大数据时代电力营销管理创新研究论文
摘要: 对电力企业来说,大数据营销能基于海量数据的分析,为其制定营销战略提供依据,而如何在大数据基础上进行电力营销管理创新是亟待解决的大问题。本文首先阐述了目前基于大数据电力营销管理的弊端;其次分析了基于大数据的电力营销管理面临的机遇和挑战;最后提出了基于大数据的电力营销管理创新,以促进电力企业稳定、长久发展。
关键词: 大数据;电力营销管理;创新
在当前的大数据环境下,电力系统既面临新的发展机遇,也面临着新的挑战。对电力系统来说,大数据不仅是科技生产力进步的具体体现,也是新形势下电力系统发展、管理及技术改革的重要依据,电力系统的大数据包括生产、运营和管理三方面。电力营销是电力系统的重要部分,对提高企业的核心竞争力及确保企业的可持续发展具有十分重要的作用。然而由于各种因素的影响,电力营销管理目前存在诸多弊端,在大数据时代,对电力营销创新管理模式进行研究迫在眉睫,基于此,笔者对基于大数据的电力营销管理创新进行研究。
1.基于大数据的电力营销管理的弊端
在大数据背景下,国内电力企业营销管理存在诸多弊端,具体表现在下述几方面:
第一,电力营销管理理念亟待改进。电力行业长久以来属于国家的垄断行业,而随着各种新型能源的不断出现,电能面临着巨大的竞争,然而其营销设计仍以业务导向为核心,很少考虑市场的竞争状况和客户的需求,没有建立一种以客户为核心的营销管理机制;
第二,电力营销业务功能亟待完善。电力系统的营销政策、技术研究、运维及市场开拓等方面的机构不完善,不健全,部分功能缺失;
第三,电力营销运营效率亟待提升。电能计量检定、人员及相关设备重复配置;规划、生产的部门对电力营销管理支持力度较弱;故障抢修、业扩报装等服务流程不协同。综上所述,电力营销管理亟待进行创新,以适应新形势下客户对供电服务的要求。
2.基于大数据的电力营销管理面临的机遇和挑战
机遇
在大数据快速发展的背景下,电力系统营销管理面临的机遇主要表现为:
第一,国内经济稳定发展,电力需求仍持续增加;
第二,国家实施节能减排,电能应用范围更加广泛;
第三,国家电网创建“双一流”,为加快营销发展注入新动力。
挑战
在大数据快速发展的背景下,电力系统营销管理也面临诸多挑战,具体表现为:
第一,国家经济转型期的'结构优化调整及节能减排战略的实施,国家控制能源消费总量,大工业用电比重会呈现一定程度的下降。循环经济、节能环保产业、分布式电源等会日益增加,对电力营销市场的发展带来威胁,影响电能的市场占有率;
第二,国家大力开发低碳技术,清洁能源要求必须建立一种新型的供用电模式,而现有的供电模式要满足这些应用需要法律、政策、技术等众多方面的支持才能实现;
第三,国家电网推进“三集五大”要求电力系统必须要转变营销发展方式。目前电力系统的营销仍然资源分散、管理层级多,亟待进行整合;营销管理的专业化、组织结构扁平化、管理层级等方面亟待改进,集约化、智能化的服务手段亟待提升等,使得目前电力系统的营销管理面临巨大挑战。
3.基于大数据的电力营销管理创新研究
在大数据及信息化背景下,电力企业要提高核心竞争力,必须要顺应时代潮流,及时对传统的营销管理体系进行重构,通过利用大数据分析研究结果进行电力营销,具有极大的市场价值。
通过大数据分析客户的潜在需求行为
大数据最主要的特征之一是海量的数据,电力企业要获取比较精准的数据,必须进行大量数据的分析研究寻找客户的潜在需求。所以对电力企业来说要重建营销管理体系,提高核心竞争力必须要制定多种方案,通过大数据的分析结果寻找潜在的客户需求,站在用户的角度,分析用户的电能消费行为和特点,通过这些分析及时改变自己的营销管理模式,提升服务质量,提高客户满意度和忠诚度,最终提高电力企业的知名度。
通过大数据分析精准定位消费客户,进行个性化营销
从大数据提供的海量信息中分析客户的消费行为,找出电力系统最精准的用户,以便电力企业的营销能实现精准化,同时根据精准化消费群体的特征建立针对性的营销方式,从而能划分出精准的消费客户,进行个性化营销。随着经济的发展和用户需求的提升,电力企业也逐渐重视电力营销的精准化,而大数据的出现不仅使精准化营销变得更加高效,也极大地提升了服务和产品质量,使得消费者市场也发生一定程度的变化。消费者市场的划分必须要经过大数据才能实现精准的分析,这种分析结果面临的是个体消费者,而并非是群体,在这种情况下,电力系统的个性化营销在不久的将来一定会成为电力系统的营销主体。
运用大数据分析,制品新产品,拓展新市场
对电力系统来说,传统的以业务导向为核心的营销管理已经难以满足现代化的需求,通过大数据分析结果制定针对性的营销策略是十分重要的,这对于电力企业开拓市场和业务起着决定性作用。如腾讯在开发游戏时,总是先通过大数据对游戏用户行为进行精准的分析然后再推出产品,通过这种方法能使其在推出手游时更具有针对性和精准性。因此电力企业通过使用大数据分析客户的消费行为,开拓新业务、新市场是未来发展的必然趋势,根据大数据分析的结果为客户制定更加个性化的需求,并进一步制定针对性的营销渠道,拓宽产品领域。
依靠互联网技术,合作开展大数据营销,开展多元化服务
随着互联网营销的风靡,很多行业越来越重视网络营销,他们通过使用大数据进行网络营销。电力系统要想持续、稳定、可持续发展,必须要充分利用互联网进行大数据营销,除了要在电力系统领域建立相关的数据库,利用资源优势外,还要不断拓展业务,通过业务延伸实现电力企业的多元化发展模式。多样化服务的开展可从下述几方面着手:客户经理对客户的用电状况进行详细的统计和分析,提出的建议中不仅要有生产班次的安排,还必须要为客户的用电状况提供针对性的无功补偿。站在客户角度为客户节约电费着想,为客户的用电负荷进行合理、科学的指导,这不仅能有效地节约电费,还能有效减少设备的能耗。电力企业还要在基于自身优势的基础上,不定期检查用电设备的运营状况,及时排查运行过程中存在的安全隐患,这对确保配电网的稳定运行具有重要作用。要对所在区域的电网进行改造时,要及时通知大客户,并将规划改造的详细情况与大客户进行沟通交流,以得到客户的理解和支持,这对电力企业的稳定发展意义重大。
与税务部门合作减小电费回收风险
对电力企业来说,电费能否正常回收是确保其正常运作和提高经济效益的关键环节,尤其是大客户的电费回收,由于受到各种因素的影响,电费回收难一直是难以解决的难题。目前多数电力企业为了加强电费回收,通常采取如下措施:强化合同管理、建立信用评级制度、严格客户资质审核、高压用户电费担保模式等,在这些措施中,高压用户担保模式具有较好的效果,然而也存在一定的不足之处。对电力企业来说,仅仅具有采集客户的用电信息数据,对客户的资金信息难以准确把握,高压用户担保模式虽然让电力企业通过银行掌握相关的资金信息,然而很多企业的现金流并不通过银行,因此获得信息并不准确,在一定程度上影响电费回收风险的控制效果。为了有效解决这种弊端,可建立一种能将用电企业的资金流动信息整合到电力系统大数据库的营销管理中,而与税务部门进行合作能达到此目的。具体实施措施如下:首先,与税务部门协调,将电力系统大数据平台增加一个调取用电企业每月纳税信息的模块;其次,根据用电企业的纳税和银行信贷状况,计算电费回收风险指数,评估风险;最后,根据评估结果建立预警机制,对于部分电费回收风险较大的企业可采取各种手段介入电费回收。
4结束语
综上所述,大数据时代的来临给传统企业和互联网企业的营销管理带来巨大的冲击,越来越多的企业开始利用大数据进行营销管理,电力企业也要与时俱进,持续改革,在大数据时代下重构营销管理体系,以提高其核心竞争力和经济效益。
参考文献:
[1]宋宝香.数据库营销:大数据时代引发的企业市场营销变革[J].价值工程,2014,31(30):132-134.
[2]孙柏抓.大数据技术及其在电力行业中的应用[J].电气时化,.
[3]庞建军.大数据背景下的电力营销市场行业发展趋势分析[J].科技视界,2014(32):295-296.
