首页

> 期刊论文知识库

首页 期刊论文知识库 问题

生物医用钛合金材料论文参考文献

发布时间:

生物医用钛合金材料论文参考文献

通用生物医用材料、组织工程用生物材料、先进控制释放载体材料

1、通用生物医用材料

钛合金系列材料;

生物陶瓷复合化与生物活性化;

高分子生物材料仿生化和高性能化……

2、组织工程用生物材料

组织和器官损伤或缺陷常规治疗:

移植(人或异种移植);

外科修复;

人工假体、机械装置;

组织工程的方法;

以天然、合成或半合成的组织和器官进行模仿,赋予其功能。

3、先进控制释放载体材料

药物控制释放目的;

使药物在需要时间和时间间隔内对需要剂量释放至所需部位,防止药物失活。

控制释放的生物活性物质;

半衰期短、毒副作用大的药物蛋白质和多肽药物;

基因和疫苗……

[1] Ratner BD. Biomaterials science: an introduction to materials in medicine: Academic press; 2004.[2] Sikavitsas VI, Temenoff JS, Mikos AG. Biomaterials and bone mechanotransduction. Biomaterials. 2001;22:2581-93.[3] Williams DF. On the nature of biomaterials. Biomaterials. 2009;30:5897-909.[4] Lloyd AW, Faragher RG, Denyer SP. Ocular biomaterials and implants. Biomaterials. 2001;22:769-85.[5] Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Progress in polymer science. 2007;32:762-98.[6] Park J, Lakes RS. Biomaterials: an introduction: Springer; 2007.[7] 郑玉峰,李莉. 生物医用材料学. 西北工业大学出版社. 2009年12月, 第1版[8] 奚廷斐. 生物医用材料现状和发展趋势. 中国医疗器械信息. 2006;12:1-4.[9] 李玉宝, 魏杰. 纳米生物医用材料及其应用. 中国医学科学院学报. 2002;24:203-6.[10] 张真, 卢晓风. 生物材料有效性和安全性评价的现状与趋势. 生物医学工程学杂志. 2002;19:117-21.[11] 于思荣. 生物医学钛合金的研究现状及发展趋势. 材料科学与工程. 2000;18:131-4.

生物材料学作为生命科学和材料科学的前沿性交叉学科,更是优先发展的重点。生物功能材料专业正是根据社会发展的需要,特别是生物医学工程、组织工程和药物释放等交叉学科技术的迅速发展对专业人才的迫切需求而设立的 。生物医用材料的分类生物材料应用广泛,品种很多,有不同的分类方法。通常是按材料属性分为:合成高分子材料(聚氨醋、聚醋、聚乳酸、聚乙醇酸、乳酸乙醇酸共聚物及其他医用合成塑料和橡胶等)、天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖等)、金属与合金材料(如钦金属及其合金等)、无机材料(生物活性陶瓷,羟基磷灰石等)、复合材料(碳纤维/聚合物、玻璃纤维/聚合物等)。根据材料的用途,这些材料又可以分为生物惰性(bioinert)、生物活性(bioactive)或生物降解(biodegradable)材料。这些材料通过长期植入、短期植入、表面修复分别用于硬组织和软组织修复与替换。生物医用材料由于直接用于人体或与人体健康密切相关,对其使用有严格要求。首先,生物医用材料应具有良好的血液相容性和组织相容性。其次,要求耐生物老化。即对长期植入的材料,其生物稳定性要好;对于暂时植入的材料,耍求在确定时间内降解为可被人体吸收或代谢的无毒单体或片断。还要求物理和力学性质稳定、易于加工成型、价格适当。便于消毒灭茵、无毒无热源、不致癌不致畸也是必须考虑的。对于不同用途的材料,其要求各有侧重。 常用的医学生物材料 一、医用硅橡胶 医用硅橡胶(silicone rubber)是美容外科中应用较广的生物材料(组织代用品).它是高分子有机化合物聚硅酮的一种橡胶样固体形态,又称二甲基硅氧烷。 二、人工骨 随着生物医学和材料的发展,各种人工制备的生物材料植入骨内替代骨移植,临床应用效果好.这些人工合成或提取的植入材料生物相容性好,对骨形成具有明显的诱导作用,被泛称为人工骨(artificial bone)。 一般而言,临床医学对生物医学材料有以下基本的要求:无毒性,不致癌,不致畸,不引起人体细胞的突变和组织细胞的反应;与人体组织相容性好,不引起中毒、溶血凝血、发热和过敏等现象;化学性质稳定,抗体液、血液及酶的作用;具有与天然组织相适应的物理机械特性;针对不同的使用目的具有特定的功能。物质属性分类根据物质属性,生物医学材料大致可以分为以下几种: 1、生物医学金属材料(biomedical metallic materials)医用金属材料是作为生物医学材料的金属或合金,具有很高的机械强度和抗疲劳特性,是临床应用最广泛的承力植入材料,主要有钻合金(co-cr-ni)、钛合金(ti-6a1-4v)和不锈钢的人工关节和人工骨。镍钛形状记忆合金具有形状记忆的智能特性,能够用于矫形外科、心血管外科。 2、生物医学高分子材料(biomedical polymer)生物医学高分子材料有天然的和合成的两种,发展得最快的是合成高分子医用材料。通过分子设计,可以获得很多具有良好物理机械性和生物相容性的生物材料。其中软性材料常用来作为人体软组织如血管、食道和指关节等的代用品;合成的硬材料可以用来作人工硬脑膜、笼架球形的人工心脏瓣膜的球形阀等;液态的合成材料如室温硫化硅橡胶可以用来作注入式组织修补材料。 3、生物医学无机非金属材料或生物陶瓷(biomedical ceramics)生物陶瓷这类医用材料化学性质稳定,具有良好的生物相容性。生物陶瓷主要包括两类。(1)惰性生物陶瓷(如氧化铝、医用碳素材料等)。这类材料具有较高的强度,耐磨性能良好,分子中的键力较强。(2)生物活性陶瓷(如羟基磷灰石和生物活性玻璃等),这类材料具有能在生理环境中逐步降解和吸收,或与生物机体形成稳定的化学键结合的特性,因而具有极为广阔的发展前景。 4、生物医学复合材料(biomedical composites)生物医学复合材料是由两种或两种以上不同材料复合而成的生物医学材料,主要用于修复或替换人体组织、器官或增进其功能以及人工器官的制造。其中钻合金和聚乙烯组织的假体常用作关节材料;碳-钛合成材料是临床应用良好的人工股骨头;高分子材料与生物高分子(如酶、抗源、抗体和激素等)结合可以作为生物传感器。 5、生物医学衍生材料(biomedical derived materials)生物衍生材料是经过特殊处理的天然生物组织形成的生物医学材料,经过处理的生物衍生材料是无生物活力的材料,但是由于具有类似天然组织的构型和功能,在人体组织的修复和替换中具有重要作用,主要用作皮肤掩膜、血液透析膜、人工心脏瓣膜等。编辑本段应用广泛,增长迅速生物医学材料应用广泛,仅高分子材料,全世界在医学上应用的就有90多个品种、1800余种制品,西方国家在医学上消耗的高分子材料每年以10%~20%的速度增长。随着现代科学技术的发展尤其是生物技术的重大突破,生物材料的应用将更加广泛。表1列举了生物医用材料的一些典型应用,其应用之广泛可见一斑。编辑本段生物医学材料发展的主要动力生物医学材料得以迅猛发展的主要动力来自人口老龄化、中青年创伤的增多、疑难疾病患者的增加和高新技术的发展。人口老龄化进程的加速和人类对健康与长寿的追求,激发了对生物材料的需求。作为世界人口最多的国家,中国已进入老龄化国家行列,生物材料的市场潜力将更加巨大。 生活节奏的加快、活动空间的扩展和饮食结构的变化等因素,使创伤成为一个严重的社会问题。我国创伤住院年增长率达,高居住院人数第2位。美国1998年用于骨骼-肌肉系统损伤患者的治疗费高达1280亿美元,仅骨缺损患者就达123万,其中80%需用生物医学材料治疗。在全球,心脑血管疾病、各种癌症、艾滋病、糖尿病、老年痴呆症等发病率逐年增加,急需用于诊断、治疗和修复的生物材料。 随着生物技术的发展,不同学科的科学家进行了广泛合作,从而使制造具有完全生物功能的人工器官展示出美好的前景。人体组织和器宫的修复,将从简单的利用器械机械固定发展到再生和重建有生命的人体组织和器宫;从短寿命的组织和器官的修复发展至永久性的修复和替换。这一医学革命(特别是外科学),对生命利学和材料等相关学科的发展提出了诸多需求,对生物医学材料的发展产生了重要的促进作用。发展我国生物医学材料的建议生物医用材料学生物医用材料是材料科学与工程的重要分支,其最大特点是学科交叉广泛、应用潜力巨大、挑战性强。随着新材料、新技术、新应用的不断涌现,吸引了许多科学家投人这一领域的研究,成为当今材料学研究最活跃的领域之一。在我国,生物医学材料的研究虽然取得一些令人瞩目的成果,但整体水平不高,跟踪研究多,源头创新少。在产业化方面,生物医学材料及其制品占世界市场的份额不足2%,主要依靠进口,产品技术结构和水平基本上处于初级阶段。结合我国国情和学科发展趋势,按照"有所为,有所不为,重点突破"的原则,我们建议,应在五个方面开展重点研究。 一是生物结构和生物功能的设计和构建原理研究。着重研究具有诱导组织再生的骨、软骨及肌腱等基底材料和框架结构的设计及其仿生装配; 二是表面/界面过程-材料与机体之间的相互作用机制研究。从细胞和分子水平深入研究材料与特定细胞、组织之间的表面/界面作用,揭示影响生物相容性的因素及本质。 三是生物导向性及生物活性物质的控释机理研究。研究可自控或靶向释放蛋白、基因等特异性生物活性物质的材料的设计以及生物导向性原理;用于组织细胞和基因治疗的半渗透聚合物膜的设计、自装配及特异性细胞密封技术; 四是生物降解/吸收的调控机制研究。研究生物降解/吸收材料的分子结构和生物环境对其降解的影响、降解/吸收速度的调控、降解/吸收及代谢机制,以及降解产物对机体的影响。其目标是为组织工程化人工器官生物材料及药物控释材料的自成、改性方法提供理论基础,实现材料参与生命过程和构建生命组织的目的。 五是材料的制备方法学和质量控制体系研究。主要研究生物医用材料及修复体的计算机辅助设计; 通过上述研究的开展,将使我国生物材料的研究水平有较大提高,为我国生物医用材料科学及其产业的发展奠定坚实的基础。编辑本段意义生物医用材料为挽救生命和提高人民健康水平做出了重大贡献,当前正面临重大突破。我国加入 WTO后,生物医用材料产业将面临更大的挑战和更多的机遇,生物材料科学工作者任重而道远。我们相信,在国家的大力支持下,跨部门、跨学科通力合作,通过走自力更生与技术引进相结合的发展之路,在生物材料组织工程化、分子设计、仿生模拟、智能化药物控释等方面重点投人,生物医用材料必将为全面提高人们的生活水乎,造福人类做出更大的贡献。

