首页

> 学术发表知识库

首页 学术发表知识库 问题

玻璃陶瓷发光性能的研究论文题目

发布时间:

玻璃陶瓷发光性能的研究论文题目

自几动脑筋。

毕业论文如下:目录1.前言2.网络营销——促进中小陶瓷企业营销国际化3.网络营销的主要特点3.1跨时空营销3.2互动式营销3.3定制化营销3.4低成本营销4.中小陶瓷企业网络营销的主要策略4.1产品策略4.2价格策略4.3促销策略4.4渠道策略4.5营销集成策略5.结语致谢..6参考文献..7我国中小陶瓷企业的网络营销策略xx学院电子商务专业xxx指导老师xxx摘要: 分析了电子商务时代给我国陶瓷企业带来的机遇和挑战,并结合实例论述了我国陶瓷企业发展之初实现网络营销应采取的网络营销策略。关键词:网络营销,中小陶瓷企业,网络营销策略1前言一个企业的生存发展,主要依赖于对市场的拥有程度。 作为企业,在竞争中取胜和极力占领市场的份额是它的最终目的,也是最大限度地获取利润的良方。而在电子商务时代internet的发展使计算机市场营销成为可能,而市场营销的计算机化——网络营销导致企业的营销和管理模式发生了根本的转变,这种营销和管理模式的转变为中小陶瓷企业提供了有利的手段,使它们能够有机会智胜那些过去不可一世的大企业。中小陶瓷企业因为其规模小实力相对较弱,虽然有很好的技术、产品,但由于信息不通畅,无法使消费者知道并订购自己的产品,使得中小陶瓷企业在其营销过程中存在着其它企业所不存在的诸多难题。而电子商务则为中小陶瓷企业带来先进的信息手段,从而为他们创造了与大企业相对平等的竞争机会和舞台,并带来了良好的发展条件与机遇。一家小陶瓷企业在网上做的广告可以把企业的促销信息传递给世界各地的潜在消费者。因此,我国中小陶瓷企业要想获得长足发展,要想在激烈的营销竞争中立于不败之地,必须树立现代市场营销观念,努力学习国外先进的营销方式,运用科学的营销手段、先进的物流配送方式,探索适用自身的营销策略,实行网络营销,并利用网络营销的优势来提高其竞争力。2网络营销——促进中小陶瓷企业营销国际化网络营销(cybermarketing,onlinemarketing)是指借助国际互联网络,实施企业的营销战略和策略,以求实现企业的营销目标。借助于internet,企业可以以较低费用完成以下工作:建立与个人计算机使用者相连的新的销售渠道;接触新的潜在顾客;为深层次广告提供新的渠道,将大量可变信息转化为符合需要的适用信息,收集大量消费者信息,从而使面向消费者的营销活动更明确、更有针对性;建立更为有效的渠道,以自动解决问题、回答消费者问题;敏感地收集消费者反馈,并利用反馈改善产品、服务和销售。一个陶瓷企业的发展刚刚起步,由于各方面的实力无法与大企业相比,所以很难实现营销国际化。网络的出现,改变了这一切,中小陶瓷企业完全可以利用网络实现营销国际化。以瑞士一家生产火车模型的小企业为例,该企业只有1xxxx员工,其中有xxxx就专门负责外出参展等事宜,并且重点利用网络开展营销,使这家企业的模型火车占据了世界市场份额的4xxxx。瑞士中小企业努力实现网络营销的增值化,通过消费者反馈的信息,加快产品测试过程,积极提供定制服务、个性化服务;在网上提供各种免费咨询,满足消费者的求知欲,促进了产品的国际化。 在网络时代,发展网络营销是促进中小陶瓷企业市场全球化的一种最佳方式。通过网络,中小陶瓷企业可以快捷发布企业最新信息,可以在网页上制作广告宣传企业形象,借助网络收集客户意见,及时把握市场和消费者对企业、产品及服务的需求,作为制定企业经营和市场营销策略的基础。企业可以通过向客户提供某些优惠活动,收集客户的相关资料,建立客户数据库,并在此基础上提供各种延伸服务,以增加销售机会。因此,中小陶瓷企业应积极利用互联网实现产品销售,积极抢占市场。3网络营销的主要特点3.1跨时空营销营销的最终目的是占有市场份额。由于互联网络具有超越时间约束和空间限制进行信息交换的特点,因此使得脱离时空限制达成交易成为可能。中小陶瓷企业就可能有更多时间和更大空间进行营销,可24小时随时随地的提供全球性营销服务。