在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。下面是我给大家推荐的计算机与大数据的相关论文,希望大家喜欢!计算机与大数据的相关论文篇一 浅谈“大数据”时代的计算机信息处理技术 [摘 要]在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。本文重点分析大数据时代的计算机信息处理技术。 [关键词]大数据时代;计算机;信息处理技术 在科学技术迅速发展的当前,大数据时代已经到来,大数据时代已经占领了整个环境,它对计算机的信息处理技术产生了很大的影响。计算机在短短的几年内,从稀少到普及,使人们的生活有了翻天覆地的变化,计算机的快速发展和应用使人们走进了大数据时代,这就要求对计算机信息处理技术应用时,则也就需要在之前基础上对技术实施创新,优化结构处理,从而让计算机数据更符合当前时代发展。 一、大数据时代信息及其传播特点 自从“大数据”时代的到来,人们的信息接收量有明显加大,在信息传播中也出现传播速度快、数据量大以及多样化等特点。其中数据量大是目前信息最显著的特点,随着时间的不断变化计算机信息处理量也有显著加大,只能够用海量还对当前信息数量之大形容;传播速度快也是当前信息的主要特点,计算机在信息传播中传播途径相当广泛,传播速度也相当惊人,1s内可以完成整个信息传播任务,具有较高传播效率。在传播信息过程中,还需要实施一定的信息处理,在此过程中则需要应用相应的信息处理工具,实现对信息的专门处理,随着目前信息处理任务的不断加强,信息处理工具也有不断的进行创新[1];信息多样化,则也就是目前数据具有多种类型,在庞大的数据库中,信息以不同的类型存在着,其中包括有文字、图片、视频等等。这些信息类型的格式也在不断发生着变化,从而进一步提高了计算机信息处理难度。目前计算机的处理能力、打印能力等各项能力均有显著提升,尤其是当前软件技术的迅速发展,进一步提高了计算机应用便利性。微电子技术的发展促进了微型计算机的应用发展,进一步强化了计算机应用管理条件。 大数据信息不但具有较大容量,同时相对于传统数据来讲进一步增强了信息间关联性,同时关联结构也越来越复杂,导致在进行信息处理中需要面临新的难度。在 网络技术 发展中重点集中在传输结构发展上,在这种情况下计算机必须要首先实现网络传输结构的开放性设定,从而打破之前计算机信息处理中,硬件所具有的限制作用。因为在当前计算机网络发展中还存在一定的不足,在完成云计算机网络构建之后,才能够在信息处理过程中,真正的实现收放自如[2]。 二、大数据时代的计算机信息处理技术 (一)数据收集和传播技术 现在人们通过电脑也就可以接收到不同的信息类型,但是在进行信息发布之前,工作人员必须要根据需要采用信息处理技术实施相应的信息处理。计算机采用信息处理技术实施信息处理,此过程具有一定复杂性,首先需要进行数据收集,在将相关有效信息收集之后首先对这些信息实施初步分析,完成信息的初级操作处理,总体上来说信息处理主要包括:分类、分析以及整理。只有将这三步操作全部都完成之后,才能够把这些信息完整的在计算机网络上进行传播,让用户依照自己的实际需求筛选满足自己需求的信息,借助于计算机传播特点将信息数据的阅读价值有效的实现。 (二)信息存储技术 在目前计算机网络中出现了很多视频和虚拟网页等内容,随着人们信息接收量的不断加大,对信息储存空间也有较大需求,这也就是对计算机信息存储技术提供了一个新的要求。在数据存储过程中,已经出现一系列存储空间无法满足当前存储要求,因此必须要对当前计算机存储技术实施创新发展。一般来讲计算机数据存储空间可以对当前用户关于不同信息的存储需求满足,但是也有一部分用户对于计算机存储具有较高要求,在这种情况下也就必须要提高计算机数据存储性能[3],从而为计算机存储效率提供有效保障。因此可以在大数据存储特点上完成计算机信息新存储方式,不但可以有效的满足用户信息存储需求,同时还可以有效的保障普通储存空间不会出现被大数据消耗问题。 (三)信息安全技术 大量数据信息在计算机技术发展过程中的出现,导致有一部分信息内容已经出现和之前信息形式的偏移,构建出一些新的计算机信息关联结构,同时具有非常强大的数据关联性,从而也就导致在计算机信息处理中出现了新的问题,一旦在信息处理过程中某个信息出现问题,也就会导致与之关联紧密的数据出现问题。在实施相应的计算机信息管理的时候,也不像之前一样直接在单一数据信息之上建立,必须要实现整个数据库中所有将数据的统一安全管理。从一些角度分析,这种模式可以对计算机信息处理技术水平有显著提升,并且也为计算机信息处理技术发展指明了方向,但是因为在计算机硬件中存在一定的性能不足,也就导致在大数据信息安全管理中具有一定难度。想要为数据安全提供有效保障,就必须要注重数据安全技术管理技术的发展。加强当前信息安全体系建设,另外也必须要对计算机信息管理人员专业水平进行培养,提高管理人员专业素质和专业能力,从而更好的满足当前网络信息管理体系发展需求,同时也要加强关于安全技术的全面深入研究工作[4]。目前在大数据时代下计算机信息安全管理技术发展还不够成熟,对于大量的信息还不能够实施全面的安全性检测,因此在未来计算机信息技术研究中安全管理属于重点方向。但是因为目前还没有构建完善的计算机安全信息管理体系,因此首先应该强化关于计算机重点信息的安全管理,这些信息一旦发生泄漏,就有可能会导致出现非常严重的损失。目前来看,这种 方法 具有一定可行性。 (四)信息加工、传输技术 在实施计算机信息数据处理和传输过程中,首先需要完成数据采集,同时还要实时监控数据信息源,在数据库中将采集来的各种信息数据进行存储,所有数据信息的第一步均是完成采集。其次才能够对这些采集来的信息进行加工处理,通常来说也就是各种分类及加工。最后把已经处理好的信息,通过数据传送系统完整的传输到客户端,为用户阅读提供便利。 结语: 在大数据时代下,计算机信息处理技术也存在一定的发展难度,从目前专业方面来看,还存在一些问题无法解决,但是这些难题均蕴含着信息技术发展的重要机遇。在当前计算机硬件中,想要完成计算机更新也存在一定的难度,但是目前计算机未来的发展方向依旧是云计算网络,把网络数据和计算机硬件数据两者分开,也就有助于实现云计算机网络的有效转化。随着科学技术的不断发展相信在未来的某一天定能够进入到计算机信息处理的高速发展阶段。 参考文献 [1] 冯潇婧.“大数据”时代背景下计算机信息处理技术的分析[J].计算机光盘软件与应用,2014,(05):105+107. [2] 詹少强.基于“大数据”时代剖析计算机信息处理技术[J].网络安全技术与应用,2014,(08):49-50. [3] 曹婷.在信息网络下计算机信息处理技术的安全性[J].民营科技,2014, (12):89CNKI [4] 申鹏.“大数据”时代的计算机信息处理技术初探[J].计算机光盘软件与应用,2014,(21):109-110 计算机与大数据的相关论文篇二 试谈计算机软件技术在大数据时代的应用 摘要:大数据的爆炸式增长在大容量、多样性和高增速方面,全面考验着现代企业的数据处理和分析能力;同时,也为企业带来了获取更丰富、更深入和更准确地洞察市场行为的大量机会。对企业而言,能够从大数据中获得全新价值的消息是令人振奋的。然而,如何从大数据中发掘出“真金白银”则是一个现实的挑战。这就要求采用一套全新的、对企业决策具有深远影响的解决方案。 关键词:计算机 大数据时代 容量 准确 价值 影响 方案 1 概述 自从计算机出现以后,传统的计算工作已经逐步被淘汰出去,为了在新的竞争与挑战中取得胜利,许多网络公司开始致力于数据存储与数据库的研究,为互联网用户提供各种服务。随着云时代的来临,大数据已经开始被人们广泛关注。一般来讲,大数据指的是这样的一种现象:互联网在不断运营过程中逐步壮大,产生的数据越来越多,甚至已经达到了10亿T。大数据时代的到来给计算机信息处理技术带来了更多的机遇和挑战,随着科技的发展,计算机信息处理技术一定会越来越完善,为我们提供更大的方便。 大数据是IT行业在云计算和物联网之后的又一次技术变革,在企业的管理、国家的治理和人们的生活方式等领域都造成了巨大的影响。大数据将网民与消费的界限和企业之间的界限变得模糊,在这里,数据才是最核心的资产,对于企业的运营模式、组织结构以及 文化 塑造中起着很大的作用。所有的企业在大数据时代都将面对战略、组织、文化、公共关系和人才培养等许多方面的挑战,但是也会迎来很大的机遇,因为只是作为一种共享的公共网络资源,其层次化和商业化不但会为其自身发展带来新的契机,而且良好的服务品质更会让其充分具有独创性和专用性的鲜明特点。所以,知识层次化和商业化势必会开启知识创造的崭新时代。可见,这是一个竞争与机遇并存的时代。 2 大数据时代的数据整合应用 自从2013年,大数据应用带来令人瞩目的成绩,不仅国内外的产业界与科技界,还有各国政府部门都在积极布局、制定战略规划。更多的机构和企业都准备好了迎接大数据时代的到来,大数据的内涵应是数据的资产化和服务化,而挖掘数据的内在价值是研究大数据技术的最终目标。在应用数据快速增长的背景下,为了降低成本获得更好的能效,越来越趋向专用化的系统架构和数据处理技术逐渐摆脱传统的通用技术体系。如何解决“通用”和“专用”体系和技术的取舍,以及如何解决数据资产化和价值挖掘问题。 企业数据的应用内容涵盖数据获取与清理、传输、存储、计算、挖掘、展现、开发平台与应用市场等方面,覆盖了数据生产的全生命周期。除了Hadoop版本系统YARN,以及Spark等新型系统架构介绍外,还将探讨研究流式计算(Storm,Samza,Puma,S4等)、实时计算(Dremel,Impala,Drill)、图计算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新进展。在大数据时代,借力计算机智能(MI)技术,通过更透明、更可用的数据,企业可以释放更多蕴含在数据中的价值。实时、有效的一线质量数据可以更好地帮助企业提高产品品质、降低生产成本。企业领导者也可根据真实可靠的数据制订正确战略经营决策,让企业真正实现高度的计算机智能决策办公,下面我们从通信和商业运营两个方面进行阐述。 通信行业:XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取 措施 ,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。中国移动通过大数据分析,对 企业运营 的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。 商业运营:辛辛那提动物园使用了Cognos,为iPad提供了单一视图查看管理即时访问的游客和商务信息的服务。借此,动物园可以获得新的收入来源和提高营收,并根据这些信息及时调整营销政策。数据收集和分析工具能够帮助银行设立最佳网点,确定最好的网点位置,帮助这个银行更好地运作业务,推动业务的成长。 3 企业信息解决方案在大数据时代的应用 企业信息管理软件广泛应用于解决欺诈侦测、雇员流动、客户获取与维持、网络销售、市场细分、风险分析、亲和性分析、客户满意度、破产预测和投资组合分析等多样化问题。