖.(3)酵母菌可以进行无氧呼吸产生酒精,为了确保获得产物乙醇,④过程要注意避免污染杂菌并要注意发酵装置密闭(保证无氧环境).(4)固定化酶等技术使酶能够重复利用,而且还能提高产品的品质.故答案为:(1)纤维素分解酶 刚果红 透明圈 (2)纤维素 葡萄糖苷酶(3)酵母菌 发酵装置密闭(保证无氧环境) (4)固定化酶
纤维素酶(英文:cellulase)是酶的一种,在分解纤维素时起生物催化作用。是可以将纤维素分解成寡糖或单糖的蛋白质。纤维素酶广泛存在于自然界的生物体中。细菌、真菌、动物体内等都能产生纤维素酶。一般用于生产的纤维素酶来自于真菌,比较典型的有木霉属(Trichoderma)、曲霉属(Aspergillus)和青霉属(Penicillium)。产生纤维素酶的菌种容易退化,导致产酶能力降低。细菌产纤维素酶的产量较少,主要是葡聚糖内切酶,大多数对结晶纤维素无降解活性,且所产生的酶多是胞内酶或吸附在细胞壁上,不分泌到培养液中,增加了提取纯化的难度,因此对细菌的研究较少。但由细菌所产生的纤维素酶一般最适pH 为中性至偏碱性。近20年来,随着中性纤维素酶和碱性纤维素酶在棉织品水洗整理工艺及洗涤剂工业中的成功应用,细菌纤维素酶制剂已显示出良好的应用前景。纤维素酶在食品行业和环境行业均有广泛应用。在进行酒精发酵时,纤维素酶的添加可以增加原料的利用率,并对酒质有所提升。由于纤维素酶难以提纯,实际应用时一般还含有半纤维素酶和其他相关的酶,如淀粉酶(amylase)、蛋白酶(Protease)等。纤维素酶种类繁多,来源很广。不同来源的纤维素酶其结构和功能相差很大。由于真菌纤维素酶产量高、活性大,故在畜牧业和饲料工业中应用的纤维素酶主要是真菌纤维素酶。英文名称 Cellulase英文别名 Cellulase [USAN]; Ku-zyme; Kutrase; Cellulase, aspergillus niger; Cellulase, trichoderma viride; Fungal cellulaseEINECS 232-734-4
太大了 给你复制点吧水稻秸秆纤维素发酵转化燃料乙醇的研究摘要我国水稻秸秆资源丰富,年产量达3亿多吨。利用水稻秸秆生产燃料乙醇,对来我国能源问题、实现节粮代粮和环保有着巨大的潜力和广阔的应用前景。水稻秸要成分是纤维素,对纤维素的利用最主要的限制性因素是将纤维素转化为可发酵还解决的办法主要有两类途径:(l)提高纤维素酶生产的经济性,主要涉及纤维素酶高获得及纤维素酶的生产技术,提高其合成效率以降低单位纤维素酶生产成本;(2)提素酶利用效率,主要涉及纤维素酶解催化过程,以降低单位可发酵还原糖生产成本本研究从菌种的选育着手,研究了菌株的产酶特性,用响应面策略优化发酵培养基,了SL发酵罐分批发酵生产高活力纤维素酶技术;分离纯化了纤维素酶;构建了代二糖的酿酒酵母工程菌;对酿酒酵母工程菌细胞固定化发酵进行了研究,利用二级生物反应器祸合系统生物协同酶解水稻秸秆发酵生产燃料乙醇等。主要研究结果如1.筛选到一株纤维素酶高产菌株(PenicilliumYT01),原生质体紫外诱变后变株YT02,YT02以水稻秸秆为碳源,豆饼粉和硫酸钱为氮源,在29”c,初始p酵12Oh,纤维素酶活力达到最高,摇瓶发酵滤纸酶活(FPA)、CMC酶活(CMcas葡萄糖昔酶活(CB)分别达、和。2.用响应面方法(RSM)优化的发酵培养基组成为:水稻秸秆为留L,为,数皮为叭,困H4)2504、KHZpO4为4g/L,MgSO;为;起始以优化的培养基发酵120h,滤纸酶活、cMc酶活和p一葡萄糖普酶活分别达到IU/mL、。远高于优化前的纤维素酶活水平。3.在SL发酵罐中研究了温度、pH值和溶氧对菌体生长和产酶的影响,确定发酵的工艺条件为:0一32h时发酵温度犯”C,溶氧70%;犯h至1加h发酵结果发29oc,溶氧50%,发酵液初始pH值,发酵%h滤纸酶活、CMC酶活和p一葡酶活分别达到、,均高于摇瓶发酵水平,酵动力学过程显示,突变菌YT02菌体生长和纤维素酶各组分均为部分祸联。4.利用DEAEsephadexA一25和sephadexG一75分离纯化了二个内切葡(CMCase)和一个p一葡萄糖营酶,CMCase纯化倍数为,回收率为,糖昔酶纯化倍数为,回收率为,经SDS一PAGE得到单蛋白分子条带,I、沪’_心钳3卜“’门尸,..量测定分别为73kDa、43kDa和,并对其进行了N端测序和质谱分析。5.以生产乙醇性能优良的酿酒酵母菌株NAN一27作为工程菌株的受体菌。利用能良好的多拷贝整合型载体pYMIKP,使纤维二糖代谢基因BGLI整合到酿酒酵母体上。从而在酿酒酵母工业菌株中建立了稳定的纤维二糖代谢途径,拓展了酒精生物利用范围,降低了纤维二糖对纤维素酶解的抑制作用。采用海藻酸钙凝胶包埋固纤维二糖酿酒酵母工程菌,固定化细胞与游离细胞相比,发酵时间缩短,乙醇产率提以上,并能有效地利用水稻秸秆水解液进行酒精发酵。6.对水稻秸秆酶解过程中底物性质、酶解温度、酶解pH、底物浓度及纤维素等关键因子进行了研究。由于YT02纤维素酶系中纤维二搪酶活力较低(CB/F队为经稀酸稀碱预处理后的水稻秸秆纤维素对乙醇转化率仅为18%。采用代谢纤维二糖母工程菌游离细胞发酵,可部分去除纤维二糖对酶解的抑制,水稻秸秆纤维素对乙率可提高至20%。进一步利用采用海藻酸钙凝胶包埋固定代谢纤维二糖酿酒酵母工酵,水稻秸秆纤维素对乙醇转化率可达26%。这方面的研究结果有助于深入了解纤的协同降解机制。7.将纤维原料的酶解、固定化代谢纤维二搪酿酒酵母工程菌的作用有机祸联,新型的二级串联式生物反应器,在该反应器体系的协同作用下,可有效解除纤维二萄糖对纤维素酶的反馈抑制作用,促进纤维原料水稻秸秆的酶水解,发酵40h,乙达留L,纤维素对乙醇的转化率达(纤维素对乙醇的理论转化率为是游离细胞同时糖化发酵(SSF)的倍,生产效率达留(Lh)。采用分批添料酶解发酵工艺,可提高纤维底物的终浓度达250岁L,产物乙醇的终浓度留L,高了纤维素酶的利用率和乙醇生产效率,降低乙醇的生产成本。该反应器性能稳定效率高,固定化细胞可以重复使用,便于自动化控制。关键词:纤维素酶,水稻秸秆,酿酒酵母,燃料乙醇,串联式生物反应器目录摘要..............................................................……ABSTRACT..........................................................……IH第一章文献综述l水稻秸秆资源及其降解方式............................................……水稻秸秆的组成与结构..…,................................……,.……水稻秸秆的预处理..................................................……物理方法预处理水稻秸秆..........................................……化学方法预处理水稻秸秆..........................................……生物方法预处理水稻秸秆..........................................……水稻秸秆纤维素的降解方式..........................................……水稻秸秆的酸水解................................................……水稻秸秆的酶水解................................................……52纤维素酶的性质与用途................................................