首页

> 学术论文知识库

首页 学术论文知识库 问题

天然橡胶改性研究进展论文

发布时间:

天然橡胶改性研究进展论文

你这个 问题特别宽泛,大概从以下几个方面来说吧。

因为不知道你具体研究什么方向,只能宽泛讲这么多,如果需要具体 沟通,可以给我私信。谢谢!

炭黑和白炭黑作为橡胶增强剂长期以来被广泛使用,随着纳米技术的兴起,产生了把炭黑和白炭黑纳米级粉体通过常规机械共混方式与橡胶进行纳米复合的技术—— “熔体粉体共混纳米复合技术”_3-5].但由于炭黑或白炭黑粉体尺寸小,视密度低,橡胶熔体粘度高,在橡胶基质中炭黑或白炭黑纳米粉体很难均匀分散。此外,由于纳米粉体粒径小,表面能大,易于团聚,通常以二次聚集体的形式存在,这在一定程度上对其增强性能产生不同导向和不同程度的影响。为了增加纳米材料与橡胶的界面结合力,提高其分散能力,需对纳米材料进行表面改性,从而提高纳米粒子与橡胶大分子间的作用力,同时调整加工时橡胶的粘度,改进混炼工艺。改进措施有,1)添加界面改性剂,即分散剂、偶联剂等;2)纳米粒子表面改性,可采用表面覆盖改性、机械化学改性、外膜层改性、局部活性改性、高能量表面改性和利用沉淀反应进行表面改性;3)将熔体粉体混合改为橡胶溶液或乳液与纳米粒子的混合,或将纳米粒子预处理后分散在橡胶聚合单体中,然后进行本体或溶液聚合。2.2 纤 橡胶纳米复合材料纤维增强橡胶复合材料,由于纤维与橡胶的性能差别很大,使用不同的纳米纤维 J,如凹凸棒土、纳米晶须、碳纤维等,可赋予这种橡胶复合材料的不仅仅是强度性能的提高,更重要的是赋予其耐磨性、传导性(包括导热性和导电性)等特殊性能。作为复合材料,纤维与基质的结合强度是至关重要的。如制备纳米碳纤维橡胶复合材料 ,由于碳纤维的表面基本上是惰性的,它与橡胶直接复合难以获得足够的结合力,必须预先进行表面处理。经表面处理后,表面积增大,表面活性基团(如一COOH,一OH等)浓度增加,从而有利于碳纤维与橡胶的浸润和粘结。目前,针对不同种类的纳米纤维,橡胶/纤维纳米复合材料的制备技术主要有熔体直接共混法、原位聚合反应法、溶液共混共沉法等。由于现有的纳米纤维种类较少,制备技术不完善,橡胶纤维纳米复合材料还只是在特种材料和功能材料方面开展了应用。2.3 橡胶/粘土纳米复合材料橡胶/粘土纳米复合材料的合成方法可以分为5大类 ,1)插层复合法;2)原位复合法;3)共混法;4)分于复合材料形成法;5)其他合成法。其中,插层复合法制备纳米橡胶复合材料是当今研究较为活跃,工业前景看好的方法。粘土的基本结构单元是由一层铝氧八面体夹在2个硅氧四面体之间靠共用氧原子而形成的层状结构,其晶层表面氧元素的比重较大,层与层间因共用氧原子而形成非常紧密的结合。在制备橡胶/粘土纳米复合材料时,常采用有机阳离子(插层剂)进行离子交换而使层间距增大,并改善层间微环境,以有利于单体或聚合物插入粘土层间形成纳米复合材料。常用的插层剂有二烯类聚合的季铵盐,烷基铵盐和其他阳离子型表面活性剂等,并由此衍生出单体原位反应插层法、液体橡胶反应插层法、大分子熔体插层法、大分子溶液插层法、大分子乳液插层法等制备技术。由于粘土在橡胶/粘土纳米复合材料中为形状比非常大的片层填料,限制大分子变形的能力比球形增强剂更强,从而使橡胶/粘土纳米复合材料具有较高的模量、硬度、强度,较低的弹性,其应用发展潜力很大。采用纳米材料填充的橡胶复合材料,可增加其拉伸强度,并在一定数量范围内出现极大值。如填充纳米SiO 的橡胶复合材料,在SiO 的体积百分含量为4%左右时,拉伸强度达到最大值。3.2 对材料的增塑作用对采用普通CaCO 、微米级CaCO 、纳米级CaCO 填充橡胶复合材料进行比较,随着颗粒粒径的减少,材料的断裂伸长率提高。3.3 对材料的杨氏模量的影响对于相同的基体、填料和处理方法,微米级填料使复合材料的杨氏模量增长平缓,而纳米级填料则可使复合材料的杨氏模量大幅上升。这是由于纳米材料的比表面积大,表面原子数占原子总数比例大,使纳米材料易于与聚合物充分吸附、键合。

一般为片状固体,相对密度,折射率,弹性膜量2~4MPa,130~140℃时软化,150~160℃粘软,200℃时开始降解。常温下有较高弹性,略有塑性,低温时结晶硬化。有较好的耐碱性,但不耐强酸。不溶于水、低级酮和醇类,在非极性溶剂如三氯甲烷、四氯化碳等中能溶胀。1)天然橡胶的化学性质 天然橡胶是不饱和橡胶,容易与硫化剂发生硫化反应(结构化反应),溴与氧、臭氧发生氧化、裂解反应,与卤素发生氯化、 化反应,在催化剂和酸作用下发生化学反应等。但由于天然橡胶是高分子化合物,所以它具有烯类有机化合物的反应特性,如反应速度慢,反应不完全、不均匀,同时具有多种化学反应并存的现象(如氧化裂解反应和结构化反应)等。在天然橡胶的各类化学反应中,最重要的是氧化裂解反应和结构化反应。前者是生胶进行塑炼加工得理论基础,叶酸橡胶老化的原因所在;后者则是生胶进行硫化加工制得硫化的理论依据。而天然橡胶的氯化、环化、氢化等反应,则可应用于天然橡胶的改性方面。(2)天然橡胶具有优异的综合物理机械性能 天然橡胶在常温下具有很好的弹性。这是由于天然橡胶分子链在常温下呈无定形状态,分子链柔性好的缘故。其密度为,弹性模量为2-4MPa,约为钢铁的三万分之一,而伸长率为钢铁的300倍,最大可达1000%。在0-100度范围内,天然橡胶的回弹性可达到50%-85%以上。(3)热老化天然橡胶常温为高弹性体,玻璃化温度为-72度,受热后缓慢软化,在130-140度开始流动,200度左右开始分解,270度剧烈分解。(4)耐介质性 介质是指油类、液态的化学物质等。天然橡胶不耐环己烷、汽油、苯等介质,不溶于极性的丙酮、乙醇等,不溶于水,耐10%的氢氟酸,20%盐酸,30%硫酸,50%的氢氧化钠等。不耐浓强酸和氧化性强的高锰酸钾、重 酸钾等。(5)良好的加工工艺性能 天然橡胶由于相对分子质量高、相当分子质量分布宽,分子链易于断裂,再加上生胶中存在一定数量的凝胶分子,因此很容易进行塑炼、混炼、压延、压出、成型等。