根据大数据时代的企业挖掘的特征,提出了数据挖掘的SEMMA方法论――在SAS/EM环境中,数据挖掘过程被划分为Sample、Explore、Modify、Model、Assess这五个阶段,简记为SEMMA: Sample 抽取一些代表性的样本数据集(通常为训练集、验证集和测试集)。样本容量的选择标准为:包含足够的重要信息,同时也要便于分析操作。该步骤涉及的处理工具为:数据导入、合并、粘贴、过滤以及统计抽样方法。 Explore 通过考察关联性、趋势性以及异常值的方式来探索数据,增进对于数据的认识。该步骤涉及的工具为:统计 报告 、视图探索、变量选择以及变量聚类等方法。 Modify 以模型选择为目标,通过创建、选择以及转换变量的方式来修改数据集。该步骤涉及工具为:变量转换、缺失处理、重新编码以及数据分箱等。 Model 为了获得可靠的预测结果,我们需要借助于分析工具来训练统计模型或者机器学习模型。该步骤涉及技术为:线性及逻辑回归、决策树、神经网络、偏最小二乘法、LARS及LASSO、K近邻法以及其他用户(包括非SAS用户)的模型算法。 Assess 评估数据挖掘结果的有效性和可靠性。涉及技术为:比较模型及计算新的拟合统计量、临界分析、决策支持、报告生成、评分代码管理等。数据挖掘者可能不会使用全部SEMMA分析步骤。然而,在获得满意结果之前,可能需要多次重复其中部分或者全部步骤。 在完成SEMMA步骤后,可将从优选模型中获取的评分公式应用于(可能不含目标变量的)新数据。将优选公式应用于新数据,这是大多数数据挖掘问题的目标。此外,先进的可视化工具使得用户能在多维直方图中快速、轻松地查阅大量数据并以图形化方式比较模拟结果。SAS/EM包括了一些非同寻常的工具,比如:能用来产生数据挖掘流程图的完整评分代码(SAS、C以及Java代码)的工具,以及交换式进行新数据评分计算和考察执行结果的工具。 如果您将优选模型注册进入SAS元数据服务器,便可以让SAS/EG和SAS/DI Studio的用户分享您的模型,从而将优选模型的评分代码整合进入 工作报告 和生产流程之中。SAS模型管理系统,通过提供了开发、测试和生产系列环境的项目管理结构,进一步补充了数据挖掘过程,实现了与SAS/EM的无缝联接。 在SAS/EM环境中,您可以从SEMMA工具栏上拖放节点进入工作区的工艺流程图中,这种流程图驱动着整个数据挖掘过程。SAS/EM的图形用户界面(GUI)是按照这样的思路来设计的:一方面,掌握少量统计知识的商务分析者可以浏览数据挖掘过程的技术方法;另一方面,具备数量分析技术的专家可以用微调方式深入探索每一个分析节点。 4 结束语 在近十年时间里,数据采集、存储和数据分析技术飞速发展,大大降低了数据储存和处理的成本,一个大数据时代逐渐展现在我们的面前。大数据革新性地将海量数据处理变为可能,并且大幅降低了成本,使得越来越多跨专业学科的人投入到大数据的开发应用中来。 参考文献: [1]薛志文.浅析计算机网络技术及其发展趋势[J].信息与电脑,2009. [2]张帆,朱国仲.计算机网络技术发展综述[J].光盘技术,2007. [3]孙雅珍.计算机网络技术及其应用[J].东北水利水电,1994. [4]史萍.计算机网络技术的发展及展望[J].五邑大学学报,1999. [5]桑新民.步入信息时代的学习理论与实践[M].中央广播大学出版社,2000. [6]张浩,郭灿.数据可视化技术应用趋势与分类研究[J].软件导刊. [7]王丹.数字城市与城市地理信息产业化――机遇与挑战[J].遥感信息,2000(02). [8]杨凤霞.浅析 Excel 2000对数据的安全管理[J].湖北商业高等专科学校学报,2001(01). 计算机与大数据的相关论文篇三 浅谈利用大数据推进计算机审计的策略 [摘要]社会发展以及时代更新,在该种环境背景下大数据风潮席卷全球,尤其是在进入新时期之后数据方面处理技术更加成熟,各领域行业对此也给予了较高的关注,针对当前计算机审计(英文简称CAT)而言要想加速其发展脚步并将其质量拔高就需要结合大数据,依托于大数据实现长足发展,本文基于此就大数据于CAT影响进行着手分析,之后探讨依托于大数据良好推进CAT,以期为后续关于CAT方面研究提供理论上参考依据。 [关键词]大数据 计算机审计 影响 前言:相较于网络时代而言大数据风潮一方面提供了共享化以及开放化、深层次性资源,另一方面也促使信息管理具备精准性以及高效性,走进新时期CAT应该融合于大数据风潮中,相应CAT人员也需要积极应对大数据带了的机遇和挑战,正面CAT工作,进而促使CAT紧跟时代脚步。 一、初探大数据于CAT影响 影响之机遇 大数据于CAT影响体现在为CAT带来了较大发展机遇,具体来讲,信息技术的更新以及其质量的提升促使数据方面处理技术受到了众多领域行业的喜爱,当前在数据技术推广普及阶段中呈现三大变化趋势:其一是大众工作生活中涉及的数据开始由以往的样本数据实际转化为全数据。其二是全数据产生促使不同数据间具备复杂内部关系,而该种复杂关系从很大程度上也推动工作效率以及数据精准性日渐提升,尤其是数据间转化关系等更为清晰明了。其三是大众在当前处理数据环节中更加关注数据之间关系研究,相较于以往仅仅关注数据因果有了较大进步。基于上述三大变化趋势,也深刻的代表着大众对于数据处理的态度改变,尤其是在当下海量数据生成背景下,人工审计具备较强滞后性,只有依托于大数据并发挥其优势才能真正满足大众需求,而这也是大数据对CAT带来的重要发展机遇,更是促进CAT在新时期得以稳定发展重要手段。 影响之挑战 大数据于CAT影响还体现在为CAT带来一定挑战,具体来讲,审计评估实际工作质量优劣依托于其中数据质量,数据具备的高质量则集中在可靠真实以及内容详细和相应信息准确三方面,而在CAT实际工作环节中常常由于外界环境以及人为因素导致数据质量较低,如数据方面人为随意修改删除等等,而这些均是大数据环境背景下需要严格把控的重点工作内容。 二、探析依托于大数据良好推进CAT措施 数据质量的有效保障 依托于大数据良好推进CAT措施集中在数据质量有效保障上,对数据质量予以有效保障需要从两方面入手,其一是把控电子数据有效存储,简单来讲就是信息存储,对电子信息进行定期检查,监督数据实际传输,对信息系统予以有效确认以及评估和相应的测试等等,进而将不合理数据及时发现并找出信息系统不可靠不准确地方;其二是把控电子数据采集,通常电子数据具备多样化采集方式,如将审计单位相应数据库直接连接采集库进而实现数据采集,该种直接采集需要备份初始传输数据,避免数据采集之后相关人员随意修改,更加可以与审计单位进行数据采集真实性 承诺书 签订等等,最终通过电子数据方面采集以及存储两大内容把控促使数据质量更高,从而推动CAT发展。 公共数据平台的建立 依托于大数据良好推进CAT措施还集中在公共数据平台的建立,建立公共化分析平台一方面能够将所有采集的相关数据予以集中化管理存储,更能够予以多角度全方面有效分析;另一方面也能够推动CAT作业相关标准予以良好执行。如果将分析模型看作是CAT作业标准以及相应的核心技术,则公共分析平台则是标准执行和相应技术实现关键载体。依托于公共数据平台不仅能够将基础的CAT工作实现便捷化以及统一化,而且深层次的实质研究有利于CAT数据处理的高速性以及高效性,最终为推动CAT发展起到重要影响作用。 审计人员的强化培训 依托于大数据良好推进CAT措施除了集中在上述两方面之外,还集中在审计人员的强化培训上,具体来讲,培训重点关注审计工作于计算机上的具 体操 作以及操作重点难点,可以构建统一培训平台,在该培训平台中予以多元化资料的分享,聘请高技能丰富 经验 人士予以平台授课,提供专业技能知识沟通互动等等机会,最终通过强化培训提升审计人员综合素质,更加推动CAT未来发展。 三、结论 综上分析可知,当前大数据环境背景下CAT需要将日常工作予以不断调整,依托于大数据促使审计人员得以素质提升,并利用公共数据平台建立和相应的数据质量保障促使CAT工作更加高效,而本文对依托于大数据良好推进CAT进行研究旨在为未来CAT优化发展献出自己的一份研究力量。 猜你喜欢: 1. 人工智能与大数据论文 2. 大数据和人工智能论文 3. 计算机大数据论文参考 4. 计算机有关大数据的应用论文 5. 有关大数据应用的论文
大数据论文【1】大数据管理会计信息化解析
摘要:
在大数据时代下,信息化不断发展,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。
同时也面临着一些问题。
本文通过分析管理会计信息化的优势和应用现状以及所面临的的问题,以供企业在实际工作中对这些问题的控制和改善进行参考和借鉴。
关键词:
大数据;管理会计信息化;优势;应用现状;问题
在这个高速发展的信息时代,管理会计的功能已经由提供合规的信息不断转向进行价值创造的资本管理职能了。
而管理会计的创新作为企业管理创新的重要引擎之一,在大数据的时代下,管理会计的功能是否能够有效的发挥,与大数据的信息化,高效性、低廉性以及灵活性等特点是密不可分的。
一、大数据时代下管理会计信息化的优势及应用现状
在大数据时代下,管理者要做到有效地事前预测、事后控制等管理工作,在海量类型复杂的数据中及时高效的寻找和挖掘出价值密度低但是商业价值高的信息。
而管理会计信息化就能够被看做是大数据信息系统与管理会计的一个相互结合,可以认为是通过一系列系统有效的现代方法,
不断挖掘出有价值的财务会计方面的信息和其他非财务会计方面的综合信息,随之对这些有价值的信息进行整理汇总、分类、计算、对比等有效的分析和处理,
以此能够做到满足企业各级管理者对各个环节的一切经济业务活动进行计划、决策、实施、控制和反馈等的需求。
需要掌控企业未来的规划与发展方向就能够通过预算管理信息化来实现;需要帮助管理者优化企业生产活动就能够通过成本管理信息化对
供产销一系列流程进行监控来实现;需要对客观环境的变化进行了解以此帮助管理者为企业制定战略性目标能够通过业绩评价信息化来实现。
(一)预算管理信息化
在这个高速发展的信息时代下,预算管理对于企业管理而言是必不可少的,同时对企业的影响仍在不断加强。
正是因为企业所处的环境是瞬息万变,与此同此,越来越多的企业选择多元化发展方式,选择跨行业经营的模式,经营范围的跨度不断增大。
这就需要企业有较强的市场反应能力和综合实力,对企业的预算管理提出了新的发展挑战要求。
虽然不同企业的经营目标各不相同,但对通过环境的有效分析和企业战略的充分把握,从而进行研究和预测市场的需求是如出一辙的。
企业对需求的考量进而反应到企业的开发研发、成本控制以及资金流安排等各个方面,最终形成预算报表的形式来体现企业对未来经营活动和成果的规划与预测,
从而完成对企业经营活动事后核算向对企业经营活动全过程监管控制的转变。
然而从2013国务院国资委研究中心和元年诺亚舟一起做的一项针对大型国有企业的调研结果中得出,仅仅有4成的企业完成了预算管理的信息化应用,
大型的国有企业在预算管理信息化应用这方面的普及率都不高,足以说明我国整体企业的应用情况也不容乐观。
所以从整体上来讲,预算管理信息化的应用并未在我国企业中获得广泛的普及。
(二)成本管理信息化
企业由传统成本管理企业向精益成本管理企业转换是企业发展壮大的必然选择。
而基于大数据信息系统能够为企业提供对计划、协调、监控管理以及反馈等过程中各类相关成本进行全面集成化管理。