……纤维素酶的多酶体系................................................……纤维素酶的分子结构................................................……纤维素酶的作用机理................................................……纤维素酶的分子量大小.............................................……纤维素酶的最适反应条件与稳定性...................................……纤维素酶的应用...................................................……H3纤维素酶的生产.....................................................……纤维素酶的生产菌种选育...........................................……纤维素酶的生产...................................................……144水稻秸秆原料生物转化燃料乙醇.......................................……燃料乙醇的优越性和使用现状.......................................……水稻秸秆纤维素生物转化燃料乙醇的方法.............................……分步水解发酵法生产燃料乙醇.....................................……同步糖化发酵法生产燃料乙醇.....................................……固定化细胞发酵生产燃料乙醇.....................................……酉良酒酵母途径工程应用于燃料乙醇的生产.............................……175本研究的目的、意义和主要内容.......................................……本研究的目的和意义...............................................……本研究的思路和技术路线...........................................……本研究的主要内容.................................................……21第二章纤维素酶高产菌株的选育及产酶条件研究.........................……231材料与方法..........................................................……材料.............................................................……试剂与溶液配制.................................................……器菌种与菌种分离源...............................................……培养基.........................................................……主要仪器与设备.................................................……方法.............................................................……水稻秸秆的预处理...........................……,.,...........……纤维素酶高产菌的分离与纯化.....................................……纤维素酶高产菌的初步鉴定.......................................……纤维素酶高产菌的原生质体紫外诱变...............................……产纤维素酶的液体发酵培养方法...............................……不同预处理水稻秸秆的酶水解.....................................……分析方法.......................................................……272结果与分析.........................................................……不同预处理水稻秸秆的各组分含量...................................……纤维素酶高产菌的分离与筛选.......................................……纤维素高产菌YT01的菌种鉴定......................................……纤维素酶高产菌YT01的原生质体紫外诱变............................……液体发酵培养基成分与发酵条件对YT02产纤维素酶的影响..............……不同碳源对YT02产酶的影响......................................……不同预处理水稻秸秆对YT02产酶的影响............................……不同氮源对YT02产纤维素酶的影响................................……微晶纤维素添加量对YT02产纤维素酶的影响........................……不同无机盐对YT01产纤维素酶的影响..............................……起始pH对YT01产纤维素酶的影响.................................……装液量对YT02产纤维素酶的影响..................................……转速对YT02产纤维素酶的影响....................................……培养温度对YT02产纤维素酶的影响................................……接种量对YT02产纤维素酶的影响.................................……培养时间对YT02产酶的影响.....................................……纤维素酶的酶学性质研究...........................................……温度对纤维素酶各组分酶活的影响................................……对纤维素酶各组分酶活的影响..................................……纤维素酶对不同预处理水稻秸秆的酶解试验...........................……423结论与讨论...............................................··········……4:关于筛选出的纤维素酶高产菌株....................................……4:纤维素酶生产菌的改造............................................……招青霉YT02产酶条件与酶学特性.....................................……44第三章YT02产纤维素酶发酵培养基的优化研究..........................