现在也不上学了 不然可以帮你弄 给你个意见吧 一般的大学里都有自己的数据库 里面全是科学文章和优秀毕业论文 你们学校没有的话 找你的同学要点 越好的大学里的数据库越好

硫磺对天然橡胶的影响研究论文

关于橡胶的硫化机理仍然众说不一。这是因为在橡胶制品的生产过程中,存在不可溶解的天然橡胶样品和同时发生的大量的反应,使得人们对橡胶分子硫化成为复杂的聚合物网络的研究变得困难 ,早期所提出的橡胶硫化机理大致可分为自由基机理和离子机理两种。以Bacon和Famer等人为代表的研究者认为,橡胶的烯丙基共振使其双键相邻亚甲基上的氢易被取代。因此,在橡胶的硫化过程中,硫磺双自由基夺取橡胶a一亚甲基上的氢是反应的开始。即反应的过程是自由基过程。而贝特曼等人 则认为橡胶上双键的供电性使S8的-SS-键断裂并分解为离子,即硫化过程是离子反应过程。至今,研究得较为成熟的是噻唑锌盐和二硫代氨基甲酸锌盐的硫化促进机理。 1964年,Coran等人根据对硫化胶的分析结果,提出了2-巯基苯并噻唑(MBT)锌盐的硫化促进机理:噻唑锌盐与加入的硫磺分子反应,形成MS-Sx-Sy-SM,MS-Sx-Sy-SM与橡胶烃R反应,形成活性中间体。该活性中间体是非交联型多硫化物,末端带有硫化促进基团,当它缓慢分解产生自由基后,活泼的自由基即与橡胶烃反应得到硫化胶。1969年,Manik等人根据引入脂肪酸对噻唑类促进剂所产生的影响,提出了不同的促进机理。他认为,噻唑类硫化促进剂和脂肪酸在硫化过程中产生了离子型的活性中间体,而不是如Coran所说的自由基。首先,硬脂酸与ZnO反应生成硬脂酸锌盐。然后,硬脂酸锌盐与噻唑盐反应,通过噻唑锌盐中N原子和硬脂酸锌盐中O原子对zn原子的配位作用,使 Zn-S键活化,形成过渡状态(A),(A)与硫磺分子(S8)反应生成活性中间体(B)。(B)与橡胶烃R反应,生成配合物MSSxR。MSSxR不稳定,分解出正、负离子,这些离子分别与橡胶烃结合生成硫化胶。 二乙基二硫代氨基甲酸锌与天然橡胶的反应机理在文献 中已经作了详细报道。但是,由于传统方法所存在的缺陷,促使人们在不断探索新的研究方法。20世纪80年代以来,人们采用模型化合物(MCV)方法(模型化合物是指分子结构与真正的橡胶分子相类似,但尺寸较小。),借助于HPLC(高效液相色谱仪)来观察交联前驱体并推测随后形成的硫交联模型。但是,由于MCV的各种硬化反应是同时发生的,使得要观察个别成分所遵从的反应途径变得困难。为了克服这一问题,20世纪90年代中期,Leiden大学的Nieuwenhuizen研究小组开发了一种新方法,即在模拟硫化过程的条件下,对含硫交联的低相对分子质量模型化合物及其前驱体进行研究,从而了解到变化的化学途径以及配合物的催化作用。通过使用这一方法,结合量子化学计算,他们分别揭示了二硫代氨基甲酸锌(ZDMC)及二巯基苯并噻唑锌盐(ZMBT)在硫化期间所发生的大量的均相催化反应,包括前驱物的形成、脱硫、降解和硫交联反应。其研究的独特之处在于:(1)运用量子化学计算和矩阵辅助激光解吸附电离质谱仪,首次从理论上、实验上证实了二硫代氨基甲酸锌富硫配合物中间体的存在。长期以来,人们一直认为在硫化过程中存在富硫的锌促进剂配合物,该配合物在硫化过程中起到一种中心作用,即可以激活基态硫,在橡胶硫化过程中,帮助交换与传递S原子,并影响S交联键的形成。但是,该富S的二硫代氨基甲酸锌多硫配合物很活跃,能将连接的S快速释放到适宜的S接受体中,所以通常的光谱技术检测不出它的存在。运用矩阵辅助激光解吸附电离质谱仪,在真空环境下(防止S原子转换或损失)对孤立配合物处理,结果检测到该多硫配合物能富集到四个S原子。(2)运用模型化合物在模拟硫化的条件下,揭示了二硫代氨基甲酸锌和噻唑锌盐的橡胶硫化促进机理。 关于次磺酰胺类促进剂在氧化锌和硬脂酸等活化剂存在下促进硫磺的硫化机理,普遍认为 ,在硫化过程中,首先是促进剂分子在S-N键处断裂,断裂后的基团与氧化锌反应生成锌盐,另一部分则转变成胺碱。之后,所形成的胺碱以配合剂的形式与锌盐生成配合物。该配合物能使硫磺开环,形成活泼的硫化剂,而硫化剂中的多硫键在硫化条件下进一步断裂,并与橡胶分子发生交联一硫化反应。从促进剂分子断裂到发生交联需要一定的时间,亦即硫化时的诱导期或焦烧时间,此时橡胶分子并未交联。

调节交联密度也可在一定范围内调节橡胶硬度,交联密度的增加,硫化胶的硬度增加。交联密度的大小是通过调整硫化体系中的硫化剂、促进剂、活性剂等配合剂的品种和用量来实现的,其中主要是硫化机和促进剂的品种和用量。硫磺可调节胶料的硬度,一般软质橡胶中,硫磺的用量为份;硫磺用量5份以上为半硬质胶;硫磺的用量35~50份,则可制成硬度很高甚至交联饱和的硬质橡胶。胶料的硬度随着硫磺含量的增加而增加。对天然橡胶胶料,硫磺用量若增加1~3份,硬度就会提高5度;对天然/丁笨/顺丁并用胶,硫磺用量增加份,提高硬度5度。

不溶性硫磺是普通硫磺的一种同素异形体,它是由硫化氢与二氧化硫反应制得,也可由普通硫磺斜方硫经热聚合制得.其分子结构是硫的线型高分子,具有不溶于橡胶的特点,故为不溶性硫或聚合硫.目前不溶性硫磺主要应用于橡胶工业.与斜方硫相比,不溶性硫磺作为橡胶硫化剂其主要特点为:1)不溶性硫磺在橡胶中以分散状态存在,因此胶料不喷霜,有良好的粘性,同时可保证浅色制品的外观质量.2)不溶性硫磺在胶料中均匀分散,有效地抑制硫磺的聚集,减少胶料存放过程的焦烧倾向.3)斜方硫S.环的稳定性较高,裂解键能为268kJ/molE ,高于不溶性硫磺键能,因此在加工过程中有早期焦烧的倾向.因此,尽管不溶性硫磺的价格是普通斜方硫的5~10倍,但以其不喷霜性而广泛应用于子午线轮胎及其它橡胶复合制品(包括斜交轮胎),也应用于高硫磺用量的浅色橡胶制品中.