而进行成本管理的重中之重就是对企业价值链进行分析以及对企业价值流进行管理。
企业能够通过成本管理信息化对有关生产经营过程中的原材料等进行有效地信息记录及进行标示,并结合在财务信息系统中产生的单独标签,
使与企业有关的供应商、生产经营过程和销售等的过程全都处于企业的监控。
以此企业可以做到掌握生产经营的全过程,即能够通过财务信息系统实时了解到原材料的消耗,产品的入库及出库等一切企业生产经营活动。
同时,结合价值链的分析和价值流管理,企业通过将生产过程进行有效地分解,形成多条相互连接的价值链,运用信息化手段对企业的
每条价值链的成本数进行有效的追踪监管和综合分析,以此为基础为企业提出改进方案,并使用历史成本进行预测,达到减少企业的不需要的损失及浪费,最终达到优化生产经营过程。
虽然成本管理信息化是企业发展的一个重要趋势,以大数据信息技术为基础的信息系统可以使得企业完成全面的成本管理,给企业的成本管理带来了巨大的推动力。
然而信息化在成本控制方面的实施效果并不是很理想。
(三)业绩评价信息化
业绩评价是对企业财务状况以及企业的经营成果的一种反馈信息,当企业的绩效处于良好状态,代表企业的发展状况良好,
也反映了企业现阶段人才储备充足,发展处于上升期,由此企业定制扩张战略计划。
而当企业的绩效不断减少,代表企业的发展状况在恶化,也反映了企业的人才处在流失状态,企业在不断衰退,此时企业应该制定收缩战略计划。
企业进行业绩评价信息化的建设,通过对信息系统中的各类相关数据进行综合分析,有效地将对员工的业绩评价与企业的财务信息、顾客反馈、学习培训等各方面联系在一起。
对于企业而言,具备一套完善且与企业自身相适应的业绩评级和激励体系是企业财务信息系统的一个重要标志,也是企业组织内部关系成熟的一种重要表现。
然而,如今对于具备专业的业绩评价信息化工具平衡分卡等在企业的发展过程中并未得到广泛的应用。
其中最大的原因应该是对业绩评价的先进办法对于数据信息的要求比较简单,通常可以由传统方式获得。
所以,现如今能够完全将业绩评价纳入企业信息系统,并能够利用业绩评价信息化来提高企业管理效率的企业数量并不多。
二、大数据时代下管理会计信息化存在的主要问题
(一)企业管理层对管理会计信息化不重视
我国企业管理层对企业管理会计信息化建设存在着不重视的问题。
首先,对管理会计信息化概念和建设意义没有正确的认识,有甚至由于对于企业自身的认识不够充分,会对管理会计信息化的趋势产生了质疑和抵触心理。
再者,只有在一些发展较好的企业中进行了管理会计信息化的建设工作及应用,但是,企业应用所产生的效果并不是很理想,进而促使管理会计信息化在企业的发展速度缓慢。
(二)管理会计信息化程度较低
大数据时代下,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。
但是,由于管理会计在我国受重视程度不够,企业在进行管理会计信息化建设的过程中对与软件的设计和应用也要求较高,所以与管理会计信息化建设相关的基础建设还相对较落后。
(三)管理会计信息化理论与企业经管机制不协调
虽然随着国家政策鼓励和扶持,很多行业的不断涌现出新的企业,企业数量不断增多,但是由于这些企业在规模以及效益等方面都存在着较大的差距,同时在管理决策方面也产生了显著地差别。
很多企业在发展的过程中并没有实现真正的权责统一,产生了管理层短视行为,没有充分考虑企业的长远利益等管理水平低下的问题。
三、管理会计信息化建设的措施
(一)适应企业管理会计信息化发展的外部环境
企业在进行管理会计信息化建设时,要结合企业所处的外部环境进行全方面的规划和建设。
在企业进行规划和建设时,国家的法律法规等相关政策占据着十分重要的位置,需要对市场经济发展的相关法律法规进行充分理解和考虑,为企业管理会计信息化建设提供好的法律环境。
管理会计信息化系统的正常运转要求企业处于相对较好的环境之中,以此充分发挥出其应有的作用。
(二)管造合适的管理会计信息化发展内部环境
企业管理会计信息化的良好发展要求企业能够提供良好的内部环境。
树立有效推进企业管理会计信息化建设的企业文化,企业文化作为企业股东、懂事、管理层以及每个员工的价值观念体现,
有利于各级员工都能够正确认识到管理会计信息化建设的重要性,接受管理会计信息化的价值取向。
再者,企业要储备足够的管理会计人才,为管理会计信息化的建设提供源源不断的血液。
同时,为企业管理会计信息化建设提供强大的资金保障。
最后,对企业内部控制体系不断完善,为企业创造长足的生命力,为管理会计信息化赖以生存的环境。
(三)开发统一的企业信息化管理平台
在大数据时代下,信息化不断发展,对于企业而言,会同时使用多种不同的信息系统进行组合使用,并且这种情况在未来也可能将持续下去,企业需要建立综合统一的企业信息化管理平台。
四、结束语
管理会计信息化已经成为企业发展的重要趋势。
同时也面对着一些问题。
因此,相应的措施和不断地完善和改进是必不可少的,以此才能够促进管理会计信息化的不断发展。
作者:李瑞君 单位:河南大学
参考文献:
[1]冯巧根.
管理会计的理论基础与研究范式[J].
会计之友,2014(32).
[2]张继德,刘向芸.
我国管理会计信息化发展存在的问题与对策[J].
会计之友,2014(21).
[3]韩向东.
管理会计信息化的应用现状和成功实践[J].
会计之友,2014(32).
大数据论文【2】大数据会计信息化风险及防范
摘要:
随着科学技术的不断进步和社会经济的不断发展,大数据时代的发展速度加快,同时也推动着会计信息化的发展进程,提高了企业会计信息化工作的效率和质量,资源平台的共享也大大降低了会计信息化的成本。
但大数据时代下会计信息化的发展也存在一定的风险。
本文将会对大数据时代下会计信息化中所存在的风险给予介绍,并制定相应的防范对策,从而使大数据时代在避免给会计
信息化造成不良影响的同时发挥其巨大优势来促进会计信息化的发展进程。
关键词:
大数据时代;会计信息化;风险;防范
前言
近年来经济全球化进程不断加快,经济与科技的迅猛发展,我国在经历了农业、工业和信息时代以后终于踏入了大数据时代。
大数据是指由大量类型繁多、结构复杂的数据信息所组成的`数据集合,运用云计算的数据处理模式对数据信息进行集成共享、
交叉重复使用而形成的智力能力资源和信息知识服务能力。
大数据时代下的会计信息化具有极速化、规模性、智能性、多元化、和即时高效等特点,这使得会计从业人员可以更方便快捷的使用数
据信息,并在降低经济成本的同时有效实现资源共享,信息化效率逐渐增强。
但同时大数据时代下的会计信息化也面临着风险,应及时有效地提出防范对策,以确保会计信息化的长久发展。
一、大数据时代对会计信息化发展的影响
(一)提供了会计信息化的资源共享平台
进入大数据时代以来,我国的科学技术愈加发达,会计信息化也在持续地走发展和创新之路,网络信息资源平台的建立使数据与信息资源可以共同分享,平台使用者之间可以相互借鉴学习。
而最为突出的成就便是会计电算化系统的出现,它改变了传统会计手工做账的方式,实现了记账、算账和报账的自动化模式,
提高了会计数据处理的正确性和规范性,为信息化管理打下基础,推进了会计技术的创新和进一步发展。
但是“信息孤岛”的出现证明了会计电算化并没有给会计信息化的发展带来实质性的变化。
浅谈基于大数据时代的机遇与挑战论文推荐
在学习和工作中,大家总少不了接触论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。为了让您在写论文时更加简单方便,以下是我精心整理的浅谈基于大数据时代的机遇与挑战论文,仅供参考,希望能够帮助到大家。
浅谈基于大数据时代的机遇与挑战论文
1、大数据的基本概况
大数据(Big Data)是指那些超过传统数据库系统处理能力的数据,其具有以下四个基本特性,即海量性、多样性、易变性、高速性。同时数据类型繁多、数据价值密度相对较低、处理速度快、时效性要求高等也是其主要特征。
2、大数据的时代影响
大数据,对经济、政治、文化等方面都具有较为深远的影响,其可帮助人们进行量化管理,更具科学性和针对性,得数据者得天下。大数据对于时代的影响主要包括以下几个方面:
(1)“大数据决策”更加科学有效。如果人们以大数据分析作为基础进行决策,可全面获取相关决策信息,让数据主导决策,这种方法必将促进决策方式的创新和改变,彻底改变传统的决策方式,提高决策的科学性,并推动信息管理准则的重新定位。2009 年爆发的甲型H1N1 流感就是利用大数据的一个成功范例,谷歌公司通过分析网上搜索的大量记录,判断流感的传播源地,公共卫生机构官员通过这些有价值的数据信息采取了有针对性的行动决策。
(2)“大数据应用”促进行业融合。虽然大数据源于通信产业,但其影响绝不局限于通信产业,势必也将对其他产生较为深远的影响。目前,大数据正逐渐广泛应用于各个行业和领域,越来越多的企业开始以数据分析为辅助手段加强公司的日常管理和运营管理,如麦当劳、肯德基、苹果公司等旗舰专卖店的位置都是基于大数据分析完成选址的,另外数据分析技术在零售业也应用越来越广泛。
(3)“大数据开发”推动技术变革。大数据的应用需求,是大数据新技术开发的源泉。相信随着时代的不断发展,计算机系统的数据分析和数据挖掘功能将逐渐取代以往单纯依靠人们自身判断力的领域应用。借助这些创新型的大数据应用,数据的能量将会层层被放大。
另外,需要注意的是,大数据在个人隐私的方面,容易造成一些隐私泄漏。我们需要认真严肃的对待这个问题,综合运用法律、宣传、道德等手段,为保护个人隐私,做出更积极的努力。
3、大数据的应对策略
布局关键技术研发创新。
目前而言,大数据的技术门槛较高,在这一领域有竞争力的多为一些在数据存储和分析等方面有优势的信息技术企业。为促进产业升级,我们必须加强研究,重视研发和应用数据分析关键技术和新兴技术,具体可从以下几个方面入手:第一,夯实发展基础,以大数据核心技术为着手点,加强人工智能、机器学习、商业智能等领域的理论研究和技术研发,为大数据的应用奠定理论基础。二是加快基础技术(非结构化数据处理技术、可视化技术、非关系型数据库管理技术等)的研发,并使其与物联网、移动互联网、云计算等技术有机融合,为解决方案的制定打下坚实基础。三是基于大数据应用,着重对知识计算( 搜索) 技术、知识库技术、网页搜索技术等核心技术进行研发,加强单项技术产品研发,并保证质量的提升,同时促使其与数据处理技术的有机结合,建立科学技术体系。
提高软件产品发展水平。
一是促进以企业为主导的产学研合作,提高软件发展水平。二是运用云计算技术促进信息技术服务业的转型和发展,促进中文知识库、数据库与规则库的建设。三是采取鼓励政策引导软硬件企业和服务企业应用新型技术开展数据信息服务,提供具有行业特色的系统集成解决方案。四是以大型互联网公司牵头,并聚集中小互联网信息服务提供商,对优势资源进行系统整合,开拓与整合本土化信息服务。五是以数据处理软件商牵头,这些软件商必须具备一定的基础优势,其可充分发挥各自的数据优势和技术优势,优势互补,提高数据软件开发水平,提高服务内容的精确性和科学性。同时提高大数据解决方案提供商的市场能力和集成水平,以保障其大数据为各行业领域提供较为成熟的解决方案。
加速推进大数据示范应用。