……451材料与方法....................................···.·················……材料.............................................................……试剂................................................·.·.·······……供试菌种.......................................················……培养基................................................·········……主要仪器与设备.................................................……方法.............................................................……4尽实验设计.............................................··········……培养方法.............................................··········……分析方法.......................................................……462结果与分析..............................................···········……部分因子实验筛选发酵培养基的主要影响因子.........................……最陡爬坡实验逼近发酵培养基最优点.................................……中心组合设计优化YT02发酵培养基组成..............................……发酵过程中PH、残余还原糖与纤维素酶变化的测定结果.................……593结论与讨论...................................……,...............……61第四章YT02分批发酵产纤维素酶的研究................................……63材料与方法.........................................................……材料.............................................................……试剂...........................................................……菌株...........................................................……培养基.........................................................……娜.主要仪器.......................................................……64方法.....................·······…….1用于分批发酵的种子培养.........…….…64.…恒温分批发酵对YT02产纤维素酶的影响.............................……变温分批发酵对YT02产纤维素酶的影响.............................……溶氧量对YT02分批发酵产纤维素酶的影响...........................……分段溶氧对YT02分批发酵产纤维素酶的影响.........................……分析方法.......................................................……652结果与分析.........................................................……发酵温度对YT02产纤维素酶的影响结果..............................……变温发酵对YT02产纤维素酶的影响结果..............................……溶氧对YT02产纤维素酶的影响结果..................................……分段溶氧分批发酵对YT02产纤维素酶的影响结果......................……723结论与讨论.........................................................……73第五章YT02产纤维素酶的分离纯化及酶学性质研究...........……以U(b叮‘叮‘(bt了叮‘叮‘材料与方法….1材料.…….试验材料..主要试剂.....……76.....……常用储备液及缓冲液....................................……主要仪器........................................................……方法..............................................................……蛋白质浓度的测定方法...........................................……纤维素酶的分离纯化.............................................……纤维素酶SDS一PAGE凝胶电泳纯化及酶相对分子量的测定..............……酶蛋白的N端测序...............................................……酶蛋白的质谱分析...............................................……862结果与分析.........................................................……一SephadexA一25阴离子交换层析结果.............................……层析收集管酶蛋白同洗脱缓冲液NaCI浓度的关系.....................……层析收集管酶蛋白活性检测.......................................……即hadexG一75分子筛凝胶过滤层析结果..............................……一75分子筛凝胶过滤层析分离酶蛋白......................……分子筛凝胶过滤层析纤维素酶活测定结果...........................……纤维素酶各纯化步骤纯化情况.......................................……一PAGE聚丙烯酸胺凝胶电泳.......................................……一PAGE聚丙烯酸胺凝胶电泳银染结果.............................……纤维素酶分子量SDS一PAGE凝胶电泳测定结果........................……酶蛋白的N端测序结果.............................................……酶蛋白的质谱分析结果.............................................……933结论与讨论.........................................................……94第六章酿酒酵母纤维二糖代谢途径的构建及其细胞固定化研究.............