同时,消费者只需根据自已的喜欢或需要去选择相应的信息加以比较,做出购买的决策,这种轻松自在的选择,不必受时间、地点的限制。3.2互动式营销互联网络提供了中小陶瓷企业与消费者双向交流的通道,中小陶瓷企业可以通过互联网络向消费者展示产品目录,联结资料库提供有关产品信息的查询,制作调查表来搜集消费者的意见,还可以让消费者参与产品的设计、开发,真正作到以消费者为中心,设计出更符合消费者需要的产品和服务。通过这种双向互动的沟通方式,提高了消费者的参与性和积极性,反过来,也提高了企业营销策略的针对性,有助于实现企业的全程营销目标。3.3定制化营销所谓定制化是指中小陶瓷企业利用网络优势,一对一向消费者提供独特化、个性化的产品或服务。网络营销的一个重要思想就是要尽最大努力满足单个消费者的特定消费要求,立足于处理好与每一个消费者的关系,注重发挥互联网的独特优势,不断培养、提高消费者的忠诚度,确保销售持续增长。网络营销可跟踪每个客户的消费习惯和偏好,及时推荐相关产品。3.4低成本营销首先,中小陶瓷企业采购原材料往往是一项程序烦琐的过程。通过电脑网络的商务活动,企业可以加强与主要供应商之间的协作关系,将原材料的采购与产品的制造过程有机地配合起来,形成一体化的信息传递和信息处理体系,从而降低了陶瓷企业的采购成本。陶瓷企业对原材料需求量大,品种繁多,利用网络进行原材料采购及市场营销,足不出户便可得到来源广泛的信息资源,且节省中介费,从而节省大笔资金,降低成本。同时可以毫不费力地货比三家,得到最便宜的原材料,这比传统的采购方式方便得多!因此实行网络营销可使运营成本大幅度降低。其次,中小陶瓷企业运用网络手段,可以降低促销成本(如广告、调研等费用)。在网上促销的成本只相当于直接邮寄广告费的1/10,利用因特网发布广告的平均费用仅为传统媒体的xxxx。总之,网络营销是一对一的、理性的、消费者主导的、非强迫性的、循序渐进式的,而且是一种低成本与人性化的营销。4中小陶瓷企业网络营销的主要策略4.1产品策略作为一种新型媒体,互联网络的运用对传统的产品策略必然会带来冲击,因为就像不同的产品适合采用不同的销售渠道一样,网络营销也有其适用的产品范围和策略。由于互联网络具有很好的互动性和引导性,消费者通过互联网络在中小陶瓷企业的引导下对陶瓷产品或服务进行选择或提出具体要求。通过网络的良好服务功能,才能赢得消费者的满意,进而建立消费者的忠诚,将陶瓷企业的知名度转化为满意度具体策略主要如下:利用电子布告栏(bbs)或电子邮件(email)提供线上售后服务或与消费者作双向沟通。让消费者在网络上充分展示自己的需求并可亲自设计,企业据此为消费者提供产品与服务,比如对陶瓷工艺品的外观、色彩等均可运用该种方式。在网络上提供与产品相关的专业知识,达到增加产品价值的同时也提高企业形象,如对陶瓷机械维护与保养,陶瓷家电用品的性能、使用和注意事项。提供网上自动服务系统,依据客户需求,自动适时地利用网络提供有关产品的服务信息。例如,陶瓷机械产品的供应商可在网络上提醒客户有关定期保养的通知等。4.2价格策略价格对陶瓷企业、消费者乃至中间商来说都是最为敏感的问题,而网络上信息自由的特点使这三方面对产品的价格信息都有比较充分的了解。网络上的价格有两个特点:(1)价格弹性化。由于网络营销的互动性,消费者可以和陶瓷企业就产品价格进行协商。另外,陶瓷企业也可以根据每个消费者对陶瓷产品和服务提供的不同要求,来制定相应的价格。(2)价格趋低化。由于网络营销使陶瓷企业和消费者直接打交道,而不需要传统的中间人,使企业产品开发和促销成本降低,企业可以降低产品的价格促销,又由于互联网的开放性和互动性,陶瓷市场是透明的,消费者可以就产品及价格进行充分的比较和选择。因此,要求中小陶瓷企业以尽可能低的价格向消费者提供产品和服务,在以市场为导向的营销中,中小陶瓷企业必须以消费者能接受的成本定价。网上价格策略主要表现在:网上查询功能可以充分揭示市场相关产品的价格,消费者能理性判断欲购产品价格的合理性。