生物医用材料论文参考文献

生物材料学作为生命科学和材料科学的前沿性交叉学科,更是优先发展的重点。生物功能材料专业正是根据社会发展的需要,特别是生物医学工程、组织工程和药物释放等交叉学科技术的迅速发展对专业人才的迫切需求而设立的 。生物医用材料的分类生物材料应用广泛,品种很多,有不同的分类方法。通常是按材料属性分为:合成高分子材料(聚氨醋、聚醋、聚乳酸、聚乙醇酸、乳酸乙醇酸共聚物及其他医用合成塑料和橡胶等)、天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖等)、金属与合金材料(如钦金属及其合金等)、无机材料(生物活性陶瓷,羟基磷灰石等)、复合材料(碳纤维/聚合物、玻璃纤维/聚合物等)。根据材料的用途,这些材料又可以分为生物惰性(bioinert)、生物活性(bioactive)或生物降解(biodegradable)材料。这些材料通过长期植入、短期植入、表面修复分别用于硬组织和软组织修复与替换。生物医用材料由于直接用于人体或与人体健康密切相关,对其使用有严格要求。首先,生物医用材料应具有良好的血液相容性和组织相容性。其次,要求耐生物老化。即对长期植入的材料,其生物稳定性要好;对于暂时植入的材料,耍求在确定时间内降解为可被人体吸收或代谢的无毒单体或片断。还要求物理和力学性质稳定、易于加工成型、价格适当。便于消毒灭茵、无毒无热源、不致癌不致畸也是必须考虑的。对于不同用途的材料,其要求各有侧重。 常用的医学生物材料 一、医用硅橡胶 医用硅橡胶(silicone rubber)是美容外科中应用较广的生物材料(组织代用品).它是高分子有机化合物聚硅酮的一种橡胶样固体形态,又称二甲基硅氧烷。 二、人工骨 随着生物医学和材料的发展,各种人工制备的生物材料植入骨内替代骨移植,临床应用效果好.这些人工合成或提取的植入材料生物相容性好,对骨形成具有明显的诱导作用,被泛称为人工骨(artificial bone)。 一般而言,临床医学对生物医学材料有以下基本的要求:无毒性,不致癌,不致畸,不引起人体细胞的突变和组织细胞的反应;与人体组织相容性好,不引起中毒、溶血凝血、发热和过敏等现象;化学性质稳定,抗体液、血液及酶的作用;具有与天然组织相适应的物理机械特性;针对不同的使用目的具有特定的功能。物质属性分类根据物质属性,生物医学材料大致可以分为以下几种: 1、生物医学金属材料(biomedical metallic materials)医用金属材料是作为生物医学材料的金属或合金,具有很高的机械强度和抗疲劳特性,是临床应用最广泛的承力植入材料,主要有钻合金(co-cr-ni)、钛合金(ti-6a1-4v)和不锈钢的人工关节和人工骨。镍钛形状记忆合金具有形状记忆的智能特性,能够用于矫形外科、心血管外科。 2、生物医学高分子材料(biomedical polymer)生物医学高分子材料有天然的和合成的两种,发展得最快的是合成高分子医用材料。通过分子设计,可以获得很多具有良好物理机械性和生物相容性的生物材料。其中软性材料常用来作为人体软组织如血管、食道和指关节等的代用品;合成的硬材料可以用来作人工硬脑膜、笼架球形的人工心脏瓣膜的球形阀等;液态的合成材料如室温硫化硅橡胶可以用来作注入式组织修补材料。 3、生物医学无机非金属材料或生物陶瓷(biomedical ceramics)生物陶瓷这类医用材料化学性质稳定,具有良好的生物相容性。生物陶瓷主要包括两类。(1)惰性生物陶瓷(如氧化铝、医用碳素材料等)。这类材料具有较高的强度,耐磨性能良好,分子中的键力较强。(2)生物活性陶瓷(如羟基磷灰石和生物活性玻璃等),这类材料具有能在生理环境中逐步降解和吸收,或与生物机体形成稳定的化学键结合的特性,因而具有极为广阔的发展前景。 4、生物医学复合材料(biomedical composites)生物医学复合材料是由两种或两种以上不同材料复合而成的生物医学材料,主要用于修复或替换人体组织、器官或增进其功能以及人工器官的制造。其中钻合金和聚乙烯组织的假体常用作关节材料;碳-钛合成材料是临床应用良好的人工股骨头;高分子材料与生物高分子(如酶、抗源、抗体和激素等)结合可以作为生物传感器。 5、生物医学衍生材料(biomedical derived materials)生物衍生材料是经过特殊处理的天然生物组织形成的生物医学材料,经过处理的生物衍生材料是无生物活力的材料,但是由于具有类似天然组织的构型和功能,在人体组织的修复和替换中具有重要作用,主要用作皮肤掩膜、血液透析膜、人工心脏瓣膜等。编辑本段应用广泛,增长迅速生物医学材料应用广泛,仅高分子材料,全世界在医学上应用的就有90多个品种、1800余种制品,西方国家在医学上消耗的高分子材料每年以10%~20%的速度增长。随着现代科学技术的发展尤其是生物技术的重大突破,生物材料的应用将更加广泛。表1列举了生物医用材料的一些典型应用,其应用之广泛可见一斑。编辑本段生物医学材料发展的主要动力生物医学材料得以迅猛发展的主要动力来自人口老龄化、中青年创伤的增多、疑难疾病患者的增加和高新技术的发展。人口老龄化进程的加速和人类对健康与长寿的追求,激发了对生物材料的需求。作为世界人口最多的国家,中国已进入老龄化国家行列,生物材料的市场潜力将更加巨大。 生活节奏的加快、活动空间的扩展和饮食结构的变化等因素,使创伤成为一个严重的社会问题。我国创伤住院年增长率达,高居住院人数第2位。美国1998年用于骨骼-肌肉系统损伤患者的治疗费高达1280亿美元,仅骨缺损患者就达123万,其中80%需用生物医学材料治疗。在全球,心脑血管疾病、各种癌症、艾滋病、糖尿病、老年痴呆症等发病率逐年增加,急需用于诊断、治疗和修复的生物材料。 随着生物技术的发展,不同学科的科学家进行了广泛合作,从而使制造具有完全生物功能的人工器官展示出美好的前景。人体组织和器宫的修复,将从简单的利用器械机械固定发展到再生和重建有生命的人体组织和器宫;从短寿命的组织和器官的修复发展至永久性的修复和替换。这一医学革命(特别是外科学),对生命利学和材料等相关学科的发展提出了诸多需求,对生物医学材料的发展产生了重要的促进作用。发展我国生物医学材料的建议生物医用材料学生物医用材料是材料科学与工程的重要分支,其最大特点是学科交叉广泛、应用潜力巨大、挑战性强。随着新材料、新技术、新应用的不断涌现,吸引了许多科学家投人这一领域的研究,成为当今材料学研究最活跃的领域之一。在我国,生物医学材料的研究虽然取得一些令人瞩目的成果,但整体水平不高,跟踪研究多,源头创新少。在产业化方面,生物医学材料及其制品占世界市场的份额不足2%,主要依靠进口,产品技术结构和水平基本上处于初级阶段。结合我国国情和学科发展趋势,按照"有所为,有所不为,重点突破"的原则,我们建议,应在五个方面开展重点研究。 一是生物结构和生物功能的设计和构建原理研究。着重研究具有诱导组织再生的骨、软骨及肌腱等基底材料和框架结构的设计及其仿生装配; 二是表面/界面过程-材料与机体之间的相互作用机制研究。从细胞和分子水平深入研究材料与特定细胞、组织之间的表面/界面作用,揭示影响生物相容性的因素及本质。 三是生物导向性及生物活性物质的控释机理研究。研究可自控或靶向释放蛋白、基因等特异性生物活性物质的材料的设计以及生物导向性原理;用于组织细胞和基因治疗的半渗透聚合物膜的设计、自装配及特异性细胞密封技术; 四是生物降解/吸收的调控机制研究。研究生物降解/吸收材料的分子结构和生物环境对其降解的影响、降解/吸收速度的调控、降解/吸收及代谢机制,以及降解产物对机体的影响。其目标是为组织工程化人工器官生物材料及药物控释材料的自成、改性方法提供理论基础,实现材料参与生命过程和构建生命组织的目的。 五是材料的制备方法学和质量控制体系研究。主要研究生物医用材料及修复体的计算机辅助设计; 通过上述研究的开展,将使我国生物材料的研究水平有较大提高,为我国生物医用材料科学及其产业的发展奠定坚实的基础。编辑本段意义生物医用材料为挽救生命和提高人民健康水平做出了重大贡献,当前正面临重大突破。我国加入 WTO后,生物医用材料产业将面临更大的挑战和更多的机遇,生物材料科学工作者任重而道远。我们相信,在国家的大力支持下,跨部门、跨学科通力合作,通过走自力更生与技术引进相结合的发展之路,在生物材料组织工程化、分子设计、仿生模拟、智能化药物控释等方面重点投人,生物医用材料必将为全面提高人们的生活水乎,造福人类做出更大的贡献。

