求一篇驾驶技师答辩论文,关于专业岗位涉及的管理训练和技术等方面?影响机车运行油耗的因素很多,其中驾驶员的责任心和驾驶技术水平对油耗有较直接的影响。据测定,驾驶技术娴熟的比驾驶技术一般的驾驶员平均节约燃油8%~10%。因此,驾驶节油的关键是看驾驶员能否根据机车的运行条件采用相应的驾驶操作,使人、机配合得当,保持机车的最佳运行状态。汽车节油技术开始与日本,原因是由于它是一个资源小国,必须注重节能。在这方面日本的技术上也走在了前列。节油技术的研究在世界上普遍引起重视的应该是资本主义世界第二次经济危机后,由于产油国组织欧佩克联手提高油价,西方资本主义国家由于能源链上的断裂,造成了大规模的经济危机。另外,也由于对石油这种不可再生能源认识的加深,人们开始越发注意对汽车节油技术的研究……影响汽车经济性的主要有四大方面的因素:1、汽车本身的质量。2、汽车车身的风阻系数。3、汽车发动机的技术水平。4、用车者的驾驶习惯与驾驶技术。汽车车身质量研究也是未来汽车设计的一个发展方向,即车身轻量化的研究。这方面的研究主要涉及材料科学和机械结构分析尤其是车体有限元方面。目前汽车车身轻量化研究还尚未进入大规模应用阶段,不过进展方面还是一日千里。汽车的风阻系数方面的研究是伴随着汽车极速的不断提高而逐渐被人们重视起来的。德国的保时捷汽车公司拥有目前世界上汽车行业最后的空气动力学实验室。 这方面的研究重点在于尽量降低汽车行驶过程中的空气阻力。汽车发动机技术时至今日,已经发展到了一个非常成熟的阶段,尤其是日本的汽车公司在这方面保持领先,尤其是发动机的经济性方面的研究。目前车用发动机,尤其是乘用车,多用汽油机。但是,由于压缩比方面的问题,汽油机的燃烧效率远不如柴油机,由于节能方面的巨大压力,柴油机在乘用车上的应用也将是以后节油技术研究的一个重要内容和趋势。由于石油的不可再生性,目前汽车制造商在动力总成方面的研究已经超越了以油为能源的范畴,比如混合动力汽车,燃料电池汽车等相关技术都已经接近商用水平。另外,天然气汽车、酒精汽车也已经越来越多地出现在人们的视野中。以上都是汽车制造商在节油方面的工作,对于车友而言,良好的驾驶习惯对节油也影响很大。如起步是大脚油门,之后来个紧急制动,电喷车的空挡滑行等……随着油价的持续上涨,汽车的油耗越来越被人们关注,究竟怎样开车才更省油?1、新车磨合 专家提醒新车在最初的3000公里行驶里程之内一定要磨合。新车磨合要注意时速控制在每小时80公里以内;尽量减少急加速、急减速。2、合理保养汽车——定期保养 要知道车况良好的汽车可省油15%到20%。对于空气滤清器、汽油滤清器、机油滤清器:每行驶5000公里以上配件都需要更换,因为空滤堵塞会引起气量减少,导致汽油燃烧不充分,降低燃油效率,而汽油滤清器的阻塞也会使发动机工作异常;对于机油:加机油需要适量,注意机油标尺所标示的刻度。机油太多将曲轴淹没,增大阻力;机油太少则无法起到润滑和封闭作用,甚至会影响发动机效率;对于轮胎状态:胎压偏低会造成油耗增加。根据美国能源部调查,如果每辆车的轮胎气压比标准气压少了1磅/平方英寸,美国每天就要多消耗1500万公升的汽油;要定期检查轮胎的磨损是否均匀。如发现轮胎偏磨,或方向盘不居中等异常情况,需尽快到专业修理厂咨询修理;另外切忌装饰过度,如扰流板、防雨罩等,会破坏原车设计的丰足,提高油耗;后备箱中不要放很多不常用的东西,增加无谓负载也会增加油耗,统计显示每增加1千克的负载会增加1%油耗;有的驾驶员为了节油,采取高速关闭空调而打开车窗通风的办法,这是不可取的,当车速高于85公里每小时的时候,开窗后的风阻消耗比空调系统消耗的燃油更多,它会让您的燃油经济指数下降10%。3、培养良好的驾驶习惯 根据不同路况选择合理的驾驶状态:减少紧急加减速和紧急转弯。行车时不仅要看前一辆车,要同时看到前两三辆车的情况,以提前采取措施,减少急刹车;不要猛加油,一次猛加和缓加到同样的速度,油耗相差可达12毫升;匀速行驶,在可能的情况下,保持最经济工况:发动机转速2000到3000转、车速60到90公里每小时。换挡时机:选择最佳时机换挡(发动机转速处于2000到3000转);杜绝低挡高速,低挡高速行驶往往使油耗超过正常值的45%;手排车用户应杜绝高挡起步。减少怠速状态:适度热车是个好习惯,建议让车慢速行驶一段距离来完成,长时间的原地热车将增加油耗;长时间怠速和怠速状态下运行空调尤其消耗燃油。4、如何正确测量实际油耗 正确的油耗测量方法是:将油箱加满,并记录首次里程数;再度将油箱加满,记录第二次加油数和第二次里程数;将两次里程数相减,除第二次加油数,得出百公里油耗;依照这一方法多次实验,求出平均值。节约燃油是一个很大的话题,往往牵涉的因素也很多。因此车辆如何节约燃油最好不要局限在某一点或某一方面。从以上分析可以让我们了解到车辆的节油主要和“人”有直接关系。驾驶员对驾驶操作技术和车辆运用方法的关注和学习才是节油的真谛!天下没有秘笈可言,只有对车辆的熟知和了解加上正确的使用,才可能真正进入车辆节油的境界!