举办网上会员制,鼓励消费者上网消费,以节省销售渠道的运行成本。开发智能型网上议价系统,与消费者直接在网络上协商价格。开发自动调价系统,可以依时间、季节变动,工厂库存情况,市场供需情形,促销活动等自动调整产品价格。4.3促销策略传统的促销是以陶瓷企业为主体,通过一定的媒体或工具对消费者进行联系,而网络促销的出发点是利用网络的特征实现与消费者的沟通,使消费者可以参与陶瓷企业的营销活动中来。这种沟通方式不是传统促销中“推”的形式而是“拉”的形式,不是传统的“强势”营销而是“软”营销,它的主动方是消费者,消费者的需求趋于个性化,他们会在个性化需求的驱动之下自己到网络上寻找相关的消费者信息。中小陶瓷企业可以通过网络受访情况的分析,更能了解消费者的需求,实行有针对性的主动营销,这样更易引起消费者的认同。网上促销的核心问题是如何吸引消费者,为其提供具有价值诱因的商品信息。但网络手段的运用,使传统的促销活动具有了新的含义和形式。常见的网上促销有如下一些方面:(1)建立虚拟公共关系室。在网络上参与公益部门所举办的各项公益活动及赞助,如希望工程,扶贫救助等;也可结合本陶瓷企业的优势,利用网络推动公共服务。(2)利用网上对话的功能,举行网上消费者联谊活动或网上记者招待会。这样做,一方面可以跨时空地进行沟通,同时也是一种低成本的促销。(3)利用网络进行促销活动,包括新陶瓷产品信息提供,促销方式说明,提供折扣券或赠品等,提高消费者上网搜寻及购买产品的意愿。(4)发布网上广告,与此同时,建立英文版的首页也是中小陶瓷企业国际化不可缺少的推广活动(5)积极参加网络资源索引,尽可能使客户容易查询到公司的推广资料,使其能快速获得所需的商品信息。与非竞争性厂商进行网上促销的策略联盟,利用相互的网上资料库,增加与潜在消费者接触的机会。4.4渠道策略营销渠道,也叫销售渠道或分销渠道,是指产品从生产者转移到消费者或使用者所经过的途径。网络营销是一对一的分销渠道,是跨时空进行销售的,消费者可以随时随地利用互联网络购买相关产品。因此中小陶瓷企业的陶瓷产品的分销应以方便消费者为主。下面列举网络条件下营销渠道可能展现的形态。在首页设计上采取虚拟实境的手法,设立虚拟商店橱窗,使消费者如同进入实际的商店一般,同时商店的橱窗可顺应时间、季节、促销活动、经营策略等需要,轻易快速地改变设计。结合相关产业的公司,共同在网络上组织网络商展。消费者一经上网,即可饱览各类相关商品,从而增加上网意愿与消费动机。如生产建筑陶瓷、卫生陶瓷的中小陶瓷企业就可与房地厂商联手举办网络商展活动。消费者在决定采购后,可采用电子邮件方式进行网上订购。可在网络上以首页方式设立虚拟经销商或虚拟公司,提供各类的商品目录及必要的售后服务。此外,网络营销中一个最重要的渠道就是会员网络,会员网络是在中小陶瓷企业建立虚拟组织的基础上形成的网络团体,通过会员制,促进消费者相互间的联系和交流,以及消费者与陶瓷企业的联系和交流,培养消费者对陶瓷企业的忠诚,并把消费者融入陶瓷企业的整个营销过程中,使会员网络的每一个成员都能互惠互利,共同发展。4.5营销集成策略因特网是一种新的市场环境,这一环境不只是对中小陶瓷企业的某一环节和过程,还将对企业组织、运作及管理观念上产生重大影响。一些企业已经迅速融入这一环节,依靠网络与原料商、制造商、消费者等建立了密切的联系,并通过网络收集传递信息,从而根据消费需求,充分利用网络伙伴的生产能力来实现产品设计、制造及销售服务的全过程。这种模式就是网上营销集成,应用这一模式的典型代表有电脑行业cisco、dell等公司。网上营销集成是对因特网的综合应用,是因特网对传统商业关系的整合,它使中小陶瓷企业真正确立了市场营销的核心地位。中小陶瓷企业的使命不仅是制造产品,还应根据消费者的需求,组合现有的外部资源,高效地输出一种满足这种需求的品牌产品,并提供服务保障。5结语网络营销作为一种全新的营销理念,具有很强的实践性,它的发展速度是前所未有的,我国陶瓷企业特别是中小陶瓷企业应积极利用internet开展陶瓷产品的营销,拓展海内外客源渠道,勇于实践,大胆创新,谁能抢得先机,谁就能在未来市场中占据主动。