文献综述是在毕业论文(设计)开题前针对某一研究领域或专题搜集大量文献资料的基础上,就国内外在该领域或专题的主要研究成果、最新进展、研究动态、前沿问题等进行综合分析而写成的、能比较全面的反映相关领域或专题历史背景、前人工作、争论焦点、研究现状和发展前景等内容的综述性文章。“综”是要求对文献资料进行综合分析、归纳整理,使材料更精练明确、更有逻辑层次;“述”就是要求对综合整理后的文献进行比较专门的、全面的、深入的、系统的评述。综述另起一页撰写,题目用小二号黑体加粗居中(综述题目尽量不与毕业论文题目雷同)。综述在目录中以“综述”二字表示并标注页码,综述内部小标题不再体现于目录中。综述正文格式参考毕业论文(设计)正文格式。综述一般应包含以下四部分:概述、主题、总结和参考文献。概述部分:主要是说明写作的目的,介绍有关的概念、综述的范围,扼要说明有关主题的现状或争论焦点,使读者对全文要叙述的问题有一个初步的轮廓。正文部分:是综述的主体,其写法多样,没有固定的格式。可按年代顺序综述,也可按不同的问题进行综述,还可按不同的观点进行比较综述,不管用那一种格式综述,都要将所搜集到的文献资料归纳、整理、进行分析比较,阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述,主题部分应特别注意代表性强、具有科学性和创造性的文献引用和评述。总结部分:与一般论文的小结有些类似,将全文主题进行扼要总结,提出自己的见解并对进一步的发展方向做出预测。参考文献:是进行毕业论文(设计)和研究的基础,撰写文献综述的依据,列出这些参考文献不仅表示对被引用文献作者的尊重及引用文献的依据,而且也为评审者提供查找线索。参考文献的编排应条目清楚,格式规范,查找方便,内容准确无误。参考文献的格式参考上述毕业论文(设计)参考文献格式。综述参考文献要求8篇以上。

hbbbbbbbbbbbbbbbb

生物医学工程是一门新兴的边缘学科,它综合工程学、生物学和医学的理论和方法,在各层次上研究人体系统的状态变化,并运用工程技术手段去控制这类变化,其目的是解决医学中的有关问题,保障人类健康,为疾病的预防、诊断、治疗和康复服务。 生物医学工程兴起于20世纪50年代,它与医学工程和生物技术有着十分密切的关系,而且发展非常迅速,成为世界各国竞争的主要领域之一。 生物医学工程学与其他学科一样,其发展也是由科技、社会、经济诸因素所决定的。这个名词最早出现在美国。1958年在美国成立了国际医学电子学联合会,1965年该组织改称国际医学和生物工程联合会,后来成为国际生物医学工程学会。 生物医学工程学除了具有很好的社会效益外,还有很好的经济效益,前景非常广阔,是目前各国争相发展的高技术之一。以1984年为例,美国生物医学工程和系统的市场规模约为110亿美元。美国科学院估计,到2000年其产值预计可达400~1000亿美元。 生物医学工程学是在电子学、微电子学、现代计算机技术,化学、高分子化学、力学、近代物理学、光学、射线技术、精密机械和近代高技术发展的基础上,在与医学结合的条件下发展起来的。它的发展过程与世界高技术的发展密切相关,同时它采用了几乎所有的高技术成果,如航天技术、微电子技术等。 生物医学工程学的内容 生物力学是运用力学的理论和方法,研究生物组织和器官的力学特性,研究机体力学特征与其功能的关系。生物力学的研究成果对了解人体伤病机理,确定治疗方法有着重大意义,同时可为人工器官和组织的设计提供依据。 生物力学中又包括有生物流变学(血液流变学、软组织力学和骨骼力学)、循环系统动力学和呼吸系统动力学等。目前生物力学在骨骼力学方面进展较快。 生物控制论是研究生物体内各种调节、控制现象的机理,进而对生物体的生理和病理现象进行控制,从而达到预防和治疗疾病的目的。其方法是对生物体的一定结构层次,从整体角度用综合的方法定量地研究其动态过程。 生物效应是研究医学诊断和治疗中,各种因素可能对机体造成的危害和作用。它要研究光、声、电磁辐射和核辐射等能量在机体内的传播和分布,以及其生物效应和作用机理。 生物材料是制作各种人工器官的物质基础,它必须满足各种器官对材料的各项要求,包括强度、硬度、韧性、耐磨性、挠度及表面特性等各种物理、机械等性能。由于这些人工器官大多数是植入体内的,所以要求具有耐腐蚀性、化学稳定性、无毒性,还要求与机体组织或血液有相容性。这些材料包括金属、非金属及复合材料、高分子材料等;目前轻合金材料的应用较为广泛。 医学影像是临床诊断疾病的主要手段之一,也是世界上开发科研的重点课题。医用影像设备主要采用 X射线、超声、放射性核素磁共振等进行成像。 X射线成像装置主要有大型X射线机组、X射线数字减影(DSA)装置、电子计算机X射线断层成像装置(CT);超声成像装置有B型超声检查、彩色超声多普勒检查等装置;放射性核素成像设备主要有γ照相机、单光子发射计算机断层成像装置和正电子发射计算机断层成像装置等;磁成像设备有共振断层成像装置;此外还有红外线成像和正在兴起的阻抗成像技术等。 医用电子仪器是采集、分析和处理人体生理信号的主要设备,如心电、脑电、肌电图仪和多参量的监护仪等正在实现小型化和智能化。通过体液了解生物化学过程的生物化学检验仪器已逐步走向微量化和自动化。 治疗仪器设备的发展比诊断设备要稍差一些。目前主要采用的是X射线、γ射线、放射性核素、超声、微波和红外线等仪器设备。大型的如:直线加速器、X射线深部治疗机、体外碎石机、人工呼吸机等,小型的有激光腔内碎石机、激光针灸仪以及电刺激仪等。 手术室中的常规设备已从单纯的手术器械发展到高频电刀、激光刀、呼吸麻醉机、监护仪、X射线电视,各种急救治疗仪如除颤器等。 为了提高治疗效果,在现代化的医疗技术中,许多治疗系统内有诊断仪器或一台治疗设备同时含有诊断功能,如除颤器带有诊断心脏功能和指导选定治疗参数的心电监护仪,体外碎石机中装备了进行定位的X射线和超声成像装置,而植入人体中的人工心脏起搏器就具有感知心电的功能,从而能作出适应性的起搏治疗。 介入放射学是放射学中发展速度最快的领域,也就是在进行介入治疗时,采用了诊断用的x射线或超声成像装置以及内窥镜等来进行诊断、引导和定位。它解决了很多诊断和治疗上的难题,用损伤较小的方法治疗疾病。 目前各国竞相发展的高技术之一为医学成像技术,其中以图像处理,阻抗成像、磁共振成像、三维成像技术以及图像存档和通信系统为主。在成像技术中生物磁成像是最新发展的课题,它是通过测量人体磁场,来对人体组织的电流进行成像。 生物磁成像目前有二个方面。即心磁成像(可用以观察心肌纤维的电活动,可以很好地反映出心律失常和心肌缺血)和脑磁成像(用以诊断癫痫活动、老年性痴呆和获得性免疫缺陷综合征的脑侵入,还可以对病损脑区进行定位和定量)。 另一个世界各国竞相发展的高技术是信号处理与分析技术,其中包括心电信号、脑电、眼震、语言、心音呼吸等信号和图形的处理与分析。 高技术领域中还有神经网络的研究,目前世界各国的科学家为此掀起了一个研究热潮。它被认为是有可能引起重大突破的新兴边缘学科,它研究人脑的思维机理,将其成果应用于研制智能计算机技术。运用智能原理去解决各类实际难题,是神经网络研究的目的,在这一领域已取得可喜的成果。