扰流板的作用主要是为了减少车辆尾部的升力。如果车尾的升力比车头的升力大,就易导致车子转向过多、后轮抓地力减小、高速稳定性差。利用扰流板的倾斜度,使风力直接产生向下的压力,如F1赛车尾部的扰流板一般倾斜15°,高速行驶时可达1000公斤以上的压力。但是,扰流板同时也增加了风阻,如Fl的风阻系数接近(一般轿车为~)。这里就要求在设计时必须"恰到好处",使增加的风阻与改善的性能相对非常小。升力与风阻一样,与车速的平方成正比,也就是说,在时速120公里的升力,是时速60公里的4倍,是时速40公里的9倍。因此行驶速度较高的汽车,如高级轿车和跑车,一般都装有扰流板。汽车上的扰流板有多种式样。如赛车上的扰流板较高,这是为了充分发挥扰流作用,使没有乱流的气流直接作用在扰流板上,而且使它产生的下压力不致作用于车身而抵消其效应。因此必须将扰流板离开车身表面安装。有些旅行轿车的顶盖后缘安装扰流板,使顶盖上一部分气流被引导流过后窗表面。这样既可使后窗后部的升力降低,也可引导气流将后窗表面浮尘消除,避免尘污附着而影响汽车后视野。在许多普通轿车上,也装有扰流板。其实由于这些车的速度都不是很高,因此扰流板难以发挥实际作用,而美化车身外观则成了装扰流板的最大目的。
为了有效地减少并克服汽车高速行驶时空气阻力的影响,我们在汽车尾部设计了一种尾翼,其作用就是使空气对汽车产生第四种作用力,即对地面的附着力,它能抵消一部分气动升力,控制汽车上浮,使汽车能紧贴着道路行驶,从而起到提高汽车行驶稳定性的作用。
除了提髙行驶稳定性,汽车尾翼对于节省燃油也有一定帮助。随着我国大批高速公路和许多大中城市高架路、高等级道路的建设及投入使用,车速有了较大的提高,汽车尾翼的作用显得越来越重要。
扩展资料:
汽车侧面视图也类似于机翼,侧面截图上下也是不对称的,也是底部较平、顶部弯曲。那么它在高速运动时,车的前部也会把气流分隔开来,一部分从车体的上方流过,另一部分从下方流过,这样也使它处在和机翼一样的情形中,导致车体上、下表面的气流速度不一样,即上方的流速大于下方的流速,从而导致向上的压力大于向下的压力。
一般汽车的尾翼。一般的运动型小汽车都装有一个尾翼,一个是为了体现它的运动特性,二是因为运动型的汽车用户可能趋向于玩车技,做一些急转弯、飘移等特技动作,这时候这个尾翼就会起到稳定车身的作用,增加安全性。
所谓的“尾翼”通常称为扰流板,多见于运动型轿车和跑车上.扰流板的作用主要是为了减少车辆尾部的升力,如果车尾的升力比车头的升力大,就容易导致车辆过度转向、后轮抓地力减小以及高速稳定性变差.但是在安装扰流板的同时风阻也会增加,这就要求在安装时必须权衡利弊,综合考虑. 汽车上的扰流板有多种式样,赛车上的扰流板较高,这是为了使气流直接作用在扰流板上,使气流产生的下压力不致于再作用在车身而抵消其效应,因此必须将扰流板离开车身表面安装.有些旅行轿车的车顶后部安装扰流板,使得车顶上的一部分气流被引导流过后车窗表面,这样既可使车辆后部的升力降低,也可利用气流将后车窗表面浮尘清除,避免灰尘附着影响汽车后视野.在许多普通轿车上,也装有扰流板,由于这些车的速度不是很高,因此扰流板很难发挥实际的作用,而美化车身外观则成了装扰流板的最大目的.