大数据时代,我们应积极推进大数据的示范应用,可从以下几个方面进行实践:第一,对于一些数据量大的领域(如金融、能源、流通、电信、医疗等领域),应引导行业厂商积极参与,大力发展数据监测和分析、横向扩展存储、商业决策等软硬件一体化的行业应用解决方案。第二,将大数据逐渐应用于智慧城市建设及个人生活和服务领域,促进数字内容加工处理软件等服务发展水平的提高。第三,促进行业数据库(特别是高科技领域)的深度开发,建议针对不同的行业领域建立不同的专题数据库,以提供相应的内容增值服务,形成有特色化的服务。第四,以重点领域或重点企业为突破口,对企业数据进行相应分析、整理和清洗,逐渐减少和去除重复数据和噪音数据。
优化完善大数据发展环境。
信息安全问题是大数据应用面临的主要问题,因此,我们应加强对基于大数据的情报收集分析工作信息保密问题的研究,制定有效的防范对策,加强信息安全管理。同时,为优化完善大数据发展环境,应采取各种鼓励政策(如将具备一定能力企业的数据加工处理业务列入营业税优惠政策享受范围)支持数据加工处理企业的发展,促使其提高数据分析处理服务的水平和质量。三是夯实大数据的应用基础,完善相关体制机制,以政府为切入点,推动信息资源的集中共享。
做到上面的几点,当大数据时代来临的时候,面临大量数据将不是束手无策,而是成竹在胸,而从数据中得到的好处也将促进国家和企业的快速发展。
大数据为经营的横向跨界、产业的越界混融、生产与消费的合一提供了有利条件,大数据必将在社会经济、政治、文化等方面对人们生活产生巨大的影响,同时大数据时代对人类的数据驾驭能力也提出了新的挑战与机遇。面对新的挑战与发展机遇,我们应积极应对,以掌握未来大数据发展主动权。
结构
论文一般由名称、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。
1、论文题目
要求准确、简练、醒目、新颖。
2、目录
目录是论文中主要段落的'简表。(短篇论文不必列目录)
3、内容提要
是文章主要内容的摘录,要求短、精、完整。
4、关键词定义
关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。
主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。
5、论文正文
(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。
(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:
a.提出问题-论点;
b.分析问题-论据和论证;
c.解决问题-论证方法与步骤;
d.结论。
6、参考文献
一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按进行。
7、论文装订
论文的有关部分全部抄清完了,经过检查,再没有什么问题,把它装成册,再加上封面。论文的封面要朴素大方,要写出论文的题目、学校、科系、指导教师姓名、作者姓名、完成年月日。论文的题目的作者姓名一定要写在表皮上,不要写里面的补页上。
以下四种方式查找参考文献:
1.检索头牌:Pubmed
Pubmed作为美国国家医学图书馆所属的国家生物技术信息中心开发的一款论文搜索引擎,凭借其海量的文献数据和简便快捷的搜索方式,成为了网上使用最广泛的生物医学方面的文献搜索工具。我们可以通过最简单的在标题和摘要中搜寻相关的关键词或相关公式,来寻找相关的文章。
2.用之不易的Google学术
这个其实并不能算是文献检索工具,但其有个很大的特点就是能够对全文进行搜索,而不是像上面说的那两个只是搜索标题和摘要。因此当要搜索事实型依据的时候,比如,要搜索“某病的发病率为36%”这样的出处,在摘要中可能没有具体的数据,所以需要google来进行全文搜索。
Google学术的功能还是挺强大的,不过在天朝却被封了,要是想用还得翻墙。不过不知道是应广大学者的呼唤,据说,最近Google又可以用了,这机会可是来自不易,小伙伴们还是抓紧时机享受这一福利吧。
3.关联检索:Web of Science
这个方法比较适合研究机构,因为Web of Science的数据库是要收费的,但其搜索引擎比Pubmed更高级,不但能够限定文章的学科,还能限定作者的国籍单位等等,非常好用。值得一提的是它里面的逻辑连接词比Pubmed多了一个很实用词——Near,这个能在相邻的两个句子中寻找关键词。比方说要搜索高血压和糖尿病的关系,如果使用一般”AND“来连接,可能会出现头一句是说的糖尿病,然后结尾出来个高血压,其实并无联系。但用”Near”的话,由于两个词之间的距离被限定了,因此相关的概率也会高的多。
4.中文检索:万方,知网,维普等。
大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
内容如下:
1、大数据对商业模式影响
2、大数据下地质项目资金内部控制风险
3、医院统计工作模式在大数据时代背景下改进
4、大数据时代下线上餐饮变革
5、基于大数据小微金融
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
学术堂整理了十五个和大数据有关的毕业论文题目,供大家进行参考:1、大数据对商业模式影响2、大数据下地质项目资金内部控制风险3、医院统计工作模式在大数据时代背景下改进4、大数据时代下线上餐饮变革5、基于大数据小微金融6、大数据时代下对财务管理带来机遇和挑战7、大数据背景下银行外汇业务管理分析8、大数据在互联网金融领域应用9、大数据背景下企业财务管理面临问题解决措施10、大数据公司内部控制构建问题11、大数据征信机构运作模式监管12、基于大数据视角下我国医院财务管理分析13、大数据背景下宏观经济对微观企业行为影响14、大数据时代建筑企业绩效考核和评价体系15、大数据助力普惠金融
首先介绍大数据带来的好处,然后介绍大数据带来的弊端。
大数据带来的好处
1、大数据便利我们的生活:
自助缴水、电、燃气、电视费,汽车摇号、手机充值、违章查询、公积金查询、手机代开发票、查询法院案子进展,这是运用大数据促进保证和改善民生的典型事例。此外,大数据还运用到智能家居中,智能照明体系等。
2、大数据便利看病:
大数据最强大的应用就是电子医疗记录的收集。每一个病人都有自己的电子记录,包括个人病史、家族病史、过敏症以及所有医疗检测结果等。大数据收集病人信息,可以尽早发现疾病,对于患者来说,不但降低了身体健康受损的风险,同时也能够减少医疗支出。
另一个创新是可穿戴设备的应用,这些设备能够实时汇报病人的健康状况。这些新的分析设备具备同样的功能,但能在医疗机构之外的场所使用,降低了医疗成本,病人在家就能获知自己的健康状况,同时还获得智能设备所提供的治疗建议。
3、大数据便利我出行:
人们的出行越来越离不开大数据的协助,运用电子地图,初来乍到的游客可以在生疏的城市自由行走;繁忙一天的上班族可以查询最快回家的交通方法;出租车司机经过语音导航,知晓前方路程状况,防止堵车或超速违章。
大数据仍是缓解交通压力的利器,它可以猜测未来交通状况,为改善交通状况供给优化方案,这有助于交通部门进步对路程交通的把控才干,防止缓和解交通拥堵。
4、利用大数据提升自己:
大数据技能不只能够提高人们使用数据的效率,并且能够实现数据的再使用和重复使用,进而大大降低交易成本,提升人们开发自我潜能的空间。
大数据的弊端
1、个人数据隐私与安全
大数据会记录浏览习惯,购买习惯,常用淘宝支付宝这些软件的人,消费能力、购物习惯、活动产所、收入情况、生活质量、年龄、身高、体重、鞋码、三围、口味等,都是可以分析出来的,这些基本囊括了我们的生活。
个人数据安全就成了一个大问题,一旦数据泄露(或被买卖),可能会对用户人身财产、国家和公司的安全造成威胁。
2、大数据杀熟
杀熟,即同样的商品或服务,老客户看到的价格反而比新客户要贵出许多。
包括滴滴出行、携程、飞猪、京东、美团、淘票票等多家互联网平台均被曝疑似存在“杀熟”情况,涵盖在线差旅、在线票务、网络购物、交通出行等多个领域,特别是OTA(Online Travel Agent)在线差旅平台较为突出。
大数据的价值体现
1、对许多顾客供给产品或服务的企业可以运用大数据进行精准营销。
2、做小而美形式的中小微企业可以运用大数据做服务转型。
3、面对互联网压力之下,有必要转型的传统企业需求与时俱进充沛运用大数据的价值。
在当前的“大数据”时代,人们可能会受到大数据带来的损失。大数据分析包括使用来自多个来源的大量数据进行链接和分析,以发现预测人类行为的模式。即使在完全合法的情况下,这样的分析也会伤害到人们的利益。
浅谈基于大数据时代的机遇与挑战论文推荐
在学习和工作中,大家总少不了接触论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。为了让您在写论文时更加简单方便,以下是我精心整理的浅谈基于大数据时代的机遇与挑战论文,仅供参考,希望能够帮助到大家。
浅谈基于大数据时代的机遇与挑战论文
1、大数据的基本概况
大数据(Big Data)是指那些超过传统数据库系统处理能力的数据,其具有以下四个基本特性,即海量性、多样性、易变性、高速性。同时数据类型繁多、数据价值密度相对较低、处理速度快、时效性要求高等也是其主要特征。
2、大数据的时代影响
大数据,对经济、政治、文化等方面都具有较为深远的影响,其可帮助人们进行量化管理,更具科学性和针对性,得数据者得天下。大数据对于时代的影响主要包括以下几个方面:
(1)“大数据决策”更加科学有效。如果人们以大数据分析作为基础进行决策,可全面获取相关决策信息,让数据主导决策,这种方法必将促进决策方式的创新和改变,彻底改变传统的决策方式,提高决策的科学性,并推动信息管理准则的重新定位。2009 年爆发的甲型H1N1 流感就是利用大数据的一个成功范例,谷歌公司通过分析网上搜索的大量记录,判断流感的传播源地,公共卫生机构官员通过这些有价值的数据信息采取了有针对性的行动决策。
(2)“大数据应用”促进行业融合。虽然大数据源于通信产业,但其影响绝不局限于通信产业,势必也将对其他产生较为深远的影响。目前,大数据正逐渐广泛应用于各个行业和领域,越来越多的企业开始以数据分析为辅助手段加强公司的日常管理和运营管理,如麦当劳、肯德基、苹果公司等旗舰专卖店的位置都是基于大数据分析完成选址的,另外数据分析技术在零售业也应用越来越广泛。
(3)“大数据开发”推动技术变革。大数据的应用需求,是大数据新技术开发的源泉。相信随着时代的不断发展,计算机系统的数据分析和数据挖掘功能将逐渐取代以往单纯依靠人们自身判断力的领域应用。借助这些创新型的大数据应用,数据的能量将会层层被放大。
另外,需要注意的是,大数据在个人隐私的方面,容易造成一些隐私泄漏。我们需要认真严肃的对待这个问题,综合运用法律、宣传、道德等手段,为保护个人隐私,做出更积极的努力。
3、大数据的应对策略
布局关键技术研发创新。