……96材料和方法................................................·········……%1材料.............................................................……菌株和质粒.....................................................……分子克隆用酶和试剂.............................................……水稻秸秆水解液的制备...........................................……972方法.............................................................……含纤维二糖酶基因(及咒1)的重组质粒pYMIKP一那艺了的构建方法.......……酿酒酵母纤维二糖代谢途径的搭建方法.............................……酿酒酵母工程菌细胞的固定化方法................................……固定化酵母细胞发酵方法........................................……分析方法......................................................……1022结果与分析........................................................……表达及范了基因的重组菌株的构建结果...............................……目的基因及法了的获得...........................................……含目的基因那Z了重组质粒的构建.................................……酿酒酵母工业菌株NAN一27转化子的获得二,........................……转化子NAN一28细胞纤维二糖酶活性测定结果.......................……1()不同固定化条件对NAN一28细胞固定化的影响结果.....................……不同溶剂对固定化细胞转化纤维二搪的测定结果......……,.......……不同海藻酸钠浓度对固定化细胞凝胶特性的影响....................……l()酵母包埋量对固定化细胞转化纤维二糖的影响结果..................……!固定化细胞与游离细胞分批发酵实验结果............................……l()固定化细胞重复分批发酵试验结果..................................……1073结论与讨论........................................................……酉良酒酵母纤维二糖代谢途径的构建.................................……酿酒酵母工程菌细胞固定化.......................................……110第七章串联式生物反应器转化水稻秸秆生产燃料乙醇的研究..............……112材料与方法........................................................……112l材料......................................……,..............……试剂.........................................................……菌种.........................................................……主要仪器与设备...............................................……1122方法...........................................................……稻草粉的预处理................................................……纤维素酶的制备................................................……稻草粉的酶解糖化..............................................……水稻秸秆生物转化燃料乙醇......................................……测定方法......................................................……115vi2结果与分析........................................................……不同预处理方法对水稻秸秆糖化效果的影响结果......................……不同温度对水稻秸秆糖化效果的影响结果............................……不同pH对稻草粉糖化效果的影响结果...............................……不同加酶量对稻草粉糖化效果的影响结果............................……不同底物浓度对稻草粉糖化效果的影响结果..........................……水稻秸秆同步糖化发酵(SSF)结果.................................……串联式反应器转化水稻秸秆生产乙醇................................……固定化NAN一28细胞发酵生产燃料乙醇结果.........................……串联式生物反应器的稳定性结果..................................……分批添料式协同酶解发酵生产燃料乙醇结果........................……1223结论与讨论......................................................··……二级串联式生物反应器生产乙醇....................................……分批添料式协同酶解发酵工艺......................................……水稻秸秆资源的全利用............................................……123第八章结论.....................................................……124主要参考文献......................................................……126英文缩写与主要符号表...............................................……146本研究的特色与创新.................................................……147发表与待发表的学术论文及成果.......................................……148致谢............................................................……149作者简介..........................................................……150你要看哪部分?