后扰流板是汽车后挡板顶部或行李箱后端的突出物。它通常安装在运动级汽车上,很少在普通级汽车上发现。有各种各样的形状,例如在机身后端具有直角三角形突起的形状,以及浮华而巨大的形状。从大到小都有许多尺寸,还有一些乍一看可能不是后扰流板的形状。后扰流板有什么作用?有一个称为"后翼"的零件具有相似的形状。实际上,扰流板和机翼有不同的效果。连接到改装车上的机翼(GT机翼)将行驶过程中产生的气流改变为下压力(将汽车推向地面的力),从而改善了轮胎的抓地力并稳定了车身。是的。另一方面,扰流板旨在纠正气流并提高高速行驶时的燃油经济性和稳定性。行驶时,空气在汽车周围流动,车身的不平整和形状改变了向上,向下,向左和向右流动的空气速度。从车身的前部向后方流动的空气在车身的后端围绕汽车流动,不会产生干净的空气流,而是会产生将汽车向上拉的力(升力),将在与行进方向相反的方向上产生拉力。这是因为从顶部,底部,左侧和右侧流动的空气以不同的速度和角度聚集在车身的后端,并产生漩涡。后扰流板具有抑制该空气涡流的产生并使其顺畅地向后流动的作用,有助于提高行驶稳定性和燃油效率,并改善汽车的行驶质量。后扰流板都是什么样的?根据安装位置的不同,有多种调用方式,例如安装在车身后端顶部的尾门扰流板,安装在后机翼位置的后扰流板以及安装在后保险杠底部的后下扰流板。另外,有些带有鳍片状的突起,有些带有鸭舌,以校正汽车上方和下方流动的空气。用于整流的后扰流板通常同时装有扩散器。在汽车的下部,有许多管道和油箱,尤其对气流有很多障碍,通过在扰流板和扩散器下方安装后部,可以显着改善气流。汽车行驶时,空气阻力最大。空气流到后部的速度如何平稳,并抑制了车身后方涡流的产生,极大地影响了汽车的性能。后扰流板是一种非常实用的设备,可以使从各个方向流动的空气保持清洁,并易于驾驶和提高燃油效率。它不仅很酷,而且效果很好。
[摘要]本文中研究了凹坑型非光滑车身表面的减阻特性.首先探讨了凹坑单元体矩形、菱形、等差等不同排列方式的减阻效果,选取了减阻效果较好的矩形排列方式;然后以单元体直径D、横向间距W和纵向间距L为设计变量,以气动阻力最小为目标,采用拉丁方试验设计方法进行优化;接着利用CFD仿真得到各样本点的响应值,并据此建立Kriging近似模型;最后在验证了近似模型的可信度基础上,以近似模型进行全局优化:结果表明:凹坑单元体矩形排列最大可达7. 62%的减阻效果。关键词:汽车;凹坑型非光滑表面;减阻;CFD仿真;Kriging模型;优化Analysis and Optimization on the Drag Reduction Characteristics of Car with Pit-type Non-smooth Surface[Abstract]Drag reduction characteristic of pit-type non-smooth car body surface is studied in this paper. Firstly the drag reduction effects of rectangle, thombus and equal-different pit arrangement are investigated, and the rectangular arrangement with better drag reduction effect is chosen. Then an optimization by the design of experiment with Latin Hypercube scheme is performed with the diameter and longitudinal and transverse spacing of pit as design variables and minimizing drag as objective. Next, the responses of different sample points are obtained by CFD simulation, and based on which a Kriging metamodel is built. Finally after the confidence of metamodel is verified a