目前而言,大数据的技术门槛较高,在这一领域有竞争力的多为一些在数据存储和分析等方面有优势的信息技术企业。为促进产业升级,我们必须加强研究,重视研发和应用数据分析关键技术和新兴技术,具体可从以下几个方面入手:第一,夯实发展基础,以大数据核心技术为着手点,加强人工智能、机器学习、商业智能等领域的理论研究和技术研发,为大数据的应用奠定理论基础。二是加快基础技术(非结构化数据处理技术、可视化技术、非关系型数据库管理技术等)的研发,并使其与物联网、移动互联网、云计算等技术有机融合,为解决方案的制定打下坚实基础。三是基于大数据应用,着重对知识计算( 搜索) 技术、知识库技术、网页搜索技术等核心技术进行研发,加强单项技术产品研发,并保证质量的提升,同时促使其与数据处理技术的有机结合,建立科学技术体系。
提高软件产品发展水平。
一是促进以企业为主导的产学研合作,提高软件发展水平。二是运用云计算技术促进信息技术服务业的转型和发展,促进中文知识库、数据库与规则库的建设。三是采取鼓励政策引导软硬件企业和服务企业应用新型技术开展数据信息服务,提供具有行业特色的系统集成解决方案。四是以大型互联网公司牵头,并聚集中小互联网信息服务提供商,对优势资源进行系统整合,开拓与整合本土化信息服务。五是以数据处理软件商牵头,这些软件商必须具备一定的基础优势,其可充分发挥各自的数据优势和技术优势,优势互补,提高数据软件开发水平,提高服务内容的精确性和科学性。同时提高大数据解决方案提供商的市场能力和集成水平,以保障其大数据为各行业领域提供较为成熟的解决方案。
加速推进大数据示范应用。
大数据时代,我们应积极推进大数据的示范应用,可从以下几个方面进行实践:第一,对于一些数据量大的领域(如金融、能源、流通、电信、医疗等领域),应引导行业厂商积极参与,大力发展数据监测和分析、横向扩展存储、商业决策等软硬件一体化的行业应用解决方案。第二,将大数据逐渐应用于智慧城市建设及个人生活和服务领域,促进数字内容加工处理软件等服务发展水平的提高。第三,促进行业数据库(特别是高科技领域)的深度开发,建议针对不同的行业领域建立不同的专题数据库,以提供相应的内容增值服务,形成有特色化的服务。第四,以重点领域或重点企业为突破口,对企业数据进行相应分析、整理和清洗,逐渐减少和去除重复数据和噪音数据。
优化完善大数据发展环境。
信息安全问题是大数据应用面临的主要问题,因此,我们应加强对基于大数据的情报收集分析工作信息保密问题的研究,制定有效的防范对策,加强信息安全管理。同时,为优化完善大数据发展环境,应采取各种鼓励政策(如将具备一定能力企业的数据加工处理业务列入营业税优惠政策享受范围)支持数据加工处理企业的发展,促使其提高数据分析处理服务的水平和质量。三是夯实大数据的应用基础,完善相关体制机制,以政府为切入点,推动信息资源的集中共享。
做到上面的几点,当大数据时代来临的时候,面临大量数据将不是束手无策,而是成竹在胸,而从数据中得到的好处也将促进国家和企业的快速发展。
大数据为经营的横向跨界、产业的越界混融、生产与消费的合一提供了有利条件,大数据必将在社会经济、政治、文化等方面对人们生活产生巨大的影响,同时大数据时代对人类的数据驾驭能力也提出了新的挑战与机遇。面对新的挑战与发展机遇,我们应积极应对,以掌握未来大数据发展主动权。
结构
论文一般由名称、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。
1、论文题目
要求准确、简练、醒目、新颖。
2、目录
目录是论文中主要段落的'简表。(短篇论文不必列目录)
3、内容提要
是文章主要内容的摘录,要求短、精、完整。
4、关键词定义
关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。
主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。
5、论文正文
(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。
(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:
a.提出问题-论点;
b.分析问题-论据和论证;
c.解决问题-论证方法与步骤;
d.结论。
6、参考文献
一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按进行。
7、论文装订
论文的有关部分全部抄清完了,经过检查,再没有什么问题,把它装成册,再加上封面。论文的封面要朴素大方,要写出论文的题目、学校、科系、指导教师姓名、作者姓名、完成年月日。论文的题目的作者姓名一定要写在表皮上,不要写里面的补页上。
当今时代,电脑已经成为人们生活以及公司发展的必需品。现在和未来一切都是电脑,所以现在电脑技术还是很有前途的,只要你的技术过硬,找到一份好工作,获得高额薪水,一切都不是问题。
大数据下企业财务管理的问题与解决方式。大数据与财务管理专业主要研究如何通过计划、决策、控制、考核、监督等管理活动对资金远东进行管理,所以可以选题大数据下对企业财务管理的问题与解决方式。当然也可以选题大数据背景下企业财务管理出现的问题及解决策略等,把大数据的效用运用到企事业的财务管理当中,有效提高企事业财务管理工作。
数据库技术已成为计算机信息系统和计算机应用系统的重要技术基础。下面是我为大家精心推荐的数据库技术论文,希望能够对您有所帮助。
数据库加密技术分析
摘 要:从信息产业的形成、壮大到信息社会的到来,特别是以微电子革命为代表的个人计算机的迅猛发展和以网络为特征的新一轮信息交流方式的革命,社会的信息化已成为一种社会发展的新趋势。
关键词:数据库;加密;研究
中图分类号:TP31 文献标识码:A
数据库技术的最初应用领域主要是信息管理领域,如政府部门、工商企业、图书情报、交通运输、银行金融、科研教育等各行各业的信息管理和信息处理。事实上,只要有数据需要管理,就可以使用数据库。
1数据库的特点
数据结构化是数据库和文件系统的本质区别。数据结构化是按照一定的数据棋型来组织和存放数据.也就是采用复杂的数据模型表示数据结构。数据模型不仅描述数据本身以特点,还描述数据之间的联系。这种结构化的数据反映了数据之间的自然联系,是实现对另据的集中控制和减少数据冗余的前提和保证。
由于数据库是从一个企事业单位的总体应用来全盘考虑井集成教据结构的.所以数拒库中的数据不再是面向个别应用而是面向系统的。各个不同的应用系统所需的数据只是翅体模型的一个子集。数据库设计的基础是数据模型。在进行教据库设计时,要站在全局需耍的角度抽象和组织数据,要完整地、准确地描述数据自身和数据之间联系的情况,建立话合总体需耍的数据棋型。数据库系统是以数据库为荃础的,各种应用程序应建立在数据阵之上。数据库系统的这种特点决定了它的设计方法,即系统设计时应先设计数据库,再设计功能程序.而不能像文件系统那样,先设计程序,再考虑程序需要的数据。
有较高的数据独立性
数据库中的数据不是孤立的,数据与数据之间是相互关联的。也就是说,在数据库个不仅要能够表水数据本身,还要能够表水数据与数据之间的联系。例如布银行的储蓄数据库中,有储户信息和账户情息,储户信息和账户信息联的。 数据库能够根据石同的需要按不同的方法组织数据,比如顺序组织方法、索引组织方法、倒排索引组织力法等。这样做的目的就是要最大限度地提高用户或应用程序访问数据烽的效率。闭于有数据库技术之前。数据文件都是独立的,所以任何数据文件都必须含有满足某一应用的全部数据。而在数据库中数据是被所有应用共享的。在设计数据库时,从全局应剧小发,可以使数据库中包含为整个应用服务的全部数据,然后通过模式定义可以灵活组合数据满足每一个应用。数据形具有较高的数据独仅件数据独立性是指数据的组织和存储方法与应蝴程序互不依赖、彼此独立的特性。在数据库技术之前,数据文件的织纠方式和应用程序是密切相关的。当改企数据结构时相应的应用程序也必须陨之修改,这样就大大增加了应用程斤的开发代价和维护代价。而数据库技术以使数据的组织和存储方法与应用程序巨不依赖,从而人大降低应用程序的开发代价和维护代价。
数据冗余度小、数据共享度高
数据冗余度小是指存储在数据库中的皿复数据少。在非数据库系统中,每个应用程序有它自己的数据文件,从而造成存储数据的大盆宜复。由于在数据库系统方式下.教据不再是面向某个应用,而是面向整个系统,这就使得数据库中的数据冗余度小.从而避免了由于数据大扭冗余带来的数据冲突问题。
据库系统通过数据模型和数据控制机制提高数据的共享性。数据共享度高会提高数据的利用率,使得数据更有价值,能够更容易、更方使地使用。
2数据库加密方法
从所面临的安全与保密威胁方面来看,数据库系统应该重点对付以下威胁: 非授权访问、假冒合法用广、数据完整性受破坏系统的正常运行、病毒、通信线路被窃听等。而威胁网络安全的因素:计算机系统的脆弱性、协议安全的脆弱性、数据库管理系统安全的脆弱性、人为的因素、各种外部威胁,主要包括以下方面。
数据欺:非法篡改数据或输人假数据;特洛伊木马术:非法装人秘密指令或程序,由计算机执行犯罪活动;意大利香肠术:利用计算机从金融银行信息系统上一点点窃取存款,如窃取账户的利息尾数,积少成多;逻辑炸弹:输人犯罪指令,以便在指定的时间或条件下删除数据文卷,或者破坏系统功能;线路截收:从系统通信线路上截取信息;陷阱术:利用程序中用于调试或修改、增加程序功能而特设的断点,插人犯罪指令或在硬件中相应的地方增设某种供犯罪用的装置,总之是利用软件和硬件的某些断点或接口插入犯罪指令或装置;寄生术:用某种方式紧跟有特权的用户进人系统,或者在系统中装人“寄生虫”;超级冲杀:用共享程序突破系统防护,进行非法存取或破坏数据及系统功能;异步攻击:将犯罪指令混杂在正常作业程序中,以获取数据文件.电脑病毒:将具有破坏系统功能和系统服务与破坏或删除数据文卷的犯罪程序装人系统某个功能程序中,让系统在运行期间将犯罪程序自动拷贝给其他系统,这就好像传染性病毒一样四处蔓延。
数据库加密技术探索
密码学是一门古老而深奥的学科,对一般人来说是陌生的,因为长期以来它只在很小的范围内(如军事、外交、悄报等部门)使用。计算机密码学是研究计算机信息加密、解密及其变换的科学.是数学和计算机的交叉学科,也是一门新兴的学科,随着计算机网络和计算机通信技术的发展,计算机密码学得到前所未有的重视并迅速普及和发展起来。数据加密技术主要分为传输加密和存储加密,而数据传输加密技术是对传输中的数据流进行加密,常用的有链路加密、节点加密和端到端加密三种方式。
(1)链路加密,是传输数据仅在物理层前的数据链路层进行加密,不考虑信源和信宿。它用于保护通信节点间的数据,接收方是传送路径上的各台节点机,信息在每台节点机内都要被解密和再加密,依次进行,直至到达目的地。
(2)节点加密,是在节点处采用一个与节点机相连的密码装置。密文在该装置中被解密并被重新加密,明文不通过节点机,避免了链路加密节点处易受攻击铂缺点。
结语
数据加密技术是最基本的安全技术,被誉为信息安全的核心,最初主要用于保证数据在存储和传输过程中的保密性。它通过变换和置换等各种方法将被保护信息置换成密文,然后再进行信息的存储或传输,即使加密信息在存储或者传输过程为非授权人员所获得,也可以保证这些信息不为其认知.从而达到保护信息的目的。该方法的保密性直接取决于所采用的密码算法和密钥长度。
参考文献
[1]钱雪忠.数据库原理及技术[M].北京:清华大学出版社,2011.
[2]刘升.数据库系统原理与应用[M].北京:清华大学出版社,2012.