xiān wéi sù méi
cellulase [21世纪双语科技词典]
纤维素酶(cellulase)是降解纤维素生成葡萄糖的一组酶的总称,它不是单成分酶,而是由多个酶起协同作用的多酶体系。人们已对纤维素酶的作用机制及工业化应用等方面进行了大量的研究,为纤维素酶的生产和应用打下了良好的基础。其在扩大食品工业原料和植物原料的综合利用,提高原料利用率,净化环境和开辟新能源等方面具有十分重要的意义。
纤维素酶的来源非常广泛,昆虫、微生物、细菌、放线菌、真菌、动物体内等都能产生纤维素酶。由于放线菌的纤维素酶产量极低,所以研究很少。细菌产量也不高,主要是葡萄糖内切酶,但大多数对结晶纤维素没有活性,并且所产生的酶是胞内酶或吸附在菌壁上,很少能分泌到细胞外,增加了提取纯化的难度,在工业上很少应用。目前,用于生产纤维素酶的微生物菌种较多的是丝真菌,其中酶活力较强的菌种为木霉属(Trichoderma)、曲霉属(Aspergillus)和青霉属(Penicillium),特别是绿色木霉(Trichodermavirde)及其近缘菌株等较为典型,是目前公认的较好的纤维素酶生产菌。现已制成制剂的有绿色木霉、黑曲霉、镰刀霉等纤维素酶。同时,反刍动物依靠瘤胃微生物可消化纤维素,因此可以利用瘤胃液获得纤维酶的粗酶制剂。另外,也可利用组织培养法获得所需要的微生物。
目前,纤维素酶的生产主要有固体发酵和液体发酵两种方法。
固体发酵法固体发酵法是以玉米等农作物秸秆为主要原料,其投资少,工艺简单,产品价格低廉,目前国内绝大部分纤维素生产厂家均采用该技术生产纤维素酶。然而固体发酵法存在根本上的缺陷,以秸秆为原料的固体发酵法生产的纤维素酶很难提取、精制。目前,我国纤维素酶生产厂家只能采用直接干燥法粉碎得到固体酶制剂或用水浸泡后压滤得到液体酶制剂,其产品外观粗糙且质量不稳定,发酵水平不稳定,生产效率较低,易污染杂菌,不适于大规模生产。
液体发酵法液体发酵生产工艺过程是将玉米秸秆粉碎至20目以下进行灭菌处理,然后送发酵釜内发酵,同时加入纤维素酶菌种,发酵时间约为70h,温度低于60℃。采用除菌后的无菌空气从釜低通入进行通气搅拌,发酵完毕后的物料经压滤机板框过滤、超滤浓缩和喷雾干燥后制得纤维素酶产品。液态深层发酵由于具有培养条件容易控制,不易染杂菌,生产效率高等优点,已成为国内外重要的研究和开发方向。
制酒在进行酒精发酵时添加纤维素酶可显著提高酒精和白酒的出酒率和原料的利用率,降低溶液的黏度,缩短发酵时间,而且酒的口感醇香,杂醇油含量低。纤维素酶提高出酒率的原因可能有两方面:一是原料中部分纤维素分解成葡萄糖供酵母使用;另外,由于纤维素酶对植物细胞壁的分解,有利于淀粉的释放和被利用。
将纤维素酶应用于啤酒工业的麦芽生产中可增加麦粒溶解性,加快发芽,减少糖化液中单一葡萄糖含量,改进过滤性能,有利于酒精蒸馏。
酱油酿造在酱油的酿造过程中添加纤维素酶、可使大豆类原料的细胞膜膨胀软化破坏,使包藏在细胞中的蛋白质和碳水化合物释放,这样既可提高酱油浓度,改善酱油质量,又可缩短生产周期,提高生产率,并且使其各项主要指标提高3%。