global optimization with the metamodel is conducted. The results show that a maximum drag reduction effect up t0 can be achieved with rectangular pit : car; pit-type non-smooth surface; drag reduction; CFD simulation; Kriging model; optimization前言日前汽车空气动力学的气动阻力特性优化主要通过车身的流线形化和局部改进等方法来实现,由于这些方法研究日益成熟,降低阻力的空间越来越小,汽车减阻进入一个瓶颈期。近年来,基于工程仿生学理论的凹坑型非光滑表面结构的减阻研究迅速发展。其中最典型的应用便是高尔夫凹坑球面。高尔夫球在飞行过程中由于凹坑的存在使空气形成的边界层紧贴球的表面,使平滑的气流顺着球形多往后走一些,延迟了边界层与球体的分离,减小了尾流区,减少了前后的压差阻力,从而使凹坑型球面的高尔夫球比光滑球面的高尔夫球飞得更远。受其启发,本文中将凹坑型非光滑表面运用在汽车表面上,并通过CFD数值仿真,研究其减阻效果。首先研究了凹坑单元体不同排列方式对汽车减阻效果的影响;然后以减阻效果最佳的排列方式为基础,选取相关设计变量,运用拉丁方试验设计方法选出样本点;接着建立了Kriging近似模型-3-;最后通过多岛遗传算法对近似模型进行全局寻优。1 原车模型CFD计算与试验验证计算模型的建立采用UG软件建立了某轿车1:1的实车模型。对模型进行了适当的简化,忽略了门把手、雨刮器、雨水槽等,同时对底盘进行了平整化处理,从而提高了分析效率。轿车模型的长×宽×高分别为5 088×2 036x1 497( mm),整车模型如图1所示。建立计算网格及求解整车计算域为一围绕车身的长方体,人口距模型前端3倍车长,出口距模型后端7倍车长,总高度为5倍车高,总宽度为7倍车宽。采用ANSYS ICEM CFD软件生成非结构化的四面体网格,在车身要凹坑非光滑处理的表面上进行网格加密,以便更加准确地获取所需的流场信息,同时在车身表面拉伸出与其平行的三棱柱网格作为附面层,以消除壁面函数的影响。为避免网格差异对仿真结果的影响,在仿真过程中,保持棋型相同部分的网格尺寸不变。每次模拟生成的整车总网格数约为360多万。边界条件的设置如下:计算域入口设置为速度人口边界,速度为40m/s,计算域出口为压力出口边界,车身表面设置为无滑移壁面边界条件,计算域地板设置为移动壁面边界条件,计算域上表面及左右侧面均为滑移壁面边界条件。选用Relizable k-ε湍流模型,采用二阶迎风格式进行离散求解,计算域温度为常温进行CFD稳态仿真计算。风洞试验验证通过风洞试验来验证边界条件和湍流模型设置的准确性。试验模型根据CAD模型通过数控加工中心加工成1:3的模型,从而保证了试验用物理模型与数值仿真用CAD模型的一致性。在湖南大学风工程试验研究中心HD-2风洞中进行测力试验,用六分力浮框式测力天平测量模型的气动力。试验风速为40 m/s,启动地面附面层抽吸装置,消除了由于风洞试验引起的地面边界层的影响。轿车模型风洞试验如图2所示。通过风洞试验测得模型的风阻系数CD,并将CFD仿真结果与试验进行对比,如表1所示。风阻系数的相对误差为3. 86%,在工程允许误差5%以内,从而验证了数值仿真的可靠性。2 非光滑处理区域的选定与单元体尺寸的估算非光滑处理区域应该选在能较好控制尾流区的表面,以减小湍能损失和压差阻力,而车身顶盖是对尾流区域影响最大的表面,故本文中主要研究对车身顶盖进行凹坑非光滑处理后的减阻效果,凹坑非光滑区域如图3所示。有关研究表明,无论是气流分离所引起的压差阻力还是由于气体的黏性作用而引起的摩擦阻力,它们总是和边界层及其厚度有关。仿生非光滑减阻方法的实现途径就是通过对边界层的控制来减少湍流猝发强度,减小湍动能的损失。可见,非光滑结构的选择应该和边界层有关,非光滑单元体的尺寸高度或深度应该小于车身表面到对数律区之间的距离。目前国际上关于凹坑减阻的研究仍然较少,没有形成理论体系。因此,在研究初期凹坑型单元体尺寸主要是根据边界层的厚度来确定。平板层流边界层的厚度计算公式为3 凹坑结构尺寸设计与排列方式 凹坑结构尺寸设计在进行凹坑型单元体排列时主要考虑单元体的尺寸:直径D、横向间距W、纵向间距L和凹坑深度S,见图4。