生物医用金属材料论文

金属材料是指由金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属间化合物和特种金属材料等。人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。我们对金属材料的认识应从以下几方面开始:一、分类:金属材料通常分为黑色金属、有色金属和特种金属材料。①黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳 2%~4%的铸铁,含碳小于 2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、精密合金等。广义的黑色金属还包括铬、锰及其合金。②有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。③特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金,以及金属基复合材料等。金属材料按生产成型工艺又分为铸造金属、变形金属 、喷射成形金属,以及粉末冶金材料。铸造金属通过铸造工艺成型,主要有铸钢、铸铁和铸造有色金属及合金。变形金属通过压力加工如锻造、轧制、冲压等成型,其化学成分与相应的铸造金属略有不同。喷射成形金属是通过喷射成形工艺制成具有一定形状和组织性能的零件和毛坯。金属材料的性能可分为工艺性能和使用性能两种。二、性能为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。材料的工艺性能指材料适应冷、热加工方法的能力。三、生产工艺:金属材料生产,一般是先提取和冶炼金属 。有些金属需进一步精炼并调整到合适的成分,然后加工成各种规格和性能的产品。提炼金属,钢铁通常采用火法冶金工艺,即采用转炉、平炉、电弧炉、感应炉、冲天炉(炼铁)等进行冶炼和熔炼;有色金属兼用火法冶金和湿法冶金工艺 ;高纯金属以及要求特殊性能的金属还采用区域熔炼、真空熔炼和粉末冶金工艺。金属材料通过冶炼并调整成分后,经过铸造成型,或经铸造、粉末冶金成型工艺制成锭、坯,再经塑性加工制成各种形态和规格的产品。对有些金属制品,要求其有特定的内部组织和力学性能,还常采用热处理工艺 。常用的热处理工艺有淬火、正火、退火、时效处理(将淬火后的金属制件置于室温或较高温度下保温适当时间,以提高其强度和硬度)等。四、发展趋势:金属材料的发展已从纯金属、纯合金中摆脱出来。随着材料设计、工艺技术及使用性能试验的进步,传统的金属材料得到了迅速发展,新的高性能金属材料不断开发出来。如快速冷凝非晶和微晶材料、高比强和高比模的铝锂合金、有序金属间化合物及机械合金化合金、氧化物弥散强化合金、定向凝固柱晶和单晶合金等高温结构材料、金属基复合材料以及形状记忆合金、钕铁硼永磁合金、贮氢合金等新型功能金属材料,已分别在航空航天、能源、机电等各个领域获得了应用,并产生了巨大的经济效益。

生物材料学作为生命科学和材料科学的前沿性交叉学科,更是优先发展的重点。生物功能材料专业正是根据社会发展的需要,特别是生物医学工程、组织工程和药物释放等交叉学科技术的迅速发展对专业人才的迫切需求而设立的 。生物医用材料的分类生物材料应用广泛,品种很多,有不同的分类方法。通常是按材料属性分为:合成高分子材料(聚氨醋、聚醋、聚乳酸、聚乙醇酸、乳酸乙醇酸共聚物及其他医用合成塑料和橡胶等)、天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖等)、金属与合金材料(如钦金属及其合金等)、无机材料(生物活性陶瓷,羟基磷灰石等)、复合材料(碳纤维/聚合物、玻璃纤维/聚合物等)。根据材料的用途,这些材料又可以分为生物惰性(bioinert)、生物活性(bioactive)或生物降解(biodegradable)材料。这些材料通过长期植入、短期植入、表面修复分别用于硬组织和软组织修复与替换。生物医用材料由于直接用于人体或与人体健康密切相关,对其使用有严格要求。首先,生物医用材料应具有良好的血液相容性和组织相容性。其次,要求耐生物老化。即对长期植入的材料,其生物稳定性要好;对于暂时植入的材料,耍求在确定时间内降解为可被人体吸收或代谢的无毒单体或片断。还要求物理和力学性质稳定、易于加工成型、价格适当。便于消毒灭茵、无毒无热源、不致癌不致畸也是必须考虑的。对于不同用途的材料,其要求各有侧重。 常用的医学生物材料 一、医用硅橡胶 医用硅橡胶(silicone rubber)是美容外科中应用较广的生物材料(组织代用品).它是高分子有机化合物聚硅酮的一种橡胶样固体形态,又称二甲基硅氧烷。 二、人工骨 随着生物医学和材料的发展,各种人工制备的生物材料植入骨内替代骨移植,临床应用效果好.这些人工合成或提取的植入材料生物相容性好,对骨形成具有明显的诱导作用,被泛称为人工骨(artificial bone)。 一般而言,临床医学对生物医学材料有以下基本的要求:无毒性,不致癌,不致畸,不引起人体细胞的突变和组织细胞的反应;与人体组织相容性好,不引起中毒、溶血凝血、发热和过敏等现象;化学性质稳定,抗体液、血液及酶的作用;具有与天然组织相适应的物理机械特性;针对不同的使用目的具有特定的功能。物质属性分类根据物质属性,生物医学材料大致可以分为以下几种: 1、生物医学金属材料(biomedical metallic materials)医用金属材料是作为生物医学材料的金属或合金,具有很高的机械强度和抗疲劳特性,是临床应用最广泛的承力植入材料,主要有钻合金(co-cr-ni)、钛合金(ti-6a1-4v)和不锈钢的人工关节和人工骨。镍钛形状记忆合金具有形状记忆的智能特性,能够用于矫形外科、心血管外科。 2、生物医学高分子材料(biomedical polymer)生物医学高分子材料有天然的和合成的两种,发展得最快的是合成高分子医用材料。通过分子设计,可以获得很多具有良好物理机械性和生物相容性的生物材料。其中软性材料常用来作为人体软组织如血管、食道和指关节等的代用品;合成的硬材料可以用来作人工硬脑膜、笼架球形的人工心脏瓣膜的球形阀等;液态的合成材料如室温硫化硅橡胶可以用来作注入式组织修补材料。 3、生物医学无机非金属材料或生物陶瓷(biomedical ceramics)生物陶瓷这类医用材料化学性质稳定,具有良好的生物相容性。生物陶瓷主要包括两类。(1)惰性生物陶瓷(如氧化铝、医用碳素材料等)。这类材料具有较高的强度,耐磨性能良好,分子中的键力较强。(2)生物活性陶瓷(如羟基磷灰石和生物活性玻璃等),这类材料具有能在生理环境中逐步降解和吸收,或与生物机体形成稳定的化学键结合的特性,因而具有极为广阔的发展前景。 4、生物医学复合材料(biomedical composites)生物医学复合材料是由两种或两种以上不同材料复合而成的生物医学材料,主要用于修复或替换人体组织、器官或增进其功能以及人工器官的制造。其中钻合金和聚乙烯组织的假体常用作关节材料;碳-钛合成材料是临床应用良好的人工股骨头;高分子材料与生物高分子(如酶、抗源、抗体和激素等)结合可以作为生物传感器。 5、生物医学衍生材料(biomedical derived materials)生物衍生材料是经过特殊处理的天然生物组织形成的生物医学材料,经过处理的生物衍生材料是无生物活力的材料,但是由于具有类似天然组织的构型和功能,在人体组织的修复和替换中具有重要作用,主要用作皮肤掩膜、血液透析膜、人工心脏瓣膜等。编辑本段应用广泛,增长迅速生物医学材料应用广泛,仅高分子材料,全世界在医学上应用的就有90多个品种、1800余种制品,西方国家在医学上消耗的高分子材料每年以10%~20%的速度增长。随着现代科学技术的发展尤其是生物技术的重大突破,生物材料的应用将更加广泛。表1列举了生物医用材料的一些典型应用,其应用之广泛可见一斑。编辑本段生物医学材料发展的主要动力生物医学材料得以迅猛发展的主要动力来自人口老龄化、中青年创伤的增多、疑难疾病患者的增加和高新技术的发展。人口老龄化进程的加速和人类对健康与长寿的追求,激发了对生物材料的需求。作为世界人口最多的国家,中国已进入老龄化国家行列,生物材料的市场潜力将更加巨大。 生活节奏的加快、活动空间的扩展和饮食结构的变化等因素,使创伤成为一个严重的社会问题。我国创伤住院年增长率达,高居住院人数第2位。美国1998年用于骨骼-肌肉系统损伤患者的治疗费高达1280亿美元,仅骨缺损患者就达123万,其中80%需用生物医学材料治疗。在全球,心脑血管疾病、各种癌症、艾滋病、糖尿病、老年痴呆症等发病率逐年增加,急需用于诊断、治疗和修复的生物材料。 随着生物技术的发展,不同学科的科学家进行了广泛合作,从而使制造具有完全生物功能的人工器官展示出美好的前景。人体组织和器宫的修复,将从简单的利用器械机械固定发展到再生和重建有生命的人体组织和器宫;从短寿命的组织和器官的修复发展至永久性的修复和替换。这一医学革命(特别是外科学),对生命利学和材料等相关学科的发展提出了诸多需求,对生物医学材料的发展产生了重要的促进作用。发展我国生物医学材料的建议生物医用材料学生物医用材料是材料科学与工程的重要分支,其最大特点是学科交叉广泛、应用潜力巨大、挑战性强。随着新材料、新技术、新应用的不断涌现,吸引了许多科学家投人这一领域的研究,成为当今材料学研究最活跃的领域之一。在我国,生物医学材料的研究虽然取得一些令人瞩目的成果,但整体水平不高,跟踪研究多,源头创新少。在产业化方面,生物医学材料及其制品占世界市场的份额不足2%,主要依靠进口,产品技术结构和水平基本上处于初级阶段。结合我国国情和学科发展趋势,按照"有所为,有所不为,重点突破"的原则,我们建议,应在五个方面开展重点研究。 一是生物结构和生物功能的设计和构建原理研究。着重研究具有诱导组织再生的骨、软骨及肌腱等基底材料和框架结构的设计及其仿生装配; 二是表面/界面过程-材料与机体之间的相互作用机制研究。从细胞和分子水平深入研究材料与特定细胞、组织之间的表面/界面作用,揭示影响生物相容性的因素及本质。 三是生物导向性及生物活性物质的控释机理研究。研究可自控或靶向释放蛋白、基因等特异性生物活性物质的材料的设计以及生物导向性原理;用于组织细胞和基因治疗的半渗透聚合物膜的设计、自装配及特异性细胞密封技术; 四是生物降解/吸收的调控机制研究。研究生物降解/吸收材料的分子结构和生物环境对其降解的影响、降解/吸收速度的调控、降解/吸收及代谢机制,以及降解产物对机体的影响。其目标是为组织工程化人工器官生物材料及药物控释材料的自成、改性方法提供理论基础,实现材料参与生命过程和构建生命组织的目的。 五是材料的制备方法学和质量控制体系研究。主要研究生物医用材料及修复体的计算机辅助设计; 通过上述研究的开展,将使我国生物材料的研究水平有较大提高,为我国生物医用材料科学及其产业的发展奠定坚实的基础。编辑本段意义生物医用材料为挽救生命和提高人民健康水平做出了重大贡献,当前正面临重大突破。我国加入 WTO后,生物医用材料产业将面临更大的挑战和更多的机遇,生物材料科学工作者任重而道远。我们相信,在国家的大力支持下,跨部门、跨学科通力合作,通过走自力更生与技术引进相结合的发展之路,在生物材料组织工程化、分子设计、仿生模拟、智能化药物控释等方面重点投人,生物医用材料必将为全面提高人们的生活水乎,造福人类做出更大的贡献。