致谢:毕业论文终于完稿了,回想一个月来的前期准备、提笔写作和论文修改,我禁不住的热泪盈眶。论文的完稿意味着我毕生难忘的大学生活即将结束,我将离开我可爱的母校,尊敬的老师和亲爱的同学。面对今天已经成稿的毕业论文,我要感谢我的论文指导老师:xx老师,是她用谦虚严谨的治学态度和诲人不倦的传道、授业、解惑精神,帮助我克服种种困难,完成论文的写作。我还要感谢我的父母、同学和所有帮助过我以及给我精神动力的人。感激之情无以言表,只能千言万语汇成一句话:衷心的感谢所有我应该感谢的人,谢谢另外,站长团上有产品团购,便宜有保证

稀土掺杂氟化物多波长红外显示材料的研究摘 要本文简单介绍了稀土发光原理、上转换发光材料的大致发展史、红外上转换发光材料的应用以及当前研究现状。以PbF2为基质材料,ErF3为激活剂,YbF3为敏化剂,采用高温固相反应法制备了PbF2: Er,Yb上转换发光材料。重点讨论了制备过程中,制备工艺中的烧结时间、烧结温度对红外激光显示材料发光效果的影响。研究了Er3+/Yb3+发光系统在1064nm激光激发下的荧光光谱和上转换发光的性质。实验表明,在1064nm激光激发下,材料可以发射出绿色和红色荧光,是一种新型的红外激光显示材料。关键字:1064nm 上转换 红外激光显示 Er3+/Yb3+AbstractThis paper simply described the rare earth luminescence mechanism, the development of up-conversion materials and their applications were systematically explained. Present situation of the research on infrared up-conversion luminescence is also presented. PbF2 as matrix, ErY3 as activator and YbF3 as sensitizer were adopted to synthesize PbF2: Er,Yb up-conversion material with high temperature solid-phase reaction. A great emphasize was paid on the factors that effect on the luminescence properties of infrared laser displayed materials such as sinter temperature, time of sinter. The luminescence system of Er3+/Yb3+, their fluorescence spectrum and their character of up-conversion with 1064nm LD as an excitation source were studied. The experimental results that intense green and wed up-conversion emissions were observed under 1064nm LD excitation, which is a new type of infrared laser displayed materials.Key Words: 1064nm Up-conversion Infrared laser displayed materials Er3+/Yb3+目 录摘要Abstract第一章 绪论 11.1 稀土元素的光谱理论简介 11.1.1 稀土元素简介 11.1.2 稀土离子能级 11.1.3 晶体场理论 21.1.4 基质晶格的影响 21.2 