为了设计与排列方便,取深度S为直径D的一半。根据计算模型最大边界层厚度、车身顶盖的尺寸、汽车行驶速度和凹坑单元体之间防干涉的要求,给定D、W、L和S的取值范围分别为[10,40]、[60,160]、[60,160]和[5,20],单位为mm。 凹坑单元体排列方式的影响根据大量的仿生学实验可知,例如土壤动物蜣螂在土中运动自如一方面得益于其体表的非光滑单元体凹坑形状,另一方面得益于其凹坑单元体的排列方式。为此在研究凹坑型非光滑车身表面的减阻性能时,要考虑其排列方式的影响。本文中选取了常见的3种排列方式:矩形排列、菱形排列和等差排列,如图5所示。本文中选取D= 15mm,形=120mm.£=120mm.对这3种排列方式进行CFD仿真,其结果见表2。由表2可知,3种凹坑型单元体排列方式中矩形排到减阻效果最佳,降阻率达2. 13%。4 凹坑型非光滑表面优化设计 优化流程与设计变量的选取根据3种排列方式的CFD仿真结果知,矩形排列方式减阻效果最佳,故以矩形排列凹坑型非光滑表面作为优化对象。整个分析与优化过程如下:(1)确定设计变量,使用拉丁方设计方法选取样本点;(2)通过CFD仿真得出各样本点的响应值,并以样本点和响应值构建近似模型;(3)选取3组新的样本点验证近似模型的精度,若不精确则须重新选取样本点;(4)在验证近似模型可信度的基础E,利用优化算法在满足约束条件的区域内实现全局寻优,得到最优解,最后再回代到仿真模型中校核计算,如图6所示。以D、W和L为设计变量,寻求最优的组合,以达到最大的减阻效果,即求得最小CD值。试验设计 ,根据设计变量的取值范围,采用拉丁方抽样方法。选取20组样本点进行CFD模拟计算,得到20组响应值。各设计变量对CD值的影响关系如图7所示,D等表示单个设计变量对CD的影响,D-W等表示两个变量对CD交互影响,D�0�5等表示设计变量平方对CD的影响。从图7可见,对CD影响最大的设计变量是L,D次之,W影响最小。D与形之间的交互效应最为明显,L和D次之,形和£之间的交互效应最小。虽然W对气动阻力的影响较小,但是W与其他参数之间交互效应对CD的影响不能忽视。近似模型的建立近似模型是指在不降低计算精度情况下构造的一个计算量小、计算周期短,但计算结果与数值分析或物理实验结果相近的数学模型;用于代替计算代价高昂的仿真分析软件,大幅提高分析效率,同时剔除仿真软件的“计算噪声”。用于构建近似模型的方法主要有:响应面模型、Kriging模型、径向基神经网络模型和泰勒级数模型等。与其他模型相比,Kriging模型构建的近似面可以覆盖所有的样本点,近似面质量很高,因此采用Kriging模型构建近似模型。为r检验所建立的近似模型的拟合精度,在设计空间中选取试验设计方案外的任意3个实验点进行CFD仿真,并与近似模型的计算结果进行对比,如表3所示。由表3可知,验证点的CFD值与近似模型值相差均在2%以内,这表明所建立的近似模型可以很好地描述设计变量与响应值之间的关系,可信度较高,可取代直接的CFD计算。优化结果与分析多岛遗传算法(multiple island genetic algorithm,MIGA)建立在传统遗传算法基础上。它小同于传统遗传算法的特点是:每个种群的个体被分成几个子群,这些子群称为“岛”:传统遗传算法的所有操作,例如:选择、交叉、变异分别在每个岛上进行,每个岛上选定的个体定期地迁移到另外岛上,然后继续进行传统遗传算法操作。迁移过程由迁移间隔和迁移率这两个参数进行控制。迁移间隔表示每次迁移的代数,迁移率决定在一次迁移过程中每个岛上迁移的个体数量的百分比。多岛遗传算法中的迁移操作保持了优化解的多样性,提高了包含全局最优解的机会。本文中采用多岛遗传算法对所建立的近似模型进行寻优,初始种群个数为50,岛数为10,迭代代数为100,最终得出近似模型最优解为D= 40mm,W=100mm,L=69mm。对得到的最优解进行CFD仿真,相对误差为0. 80%。对车身表面进行凹坑型非光滑处理后,最大的降阻率可达7. 62 %,其具体数值见表4。图8和图9分别给出了原车与优化后的汽车尾部压力云图和速度流线图。对比图8和图9可以看出,优化后汽车尾部的负压区域明显减小,正压区显著增大,进而减小了前后压差阻力,同时改善了尾部的涡流,减小了车辆的气动阻力,降低了汽车的燃油消耗。