当前,美国、欧洲、日本等发达国家和地区十分重视新材料技术的发展,都把发展新材料作为科技发展战略的重要组成部分,在制定国家科技与产业发展计划时,将新材料技术列为21世纪优先发展的关键技术之一,予以重点发展,以保持其经济和科技的领先地位。中国的新材料科技及产业的发展,在政府的大力关心和支持下,也取得了重大的进展和成绩,为国民经济和社会发展提供了强有力的支撑。为研究我国新材料领域的发展现状和态势,本报告以中国期刊网数据库作为统计分析源,从文献计量学的角度进行分析研究,讨论了新材料包括超导材料、金属材料、非金属材料、高分子材料和复合材料的理论研究、制备工艺、产品应用、技术装备等方面的内容。 1、新材料各专业论文产出权重的年度变化从2000年至2005年,新材料各专业发表论文数量占整个新材料领域的比重虽然每年都在变化,但总的分布格局没有被打破。高分子材料除2001年和2002年所占比重低于50%以外,其它几年均在50%以上,一直占居主导地位;复合材料所占比重在20-30%之间,居第二位;非金属材料所占比重在一成多,居第三位;超导材料在整个材料领域所占比例最小,居5个专业的最后一位。从各专业的发展状况分析,超导材料的发展呈上下波动,总体下降的趋势;金属材料作为一种传统的优势领域,其发展呈现大幅下降的局面;非金属材料在整个材料领域基本保持稳定的态势,其所占比例变化不大;高分子材料是发展最快的学科,随着新技术的不断涌现,其在整个新材料领域中的权重呈波动增长的态势;复合材料除2002年有所增加外,其他各年逐年下降,但降幅不大,年均降低1%。2、新材料各专业论文产出数量的年度变化2000年至2005年,从新材料各专业发表论文的数量及增长率来看,超导材料论文发表呈现增长正负相间的发展格局,但总量呈下降趋势,降幅为10%左右;金属材料的论文发表数量出现负增长,从2000年的1614篇减少到2005年的254篇,总降幅达84%;非金属材料发表论文数量总的趋势是稳步增长,且到了2005年有加速增长的趋势,发表论文数量比2000年增长了1527篇,当年增长了,6年间总体增长了;高分子材料的论文数量也在不断增加,从2000年的8201篇增加到2005年的15895篇,总增幅达,几乎翻了一番;复合材料论文发表呈现波动的局面,2001年比2000年有较大幅度增加,但2003-2004年却出现负增长,到2005年又增加至7215篇,比2000年的3672篇增加了近一倍。 1、新材料领域总体发展速度较快,势头强劲材料是当前世界新技术革命的三大支柱(材料、信息、能源)之一,与信息技术、生物技术一起构成了21世纪世界最重要和最具发展潜力的三大领域之一。对材料的认识与利用能力,往往决定着社会的形态和人类生活的质量。人类的历史已经证明,材料是人类社会发展的物质基础和先导,而新材料则是人类社会进步的里程碑。新材料在发展高新技术、改造和提升传统产业、增强综合国力和国防实力方面起着重要的作用,而且在自然科学和工程技术领域中发展也越来越快,地位日趋重要。根据对同时段论文发表数量统计,6年间国内新材料领域论文发表数量的年平均增长率为,大于自然科学和工程技术领域的论文发表增长率;新材料领域发表论文占自然科学与工程技术领域发表论文的比重也保持上升的势头,6年间增长了个百分点。新材料领域的发展变化,得益于技术创新和成果转化速度加快。前沿技术的突破使得新兴材料产业不断涌现,同时新材料与信息、能源、医疗卫生、交通、建筑等产业结合越来越紧密,材料科学工程与其他学科交叉领域和规模都在不断扩大,而且世界各国政府高度重视新材料产业的发展,制定了推动新材料产业和科技发展的相关计划,在资金上给予大力扶持,从而推动了本领域的技术创新能力的提高和发展,取得了一系列可喜的研究成果,保证了新材料领域发展的欣欣向荣局面。2、高分子材料、复合材料发展迅速 高分子材料新的应用领域推动了自身的成长高分子功能材料是近年来发展最快的有机合成材料,尤其在生物医用材料、药物控制释放体系、骨科固定、组织工程和手术缝合线等方面不断扩展其新的应用领域,全世界仅高分子材料在医学上的应用就有90多个品种、1800余种制品,西方国家在医学上消耗的高分子材料每年以10-20%的速度增长。我国的高分子材料发展也十分迅速,2000年至2005年论文发表数量从1862篇增加到6640篇,6年间增长了。其中:高分子药物方面的论文从182篇增加到802篇,增长幅度达340%;医用高分子材料方面的论文从285篇增加到821篇,增长幅度达188%;仿生高分子材料的论文从416篇增加到1108篇,增长幅度达166%,高分子膜材料的论文从979篇增加到3909篇,增长幅度达299%。从上述数据中可以看出,高分子材料研发活跃,发展相当迅猛,已成为医学和生物技术中不可缺少的组成部分,也是新材料领域发展最快的专业。 复合功能材料拓展了新的发展空间由于多种材料多学科的交叉、融合,使材料的复合化成为发展新材料的一种重要手段。利用多种基体与增强体的复合、多种层次的复合以及利用非线性复合效应可以创造出全新性能的材料。近年来先进复合材料及新工艺发展很快,目前复合材料的发展以树脂基复合材料为主,特别是热固性材料,它的技术最成熟,应用最广。金属基复合材料大部分处于研究开发阶段,它特别适用于建造空间结构体。陶瓷基复合材料是改进陶瓷的可靠性的重要途径,从而使陶瓷材料优异的高温性能得以应用。此外碳/碳复合材料在军事技术上有很大实用价值,并已有一定的应用,其发展趋势较快。从我国2000年至2005年复合功能材料论文发表情况来看,数量从3672篇增加到7215篇,6年总计增长。其中:金属基复合材料论文从573篇增加到611篇,增幅;陶瓷基复合材料论文从298篇增加到1050篇,增幅252%;水泥基复合材料论文从1533篇增加到2428篇,增幅;聚合物基复合材料的论文从1134篇增加到2383篇,增幅110%;碳基复合材料论文从134篇增加到743篇,增幅达454%。从研究分析中可以看出,陶瓷基复合材料、聚合物基复合材料发展较快,这与其新工艺、新物质及新配方的不断涌现密切相关,碳基复合材料也正从军用转向民用,使其发展呈快速增长的态势。 金属材料发展趋于低谷,有待突破相对于高分子材料、复合材料和非金属材料的迅猛发展,历史悠久的金属材料的发展处于停滞甚至后退的局面,从2000年至2005年,我国金属材料论文发表数量从1614篇减少到254篇,下降了535%。这一现象说明我们在该领域的技术创新能力不足。当前,世界金属材料领域的发展出现了很多新的特点及增长点,高性能金属材料发展迅速。我国目前高性能金属材料的产品研制、加工成型技术、生产设备等多方面都存在问题,阻碍了金属材料的发展。因此,只要加大金属材料的技术创新力度,就一定能打破其发展停滞不前的局面,实现新的振兴和快速发展就指日可待。