上转换发光材料的发展概况 31.3 上转换发光的基本理论 41.3.1 激发态吸收 41.3.2 光子雪崩上转换 41.3.3 能量传递上转换 51.4 敏化机制与掺杂方式 61.4.1 敏化机制 61.4.2 掺杂方式 71.5 上转换发光材料的应用 81.6 本论文研究目的及内容 8第二章 红外激光显示材料的合成与表征 102.1 红外激光显示材料的合成 102.1.1 实验药品 102.1.2 实验仪器 102.1.3 样品的制备 112.2 红外激光显示材料的表征 122.2.1 XRD 122.2.2 荧光光谱 12第三章 结果与讨论 143.1 基质材料的确定 143.2 助熔剂的选择 153.3 烧结时间的确定 153.4 烧结温度的确定 163.5 掺杂浓度的确定 17结 论 21参考文献 22致 谢 23第一章 绪论1.1 稀土元素的光谱理论简介1.1.1 稀土元素简介稀土元素是指周期表中IIIB族,原子序数为21的钪(Sc):39的钇(Y)和原子序数57至71的镧系中的镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),共17个元素[1]。稀土元素的原子具有未充满的受到外界屏蔽的4f和5d电子组态,因此具有丰富的电子能级和长寿命激发态,能级跃迁通道多达20余万个,可以产生多种多样的辐射吸收和发射。稀土化合物发光是基于它们的4f电子在f-f组态之内或f-d组态之间的跃迁。稀土发光材料具有许多优点:(1)与一般元素相比,稀土元素4f电子层构型的特点,使其化合物具有多种荧光特性;(2)稀土元素由于4f电子处于内存轨道,受外层s和P轨道的有效屏蔽,很难受到外部环境的干扰,4f能级差极小,f-f跃迁呈现尖锐的线状光谱,发光的色纯度高;(3)荧光寿命跨越从纳秒到毫秒6个数量级;(4)吸收激发能量的能力强,转换效率高;(5)物理化学性质稳定,可承受大功率的电子束、高能辐射和强紫外光的作用。1.1.2稀土离子能级稀土离子具有4f电子壳层,但在原子和自由离子的状态由于宇称禁戒,不能发生f-f电子跃迁[3&7]。在固体中由于奇次晶场项的作用宇称禁戒被解除,可以产生f-f跃迁,4f轨道的主量子数是4,轨道量子数是3,比其他的s,p,d轨道量子数都大,能级较多。除f-f跃迁外,还有4f-5d,4f-6s,4f-6p电子跃迁。由于5d,6s,6p能级处于更高的能级位置,所以跃迁波长较短,除个别离子外,大多数都在真空紫外区域。由于4f壳层受到5s2,5p6壳层的屏蔽作用,对外场作用的反应不敏感,所以在固体中其能级和光谱都具有原子状态特征。因此,f-f跃迁的光谱为锐线,4f壳层到其他组态的跃迁是带状光谱,因为其他组态是外壳层,受环境影响较大。稀土离子在化合物中一般出现三价状态,在可见和红外光区观察的光谱大都属于4fN组态内的跃迁,在给定组态后确定光谱项的一般方法是利用角动量耦合和泡利原理选出合理的光谱项,但这种方法在电子数多,量子数大时,相当麻烦且容易出错。所以,对稀土离子不太适合。利用群论方法,采用U7>R7>G2>R3群链的分支规则可以方便地给出4fN组态的全部正确的光谱项,通常用大写的英文字母表示光谱项的总轨道角动量的量子数的数目,如S,P,D,F,G,H,I,K,L,M,N,O,Q……分别表示总轨道角动量的量子数为0,1,2,3,4,5,6,7,8,9,10,11,12,……,25+l表示光谱项的多重性,S是总自旋量子数。在光谱学中,用符号2S+1L表示光谱项。1.1.3 晶体场理论晶体场理论认为,当稀土离子掺入到晶体中,受到周围晶格离子的影响时,其能级不同自由离子的情况。这个影响主要来自周围离子产生的静电场,通常称为晶体场[2]。晶体场使离子的能级劈裂和跃迁几率发生变化。稀土离子在固体中形成典型的分立发光中心。在分立发光中心中,参与发光跃迁的电子是形成中心离子本身的电子,电子的跃迁发生在离子本身的能级之间。中心的发光性质主要取决于离子本身,而基质晶格的影响是次要的。