饮料加工日本有专利报道,用纤维素酶处理豆腐渣后接入乳酸菌进行发酵,可制得营养、品味俱佳的发酵饮料。将纤维素酶应用于果蔬榨汁、花粉饮料中,可提高汁液的提取率(约10%)和促进汁液澄清,使汁液透明,不沉淀,提高可溶性固形物的含量,并可将果皮综合利用。目前,有报道已成功地将柑橘皮渣酶解制取全果饮料,其中的粗纤维有50%降解为短链低聚糖,即全果饮料中的膳食纤维,具有一定的保健医疗价值。
纤维废渣的回收利用应用纤维素酶或微生物把农副产品和城市废料中的纤维转化成葡萄糖、酒精和单细胞蛋白质等,这对于开辟食品工业原料来源,提供新能源和变废为宝具有十分重要的意义。
此外,在果品和蔬菜加工过程中如果采用纤维素酶适当处理,可使植物组织软化膨松,能提高可消化性和口感。
将纤维素酶用于处理大豆,可促使其脱皮,同时,由于它能使细胞壁破坏,使包含其中的蛋白质、油脂完全分离,增加其从大豆和豆饼中提取优质水溶性蛋白质和油脂的获得率,既降低了成本,缩短了时间,又提高了产品质量。
植物纤维原料是地球上最丰富、最廉价而又可再生的资源,其主要成分是纤维素和半纤维素,纤维素和半纤维素的利用一直是国际国内的研究热点课题。利用的途径和整体思路是利用纤维素酶和半纤维素酶先将纤维素和半纤维素降解成可发酵糖,进而通过发酵制取酒精、单细胞蛋白、有机酸、甘油、丙酮及其他重要的化学化工原料。此外,纤维素、半纤维素通过纤维素酶的限制性降解还可制备成功能性食品添加剂,如微晶纤维素、膳食纤维和功能性低聚糖等。
总之,纤维素酶具有非常广阔的应用前景,但由于液态发酵生产技术含量较高,在大规模生产上还有一定的困难,因此对纤维素酶液态发酵的研究与开发具有重要的现实意义。今后若能加强这方面的研究,则可以使之早日进入工业化生产,一方面可以提高纤维素酶的产量和质量;另一方面可以较好地解决纤维素的生物转化问题,创造良好的社会效益和经济效益。
纤维素酶
Cellulase
康彼身;康彼申;bizym
消化系统药物 > 助消化药物
。
每片含有胰酶220mg,相当于脂肪酶(lipase)74OOu(FIP),蛋白酶(protease)420u(FIP),淀粉酶(amylase)7000u(FIP);含米曲菌提取酶120mg,相当于纤维素酶(cellulase)70u(FIP),蛋白酶(protease)10u(FIP),淀粉酶(amylase)170u(FIP)。
用于各类消化不良症状,老年人消化不良。治疗胰酶分泌不足,在肠液中消化脂肪、碳水化合物及蛋白质,起促进食欲的作用。
对纤维素酶过敏者、急性胰腺炎患者禁用。
纤维素酶不可嚼碎。
偶有腹泻及软便。
每次2片,每日3次,饭前服。
不宜与酸性或堿性药物同服。
xiān wéi sù méi
cellulase [21世纪双语科技词典]
纤维素酶(cellulase)是降解纤维素生成葡萄糖的一组酶的总称,它不是单成分酶,而是由多个酶起协同作用的多酶体系。人们已对纤维素酶的作用机制及工业化应用等方面进行了大量的研究,为纤维素酶的生产和应用打下了良好的基础。其在扩大食品工业原料和植物原料的综合利用,提高原料利用率,净化环境和开辟新能源等方面具有十分重要的意义。