医用金属材料论文参考文献

参考文献的标准格式是什么样的?没有书名号吗?那个[M] 不需要书名号M是书籍J是期刊每家期刊都有自己的格式一般是[1]吴剑,齐鄂荣,程晓如,黄明海.废水生物脱氮技术的研究发展[J].武汉大学学报(工学版),2002,35(1):76~79.[2]李军,杨秀山,彭永臻.微生物与水处理工程[M].化学工业出版社,2002,370~396.[7]Hyungseok Yoo,Kyu-Hong removal from synthetic wastewater by simultaneous nitrification and denitrification via nitrite in an intermittently-aertes reactor[J].water Environ Res,1999,33(1):145~154.。 小论文的格式怎样,1500字的?写一篇世界经济与政治的 1、论文格式的论文题目:(下附署名)要求准确、简练、醒目、新颖. 2、论文格式的目录 目录是论文中主要段落的简表.(短篇论文不必列目录) 3、论文格式的内容提要: 是文章主要内容的摘录,要求短、精、完整.字数少可几十字,多不超过三百字为宜. 4、论文格式的关键词或主题词 关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇.关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索.每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方. 主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语.(参见《汉语主题词表》和《世界汉语主题词表》). 5、论文格式的论文正文: (1)引言:引言又称前言、序言和导言,用在论文的开头.引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围.引言要短小精悍、紧扣主题. 〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论.主体部分包括以下内容: a.提出问题-论点; b.分析问题-论据和论证; c.解决问题-论证方法与步骤; d.结论. 6、论文格式的参考文献 一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾.参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行. 中文:标题--作者--出版物信息(版地、版者、版期) 英文:作者--标题--出版物信息 所列参考文献的要求是: (1)所列参考文献应是正式出版物,以便读者考证. (2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息.。 参考文献格式 参考文献标准格式是指为了撰写论文而引用已经发表的文献的格式,根据参考资料类型可分为专著[M],会议论文集[C],报纸文章[N],期刊文章[J],学位论文[D],报告[R],标准[S],专利[P],论文集中的析出文献[A],杂志[G]。 1、期刊论文类 一般格式如下: 作者.论文名称[J].期刊名称,发表年份(第几期):页码. 注意:一般而言,参考文献里的标点符号用的是英文状态下输入的标点符号。输完汉字要切换到英文状态,再输入相应的标点符号。示例:沈延生.村政的兴衰与重建[J].战略与管理,1998(6):1-34. 2、学位论文类 一般格式如下: 作者.论文名称[D].毕业院校所在城市:毕业院校,论文提交年份:页码. 示例: 刘杨.同人小说的著作权问题研究[D].重庆:西南政法大学,2012:12-15. 3、书籍著作类 一般格式如下: 作者.著作名称[M].出版社所在城市:出版社名称,出版年份:页码. 示例:金太军.村治治理与权力结构[M].广州:广州人民出版社,2008:50. 扩展资料 最主要的是根据载体把文献分为印刷型、缩微型、机读型和声像型。 (1)印刷型:是文献的最基本方式,包括铅印、油印、胶印、石印等各种资料。 优点查可直接、方便地阅读。 (2)缩微型:是以感光材料为载体的文献,又可分为缩微胶卷和缩微平片,优点是体积小、便于保存、转移和传递。 但阅读时须用阅读器。 (3)计算机阅读型:是一种最新形式的载体。 它主要通过编码和程序设计,把文献变成符号和机器语言,输入计算机,存储在磁带或磁盘上,阅读时,再由计算机输出,它能存储大量情报,可按任何形式组织这些情报,并能以极快的速度从中取出所需的情报。出现的电子图书即属于这种类型。

简述医用不锈钢、钴基合金、钛基合金的特性比较。:1.钛合金,生物医用钛合金材料是用于生物医学工程的一类功能结构材料,常用于外科植入物和矫形器械产品的生产和制造。钛合金医疗器械产品如人工关节、牙种植体和血管支架等用于临床诊断、治疗、修复、 替换人体组织或器官,或增进人体组织或器官功能, 其作用是药物不能替代的。2.钴基合金通常指Co-Cr合金,有2种基本牌号:Co-Cr-Mo合金和Co-Ni-Cr-Mo合金。Co-Cr-Mo合金微观组织为钴基奥氏体结构,能够锻造或铸造,但制作加工非常困难,其机械性能和耐蚀性优于不锈钢,是现阶段比较优良的生物医用金属材料。锻造钴基合金是一种新型材料,用于制造关节替换假体连接件的主干,如膝关节和髋关节替换假体等。3.不锈钢医用不锈钢具有低成本和良好的加工性能、力 学性能等,目前在口腔医学和骨折内固定器械、人 工关节等领域应用广泛。302不锈钢是最早使用的医 用金属材料,抗腐蚀性能较好,强度较高。有研究 人员将钼元素加入不锈钢中制作316不锈钢,有效地 改善了医用不锈钢的抗腐蚀性。20世纪50年代,研 究人员研制出新的316L不锈钢,将不锈钢中的最高 碳含量降至,使得材料的抗腐蚀性能得到进一 步提高。从此,医用不锈钢便成为国际上公认的外 科植入体的首选材料。

生物材料学作为生命科学和材料科学的前沿性交叉学科,更是优先发展的重点。生物功能材料专业正是根据社会发展的需要,特别是生物医学工程、组织工程和药物释放等交叉学科技术的迅速发展对专业人才的迫切需求而设立的 。生物医用材料的分类生物材料应用广泛,品种很多,有不同的分类方法。通常是按材料属性分为:合成高分子材料(聚氨醋、聚醋、聚乳酸、聚乙醇酸、乳酸乙醇酸共聚物及其他医用合成塑料和橡胶等)、天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖等)、金属与合金材料(如钦金属及其合金等)、无机材料(生物活性陶瓷,羟基磷灰石等)、复合材料(碳纤维/聚合物、玻璃纤维/聚合物等)。根据材料的用途,这些材料又可以分为生物惰性(bioinert)、生物活性(bioactive)或生物降解(biodegradable)材料。这些材料通过长期植入、短期植入、表面修复分别用于硬组织和软组织修复与替换。生物医用材料由于直接用于人体或与人体健康密切相关,对其使用有严格要求。首先,生物医用材料应具有良好的血液相容性和组织相容性。其次,要求耐生物老化。即对长期植入的材料,其生物稳定性要好;对于暂时植入的材料,耍求在确定时间内降解为可被人体吸收或代谢的无毒单体或片断。还要求物理和力学性质稳定、易于加工成型、价格适当。便于消毒灭茵、无毒无热源、不致癌不致畸也是必须考虑的。对于不同用途的材料,其要求各有侧重。 常用的医学生物材料 一、医用硅橡胶 医用硅橡胶(silicone rubber)是美容外科中应用较广的生物材料(组织代用品).它是高分子有机化合物聚硅酮的一种橡胶样固体形态,又称二甲基硅氧烷。 二、人工骨 随着生物医学和材料的发展,各种人工制备的生物材料植入骨内替代骨移植,临床应用效果好.这些人工合成或提取的植入材料生物相容性好,对骨形成具有明显的诱导作用,被泛称为人工骨(artificial bone)。 一般而言,临床医学对生物医学材料有以下基本的要求:无毒性,不致癌,不致畸,不引起人体细胞的突变和组织细胞的反应;与人体组织相容性好,不引起中毒、溶血凝血、发热和过敏等现象;化学性质稳定,抗体液、血液及酶的作用;具有与天然组织相适应的物理机械特性;针对不同的使用目的具有特定的功能。物质属性分类根据物质属性,生物医学材料大致可以分为以下几种: 1、生物医学金属材料(biomedical metallic materials)医用金属材料是作为生物医学材料的金属或合金,具有很高的机械强度和抗疲劳特性,是临床应用最广泛的承力植入材料,主要有钻合金(co-cr-ni)、钛合金(ti-6a1-4v)和不锈钢的人工关节和人工骨。镍钛形状记忆合金具有形状记忆的智能特性,能够用于矫形外科、心血管外科。 2、生物医学高分子材料(biomedical polymer)生物医学高分子材料有天然的和合成的两种,发展得最快的是合成高分子医用材料。通过分子设计,可以获得很多具有良好物理机械性和生物相容性的生物材料。其中软性材料常用来作为人体软组织如血管、食道和指关节等的代用品;合成的硬材料可以用来作人工硬脑膜、笼架球形的人工心脏瓣膜的球形阀等;液态的合成材料如室温硫化硅橡胶可以用来作注入式组织修补材料。 3、生物医学无机非金属材料或生物陶瓷(biomedical ceramics)生物陶瓷这类医用材料化学性质稳定,具有良好的生物相容性。生物陶瓷主要包括两类。(1)惰性生物陶瓷(如氧化铝、医用碳素材料等)。这类材料具有较高的强度,耐磨性能良好,分子中的键力较强。(2)生物活性陶瓷(如羟基磷灰石和生物活性玻璃等),这类材料具有能在生理环境中逐步降解和吸收,或与生物机体形成稳定的化学键结合的特性,因而具有极为广阔的发展前景。 4、生物医学复合材料(biomedical composites)生物医学复合材料是由两种或两种以上不同材料复合而成的生物医学材料,主要用于修复或替换人体组织、器官或增进其功能以及人工器官的制造。其中钻合金和聚乙烯组织的假体常用作关节材料;碳-钛合成材料是临床应用良好的人工股骨头;高分子材料与生物高分子(如酶、抗源、抗体和激素等)结合可以作为生物传感器。 5、生物医学衍生材料(biomedical derived materials)生物衍生材料是经过特殊处理的天然生物组织形成的生物医学材料,经过处理的生物衍生材料是无生物活力的材料,但是由于具有类似天然组织的构型和功能,在人体组织的修复和替换中具有重要作用,主要用作皮肤掩膜、血液透析膜、人工心脏瓣膜等。编辑本段应用广泛,增长迅速生物医学材料应用广泛,仅高分子材料,全世界在医学上应用的就有90多个品种、1800余种制品,西方国家在医学上消耗的高分子材料每年以10%~20%的速度增长。随着现代科学技术的发展尤其是生物技术的重大突破,生物材料的应用将更加广泛。表1列举了生物医用材料的一些典型应用,其应用之广泛可见一斑。编辑本段生物医学材料发展的主要动力生物医学材料得以迅猛发展的主要动力来自人口老龄化、中青年创伤的增多、疑难疾病患者的增加和高新技术的发展。人口老龄化进程的加速和人类对健康与长寿的追求,激发了对生物材料的需求。作为世界人口最多的国家,中国已进入老龄化国家行列,生物材料的市场潜力将更加巨大。 生活节奏的加快、活动空间的扩展和饮食结构的变化等因素,使创伤成为一个严重的社会问题。我国创伤住院年增长率达,高居住院人数第2位。美国1998年用于骨骼-肌肉系统损伤患者的治疗费高达1280亿美元,仅骨缺损患者就达123万,其中80%需用生物医学材料治疗。在全球,心脑血管疾病、各种癌症、艾滋病、糖尿病、老年痴呆症等发病率逐年增加,急需用于诊断、治疗和修复的生物材料。 随着生物技术的发展,不同学科的科学家进行了广泛合作,从而使制造具有完全生物功能的人工器官展示出美好的前景。人体组织和器宫的修复,将从简单的利用器械机械固定发展到再生和重建有生命的人体组织和器宫;从短寿命的组织和器官的修复发展至永久性的修复和替换。这一医学革命(特别是外科学),对生命利学和材料等相关学科的发展提出了诸多需求,对生物医学材料的发展产生了重要的促进作用。发展我国生物医学材料的建议生物医用材料学生物医用材料是材料科学与工程的重要分支,其最大特点是学科交叉广泛、应用潜力巨大、挑战性强。随着新材料、新技术、新应用的不断涌现,吸引了许多科学家投人这一领域的研究,成为当今材料学研究最活跃的领域之一。在我国,生物医学材料的研究虽然取得一些令人瞩目的成果,但整体水平不高,跟踪研究多,源头创新少。在产业化方面,生物医学材料及其制品占世界市场的份额不足2%,主要依靠进口,产品技术结构和水平基本上处于初级阶段。结合我国国情和学科发展趋势,按照"有所为,有所不为,重点突破"的原则,我们建议,应在五个方面开展重点研究。 一是生物结构和生物功能的设计和构建原理研究。着重研究具有诱导组织再生的骨、软骨及肌腱等基底材料和框架结构的设计及其仿生装配; 二是表面/界面过程-材料与机体之间的相互作用机制研究。从细胞和分子水平深入研究材料与特定细胞、组织之间的表面/界面作用,揭示影响生物相容性的因素及本质。 三是生物导向性及生物活性物质的控释机理研究。研究可自控或靶向释放蛋白、基因等特异性生物活性物质的材料的设计以及生物导向性原理;用于组织细胞和基因治疗的半渗透聚合物膜的设计、自装配及特异性细胞密封技术; 四是生物降解/吸收的调控机制研究。研究生物降解/吸收材料的分子结构和生物环境对其降解的影响、降解/吸收速度的调控、降解/吸收及代谢机制,以及降解产物对机体的影响。其目标是为组织工程化人工器官生物材料及药物控释材料的自成、改性方法提供理论基础,实现材料参与生命过程和构建生命组织的目的。 五是材料的制备方法学和质量控制体系研究。主要研究生物医用材料及修复体的计算机辅助设计; 通过上述研究的开展,将使我国生物材料的研究水平有较大提高,为我国生物医用材料科学及其产业的发展奠定坚实的基础。编辑本段意义生物医用材料为挽救生命和提高人民健康水平做出了重大贡献,当前正面临重大突破。我国加入 WTO后,生物医用材料产业将面临更大的挑战和更多的机遇,生物材料科学工作者任重而道远。我们相信,在国家的大力支持下,跨部门、跨学科通力合作,通过走自力更生与技术引进相结合的发展之路,在生物材料组织工程化、分子设计、仿生模拟、智能化药物控释等方面重点投人,生物医用材料必将为全面提高人们的生活水乎,造福人类做出更大的贡献。