稀土离子的4f电子能量比5s,5p轨道高,但是5s,5p轨道在4f轨道的外面,因而5s,5p轨道上的电子对晶体场起屏蔽作用,使4f电子受到晶体场的影响大大减小。稀土离子4f电子受到晶体场的作用远远小于电子之间的库仑作用,也远远小于4f电子的自旋—轨道作用。考虑到电子之间的库仑作用和自旋—轨道作用,4f电子能级用2J+I LJ表示。晶体场将使具有总角动量量子数J的能级分裂,分裂的形式和大小取决于晶体场的强度和对称性。稀土离子4f能级的这种分裂,对周围环境(配位情况、晶场强度、对称性)非常敏感,可作为探针来研究晶体、非晶态材料、有机分子和生物分子中稀土离子所在局部环境的结构,且2J+I LJ能级重心在不同的晶体中大致相同,稀土离子4f电子发光有特征性,因而很容易根据谱线位置辨认是什么稀土离子在发光。1.1.4 基质晶格的影响基质晶格对f→d跃迁的光谱位置有着强烈的影响,另外其对f→f跃迁的影响表现在三个方面:(1)可改变三价稀土离子在晶体场所处位置的对称性,使不同跃迁的谱强度发生明显的变化;(2)可影响某些能级的分裂;(3)某些基质的阴离子团可吸收激发能量并传递给稀土离子而使其发光,即基质中的阴离子团起敏化中心的作用。特别是阴离子团的中心离子(Me)和介于中间的氧离子O2-以及取代基质中阳离子位置的稀土离子(RE)形成一直线,即Me-O-RE接近180°时,基质阴离子团对稀土离子的能量传递最有效。1.2 上转换发光材料的发展概况发光是物体内部以某种方式吸收的能量转换为光辐射的过程。发光学的内容包括物体发光的条件、过程和规律,发光材料与器件的设计原理、制备方法和应用,以及光和物质的相互作用等基本物理现象。发光物理及其材料科学在信息、能源、材料、航天航空、生命科学和环境科学技术中的应用必将促进光电子产业的迅猛发展,这对全球的信息高速公路的建设以及国家经济和科技的发展起着举足轻重的推动作用。三价镧系稀土离子具有极丰富的电子能谱,因为稀土元素原子的电子构型中存在4f轨道,为多种能级跃迁创造了条件,在适当波长的激光的激发下可以产生众多的激光谱线,可从红外光谱区扩展到紫外光谱区。因此,稀土离子发光研究一直备受人们的关注。60年代末,Auzel在钨酸镱钠玻璃中意外发现,当基质材料中掺入Yb3+离子时,Er3+、Ho3+和Tm3+稀土离子在红外光激发下可发出可见光,并提出了“上转换发光”的观点[5&4]。所谓的上转换材料就是指受到光激发时,可以发射比激发波长短的荧光的材料。其特点是激发光光子能量低于发射光子的能量,这是违反Stokes定律的。因此上转换发光又称为“反Stokes发光”。从七十年代开始,上转换的研究转移到单频激光上转换。到了八十年代由于半导体激光器泵浦源的发展及开发可见光激光器的需求,使其得到快速发展。特别是近年来随着激光技术和激光材料的进一步发展,频率上转换在紧凑型可见激光器、光纤放大器等领域的巨大应用潜力更激起广大科学工作者的兴趣,把上转换发光的研究推向高潮,并取得了突破性实用化的进展。随着频率上转换材料研究的深入和激光技术的发展,人们在考虑拓宽其应用领域和将已有的研究成果转换成高科技产品。1996年在CLEO会议上,Downing与Macfarlanc等人合作提出了三色三维显示方法,双频上转换三维立体显示被评为1996年物理学最新成就之一,这种显示方法不仅可以再现各种实物的立体图像,而且可以随心所欲的显示各类经计算机处理的高速动态立体图像,具有全固化、实物化、高分辨、可靠性高、运行速度快等优点[15]。上转换发光材料的另一项很有意义的应用就是荧光防伪或安全识别,这是一个应用前景极其广阔的新兴研究方向。由于在一种红外光激发下,发出多条可见光谱线且各条谱线的相对强度比较灵敏地依赖于上转换材料的基质材料与材料的制作工艺,因而仿造难、保密强、防伪效果非常可靠。目前,研究的稀土离子主要集中在Nd3+,Er3+,Ho3+,Tm3+和Pr3+等三价阳离子。Yb3+离子由于其特有的能级特性,是一种最常用的敏化离子。