硫黄在橡胶中起到硫化作用。

在硫化过程中,橡胶分子由线型结构转变为网状结构。这种转变是通过硫化剂使橡胶分子链发生交联来实现的。橡胶交联的机理及交联键的性质随硫化体系的不同而异。

绝大部分不饱和橡胶以及三元乙丙橡胶、乙烯基硅橡胶和不饱和度大于2%(克分子)的丁基橡胶均可用硫黄硫化。在硫化的若干理论中,硫黄硫化机理是比较复杂的。

橡胶的硫化是一复杂的化学反应过程。在硫化过程中,橡胶分子由线型结构转变为网状结构。这种转变一般是通过硫化剂使橡胶分子链发生交联来实现的。

橡胶交联的机理及交联键的性质随硫化体系的不同而异。绝大部分不饱和橡胶以及三元乙丙橡胶、乙烯基硅橡胶和不饱和度大于2%(克分子)的丁基橡胶均可用硫黄硫化。在硫化的若干理论中,硫黄硫化机理是比较复杂的。

影响硫化工艺过程的主要因素:

(1)硫磺用量。其用量越大,硫化速度越快,可以达到的硫化程度也越高。硫磺在橡胶中的溶解度是有限的,过量的硫磺会由胶料表面析出,根据橡胶制品的使用要求,硫磺在软质橡胶中的用量一般不超过3%,在半硬质胶中用量一般为20%左右,在硬质胶中的用量可高达40%以上。

(2) 硫化温度。若温度高10℃,硫化时间约缩短一半。由于橡胶是不良导热体,制品的硫化进程由于其各部位温度的差异而不同。

(3)硫化时间。这是硫化工艺的重要环节。时间过短,硫化程度不足(亦称欠硫)。时间过长,硫化程度过高(俗称过硫)。只有适宜的硫化程度(俗称正硫化),才能保证最佳的综合性能。

参考资料来源:百度百科-硫化橡胶

参考资料来源:百度百科-硫黄硫化

阻尼橡胶的研究进展论文范文

80年代中期到90年代中期,拟动力试验方法又有了新的发展,主要表现在:1)子结构技术出现。子结构方法把结构划分为试验子结构和计算子结构,将易破坏具有复杂非线性特性的部分作为试验子结构进行试验,其余线性部分作为计算子结构由计算机进行仿真模拟。子结构技术在一定程度上解决了工程结构大型化和试验设备和经费规模有限的矛盾。2)数值计算方法的发展。传统的拟动力试验方法(如中央差分方法)多是基于显式数值积分方法开发的,由于显示数值积分方法是条件稳定的,对于复杂多自由度结构试验的应用受到限值。基于隐式方法的无条件稳定数值积分方法消除了传统拟动力试验中数值积分方法的固有缺陷。例如如今在拟动力试验中经常采用的PC-Newmark(预估-校正)方法是结合子结构技术提出的一种隐式方法。3)快速拟动力试验方法的提出。传统拟动力试验采用的是准静态的加载过程,无法考虑加载速率对结构反应的影响。而地震作用是动力的,这正是其不同于静力荷载的地方。加上如今橡胶隔震器、粘滞阻尼器、摩擦阻尼器在结构中的应用,使结构特性具有速度依赖性,为解决加载速率的问题,提出了快速拟动力试验技术及数值修正方法来消除加载速率的影响。Molina进行了带橡胶隔震器的四层结构的拟动力试验,并给出了橡胶隔震器考虑应变速率的修正系数。对动力方程 中的M ,C ,p 三个量,拟动力试验都可以较好的反应。 M容易准确测量,而且在试验中一般保持不变; K虽然在试验中不断变化,但由于直接从试件测得,也可以准确反应试件的真实情况; P一般依据事先选定的地震波加速度时程确定,也很明确。拟动力试验中的一个难点就是阻尼矩阵 C的问题。阻尼的实质是:在基于状态的动力平衡方程中为表征能量耗散而引入的一个数学概念。在拟动力试验中, 并不是由于试验测定,而是事先人为假定的,而且假定整个试验过程中保持不变。实际上 矩阵由人为假定的振型阻尼比转化为数值积分采用的比例阻尼矩阵,就带有很大的主观性和近似性。在试验过程中, 矩阵是不断变化的,进入塑性阶段后,阻尼的机理也会发生改变,这显然与 矩阵保持不变的假定矛盾。在实际试验中也发现输入的阻尼对试验结果有很大影响。有关研究阻尼对拟动力试验影响的文献非常少。由于阻尼的复杂性,如今的拟动力试验仍是采用传统的人为假定振型比例阻尼的办法。拟动力试验另一个问题是以集中力代替实际的分布惯性力,对这种力分布形式的简化带来的影响如今也缺乏研究。对拟动力试验模型相似关系的研究比起振动台试验也少得多。我国《建筑抗震试验方法规程》规定的拟动力试验模型相似要求实际是静力相似,而国内实际完成的拟动力模型试验多数是按动力相似进行的。以上三点是拟动力试验与振动台试验相比的缺陷,也是拟动力试验今后应该重点研究和改进的地方。