高性能钛合金论文参考文献

文献综述是对某一方面的专题搜集大量情报资料后经综合分析而写成的一种学术论文, 它是科学文献的一种。 格式与写法 文献综述的格式与一般研究性论文的格式有所不同。这是因为研究性的论文注重研究的方法和结果,特别是阳性结果,而文献综述要求向读者介绍与主题有关的详细资料、动态、进展、展望以及对以上方面的评述。因此文献综述的格式相对多样,但总的来说,一般都包含以下四部分:即前言、主题、总结和参考文献。撰写文献综述时可按这四部分拟写提纲,在根据提纲进行撰写工。 前言部分,主要是说明写作的目的,介绍有关的概念及定义以及综述的范围,扼要说明有关主题的现状或争论焦点,使读者对全文要叙述的问题有一个初步的轮廓。 主题部分,是综述的主体,其写法多样,没有固定的格式。可按年代顺序综述,也可按不同的问题进行综述,还可按不同的观点进行比较综述,不管用那一种格式综述,都要将所搜集到的文献资料归纳、整理及分析比较,阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述,主题部分应特别注意代表性强、具有科学性和创造性的文献引用和评述。 总结部分,与研究性论文的小结有些类似,将全文主题进行扼要总结,对所综述的主题有研究的作者,最好能提出自己的见解。 参考文献虽然放在文末,但却是文献综述的重要组成部分。因为它不仅表示对被引用文献作者的尊重及引用文献的依据,而且为读者深入探讨有关问题提供了文献查找线索。因此,应认真对待。参考文献的编排应条目清楚,查找方便,内容准确无误。关于参考文献的使用方法,录著项目及格式与研究论文相同,不再重复。

各学校可能不同吧~~我们学校是这样的,参考文献的书写格式应符合BG7714-87《文后参考文献著录规则》。常用参考文献编写项目和顺序规定如下:著作图书文献序号□作者. (注意:应为小点,并空一格,以下同)书名. (应为小点,并空一格) 出版社, (应为逗号,并空一格) 出版年:引用部分起止页例子:[1] 冯端. 金属物理学第三卷金属力学性质. 科学出版社,1999:132-144翻译图书文献序号□作者. 书名. 译者. 出版社. 出版年:引用部分起止页例子:约翰逊著. 钛合金熔炼. 张成军,马臣等译. 科学出版社. 2000年:112-121学术刊物文献序号□作者. 文章名. 学术刊物名, 年,卷(期):引用部分起止页例子:[1] 张二林,金云学,曾松岩等. 原位自生TiCP/Ti复合材料组织与铝含量的影响. 材料研究学报, 2001,4(3):25-28学术会议论文序号□作者. 文章名. 编者名. 会议名称,会议地址,年份. 出版地,出版社,出版年:引用部分起止页例子:严爱民. 我国铸造行业现状及发展对策. 福建省机械工程学会铸造学会编. 第四届20省市铸造学术会议论文集,武夷山. 2002年:1-8学位论文类参考文献序号□研究生名. 学位论文题目. 学校及学位论文级别. 答辩年份:引用部分起止页学术会议若出版论文集者,可在会议名称后加“论文集”字样。未出版论文集者省去“出版社”、“出版年”两项。会议地址与出版地相同者省略“出版地”。会议年份与出版年相同者省略“出版年”。例子:马明臻. TiC/2024复合材料的组织及阻尼性能的研究. 哈尔滨工业大学博士学位论文. 1999年:25-31