点击下页还有更多>>>数据库技术论文
库存管理数据库系统原理与应用【摘 要】库存管理系统是典型的信息管理系统(MIS),其开发主要包括后台数据库的建立和维护以及前端应用程序的开发两个方面。对于前者要求建立起数据一致性和完整性强.数据安全性好的库。而对于后者则要求应用程序功能完备,易使用等特点。 经过分析如此情况,我们使用微软公司的VisualBasic开发工具,利用其提供的各种面向对象的开发工具,尤其是ADO,是能方便而简洁操纵数据库的智能化对象,短期内就可以开发出用户满意的可行系统。 关键字: 库存管理 ADO 面相对象 库存ABC分析 第一章 概述 库存管理的必要性 大多数库存管理理论认为,库存是物理上和逻辑上库房库位的所有有形和无形物料极其价值的总和,具体包括成品、原材料、在制品、在途品、生产前物料、备品备件等。虽然持有一些库存是必要的,过量的库存却非但没有用处而且占用了资金。占用的资金对于公司发展、新产品开发等都是非常需要的;减少资金占用还可以大大减少来自银行贷款的利息和风险。对那些采购量特别大、采购件市场价格有波动的物料库存,加强库存管理效果更为明显。因此,平衡公司库存投资与其它资金需求至关重要。 库存分类 企业怎样管理库存,是库存管理的最大难点和挑战。因此,通过MRPII物料主计划模块和采购模块建立计划与控制系统以有效地实施库存管理和采购补偿成为题中应有之义。通过调查,我们得知任何库存均可分为如下三类: A类物品:高值──价值占库存总值70-80%的相对少数物品。通常为物品的15-20%。 B类物品:中值──总值占库存总值的15-20%。物品数居中,通常占物品的30-40%。 C类物品:低值──库存总值几乎可以忽略不计,只占5-10%。是物品的大多数,通常占60-70%。 显然,A类物品是关键;如果我们把精力集中于A类物品,使其库存压缩10-50%,就是总库存的相当可观的一笔压缩。 关于ABC分类方法有几条基本法则: a. 控制的程度: 对A类物品严加控制,包括做完备、准确的记录,高层监督和经常评审,从供应商按大合同订单频繁交货,对车间紧密跟踪以压缩提前期。 对B类物品做正常控制,包括良好的记录与常规的关注。 对C类物品尽可能使用简便的控制,诸如定期目视检查库存实物、简要记录或以简便标志法表明补充存货已经订货,采用大库存量与订货量以避免缺货,安排车间日程计划时给以低优先级。 b.优先级 在一切活动中给A类物品以高优先级以压缩其提前期与库存。 对B类物品予以正常处理,仅在关键时给以高优先级。 予C类物品以最低优先级。 c.订货过程 对A类物品提供及时、准确的采购信息和状态查询。计算机数据需要人工加以核对,进行阶段性盘点,以及频繁的评审以压缩库存。 对B类物品,按一定周期或当发生重大变化时评审一次库存数据和订货点,MRPII操作按例行公事处理。 对C类物品可以盘点处理或订货点计算。订货往往不用MRPII作计划。可以凭业务人员的经验加以控制。 由上可以看出库存管理的重要性。因此,库存管理是企业管理的重要组成部分。市场需要库存商品提供给用户,企业的经营需要库存保证各种药品的供应以进行药品的销售,库存对生产效率的提高有着极其重要的影响。因此,库存管理系统是计算机管理系统的中心。因为,所有企业的经营活动都离不开物流的活动。 库存管理的目标 库存管理的主要目标就是通过对仓库所有入出库活动的管理和控制及对库存数据有效的统计和分析,以保证企业生产中畅通的物流,使决策人员及早发现问题,采取相应措施,调整库存结构,缩短储备周期,加速资金周转,最大限度地降低库存占用,同时,通过周期性的仓库盘点,及时补救管理中的漏洞,使库存管理系统实时地反映企业中各个仓库的现时情况,为各类管理人员从不同侧面提供所需信息,以便协调企业经营收到更大效益,库存管理系统是协调企业生产经营的基础,其数据的准确性、方便的查询、有效的分析是整个计算机管理系统顺利运行的关键。 第二章 开发背景 企业的库存物资管理往往是很复杂、很繁琐的。由于所掌握的物资种类众多,订货、管理、发放的渠道各有差异,各个企业之间的管理体制不尽相同,各类统计报表繁多,因此仓库的库存管理必须编制一套库存管理信息系统,实现计算机化操作,而且必须根据企业的具体情况制定相应的方案。 根据当前的企业管理体制,一般的库存管理系统,总是根据所掌握的物资类别,相应分成几个科室来进行物资的计划,订货,核销托收,验收入库,根据企业各个部门的需求来发送物资设备,并随时按期进行库存盘点,作台帐,根据企业领导和自身管理的需要按月、季度、年度进行统计分析,产生相应报表。为了加强关键物资、设备的管理,要定期掌握其储备,消耗情况,根据计划定额和实际纤毫定额的比较,进行定额管理,使得资金使用合理,物资设备的储备最佳。 一个完整的企业物资供应管理系统应包括采购计划管理,合同收托管理、仓库库存管理、定额管理、统计管理、财务管理等模块。其中仓库的库存管理是整个物资供应管理系统的核心。因此有必要开发一套独立的库存管理系统来提高企业工作效率, 而所使用的这套库存管理系统是企业生产经营管理活动中的核心,此系统必须可以用来控制合理的库存费用、适时适量的库存数量,使企业生产活动效率最大化。通过对这些情况的仔细调查,我开发了下面的仓库库存管理系统。 第三章 系统分析 本系统采用了结构化生命周期法,结构化生命周期法是最常用的管理信息系统开发方法,分为四个步骤,即系统调研分析、数据库设计实现、界面设计实现和系统功能设计实现。其中系统调研分析阶段是最基础、也是最容易被开发人员忽视的环节。 进行资料收集 在整个系统分析阶段,我在图书馆认真查看了很多关于仓库库存管理方面的书籍,收集到了相应的入库单、领料单、台账、物料卡、报表等资料。 入库单是入库单位在把相应的零部件送人仓库时必须填写的单据;领料单是领料人员从仓库中领取零部件时必须填写的单据(即出库);零部件台账(相当于本系统中的操作日志)实际是一个流水账,用于记录每天发生的入库、出库信息;物料卡(在本系统中用现有库存信息来表示)的作用是记录某一种零部件的数量变化,以便库管员盘查;报表是仓库向有关领导和部门定期提交的零部件库存汇总信息。收集到的入库单、领料单、零部件库存台账、零部件物料卡等单据和报表的实物样式在此略去,有兴趣者请参考有关类似企业的样本即可。 绘制业务流程图 用户需求分析 用户需求分析就是在用户需求调研的基础上,确定系统的总体结构方案,完成相应的需求分析报告。在确定系统的总体结构方案过程中,包括确定应用程序的结构、系统开发环境和系统的功能模块。用户需求调研结束之后,应该立即进行用户需求分析。 应用程序结构确定 从用户应用角度来看,可把应用程序系统的组成部分分成数据存储层、业务处理层和界面表示层等3个层次,而应用程序结构可归纳为:集中式应用程序结构、单用户应用程序结构、多层服务器应用程序结构、浏览器/服务器应用程序结构、客户机/服务器应用程序结构等5种类型。 本库存管理系统就采用了当前最流行的客户机/服务器应用程序结构(即C/S结构),此时,客户机提出请求,服务器对客户机的请求作出回应。通过对服务功能的分布实现了分工服务。数据存储层放在服务器上,业务处理层和界面表示层放在客户机上,因此又被称为“灵敏的客户机”结构。许多操作可以在本地的客户机上执行,只是当需要数据时,才向服务器发出请求。并使应用程序的处理更接近用户,使整个系统具有较好的性能,可以并行地处理应用程序的请求、减少了数据传输量、降低了服务器的负荷。由于条件所限,将此系统所有程序都置于一台计算机上,以便调试运行。确定系统开发环境 由于大多数公司内部使用的计算机平台都是基于Windows环境的。为了降低系统成本,应最大程度地利用现有的资源、兼容现有的环境,可确定使用下面的开发环境: ★网络操作系统:Windows2000;★数据库服务器:MicrosoftAccessr2000; ★服务器平台:Windows2000;★客户机平台:Windows95/98/NT/2000; ★前端开发工具:(企业版);★数据访问对象:ADO(本系统使用ADO控件,简化编程)。 确定系统的功能模块 通过分析确定库存系统将包含6个主要功能模块,即系统模块、入库业务管理模块、出库业务管理模块、退料业务管理模块(还库业务管理模块)、盘点业务管理模块(报表输出)、需求管理模块。对于每一个功能模块,都包含了数据录入、编辑、查询、统计、打印、应急、帮助等功能。 第四章 系统设计 4. 1总体设计 系统目标设计 系统开发的总体任务是实现企业物资设备管理的系统化、规范化和自动化,从而达到企业仓库库存管理效率的目的。 开发设计思想 库存管理的物资主要是企业生产中所需要的各种设备、原材料及零部件。进货时经检查合同确认为有效托收后,进行验收入库,填写入库单,进行入库登记。企业各个部门根据所需要的物资设备总额和部门生产活动需要提出物资需求申请。计划员根据整个企业的需求开出物资设备出库单,仓库管理员根据出库单核对发放设备、原材料及零部件。有些设备使用完毕需要及时归还入库,填写还库单。根据需要按照月、季、年进行统计分析,产生相应报表。 仓库库存管理的特点是信息处理量比较大。所管理的物资设备、原材料及零部件种类繁多,而且由于入库单、出库单、需求单等单据发生量特别大,关联信息多,查询和统计的方式各不相同,因此在管理上实现起来有一定的困难。在管理的过程中经常会出现信息的重复传递;单据、报表种类繁多,各个部门规格不统等问题。 在本系统的设计过程中,为了克服这些困难,满足计算机管理的需要,我们采取了下面的一些原则: 统一各种原始单据的格式,统一帐目和报表的格式。 删除不必要的管理冗余,实现管理规范化、科学化。 程序代码标准化,软件统一化,确保软件的可维护性和实用性。 界面尽量简单化,做到实用、方便,尽量满足企业中不同层次员工的需要。 建立操作日志,系统自动记录所进行的各种操作。 系统功能分析 本系统需要完成的功能主要有以下几点。 库存管理的各种信息的输入,包括入库、出库、还库、需求信息的输入等。 库存管理的各种信息的查询、修改和维护。 设备采购报表的生成。 在材料库存中加入所允许的最大库存合最小库存字段,对所有库存物资实现监控和报警。 企业各个部门的物资需求管理。 操作日志的管理 库存管理系统的使用帮助。 详细设计 系统功能模块设计 系统模块 a. 包括报表的打印及设置,操作日志的管理。 b. 管理员可以通过管理界面添加或删除用户,添加新管理员或删除原有管理员,验证用户的合法性,阻止非法用户登录。 c. 管理员或其他用户可以修改自己的密码。 (2) 入库模块 包括填写入库单,更新,删除入库记录,查看现有库存信息,入库记录的查询及打印 (3) 出库模块 包括填写出库单,更新,删除出库记录,查看现有库存信息,出库记录的查询及打印 (4) 还库模块 包括填写还库单,更新,删除还库记录,还库记录的查询及打印 (5) 需求模块 包括填写需求计划表,更新,删除采购计划信息,查看现有采购信息,采购信息的查询及打印,以及预测短期内的需求计划。 