纤维素酶的来源非常广泛,昆虫、微生物、细菌、放线菌、真菌、动物体内等都能产生纤维素酶。由于放线菌的纤维素酶产量极低,所以研究很少。细菌产量也不高,主要是葡萄糖内切酶,但大多数对结晶纤维素没有活性,并且所产生的酶是胞内酶或吸附在菌壁上,很少能分泌到细胞外,增加了提取纯化的难度,在工业上很少应用。目前,用于生产纤维素酶的微生物菌种较多的是丝真菌,其中酶活力较强的菌种为木霉属(Trichoderma)、曲霉属(Aspergillus)和青霉属(Penicillium),特别是绿色木霉(Trichodermavirde)及其近缘菌株等较为典型,是目前公认的较好的纤维素酶生产菌。现已制成制剂的有绿色木霉、黑曲霉、镰刀霉等纤维素酶。同时,反刍动物依靠瘤胃微生物可消化纤维素,因此可以利用瘤胃液获得纤维酶的粗酶制剂。另外,也可利用组织培养法获得所需要的微生物。
目前,纤维素酶的生产主要有固体发酵和液体发酵两种方法。
固体发酵法固体发酵法是以玉米等农作物秸秆为主要原料,其投资少,工艺简单,产品价格低廉,目前国内绝大部分纤维素生产厂家均采用该技术生产纤维素酶。然而固体发酵法存在根本上的缺陷,以秸秆为原料的固体发酵法生产的纤维素酶很难提取、精制。目前,我国纤维素酶生产厂家只能采用直接干燥法粉碎得到固体酶制剂或用水浸泡后压滤得到液体酶制剂,其产品外观粗糙且质量不稳定,发酵水平不稳定,生产效率较低,易污染杂菌,不适于大规模生产。
液体发酵法液体发酵生产工艺过程是将玉米秸秆粉碎至20目以下进行灭菌处理,然后送发酵釜内发酵,同时加入纤维素酶菌种,发酵时间约为70h,温度低于60℃。采用除菌后的无菌空气从釜低通入进行通气搅拌,发酵完毕后的物料经压滤机板框过滤、超滤浓缩和喷雾干燥后制得纤维素酶产品。液态深层发酵由于具有培养条件容易控制,不易染杂菌,生产效率高等优点,已成为国内外重要的研究和开发方向。
制酒在进行酒精发酵时添加纤维素酶可显著提高酒精和白酒的出酒率和原料的利用率,降低溶液的黏度,缩短发酵时间,而且酒的口感醇香,杂醇油含量低。纤维素酶提高出酒率的原因可能有两方面:一是原料中部分纤维素分解成葡萄糖供酵母使用;另外,由于纤维素酶对植物细胞壁的分解,有利于淀粉的释放和被利用。
将纤维素酶应用于啤酒工业的麦芽生产中可增加麦粒溶解性,加快发芽,减少糖化液中单一葡萄糖含量,改进过滤性能,有利于酒精蒸馏。
酱油酿造在酱油的酿造过程中添加纤维素酶、可使大豆类原料的细胞膜膨胀软化破坏,使包藏在细胞中的蛋白质和碳水化合物释放,这样既可提高酱油浓度,改善酱油质量,又可缩短生产周期,提高生产率,并且使其各项主要指标提高3%。
饮料加工日本有专利报道,用纤维素酶处理豆腐渣后接入乳酸菌进行发酵,可制得营养、品味俱佳的发酵饮料。将纤维素酶应用于果蔬榨汁、花粉饮料中,可提高汁液的提取率(约10%)和促进汁液澄清,使汁液透明,不沉淀,提高可溶性固形物的含量,并可将果皮综合利用。目前,有报道已成功地将柑橘皮渣酶解制取全果饮料,其中的粗纤维有50%降解为短链低聚糖,即全果饮料中的膳食纤维,具有一定的保健医疗价值。
纤维废渣的回收利用应用纤维素酶或微生物把农副产品和城市废料中的纤维转化成葡萄糖、酒精和单细胞蛋白质等,这对于开辟食品工业原料来源,提供新能源和变废为宝具有十分重要的意义。