橡胶研究现状论文

一、发展简史 氯丁橡胶是合成橡胶的主要品种之一,也是发展较早的一种合成橡胶。早在1906~1925年间Niewland就进行了研究,然后由Carothers等人于1931年实现工业化,并由美国Du Port公司开始生产,以“Duprene”的名称进行销售,后来于 1936年又改名为“Neoprene”。 氯丁橡胶的生产最早采用本体聚合法,即将精制的氯丁二烯注人反应器中,在20~100℃下进行聚合。由于本体法制得的橡胶性能不好,且加工困难。为此曾研究了使用苯、四氯化碳等作溶剂的溶液聚合法,但因生产工艺复杂,橡胶性能欠佳,也未能推广应用。现在世界各国生产氯丁橡胶,普遍采用乳液聚合法,即以水为介质,以松香酸皂为乳化剂,以过硫酸钾为引发剂,使氯丁二烯进行聚合的方法。 氯丁二烯的性质活泼,很容易发生聚合,特别是采用乳液聚合法时,在室温下,即可进行聚合反应。硫调节型氯丁橡胶(G型)需在40℃左右的温度下进行聚合,非硫调节型氯丁橡胶(W型)的聚合温度一般在10℃以下。另外,为了中和反应中生成的游离酸(盐酸),需加人少量的氢氧化钠;并借以防止聚合物由α-聚合体向μ-聚合体转化。 Du Pout公司自1931年生产氯丁橡胶以来,垄断氯丁橡胶市场近30年,直至进人60年代,世界各国才陆续发展了自己的氯丁橡胶,现在已有10多个国家生产氯丁橡胶,尽管各国的氯丁橡胶牌号有所不同,但其生产方法大致是相同的。国外氯丁橡胶主要生产国家见表6-1 国外氯丁橡胶主要生产国家一览表国 别 制造厂商 厂 址 现有生产能力吨/年 商品名称 生产技术 投产日期 目前原料路 线 美 国 Co. Louioville,.①Laplace,. 130,00030,00035,00020,000 NeopreneNeopreneNeoprenePetor-Tex neoprene 自家自家自家Distillers 1932195719701970 石油乙炔电石乙炔丁二烯法丁二烯法 日 本 电气化学公司昭和氯丁公司东洋曹达公司 青海川崎德山 42,00020,0006,000 Denka chloropreneNeopreneSkyprene 自家Do Pont公司Distillers 196219631971 电石乙炔法丁二烯法丁二烯法 苏 联 — 埃里温捷迷尔顿 70,00030,000 NairitNairit —— 1940— 乙炔法乙炔法 英 国 DuPont Co.(UK) Londondery Ireland 30,000 Neoprene Do Pont公司 1960 乙炔法 法 国 Distigil . Champagnier 20,000 Butachor Distillers 1966 丁二烯法 西 德 Bayer公司 Leverkusen 50,000 Byprene 自家 1958 丁二烯法 捷 克 达斯罗国家石油化学公司 Sala② 25,000 — 自家 — — 意大利 Anic公司 Revenna 20,000 — Distillers — 丁二烯法 波 兰 — Plock 26,400 — — —①在1972年关闭。②1971年爆炸停产。二、制 法 前已述及,氯丁橡胶的制造方法是在Niewland研究的基础上,由Carothers等人完成的。工业上曾采用以乙炔为原料,经乙烯基乙炔制取氯丁二烯的方法,但近年来,以丁二烯为原料的生产方法,也已实现工业化。现仅就氯丁二烯的生产方法简述如下。 (一)氯了二烯单体的制造 1.乙炔法 该法是将乙炔气体通人氯化亚铜·氯化铵络盐的溶液中,使之二聚生成乙烯基乙炔,再在氯化亚铜催化剂的作用下,与氯化氢反应制得氯丁二烯。其反应式如下:在此反应中,也生成4-氯-1,3-丁二烯,但经异构化后,可转变成2-氯-1,3-丁二烯。 当前工业上大量生产乙炔的方法有两种:电石法和烃类裂解法。 (l)电石法 在60年代以前,工业上主要是利用电石法来制造乙炔。该法以煤和石灰石为原料,在电炉中进行高温(约2200℃)熔融而制得电石(主要成分是CaC!2)。电石在常温常压下与水反应则得到乙炔。其反应式为:理论上,在20℃和101kPa(>760mmHg) 压力下,1kg纯电石水解能生成347L乙炔气体。但实际上工业电石因含有很多杂质(如氧化钙、磷化物、硫化物、焦炭及硅铁等),所以乙炔气的产率总是低于理论值,一般在230~300L/kg之间。 电石法在工业上采用历史最久,技术比较简单,但是在电石生产中需要大量电力,成本较高。目前我国氯丁橡胶生产所需的乙炔,多数还是用电石法制取。 (2)烃类裂解法 在50年代以后,随着天然气和石油化学工业的迅猛发展,特别是天然气的大量开采,乙炔的生产逐渐转向以天然气为原料。以天然气为原料制乙炔,是从40年代开始工业化的。截止目前已工业化的方法有:部分氧化法、高温连续热裂法、乌尔夫(Wulff)间歇热裂法、电弧法等。其中, 部分氧化法生产的稀乙炔浓度可达7~9%,裂化气中乙炔同系物少,净化容易,特别是提浓后尾气中含有80%以上的合成气(CO+H2),可缩合利用生产合成氨或甲醇,因此,被世界大多数国家所采用。我国也主要采用部分氧化法制乙炔,稀乙炔的浓度可达8~9.2%,浓乙炔的浓度可达99.5%以上。 部分氧化法国外称作BASF法,此法是利用部分天然气同氧燃烧,产生高温,使天然气中烃类化合物发生裂解,制成乙炔气。天然气的主要成分为甲烷,此外还有乙烷、丙烷等化合物。甲烷高温裂解制乙炔的反应如下:2.丁二烯法 该法是利用石油裂解产物C4 馏分中的丁二烯为原料(见表6-2),经过氯化、异构化、脱氯化氢等过程制取氯丁二烯。其主要反应过程如下:用此法所得氯丁二烯的纯度如下。组 成 含量,重量% 组 成 含量,重量% 2-氯丁二烯1-氯丁二烯炔烃3,4-二氯-1-丁烯 ><<< 二聚体过氧化物酮类烯类 <<1ppm检查不出检查不出表6-2石油不同裂解法制得C4馏分的组成与含量裂解方式 原料油 C4馏分组成和含量,重量% 正丁烷 异丁烷 异丁烯 1-丁烯 反-2-丁烯 顺-2-丁烯 1,3-丁二烯 C5以上 BASF法管式炉法蒸汽裂解法砂子炉法低压水蒸汽法 原 油石脑油石脑油40~60℃汽油40~60℃汽油 ~52~ ~5—— ~ ~4035— 痕迹量 痕迹量 ~ 200ppm2~5少量——除上述方法外,还有如丁烷氯化、脱氢制氯丁二烯;乙烯同氯乙烯反应制氯丁二烯;乙炔同氯乙烯反应制氯丁二烯等方法。总之,利用石油裂化制造氯丁二烯是很有发展前途的。 (二)聚合 氯丁二烯是无色、挥发性较大、极易聚合的化合物,沸点 59.4℃,相对密度 氯丁二烯经乳液聚合制得氯丁橡胶。现将氯丁橡胶的聚合配方和操作条件举例如下。配方:组分名称 重量份 组分名称 重量份 氯丁二烯松 香硫 黄氢氧化钠 1003~~~ 分 散 剂二萘间亚甲基磺酸钠(或石油磺酸钠)过硫酸钾软 水 ~(~)~操作条件:聚合温度40—42℃,聚合时间2~2.5小时,聚合转化率89~90%,胶乳相对密度 一般聚合工艺过程如下。 (1)配制 精制氯丁二烯(纯度>99.3%)经干燥、冷却后,计量送入油相配制槽,按配方加人硫黄,待溶解后再加人松香,配制成油相。用软水、氢氧化钠、分散剂二萘间亚甲基磺酸钠(或石油磺酸钠)配制水相。同时配制引发剂过硫酸钾溶液及终止剂溶液。 (2)聚合 将水相和油相在乳化槽中混合乳化后,送人聚合釜,加引发剂溶液,于40℃左右进行聚合。聚合进行2~2.5小时后,当胶乳相对密度 (转化率相当于89%),停止聚合。 (3)断链与终止 在胶乳中加入终止剂(含有二硫化四甲基秋兰姆和防老剂D)终止聚合反应。然后将胶乳放到断链槽中,在碱性介质中断链,终点通过塑性控制(卡列尔塑性~ )。在终止及断链过程中,聚合物与二硫化四甲基秋兰姆作用厂使分子链断裂。(4)凝聚与千燥 断链后的胶乳送入凝聚槽,与氯化钠、氯化钙组成的凝聚剂作用,使橡胶呈小颗粒析出。然后再经洗涤、挤压脱水、干燥、扑粉、剪割后包装为成品。