你的问题在这里可能是找不到答案的 【太专业了】 提供一个我个人处理这类问题的方案供参考:我会在TC18适用范围内找出个产品,以该产品的需求强度和操作温度作为第一阶段实验值,再由实验结果作调整比如说我要用TG6来作为发动机材料,发动机必须满足 800 ℃, 500MPa的条件,所以我将800 ℃, 500MPa定为实验条件。【参考建议】相关实验方法可依循一. 蠕变持久试验机适用试验方法标准1. 国家标准GB/T2039-1997《金属拉伸蠕变及持久试验方法》2. 航空工业标准HB5195-96《金属高温拉伸持久试验方法》一般将蠕变应变的控制在以下 【不是很正确印象有看过一篇paper 是这么写的,很抱歉不记得是哪一篇了】 节录【显微组织对近α型TG6 钛合金高温蠕变变形行为的影响】的试验方法:在RDW30100 型电子式蠕变持久试验机上测试了TG6 钛合金在600 ℃, 200MPa 条件下的蠕变性能,试验采用圆柱试样,工作部分直径为16 mm,标距长50 mm,采用自动数据采集系统记录应变与时间的关系曲线,根据曲线的斜率计算出稳态蠕变速率(最小蠕变速率)。在Philip Quanta−600 型扫描电镜上进行TG6钛合金显微组织的观察和分析。希望对你的研究有所帮助,预祝研究成功。提供几篇最近曾看过的期刊论文【仅供参考】 TC18钛合金的组织和性能与热处理制度的关系 材料研究学报2009年第1期 中文摘要: 通过三因素三水平正交设计方法研究了两阶段退火热处理制度的三个温度阶段对TC18钛合金性能、组织的影响,定量分析了合金热处理温度变化对总体性能的影响,结果表明,在本文试验条件下可通过提高中温温度、降低低温温度来提高合金的强度,降低高温温度、提高低温温度可改善合金的塑性,通过降低高温温度或中温温度可提高合金的冲击韧性,显微组织分析表明,TC18钛合金的强度主要受未转变β组织及在其上产生的次生αs相的总的含量、次生αs相的含量、形状的控制;合金的塑性受初生αp相形状及次生αs相的数量、形状控制;合金的冲击韧性受初生αp相的含量及形状控制.TC18钛合金热压参数对流动应力与显微组织的影响 材料工程2010年第1期 作者: 沙爱学 李红恩 中文摘要: 通过在700~950℃和应变速率~50s~(-1)条件下的热模拟实验,系统研究了TC18钛合金应变速率、变形温度对变形抗力和显微组织的影响.结果表明:提高变形温度或降低应变速率,可显著降低TC18合金变形过程中的真应力,与单相区相比,两相区变形抗力对温度的变化更为敏感.在α+β区变形时,α相和β相都参与变形,球状初生α沿形变方向略有拉长,β相沿金属流动方向形成纤维组织;β相变点以上温度变形时,β相沿金属流动方向呈纤维状分布,在950℃可以观察到再结晶的等轴β晶粒.两种典型热处理工艺对TC18钛合金组织性能的影响 钛工业进展2009年第6期 作者: 韩栋 奚正平 卢亚锋 张鹏省 杨建朝 毛小南 中文摘要: 采用两阶段退火和固溶强化两种典型的热处理制度,通过力学性能检测、显微组织分析和XRD物相分析,系统研究了整体热处理工艺对TC18钛合金大型锻件组织和性能的影响.结果表明:两阶段退火态的组织不仅满足强度和塑性匹配,而且断裂韧性KIC值可达75 Mpa•m1/2;固溶强化热处理后的组织虽具有比前者更高的强度,但塑性损失较大,断裂韧性KIC值较低.BT18y钛合金等轴组织与全片层组织的室温拉伸塑性 中国有色金属学报2005年第5期 作者: 杨义 黄爱军 徐峰 李阁平 中文摘要: 测试了两种温度固溶后锻态(BT18y)钛合金棒的室温拉伸性能。 利用金相显微镜、 透射电镜和扫描电镜研究了该合金的室温拉伸塑性与显微组织的关系。 结果表明: 经920 ℃、 2 h空冷处理的材料为细晶等轴组织, 变形时晶粒间的协调性好, 具有优良的室温拉伸性能, 塑性尤其突出; 经1 020 ℃、 2 h空冷处理的材料为具有晶界α相的粗芯片层组织, 在拉伸变形时, 同时要求相邻晶粒之间、 晶粒内部的相邻α片束团之间相互协调, 增加了塑性变形的阻力, 但残余β相使得材料保持了一定的塑性。 多个视角观察表明: α片束团表现出了方向性, 与拉伸轴夹角较小的片束具有良好的拉伸性能, 与拉伸轴夹角较大的片束内的β相中间层是拉伸时裂纹的优先形成区。 BT22钛合金及其大型锻件的研究进展 材料导报 2010, 24(3)西北有色金属研究院,西安,710016作者: 韩栋 张鹏省 毛小南 卢亚锋 奚正平 杨建朝 HAN 摘要:综述了国内外BT22合金及其改型合金的应用现状,归纳介绍了BT22合金的锻造加工及热处理工艺.结果表明,BT22合金在两相区低于β_转15~50℃的温度范围内多火次锻造,每火次变形量不低于60%.通过严格控制变形速率和终锻温度可制备出组织均匀、晶粒细小的锻件,经两阶段整体热处理后可获得强度、塑性和韧性的最佳匹配.针对我国的研究现状指出了BT22合金大型锻件制备方面亟待解决的问题和未来研究发展的方向.BT22钛合金简介 热加工工艺 2009, 38(14)(西安建筑科技大学,冶金工程学院,陜西,西安,710055;西北有色金属研究院,钛合金研究所,陜西,西安,710016)作者: 罗雷 毛小南 杨冠军 牛蓉蓉 摘要:介绍了一种高强高韧的钛合金新材料(BT22)的发展及应用现状,并列出了该合金的合金成分、力学性能、物理性能、合金相变以及热处理工艺. BT22钛合金固溶冷却过程中温降特性分析 稀有金属材料与工程; 2010年02期西安建筑科技大学;西北有色金属研究院;吴晓东 葛鹏 杨冠军 毛小南 周伟 冯宝香 【摘要】:采用ANSYS有限元分析软件对BT22钛合金固溶热处理后降温阶段温度场进行仿真,并绘制热处理工件在降温过程中的温度分布等值图,从温度-时间曲线和工件内部不同部位温度曲线两个角度分析温降的不均匀性。通过对比实测曲线和模拟曲线发现两者的相对误差在2%~5%,同时把实测降温曲线分为3个阶段:快速降温阶段、平缓降温阶段和慢降温阶段,并分析其形成的原因。显微组织对TC18钛合金应力控制低周疲劳性能的影响 材料工程2009年第5期 作者: 王庆如 沙爱学 冯抗屯 中文摘要: 研究了片状和网篮两种典型组织对TC18钛合金不同应力振幅下低周疲劳寿命的影响.结果表明:TC18钛合金低周疲劳寿命对显微组织的变化不敏感.在相同的应力振幅下,双态组织和片状组织的疲劳寿命基本相当.TC18钛合金的低周疲劳寿命N取决于加载的应力振幅,σmax与N之间呈对数关系,相关系数达以上不同W含量的片层状TiAl合金的蠕变行为研究 陈文浩 西南交通大学2009【摘要】: 本文研究了三种含钨(W)量分别为0、1、(原子百分比),具有全片层组织形态的铸态TiAl合金(Alloy 0W、Alloy 1W、Alloy )在700℃、大气气氛、不同应力条件下的1000小时长的蠕变性能。在蠕变前后,对三种合金的微观组织变化进行了详细的显微分析。 研究发现,含W量分别为0at.%,1 at.%, at.%的三种全片层铸态TiAl合金中,蠕变性能最好的是含1 at.%W的合金,而含 at.%W的合金蠕变性能最差。晶粒尺度对全片层组织TiAl合金的蠕变抗力有决定性的影响。细化晶粒度将明显降低合金的蠕变性能。W能起到稳定起到稳定γ和a_2片层的作用。在1000小时蠕变后,含有钨(W)元素的两种合金,其γ和a_2片层保持了稳定,不含W的合金其a_2片层出现了平行分解,a_2片层的含量有所下降。同时还发现一定量的B2+ω偏聚相位于晶界对全片层TiAl合金的蠕变性能是有益的。三种合金的晶内蠕变机制均为位错的滑移和攀移。在蠕变后,合金γ片层内部出现了大量位错,在生成后将向γ片层中心运动,并相互缠积,同时位错无法越过a_2片层运动。高温蠕变行为研究刘学勇 黄泽文 西南交通大学材料科学与工程学院材料先进技术教育部重点实验室,四川成都610031【摘要】:研究了细晶铸态TiAl合金Ti-44Al-5Nb-0.85W-0.85B(at.%)的蠕变行为。合金在蠕变前分别在1260℃和1340℃两个不同温度下热等静处理以得到两种不同的显微结构:经1260℃热等静压处理后,块状B2+ω沉淀相在板条晶界偏析,而在α单相区(1340℃)进行的热等静压处理完全消除了这种块状B2+ω偏聚相。 在700℃,150~300MPa应力下进行恒应力拉伸蠕变实验,研究并讨论了B2+ω偏聚相对合金在不同应力下的蠕变性能的影响。结果显示,两种状态的下的该合金即使是在700℃,300MPa应力下经历1000小时长时间蠕变后,仍处于稳态蠕变阶段,没有发生断裂现象。含W的全板条合金显示出了良好的蠕变性能。并且发现,含有B2+ω偏聚相的显微结构比不含该偏聚相的显微结构表现出更好的蠕变性能,在200~300MPa之间存在蠕变控制机理的转变。 对显微组织进行详细的扫描电镜和透射电镜观察,结果显示,粗大γ板条含有较高的位错密度,在板条尖端和反向畴界以及α2/γ接口发现了位错塞积现象。α2+γ板条表现出相对好的稳定性。偶尔发现粗大α2板条发生了平行分解,仅少量γ板条生成变形孪晶,没有发现板条断开和发生球化的现象。 研究表明,块状B2+ω偏聚相在1340℃下热等静压处理后被完全消除,但是,此有序相在蠕变后又重新出现在晶界。粉末冶金TiAl基合金高温变形行为 北京科技大学学报;2010年09期路新 王述超 朱鸿民 曲选辉 【摘要】:采用等温压缩试验,在变形温度为600~1050℃、应变速率为~的条件下,研究了粉末冶金合金的高温压缩性能与高温变形行为.结果表明:合金在高温压缩变形时,屈服强度随变形温度的升高、应变速率的降低而降低,塑性趋于升高.合金在高温塑性变形时,峰值流变应力、应变速率和变形温度之间较好地满足双曲正弦函数形式修正的Arrhenius关系,说明其变形受热启动控制.在800~1050℃/~范围内,合金应变敏感系数m为,高温变形启动能Q为合金应力控制和应变控制的低周疲劳行为 稀有金属材料与工程2009年第2期 中文摘要: 研究TC21合金应变控制和应力控制的低周疲劳行为.实验温度为室温,循环应变比和应力比均为,载荷波形为三角波.结果表明,在应变疲劳的最初阶段,TC21合金循环拉应力时快速软化,循环压应力时快速硬化,随着循环进行软化和硬化速度降低.在整个循环阶段,软化速度与应变有关;背应力影响较小,摩擦应力一直在变化,循环应力的变化与摩擦应力有关.应力控制的低周疲劳结果表明,TC21合金循环蠕变明显,循环蠕变与应力大小有关,摩擦应力是影响循环蠕变的主要因素.抗蠕变合金的高温力学行为和变形机制 金属学报;2001年08期周兰章 郭建亭 【摘要】:研究了 Ti-47Al-2W—0.5Si铸造合金的力学行为和变形机制 结果表明,合金的室温-高温屈服强度和 650℃蠕变强度都超过 IN713LC镍基高温合金的比屈服强度和比蠕变强度,表现出优异的中温力学性能 在蠕变过程中,随着载荷和温度的增加,合金的最小蠕变速率随之增大,可用蠕变方程εm=A( )10exp(- )来描述.位错在接口处繁殖,并在α2/γ层片中缠结和塞积,导致合金的初始蠕变应变速率降低.当位错运动受阻时,可以通过孪生方式使内应力得到缓解.在蠕变第一阶段就可以发生孪生和剪切现象.在高温应力作用下,α2片层发生粗化和相转变 此外,还对合金的实际应用效果进行了考核,并说明了该合金的发

相关百科

热门百科

首页
发表服务