数据库设计 数据库需求分析 通过对企业仓库管理内容和数据流程分析,设计的数据项合数据结构如下: 设备代码信息。包括的数据项有设备号、设备名称。 现有库存信息。包括的数据项有现有设备、现有数目、最大库存、最小库存等。 设备使用信息。包括的数据项有使用的设备、使用部门。数目。使用时间、出库时状态等。 设备采购信息。包括的数据项有采购的设备、采购员、供应商、采购数目、采购时间等。 设备归还信息。包括的数据项有归还设备、归还部门、归还数目、归还时间、经手人等。 设备需求信息。包括的数据项有需求的部门、需求设备、需求数目、需求时间等。 有了上面的数据结构、数据项和数据流程,就可以进行下面的数据库设计。 数据库概念结构设计 这一设计阶段是在需求分析的基础上,设计出能够满足用户需求的各种实体,以及它们之间的关系,为后面的逻辑结构设计打下基础。根据上面的设计规划出的实体有库存实体、出库实体、入库实体、采购实体、还库实体、需求实体。 数据库逻辑结构设计 在上面的实体以及实体之间关系的基础上,形成各个表格之间的关系。 代码设计 任何库存均可分为如下三类: A类物品:高值──价值占库存总值70-80%的相对少数物品。通常为物品的15-20%。 B类物品:中值──总值占库存总值的15-20%。物品数居中,通常占物品的30-40%。 C类物品:低值──库存总值几乎可以忽略不计,只占5-10%。是物品的大多数,通常占60-70%。 4.4 输入输出设计 本系统界面标准Windows形式,键盘输入(也可以用条形码读取),人机交互,容易使用。输入输出的设计考虑美观实用和通俗易懂,图文并茂。 4.5系统安全性设计 系统数据库中包含多个二维表,所以在系统与数据库的连接上,并没有把数据库和系统的连接直接写入代码,而是通过对服务器端进行系统设置,使数据库名及路径不可见,并通过ACCESS的数据库安全设置,保证了数据库的安全性。系统根据用户身份不同赋予不同权限,用户用密码登陆,同样也保证了系统数据的安全性。 第五章 系统实施 5.1、开发工具简介 本系统的前端开发工具,我选择了Visual ,后台数据库采用Access2000。 VB简介 Visual意为“可视化的”,指的是一种开发图形用户界面的方法,所以Visual Basic是基于Basic的可视化的程序设计语言。在Visual Basic中,一方面继承了Basic所具有的程序设计语言简单易用的特点,另一方面在其编程系统中采用了面向对象、事件驱动的编程机制,用一种巧妙的方法把Windows的编程复杂性封装起来,提供了一种所见即所得的可视化程序设计方法。 VB功能特点 具有面向对象的可视化设计工具 在VB中,应用面向对象的程序设计方法(OOP),把程序和数据封装起来视为一 个对象,每个对象都是可视的。程序员在设计时只需用现有工具根据界面设计要求,直接在屏幕上“画”出窗口、菜单、按钮、滚动条等不同类型的对象,并为每个对象设置属性。程序员的编程工作仅限于编写相关对象要完成的功能程序,因而程序设计的效率可大大提高。 事件驱动的编程机制 事件驱动是非常适合图形用户界面的编程方式。在图形用户界面的应用程序中,是由用户的动作即事件掌握着程序运行的流向,每个事件都能驱动一段程序的运行。程序员只要编写响应用户动作的代码,而各个动作之间不一定有联系。 提供了易学易用的应用程序集成开发环境 在VB集成开发环境中,用户可设计界面、编写代码、调试程序,直至把应用程序编译成可执行文件在Windows中运行,使用户在友好的开发环境中工作。 结构化的程序设计语言 VB具有丰富的数据类型和结构化程序结构,作为一种程序设计语言,它还有如下一些特点: 强大的数值和字符串处理功能 丰富的图形指令,可方便地绘制各种图形 提供静态和动态数组,有利于简化内存的管理 过程可递归调用,使程序更为简练 支持随机文件和顺序文件的访问 提供了一个可供应用程序调用的包含多种类型的图标库 具有完善的运行出错处理 支持多种数据库系统的访问 利用数据控件可访问的数据库系统有:Microsoft Access、Btrieve、DBASE、Microsfot FoxPro和Paradox等,也可以访问Microsoft Excel、Lotus1-2-3等多种电子表格。 支持动态数据交换(DDE)、动态链接库(DLL)和对象的链接与嵌入(OLE)技术 完备的HELP联机帮助功能 与Windows环境下的软件一样,在VB中,利用帮助菜单和F1功能键,用户可以随时方便地得到所需要的帮助信息。VB帮助窗口中显示了有关的示例代码,通过复制、粘贴操作可获取大量的示例代码,为用户的学习和使用提供了极大的方便。 VB程序设计的概念就是面向对象的概念,对象就是数据(DATA)和代码(CODE)互相结合的综合体。Windows上面的每一个图标,包括窗口本身都是对象,如果没有任何事情发生,对象处于停顿状态。当存在外来事件时,程序段执行,它的执 行是由外来事件决定的。因此是“事件”驱动的。 编写VB程序较为简单,首先将各个对象放在空白窗体上,然后将程序代码分别添加给对象或图标,将它们组合起来就可以随意运行了。 在VB中,窗体实际上是一个对象,VB的窗体含有许多内嵌特性,这使得用户界面部分的建立像是从一个目录中挑选一个个合适的控件,而不是从零开始一步一步地建立控件。这种开发者能亲眼看到的程序设计过程就是“可视化程序设计”(Visual Programming) VB中的基本概念 对象:面向对象编程(OOP)的提法大家一定也很耳熟,虽然Visual Basic并不是完全的面向对象编程,但也利用了对象编程技术。对象简单地说就是大家经常看到的各种窗口、按钮、文本框甚至打印机等。 属性:如同电视有黑白、彩色之分一样,作为对象的Windows中的窗口也是有大有小,文本框的位置不可能完全一样,菜单要显示出不同的功能,这些都是由对象的属性决定的。不同对象的属性可能不同。属性一般决定了对象的位置、大小、显示等情况。 方法:就是对象能够做的事,如打印机对象就有打印(Print)方法、窗口对象支持隐藏(Hide)方法、很多对象支持移动(Move)方法等。 事件:就是对象对用户各种操作的反映情况。如用户用鼠标按一下按钮,就会触发按钮的“按”(Click)事件。 控件:控件就是Visual Basic提供的编程用的模块,与对象有直接的联系,如同积木的木块,使用这样的控件,就可以像拼图或堆积木一样“搭”、“拼”你的程序界面。Visual Basic中使用控件,简化了Windows中的窗口、按钮等对象的编程设计。每个控件都有各自的属性、事件及方法。只需修改这些特征你就可以随心所欲地编程了。最重要的是,你可以利用成千上万的各种扩充的控件来快速构造几乎能满足你任何要求的程序。例如,如果你不满意Windows简陋的媒体播放器,你就可以使用VB的多媒体控件在1小时以内设计一个完全自己风格的能够播放CD、VCD的多媒体播放器,而功能完全与之相当。 Access2000数据库简介 作为Microsoft的office套件产品之一,access已经成为世界上最流行的桌面数据库系统。Access与许多优秀的关系数据库一样,可以让你很容易地连接相关的信息而且还对其他的数据库系统有所补充。它能操作其它来源的资料,包括许多流行的PC数据库程序(如dBASE,Paradox,Microsoft FoxPro)和服务器、小型机及大型机上的许多SQL数据库。Access还完全支持Microsoft的OLE技术。 Access还提供windows操作系统的高级应用程序开发系统。Access与其它数据库开发系统之间相当显著的区别就是:您不用写一行代码,就可以在很短的时间里开发出一个功能强大而且相当专业的数据库应用程序,并且这一愉快的过程是完全可视的!如果您能给它加上简短的VBA代码,那么您的程序决不比专业程序员潜心开发的程序差。Access的总体结构 Access将所有有名字的东西都成为对象(object),在Access 2000中,最重要的对象有表,查询,窗体,报表,宏和模块。 表 用户定义的存储资料的对象。每一个表都包含有关某个主体的信息。表包括存储不同种类资料的字段(列),而记录(行)则收集特定主体实例的所有信息。 查询 为来自一个或多个表的资料提供定制视图的对象。在Access中,可以利用图形化的实例查询机制(QBE)或通过SQL语句来建立查询。你可以在查询中选择、更新、插入或删除资料,也可以用查询来建立新表。 窗体 窗体是主要的人机接口。大量的操作(几乎所有)都要通过窗体完成。窗体通过运行宏(macro)或Visual Basic for Applicatinns(VBA)过程,来响应大量的事件。Access 2000为我们提供了强大的(同时也是相当方便的向导)来建立标准的Windows窗体。 报表 为格式化、计算、打印选定资料而设计的对象。它是衡量一个优秀的数据库的重要标准(有时甚至是唯一的标准)。 宏 为了响应已定义的事件,需要让Access去执行一个或多个操作,而宏就是对这些操作的结构化的定义对象。它可以让你像堆积木一样建立一个功能强大的程序,而无须写大量的代码。 模块 包括用VBA编码的定制过程的一个对象。模块提供了独立的动作流以捕获错误,而宏做不到。模块能直接响应窗体或报表事件,也可以从应用程序的任何地方被调用。 5.2 系统实现 .系统管理模块实现 5..入库模块的实现 5.. 出库模块实现 设备采购模块实现,程序略 设备代码模块实现 操作日志模块实现第六章 系统使用说明 参考文献: 1. 数据库系统原理教程 王珊 陈红 清华大学出版社 2. 管理信息系统 王虎 张俊 武汉理工大学出版社 3. Visual Basic 数据库开发 著 清华大学出版社 4. PowerBuilder 数据库系统开发实例导航 何旭洪 余建英 人民邮电出版社 5. VB6从入门道精通 『美』Gary cornell 著 北京希望电子出版社 6. managing Information Systems David 著 清华大学出版社 7. Management Information Systems Raymond Mcleod,Jc George Schell 著 北京大学出版社
数据库设计应用论文包括六个主要步骤:1、需求分析:了解用户的数据需求、处理需求、安全性及完整性要求;2、概念设计:通过数据抽象,设计系统概念模型,一般为E-R模型;3、逻辑结构设计:设计系统的模式和外模式,对于关系模型主要是基本表和视图;4、物理结构设计:设计数据的存储结构和存取方法,如索引的设计;5、系统实施:组织数据入库、编制应用程序、试运行;6、运行维护:系统投入运行,长期的维护工作。