橡胶改性玻纤是将玻璃纤维表面经过改性处理后,加入到橡胶基体中制成的一种复合材料。目前,国内外对于橡胶改性玻纤的研究主要集中在材料制备、性能分析以及应用方面。在材料制备方面,研究人员主要探讨不同的改性方法以及不同的复合工艺对材料性能的影响。在性能分析方面,研究人员主要关注材料的力学性能、断裂行为、耐热性以及耐老化性等方面,并通过实验研究进行验证。在应用方面,橡胶改性玻纤广泛应用于汽车零部件、建筑材料、电器设备等领域。

橡胶发展主要朝着3个方向1.促进剂一料多用途,且环保2.橡胶改性,满足不同要求(塑料行业已经实现,橡胶行业目前还很少)3.特种橡胶

分析橡胶制品的环保问题及对策的解决路径论文

1 绪言

橡胶制品行业需要消耗大量的资源,并且需要使用较多的辐射性材料和有毒材料,使得对人的身体有很大的损害,而且还会造成严重的环境污染。长此以往,将会严重影响到整个橡胶制品行业的发展,因此,我们应该研究橡胶制品行业存在的环保问题,就这些问题提出解决措施,有效避免橡胶制品行业对于环境的污染。应该加强对于橡胶制品的监测力度,加强对于橡胶制品的控制,减少橡胶制品对于人体和环境的损害,保证橡胶制品行业的产业链能够有序的发展。若想达到有效的减少制品原材料对于环境的影响,这样才能从根本上控制橡胶制品对环境的污染。

特性

橡胶制品是指将天然或合成橡胶作为原材料,然后生产出各种橡胶制品的流程,除此之外还包括利用废橡胶再生产的橡胶制品。因此,这些橡胶制品具有以下几个特性。

(1)橡胶制品在成型的时,需要经过较大的压力进行压制,但由于橡胶本身的弹性体具有内聚力,在成型离模的时这些内聚力无法消除,便导致橡胶制品出现不稳定的收缩。不过也正因为橡胶本身的弹性体,使得橡胶制品经过一定的时间后收缩便会缓和,渐渐的趋于稳定。例如:橡胶制品在开始设计时,没有经过谨慎地计算配合,使得成型的制品尺寸不稳定,造成质量问题。

(2)橡胶属于热溶热固性的弹性体,而塑料是属于热溶冷固性。因此,橡胶因为硫化物种类主体的不同,成型固化的温度也不相同,有时甚至会受到气候、室温和湿度的影响。所以,在生产橡胶制品时需要对温度进行调整,保证制品的质量。

(3)橡胶制品一般是原料经过炼胶后制成混炼胶,然后以混炼胶作为原材料,因此,在进行炼胶时,需要根据橡胶制品的特性设计出配方,然后制定产品的生产工艺。

分类

橡胶的基本类一般有天然橡胶、丁苯橡胶、三元乙丙橡胶、丁晴橡胶、硅橡胶海绵、橡胶并用海绵和橡塑并用海绵等,这几类橡胶各有优缺点,在使用时要根据他们的特性设计配方。

生产工艺

橡胶制品的种类繁多,但是生产工艺却基本相同,一般以固体橡胶和生胶作为原料进行生产,生产工艺过程包括塑炼、混炼、压延、压出、成型和硫化等基本工序。原材料准备、成品整理和检验包装等基本工序也是必不可少的。橡胶的加工工艺过程主要是解决橡胶的塑性和弹性性能的矛盾,各种的工艺手段使弹性橡胶变为具有塑性的塑炼胶,然后加入各种配合剂支撑半成品,然后经过硫化,增加成品的弹性和物理机械性。无论是何种橡胶,都需要经过以上几道工序,这样才能制成好品质的橡胶制品。

2 橡胶制品材料对环境的影响分析

重金属材料对环境的影响

在设计橡胶制品的配方时,需要充分考虑橡胶制品中重金属的含量,如果橡胶制品中铬和镍的含量过高,就会对环境造成严重的污染。橡胶制品废弃后,一般企业会将橡胶制品直接丢弃,橡胶制品进行分解,分解出的铬和镍金属会对地下水资源造成污染,因此,在设计配方时,要尽量减少使用含铬和镍的材料,要严格的控制橡胶制品材料的配比。所以,应该加强对橡胶制品的系统性分析,严格控制所有原料中重金属的含量。

多环芳烃材料对环境的影响

橡胶制品中有一部分的原料含有多环芳烃,主要包含在炭黑和加工油中。炭黑的原料主要由煤焦油和乙烯焦油组成,这两种焦油的成分都极其的复杂,因此,这两种焦油是混合物,在橡胶制品加工时加入少量的成分,也极其容易对环境造成污染。加工油的原料主要由芳烃油、石蜡油和环烷油组成,其中大量的多环芳烃被包含在芳烃油中,会对环境造成严重的污染。部分企业使用完橡胶制品时会将橡胶制品进行焚化,焚化后的烟雾中会还有大量的多环芳烃颗粒,对大气造成严重的污染。

特定胺和N—亚硝胺对环境的影响

特定胺是指在特定的条件下,偶氮染料经过分解作用,产生具有有害物质的芳胺。这种特定胺中含有大量的致癌物质,不仅对人的身体健康造成危害,还会对环境造成严重的污染。橡胶制品在进行加工时,仲胺橡胶助剂会与亚硝物质发生化学反应,从而产生了N—亚硝胺。N—亚硝胺本身具有很强的致癌性,因此,在进行橡胶制品配方设计时,应该尽可能的减少使用N—亚硝胺,这样才能减少橡胶制品对人体和环境的损害。

3 橡胶制品的环保性控制措施

控制Cd,Pb,Hg,Cr等化合物的使用

将保护环境作为基准进行橡胶制品加工,严格的控制制作橡胶制品的原料的环保指标,以此来提高橡胶制品的环保性。制作橡胶制品的一些原料中,会含有大量的Cd、Pb、Hg、Cr等元素,这些元素能够组成很多的有害物质,使得橡胶制品中有害物质严重超标。在橡胶制品的加工工艺中,Cd、Pb、Hg、Cr等元素一般是以化合物的形式存在,因此,要加强监测化合物、粘合剂和防霉剂的使用,这样能够有效的控制Cd、Pb、Hg、Cr等元素的含量,减少橡胶制品对环境的污染。