5结论(1)在车身表面进行凹坑型非光滑处理具有良好的减阻效果,能有效降低汽车的气动阻力,进而降低油耗,提高燃油经济性。(2)凹坑型非光滑表面的减阻特性与凹坑单元体的排列方式有关,其中矩形排列方式减阻效果较佳。选取矩形排列时凹坑单元体直径、横向间距和纵向间距作为设计变量进行试验设计,建立近似模型,并采用多岛遗传算法进行优化,优化后最大降阻率可达7. 62%。(3)试验设计、近似模型和优化算法相结合的方法,能为车身凹坑型非光滑表面减阻的研究和优化提供一定的工程指导。参考文献[1]谷正气.汽车空气动力学[M].北京:人民交通出版社,2005.[2] 韩志武,许小侠,任露泉,凹坑形非光滑表面微观摩擦磨损试验回归分析[J].摩擦学学报,2005,25(6):578-582.[3] 容江磊,谷正气,杨易,等,基于Kriging模型的跑车尾翼断面形状的启动优化[J].中国机械工程,2010,22(2):243 -247.[4]谷正气,何忆斌,等,新概念车外流场数值仿真研究[J].中国机械工程,2007,18( 14):1760-1763.[5]薛祖绳,边界层理论[M].北京:水利电力出版社,1995.[6]方开泰,马长兴,正交与均匀试验设计[M].北京:科学出版社,2001.[7] 肖立峰,张』“泉,张烈都.基于Kriging代理模型的结构形状优化方法[J].机械设计,2009,26(7):57 -60.[8]石秀华,孟祥众,杜向党,等.基于多岛遗传算法的振动控制传感器优化配置[J].振动测试与诊断,2008,28 (1):62-65.(来源:中国技师网)
阻燃板的优点:
1、首先阻燃板具有阻止火势蔓延,为逃离火灾现场赢得宝贵时间。阻燃板并不代表它就不燃烧,只是阻止火势迅速蔓延。
2、阻燃板是在胶合板基础上加工而成,其质轻、易加工,施工方便,降低成本。3、阻燃板具有结构强度好,抗弯能力强。
阻燃板的缺点:
1、阻燃板在燃烧过程中会产生有毒气体。千年舟阻燃板采用先进的阻燃剂大大降低火灾中的有毒气体产生。
2、阻燃板经过阻燃处理后,会对板材胶合强度有一定影响。
阻燃板工作原理:
1、基材阻燃:选用的是阻燃效果持久、抗流失性好、防水耐潮的的环保型阻燃剂,对板基材进行特殊条件的处理以后,使阻燃剂与木材纤维充分的结合,在燃烧的过程中,阻燃板可以有效的稀释可燃气体、隔离空气和火源,在未燃烧时改变木材裂解过程,控制地板的燃烧趋势和进程,最后以实现阻燃目的。
2、表面和底层阻燃:表面采用专利技术,在面层中添加了一些无机钢化材料,因此可以在增加地板的抗冲击性、耐磨性同时,又使地板具有了不同一般的阻燃效果;并且在其底层添加了的是防火板设置,既可以防水防潮又能够防火阻燃的双重保障。
北京盛大华源是专业的阻燃板厂家,盛辉阻燃材料是盛大华源子公司坐落在固安南工业区,集研发生产销售于一体的综合公司,主营产品有,阻燃密度板、阻燃胶合板、阻燃细木工板、阻燃刨花板、阻燃木材等,广泛应用于展柜道具,建筑装修、家具制造、防火门等领域,如果您有需要可与我们联系,厂家直销电话 。量大优惠,厂家直销罗文圣 博士/教授级高工 北京盛大华源科技有限公司总经理公司荣获北京市科学技术奖、梁希林业科学技术奖、中国林业科学研究院技术进步奖、中关村优秀留学人员企业。公司通过ISO9001质量管理体系认证,是中关村国家自主创新示范区重点瞪羚企业、北京市专利试点单位、北京市标准试点单位。主持和参与完成的省部级项目15项,主持制定国家标准1项、参与制定的国家标准2项,参与修订国家标准2项、行业标准1项。“甲醛清除触媒”被列为国家重点新产品,“高强度环保阻燃中密度纤维板及其阻燃剂”被列为北京市火炬计划项目。拥有自主知识产权授权发明专利10件、中国林科院木材工业研究所授权转让发明专利1件、北京林业大学授权使用发明专利2件。五类产品被认定为北京市自主创新产品,四类产品被认定为中关村国家自主创新示范区新技术新产品。主要技术• 阻燃木质材料生产技术及产品:B1/E0级阻燃纤维板及其专用阻燃剂,B1/E0级阻燃刨花板及其专用阻燃剂,阻燃细木工板,高铁用阻燃胶合板,阻燃地板基材及其生产技术,家具及装修用阻燃胶合板及其生产技术,阻燃木材。• 环保产品及净醛负离子人造板生产技术:人造板功能添加剂,净醛负离子添加剂,治理、清除室内装饰装修甲醛、苯系物、异味、TVOC等污染的触媒。• 生物质胶黏剂生产技术及生物质胶黏剂人造板:胶合板及细木工板用高含量生物质胶黏剂(固体含量大于45%)、中密度纤维板用低粘度生物质胶黏剂(粘度小于500cps)。• 功能壁纸添加剂:阻燃壁纸,净醛壁纸,净味壁纸,负离子壁纸,抗菌壁纸等添加剂。• 功能木质材料添加剂:木质材料防霉抗菌剂,环保防腐防霉剂,纳米防水剂,木材增强剂。