此外,在果品和蔬菜加工过程中如果采用纤维素酶适当处理,可使植物组织软化膨松,能提高可消化性和口感。
将纤维素酶用于处理大豆,可促使其脱皮,同时,由于它能使细胞壁破坏,使包含其中的蛋白质、油脂完全分离,增加其从大豆和豆饼中提取优质水溶性蛋白质和油脂的获得率,既降低了成本,缩短了时间,又提高了产品质量。
植物纤维原料是地球上最丰富、最廉价而又可再生的资源,其主要成分是纤维素和半纤维素,纤维素和半纤维素的利用一直是国际国内的研究热点课题。利用的途径和整体思路是利用纤维素酶和半纤维素酶先将纤维素和半纤维素降解成可发酵糖,进而通过发酵制取酒精、单细胞蛋白、有机酸、甘油、丙酮及其他重要的化学化工原料。此外,纤维素、半纤维素通过纤维素酶的限制性降解还可制备成功能性食品添加剂,如微晶纤维素、膳食纤维和功能性低聚糖等。
总之,纤维素酶具有非常广阔的应用前景,但由于液态发酵生产技术含量较高,在大规模生产上还有一定的困难,因此对纤维素酶液态发酵的研究与开发具有重要的现实意义。今后若能加强这方面的研究,则可以使之早日进入工业化生产,一方面可以提高纤维素酶的产量和质量;另一方面可以较好地解决纤维素的生物转化问题,创造良好的社会效益和经济效益。
纤维素酶
Cellulase
康彼身;康彼申;bizym
消化系统药物 > 助消化药物
。
每片含有胰酶220mg,相当于脂肪酶(lipase)74OOu(FIP),蛋白酶(protease)420u(FIP),淀粉酶(amylase)7000u(FIP);含米曲菌提取酶120mg,相当于纤维素酶(cellulase)70u(FIP),蛋白酶(protease)10u(FIP),淀粉酶(amylase)170u(FIP)。
用于各类消化不良症状,老年人消化不良。治疗胰酶分泌不足,在肠液中消化脂肪、碳水化合物及蛋白质,起促进食欲的作用。
对纤维素酶过敏者、急性胰腺炎患者禁用。
纤维素酶不可嚼碎。
偶有腹泻及软便。
每次2片,每日3次,饭前服。
不宜与酸性或堿性药物同服。
1 邱雁临.纤维素酶的研究和应用前景[J].粮食与饲料科技,2001,30~31 2 刘耘,鄢满秀.纤维素酒精发酵的研究进展[J].广州食品工业发酵,1999,15(2):51~54,63 3 戴四发,金光明,王立克,等.纤维素酶研究现状及其在畜牧业中的应用[J].安徽技术师范学院学报,2001,45(3):32~38 4 阎伯旭,齐飞,张颖舒,等.纤维素酶分子结构和功能研究进展[J].生物化学与生物物理进展,1999,26(3):233~237 5 张鸿雁,陈锡时.微生物纤维素酶分子生物学研究进展[J].生物技术,2003,13(3):41~42 6 杨礼富,微生物学通报,2003, 30 (4):9 987 史雅娟,吕永龙,环境科学进展1999, 7 ( 6)3} 378 宋桂经,纤维素科学与技术,广西人学学报:自然科学版).2004. 29(1):73- 769 曲杳波,高培基.开展生物质转化为洒精研究实现液态燃料可持续供应}c}.发酵工程学科的进展一第一次全国发酵工程学术讨论会.北京:中国轻工业出版社,2002, 34一39.