加强进厂原材料的安全监测

在进行橡胶制品生产前,可以利用X射线荧光光谱分析法,对进厂的全部橡胶制品原材料进行安全监测,这样不仅能确保批量的原材料的安全性,而且能有效的避免原材料之间的交叉污染。橡胶助剂中,都多少会含有一定量的重金属元素,例如:铅元素、汞元素等,因此,再进行橡胶制品生产的时,可以将橡胶助剂换为纳米碳酸钙或硫酸钡等助剂,这样能有效的减少重金属物质对环境的污染。

加强特殊原料的重点监测

在众多的橡胶助剂中,氧化锌是出现问题最多的助剂,而且氧化锌的市场价格非常高,这就使得市场上总是出现假冒伪劣的氧化锌产品,因此,在进行橡胶制品生产前,要加强对氧化锌进行重点监测和控制。不只是氧化锌,在橡胶制品生产过程中还有很多的特殊材料,对于这些特殊材料也要进行重点监测和控制,这样才能有效的减少橡胶制品对于环境的污染。

加强替代品的使用

诸如特定胺和N—亚硝胺等能够致癌的芳胺,是橡胶制品生产中必不可少的原料,因此,不能总是使用这类具有致癌性的物质,应该减少这些替代品的使用,例如:使用不含特定胺的黄色着色剂来代替永固黄这类物质,这样能有效的减少有害物质对人类身体和环境的损害。既然不能避免使用这些有害物质,那便减少对这些危害品的'使用,这样也能在一定程度上提高橡胶制品的环保性。

重金属含量的控制

对于铬镍等重金属,应该要严格的控制其含量,防止橡胶制品中重金属含量超标。为了能够有效的减少橡胶制品中重金属的含量,可以采取以下三种措施。第一,采用无铅硫的生产体系,减少橡胶制品中重金属的含量,从而减少橡胶制品对环境的污染。第二,取消有毒的金属材料的加工工艺,降低橡胶制品中有毒金属材料的使用,有毒金属材料的加工过程能够对人的身体造成极大的伤害,所以,应该减少橡胶制品中有毒金属材料的使用。第三,加强使用环保粘合剂,在橡胶制品中使用环保粘合剂能够有效的减少橡胶制品对环境的污染,还能够大大提高橡胶制品的安全性。橡胶制品中的重金属对环境具有很大的危害,因此,要严格的控制橡胶制品中重金属的含量。

4 结语

橡胶制品的环保性对于环境保护非常重要,因此,提高橡胶制品的环保性已成为采取必要措施的当务之急,这样不仅能有效的保护环境,还能减少橡胶制品对人体的危害,从而推动了橡胶制品行业的快速发展。

参考文献:

[1]王巧福,唐文枣等.环保橡胶制品的监测和控制[J].橡胶工业,2008(3).

[2]谢忠辟.应对环保的橡胶制品材料[J].中国橡胶,2006,22(16).

[3]谢忠蓐.关于我国橡胶工业环保和节能问题的思考(一)[J].世界橡胶工业,(2).

橡胶助剂研究论文

谢峰教授主要从事精细化学品研发,主要研究方向为催化剂及其载体研究、橡胶助剂研究。目前在研科研项目两项:1、2,2-二(3-氨基-4-羟基苯基)-1,1,1,3,3,3-六氟丙烷的合成工艺研究( – ),四川省教育厅重点科研项目,项目负责人。项目总经费6万元,目前可使用经费万元;2、3-甲基-2-噻唑硫酮合成及生产工艺研究( – ),四川省应用基础研究项目,项目负责人。项目总经费12万元,目前可使用经费万元。合计在研项目可使用科研经费达15万元。研究生情况: 拟招收1名硕士研究生。 主要教学、科研成就及科研项目:先后在美国《物理化学》、中国《化学通报》等国内外著名学术刊物上发表论文30多篇。作为课题组主要负责人承担、完成省级科研项目6项,在研省级科研项目2项。科研经费充足,与地方高科技企业联系紧密,所带研究生积极参与经济技术开发,有完备的科研实验条件,能够安排参与导师的科研课题,论文发表、学术交流等能够得到导师的经费资助。已经毕业研究生3名,其中2名分别考上中科院和上海大学的博士研究生。谢峰教授主讲课程被批准为省级精品课程,2009年被评为校级教学名师,是四川省酿酒生物技术及应用重点实验室副主任,四川省高校化学学科高级职称评审组成员,全国高师化工研究会常务理事、四川省高校实验室研究会理事。2006年四川省精品课程《化工设计》。2009年四川省高等教育教学成果一等奖; 1、橡胶多项能抗返原硫化剂N,N’—间苯撑双马来酰亚胺合成,2006,四川省应用基础项目,项目负责人2、石蜡的改性和微胶囊化技术研究,(.),四川省教育厅,重点项目,项目负责人3、挂接氮杂冠醚的水杨Schiff碱配合物的合成和仿酶催化研究,(),四川省教育厅,重点专项,主研;4、金属胶束模拟碱性磷酸酯酶的机理研究,()四川省教委重点科研项目:项目负责人5、人工添加剂对磷矿分解的影响的系统效应,()四川省教育厅,青年基金项目,主研6、稀薄气体脱氧剂研究,()四川省教育厅,青年基金项目,主研7、2,2-二(3-氨基-4-羟基苯基)-1,1,1,3,3,3-六氟丙烷的合成工艺研究(),四川省教育厅重点科研项目,项目负责人8、3-甲基-2-噻唑硫酮合成及生产工艺研究( – ),四川省应用基础研究项目,项目负责人。 1、“水在活性炭上的吸附研究” 《化学通报》: 、“Low Temperature Generation of Basic Carbon Surface by Hydrogen Spillover” 美国《物理化学》: J. Phys. Chem.: 1998,102: 172433、“催化燃烧:稀薄气体脱氧剂研究”,《化学世界》:;4、“胶束溶液中高氯酸二水(四胺)合钴(III)配合物催化磷酸二脂水解的研究”,《化学研究与应用》:;5、“β-环糊精对CTAB胶束催化羧酸酯水解的影响”,四川大学学报(自然科学版),2002年,第三期;6、亚胺磺酸钠的合成及应用,当代化工,。7、“橡胶硫化剂N,N’-间苯撑双马来酰亚胺的合成”,化工新型材料:2007年,第九期;8、Imperial Leather Original 皂用香精的仿制,香料香精化妆品,核心,、香皂用柠檬香精的调配,精细与专用化学品, 2007年,,第18期;10、“2,2-二(3-氨基-4-羟基苯基)六氟丙烷的合成、用途及发展前景”,《化学工程与装备》,2008年,第五期。11、N,N’-间苯撑双马来酰亚胺的合成与表征,《化学试剂》:;12、“N,N’-间苯撑双马来酰亚胺的合成中试研究”,《现代化工》:期。EI收录。13、N,N’-间亚苯基双马来酰亚胺的合成与表征,《化学试剂》:2008年9月,第30卷。14、2,2-二(3-氨基-4-羟基苯基)-六氟丙烷的合成工艺研究,《内江师范学院学报》,期。