阻燃板,有阻燃密度板、阻燃胶合板等,是在人造板生产流程中,通过复杂的工艺,将阻燃剂添加到板材生产线中制成的人造板。1,健康环保是阻燃板的一个很好的优势,因为阻燃板在加工工程中,由于木材的完整性,所以在加工过程中可以避免使用更多的液体胶水,以及常见的装饰污染源甲醛潜伏在液态胶中,从这种情况看,阻燃板更环保健康。2,阻燃板具有良好的防腐性能:阻燃板表面层选用优质木材经过干燥,脱脂,健康和切片后的几道工序,表面不应有腐烂,死结,虫洞,裂缝缺陷如剥皮,但对于小滑动,色差不能太苛刻,因为它是木材的天然特性。在某些地方,阻燃板的含水量通常为5%-14%。大王椰阻燃板采用进口装饰纸,经过含浸、烘干、高温高压等加工步骤制作而成,表面装饰纸用耐火建材,光滑阻热材料具有超强耐火耐腐物理性能;
在如今的家居装饰中,我们一般会使用多种板材,阻燃板也是消费者的选择之一。当然,使用板材对于许多想要装饰的朋友来说是非常陌生的。今天,带大家来了解一下阻燃板,看看阻燃板的优缺点。1,健康环保是阻燃板的一个很好的优势,因为阻燃板在加工工程中,由于木材的完整性,所以在加工过程中可以避免使用更多的液体胶水,以及常见的装饰污染源甲醛潜伏在液态胶中,从这种情况看,阻燃板更环保健康。2,阻燃板具有良好的防腐性能:由于阻燃板表面层选用优质木材经过干燥,脱脂,健康和切片后的几道工序,表面不应有腐烂,死结,虫洞,裂缝缺陷如剥皮,但对于小滑动,色差不能太苛刻,因为它是木材的天然特性。在某些地方,阻燃板的含水量通常为5%-14%。3,以上是几个优点的介绍,但阻燃板也有相应的缺点:多层板适合作为各种家具使用,环保效果优于刨花板。然而,阻燃板的泡罩在损坏后不能修复,并且脚的感觉也很差。与其他材料相比,阻燃板需要照顾。还应注意防水,防烫,防日晒;阻燃板的资源越来越少,价格也越来越高,很容易因环境而变形。
当材料处于磁场中时,导体或半导体内的载流子将受洛仑兹力的作用发生偏转,在两端产生积聚电荷并产生霍尔电场。如霍尔电场作用和某一速度的载流子的洛仑兹力作用刚好抵消,那么小于或大于该速度的载流子将发生偏转,因而沿外加电场方向运动的载流子数目将减少,电阻增大,表现出横向磁阻效应。如果将图1 中a、b端短接,霍尔电场将不存在,所有电子将向a端偏转,磁阻效应更明显。通常以电阻率的相对改变量来表示磁阻的大小,即用△ρ/ρ(0)表示,其中ρ(0)为零磁场时的电阻率,设磁电阻阻值在磁感应强度为B的磁场中电阻率为ρ(B),则△ρ=ρ(B)-ρ(0), 由于磁阻传感器电阻的相对变化率△R/R(0)正比于△ρ/ρ(0), 这里△R =R(B) -R(0),因此也可以用磁阻传感器电阻的相对改变量△R/R(0)来表示磁阻效应的大小。实验证明,当金属或半导体处于较弱磁场中时,一般磁阻传感器电阻相对变化率ΔR/R(0)正比于磁感应强度B的平方,而在强磁场中ΔR/R(0)与磁感应强度B呈线性函数关系。磁阻传感器的上述特性在物理学和电子学方面有着重要应用。如果半导体材料磁阻传感器处于角频率为ω的弱正弦波交流磁场中,由于磁电阻相对变化量ΔR/R(0)正比于B2,那么磁阻传感器的电阻R将随角频率2ω作周期性变化。即在弱正弦波交流磁场中磁阻传感器具有交流电倍频性能。若外界交流磁场的磁感强度B为 (1)式中, 为磁感应强度的振幅, 为角频率,t为时间。设在弱磁场中, (2)(2)式中,k为常量。假设电流恒定为 ,由(1)式和(2)式可得(3)(3)式中, 为不随时间变化的电阻值,而 为以角频率2ω作余弦变化的电阻值。因此,磁阻传感器的电阻值在弱正弦波交流磁场中,将产生倍频交流电阻值变化。由(3)式可知磁阻上的分压为 振荡频率两倍的交流电压和一直流电压的叠加。
当金属或半导体处于较弱磁场中时,一般磁阻传感器电阻相对变化率ΔR/R(0)正比于磁感应强度B的平方,而在强磁场中ΔR/R(0)与磁感应强度B呈线性关系。
磁阻效应广泛用于磁传感、磁力计、电子罗盘、位置和角度传感器、车辆探测、GPS导航、仪器仪表、磁存储(磁卡、硬盘)等领域。