食品包装材料卫生安全性研究概况杨 阳,甘平胜,胡国媛,胡毅志(广州市疾病预防控制中心,广州510080)【综述】[摘要] 食品包装材料与食品卫生安全有密切的关系,食品包装必须保证被包装食品的卫生安全,才能成为放心食品。因为只有合格的原材料、食品添加剂、包装材料和容器才能生产出符合质量安全要求的食品。从食品卫生检验工作者的角度,谈谈食品包装材料的卫生安全,以帮助人们关注食品卫生安全.提高消费者的鉴别能力。[关键词] 食品包装材料;国家卫生标准;安全性评价随着生活水平的提高,人们越来越注重食品的安全和卫生问题,而食品包装材料作为保证食品安全卫生的重要手段得到了更广泛的重视。从对餐饮具、食品包装的抽查结果看,我们发现食品包装材料的卫生安全存在着不容忽视的问题:基于食品包装与健康安全密切相关,并且存在问题较多较重,对食品包装材料的安全性研究显得尤为重要。1 食品包装材料的种类和卫生标准1.1 食品包装材料的种类目前我国允许使用的食品容器、包装材料以及用于制造食品用工具、设备的有(1)塑料制品一热塑性塑料、热固性塑料等系列化产品、塑料添加剂;(2)橡胶制品一天然橡胶、合成橡胶、橡胶助剂等系列化产品;前3种有机物所用的助剂必须符合GB~85一l994《食品容器、包装材料用助剂使用卫生标准》的要求;(3)食品容器内壁涂料一常温成膜涂料、高温固化成膜等系列化涂料及助剂;(4)陶瓷器、搪瓷食具;(5)铝制品、不锈钢食具容器、铁质食具容器、玻璃食具容器;(6)食品包装用纸等系列化产品;(7)复合包装袋一复合薄膜、复合薄膜袋等系列化产品。1.2 食品包装材料的主要卫生指标食品包装材料的卫生指标主要包括:蒸发残渣(乙酸、乙醇、正己烷)、高锰酸钾消耗量、重金属、残留毒素等。在食品容器、包装材料的卫生标准中,均以各种液体来浸泡,然后测定这些液体的有关成分的迁移量。溶剂的选择以食品容器、包装材料接触食品的种类而定,按照不同物理状态下,一般用化学物质,如蒸馏水(代表中性食品)、4% 乙(醋)酸(代表酸性食品)、8% ~60% 乙醇(代表含有酒精的食品)、正己烷(代表油脂食品);浸泡后的蒸馏水溶剂中的高锰酸钾消耗量或叫做耗氧量(代表向食品中迁移的总有机物质及不溶性物质的量);脱色试验;其他根据易造成食品污染的砷、氟、重金属(铅、镉、锑、锗、钴、铬、锌)、有机物单体残留物、裂解物(氯乙烯、苯乙烯、酚类、丁腈胶、甲醛)、助剂、老化物等有害元素的测定。蒸发残渣代表向食品中迁移的总可溶性及不溶性物质的量,它反映食品包装袋在使用过程中接触到液体时折出残渣、重金属、荧光性物质、残留毒素的可能性。如果用这样的食品包装承装食品,食品就会受到不同程度的污染,人们食用后毒素就会进人人体,长期沉积在内脏器官,引起慢性中毒。特别是人体中过量的重金属会减弱人体免疫功能.损伤神经、造血和生殖系统,尤其是对处于成长期的儿童和青少年的身体和智力发育产生阻碍减缓甚至不可逆转的毒副作用。1.3 食品包装材料的卫生标准在卫生标准上,分原材料和制品这两个方面。在原材料方面的卫生标准,有GB9691《食品用聚乙烯树脂的卫生标准》、GB96~(食品用聚苯乙烯树脂的卫生标准》和GB9693{食品用聚丙烯树脂的卫生标准》。在这3个树脂标准中.聚乙烯和聚丙烯用量最大,聚苯乙烯用量最少,而且会越来越少。另外,国外除了这3个树脂标准外,还有聚酯(PET)、尼龙(PA)等其他树脂的卫生标准。在这些原材料的卫生标准中,有重金属含量、蒸发残渣、高锰酸钾消耗量、脱色指标等规定,而国外的指标中,还有醛含量,镉、砷、汞等重金属含量,酚和胺含量等规定。在成型品方面的卫生标准,有GB%87{食品包装用聚乙烯成型品卫生标准》、GB9688{食品包装用聚丙烯成型品卫生标准》、GB9689《食品包装用聚苯乙烯成型品卫生标准》和G~683{复合食品包装袋卫生标准》。前面3个成型品卫生标准项目中,有蒸发残渣、高锰酸钾消耗量、重金属含量的具体指标,而第四个《复合食品包装袋卫生标准》中,又增加了二氨基甲苯含量不得大于0.004 m L的指标。这是因为在食品包装材料中,胶粘剂中的微量有害健康的物质,也会影响整个体系的卫生性能,而且其中的二氨基甲苯是一种致癌物质,必须严格控制。对成型品还要有相应的卫生标准,其目的就是防止乱用和滥用添加剂,就是要更好地保障直接包装和接触食品的材料具有高度的卫生安全性能。除了上述的卫生标准项目和指标外,我国的复合包装材料标准中,还有一项残留溶剂不得大于10 m kg的规定,例如GBIO0(~ 和GB10005,最近还增加了其中甲苯的残留量不得大于3 m kg的内容。这是因近年来大家对包装材料的异味和潜在毒性要求越来越严格有关,所以,除了限定它的残留量之外,随之而来的就发展了水性油墨和胶粘剂、醇溶性的油墨和胶粘剂以及无溶剂胶粘剂等新产品,目的是想保障复合材料具有更高的纯净、卫生和安全性能。为了控制食品容器和包装材料的卫生安全,我国又制定了GB9685{食品容器、包装材料用助剂使用卫生标准》,在这个助剂的卫生标准中,规定了添加剂、溶剂、胶粘剂等17个大类、58种具体物质的名称和最高使用量,类似于FDA2l CFR&175.105和日本接着剂“自主规定”,列出可以用在食品包装领域中的辅助材料名称清单及其最高用量,除此以外就不准使用。1.4 食品包装材料中不得使用的有毒有害物质我国规定不得使用酚醛树脂用于制作食具、容器、生产管道、输送带等直接接触食品的包装材料;氯丁胶一般不得用于制作食品用橡胶制品,氧化铅、六甲四胺、芳胺类、ot一巯基咪唑啉、ot一巯醇基苯并噻唑(促进剂M)、二硫化二甲并噻唑(促进剂DM)、乙苯一B一萘胺(防老剂J)、对苯二胺类、苯乙烯代苯酚、防老剂124等不得在食品用橡胶制品中使用;我国规定在食品工业中使用的橡胶制品的着色剂应是氧化铁、钛白粉。因此在外观上规定用红、白两种色泽的橡胶为食品工业用,强调黑色的橡胶制品为非食品工业用;容器内壁涂料不得使用极毒或高毒的助剂。陶瓷器、搪瓷食具、金属、玻璃食具容器原料不得使用有害金属,金属食具原料混有铅、镉等有害金属或其他化学毒物,国内曾发生用镀锌铁皮容器制作饮料,饮后发生食品中毒,国家规定白铁皮不准用于食品机械部分,食品工业中应用的大部分为黑铁皮;在高档玻璃器皿中如高脚酒杯往往添加铅化合物,这是玻璃器皿中较突出的卫生问题;不得使用废旧回收纸作为制纸原料,因为废旧回收纸虽然经过脱色只是将油墨颜料脱去,而铅、镉、多氯联苯等仍可留在纸浆中;在食品包装用纸中严禁使用荧光增白剂,使用食品包装级石蜡,注意玻璃纸软化剂问题,应符合GB11680—89(食品包装用原纸卫生标准》要求;复合薄膜食品包装袋采用聚氨酯型粘合剂,带来甲苯二异氰酸酯(TDI),在食品蒸煮时,会迁移至食品中并水解生成具有致癌性的2,4一二氨基甲苯(TDA),应符合GB9683—1988(复合食品包装袋卫生标准》;食品中的微生物超标有的也是由于不合格的包装材料、容器引起的,尤其是质量不卫生安全的纸包装用品、皮革、天然橡胶、木材等材料容易造成食品尤其是液体食品发生霉菌(真菌)污染问题。2 国外对食品包装材料的卫生安全管理方式欧美发达国家食品包装安全管理各具特色,但也有一些共同点:2.1 科学立法首先,立法、执法、司法机构要权利分开,以确保立法决策的科学性、透明性和公众参与性。美联邦和各州(法国是各省)法律的基础是严格的、灵活的、科学的,联邦和各州法律都规定,食品生产和包装行业有按法律义务生产安全食品的法定责任。联邦政府、各州以及地方政府在用法律管理食品和食品加工时,承担着互为补充、内部独立的职责。2.2 执法公正宪法赋予执法、立法、司法各自的职责,执法、立法、司法机构在国家食品安全体系中均承担责任。作为立法机构的国会,要制定并颁布法令,确保食品安全;国会还授权执法分支机构贯彻这些法令,这些执法分支机构可以通过制定和实施法规来贯彻法令。当实施法规和方针引起争端时,司法机关要做出公正的裁决。在美国,法律、法令及总统执行令形成了一个完整体系,以确保对公众公开、透明。2.3 五大原则一般地说,食品包装安全体系遵循以下5大指导原则建立:食品安全方面的法规决策以科学为基础;政府具有公正执法的职责;只有安全健康的食品才能进入市场销售;制造商、配送商、进口商及其他人要遵守以上原则,否则承担法律责任;法律法规制定过程透明并向公众开放。2.4 国际合作在美国、法国的食品包装安全体系中,将国际合作和以科学为基础的安全预防与风险分析作为国家食品安全方针和决策的重要基础。这是长期以来美国、法国执行的食品安全方针。在合作方面,一方面通过与国际组织的合作,如与世界食品法典委员会CAC、世界卫生组织WHO、联合国粮农组织FAO等合作,解决技术问题、紧急问题、食品安全事件等;另一方面通过政府机构内专家的合作及向其他科学家的咨询或合作,为法规制定者提供技术和科学方面的推荐方案;强调食品病原菌的早期预警体系;授权制定法规的机构根据技术发展、知识更新和保护消费者的需要修改法规和指南。为了食品安全体系法令的有效实施,确保食品包装安全具有很高的公众信任度,欧美发达国家都建立了相应的管理机构,如法国国家认证委员会、国家标签鉴定委员会CNLC、卫生部、农业部、国家特产研究院;美国食品和药品管理局(FDA)、美国食品安全和检验局(FSIS)、动植物健康检验局(APHIS)、环境保护署(EPA)等机构组织,承担了保护消费者安全、健康的首要职责。3 加强食品包装材料的卫生管理的措施3.1 加快食品包装的卫生标准与安全法规的修改制定工作欧美发达国家是世界上制定食品包装安全法规的先驱,经过100多年的发展,建成了完善的食品包装安全管理体系。我国食品包装材料也有相应的法律法规和卫生标准,如《中华人民共和国食品卫生法》、《食品用塑料制品及原材料管理办法》、《食品用橡胶制品卫生管理方法》、《陶瓷食具容器卫生管理办法》、《搪瓷食具容器卫生管理办法》等。由于一些食品包装的卫生标准是上个世纪制定的,检测项目相对较少,对于许多新产品由于缺乏相应的食品标准、相应的检测指标要求以及相应的检测方法标准,使一些食品包装材料(包括基本材料、黏合剂、油墨)中隐含的有害成分得不到控制。依据传统工艺制造出来的食品包装物里面都会有添加剂成分,如抗氧化剂、苯、甲苯等有害物质的溶剂,虽然其中绝大多数都在制造过程中挥发出去,但少量溶剂会残留在复合膜之间,随着时间的推移,从膜表面渗透入食品,使之变质、变味、增加了食品的不安全因素。在复合包装材料中,除了树脂、助剂外,还有十分广泛使用的油墨和胶粘剂,目前还没有它单独的卫生标准,也没有全国统一的产品标准,只有各个生产企业的《企业标准》,这需要引起我们重视并及时做好相关研究工作。3.2 加强食品包装材料包括其原材料的检验监督工作加强对食品包装的检验监督。检验监督工作要做到关口前移,防止不合格的食品流人市场,危害社会。保证食品的安全质量,给广大消费者一个卫生、安全、环保、方便、美观的食品包装。[参考文献][1]袁振华.食品包装材料中化学物向食品迁移和安全评估[J].浙江预防医学,1999,(11):29—31.[2]和东芹.浅析包装材料对食品安全性影响[J].邯郸职业技术学院学报,2004,17(1):41—44.[3]GB9685—1994.食品容器、包装材料用助剂使用卫生标准[S].[4]宋杰辰,朱强,于晓英,等.纸制食品容器与包装材料卫生标准的探讨[J].中国公共卫生,1999,15(8):48—5O.

相关百科

热门百科

首页
发表服务