磁阻器件由于灵敏度高、抗干扰能力强等优点在工业、交通、仪器仪表、医疗器械、探矿等领域得到广泛应用,如数字式罗盘、交通车辆检测、导航系统、伪钞检别、位置测量等。
磁阻效应的原理:
当半导体受到与电流方向垂直的磁场作用时,载流子会同时受到洛伦兹力与霍尔电场力,由于半导体中载流子的速度有所不同,假设速度为V0的载流子受到的洛伦兹力及霍尔电场力相互抵消,那么,这些载流子的运动方向不会偏转,而速度低于V0或高于V0的载流子的运动方向将发生偏转,导致沿电流方向的速度分量减小,电流变小,电阻增大。这种现象就是磁阻效应。
参考资料来源:百度百科-磁阻效应
磁阻效应(Magnetoresistance Effects)是指某些金属或半导体的电阻值随外加磁场变化而变化的现象。同霍尔效应一样,磁阻效应也是由于载流子在磁场中受到洛伦兹力而产生的。在达到稳态时,某—速度的载流子所受到的电场力与洛伦兹力相等,载流子在两端聚集产生霍尔电场,比该速度慢的载流子将向电场力方向偏转,比该速度快的载流子则向洛伦兹力方向偏转。这种偏转导致载流子的漂移路径增加。或者说,沿外加电场方向运动的载流子数减少,从而使电阻增加。这种现象称为磁阻效应。若外加磁场与外加电场垂直,称为横向磁阻效应;若外加磁场与外加电场平行,称为纵向磁阻效应。一般情况下,载流子的有效质量的驰豫时时间与方向无关,则纵向磁感强度不引起载流子偏移,因而无纵向磁阻效应
通过施加微波、压电、热、电极化、磁场等外场都有能力提高半导体的电荷分离,为光生载流子的快速分离提供所需的外部驱动力来
结果分析与问题讨论
管惟炎主要从事低温物理与超导的研究,与他人合著有《超导电性》(一、二)、《超导研究75年》,发表学术论文70多篇。从事强磁场超导材料和超导磁体的研究,60年代以来在中国首先倡导并进行强磁场超导材料与超导磁体的研制,与国内若干研究单位、高校、工厂合作,先后研制了几种具有国际水平的国产超导材料。又从事有关超导材料的基础研究,解决了第二类超导体临界场与临界电流的起源问题,发明了一种测量强场超导材料临界特性的新方法,验证了超导体的相变热力学关系式。研究发现了超导体在磁场中转变时的负磁阻效应,在SrTiO3和ZrO2衬底上分别达到5×106安/厘米2和106安/厘米2的电流密度,在单晶硅衬底上取得居国际先进水平的84KYBaCuO薄膜。 管惟炎是多次国际科研规划凝态物理计划的起草人并主持过该项计划的会议,是中国大百科全书凝态物理的主编,对推动我国高温超导研究及同步辐射加速器的建设有重要贡献。 主要从事高温超导研究。目前国内超导研究集中的单位如中科院物理研究所、中国科大、北大及冶金部门的团队均是当年经低温超导研究中培养出来的人员。发现了高温超导体中的离子尺寸效应(包括Tc,Tn,Pn,Rh等),薄膜中的反迈斯纳效应,磁滞回线中的鱼尾现象及超导电性与非磁性的共存现象等。其中离子尺寸效应受到国际学术界的关注,对高温超导的微观理论有重要启发。
巨磁阻现象是指样品的电阻在很弱的外加磁场下会具有很大的变化。法国的Albert Fert及德国的Peter Grünberg在1980年代分别独立利用铁铬多层膜技术来产生巨磁阻效应,分别产生了50%及10%的磁阻变化。到了1988年,由M. N. Baibich等人在铁铬多层膜系统中使这个系统的的电阻在2T的磁场下变为两倍,取得了重大突破。巨磁阻现象可以利用下面的模型来帮助了解。假设我们有两层磁性物质中间夹着一层非磁性物质。如果两层磁性物质的磁化方向相同,当通过一束电子自旋方向跟磁性物质相同平行的电流时,基本上电子可以容易的通过。但是如果两层磁性物质的磁化方向相反,自旋与跟第一层磁化方向平行的电子可以顺利通过第一层,却会被第二层相反磁性方向的磁性物质所散射,因此通过的电流便会减少,也就是电阻会上升。因此利用电流的升降,可以定义逻辑讯号的0与1,进而发展各式各样的磁记录系统。 MR读磁头的构造这个现象用来读取磁性记录装置特别有用,当记录数据所需的扇区随着技术的发达而越来越小而能够在单位面积下容纳更多的数据,相对的读写头也要随之缩小才能增加读取效率。但是缩小的扇区同时也表示磁场的讯号会减弱,这时便显出巨磁阻物质的重要性。因为巨磁阻物质可以将磁性方法记录的讯号,以不同的电流大小输出。尽管磁场很小,但是还是可以产生足够的电流变化。因此可以大幅提高数据储存的密度。