一般来说,要制备高效的上转换材料,首先要寻找合适的基质材料,当前研究的上转换材料多达上百种,有玻璃、陶瓷、多晶粉末和单晶。其化合物可分为:(1)氟化物;(2)氧化物;(3)卤氧化物;(4)硫氧化物;(5)硫化物等。迄今为止,上转换发光研究取得了很大的进展,人们已在氟化物玻璃、氟氧化物玻璃及多种晶体中得到了不同掺杂稀土离子的蓝绿上转换荧光。1.3 上转换发光的基本理论通过多光子机制把长波辐射转换成短波辐射称为上转换,其特点是吸收光子的能量低于发射光子的能量[2&8]。稀土离子上转换发光是基于稀土离子4f电子能级间的跃迁产生的。由于4f外壳层电子对4f电子的屏蔽作用,使得4f电子态间的跃迁受基质的影响很小,每种稀土离子都有其确定的能级位置,不同稀土离子的上转换发光过程不同。目前可以把上转过程归结于三种形式:激发态吸收、光子雪崩和能量传递上转换。1.3.1激发态吸收激发态吸收(Excited Stated Absorption简写为ESA)是上转换发光中的最基本过程,如图1-1所示。首先,发光中心处于基态能级E0的电子吸收一个ω1的光子,跃迁到中间亚稳态E1上,E1上的电子又吸收一个ω2光子,跃迁到高能级E2上,当处于能级E2上的电子向基态跃迁时,就发射一个高能光子。图1-1 上转换的激发态吸收过程1.3.2 光子雪崩上转换光子雪崩上转换发光于1979年在LaCl3∶Pr3+材料中首次发现。1997年,N. Rakov等报道了在掺Er3+氟化物玻璃中也出现了雪崩上转换。由于它可以作为上转换激光器的激发机制,而引起了人们的广泛的注意。“光子雪崩”过程是激发态吸收和能量传输相结合的过程,如图1-2所示,一个四能级系统,Mo、M1、M2分别为基态和中间亚稳态,E为发射光子的高能级。激发光对应于M1→E的共振吸收。虽然激发光光子能量同基态吸收不共振,但总会有少量的基态电子被激发到E与M2之间,而后弛豫到M2上。M2上的电子和其他离子的基态电子发生能量传输I,产生两个位于M1的电子。一个M1的电子在吸收一个ω1的光子后激发到高能级E。而E能级的电子又与其他离子的基态相互作用,产生能量传输II,则产生三个为位于M1的电子,如此循环,E能级上的电子数量像雪崩一样急剧地增加。当E能级的电子向基态跃迁时,就发出能量为ω的高能光子。此过程就为上转换的“光子雪崩”过程。图1-2 光子雪崩上转换1.3.3能量传递上转换能量转移(Energy Transfer,简写成ET)是两个能量相近的激发态离子通过非辐射过程藕合,一个回到低能态,把能量转移给另一个离子,使之跃迁到更高的能态。图1-3列出了发生能量传递的几种可能途径:(a)是最普通的一种能量传递方式,处于激发态的施主离子把能量传给处于激发态的受主离子,使受主离子跃迁到更高的激发态去;(b)过程称为多步连续能量传递,在这一过程中,只有施主离子可以吸收入射光子的能量,处于激发态的施主离子与处于基态的受主离子间通过第一步能量传递,把受主离子跃迁到中间态,然后再通过第二步能量传递把受主离子激发到更高的激发态;(c)过程可命名为交叉弛豫能量传递(Cross Relaxation Up-conversion,简称CR),这种能量传递通常发生在相同离子间,在这个过程中,两个相同的离子通过能量传递,使一个离子跃迁到更高的激发态,而另一个离子弛豫到较低的激发态或基态上去;(d)过程为合作发光过程的原理图,两个激发态的稀土离子不通过第三个离子的参与而直接发光,他的一个明显的特征是没有与发射光子能量匹配的能级,这是一种奇特的上转换发光现象;(e)过程为合作敏化上转换,两个处于激发态的稀土离子同时跃迁到基态,而使受主离子跃迁到较高的能态。(a)普通能量传递 (b)多步连续能量传递(c)交叉弛豫能量传递 (d)合作发光能量传递(e)合作敏化上转换能量传递图1-3 几种能量传递过程的示意图稀土离子的上转换发光都是多光子过程,在多光子过程中,激发光的强度与上转换荧光的强度有如下关系:Itamin ∝ Iexcitationn其中Itamin表示上转换荧光强度,Iexcitation表示激发光强度,在双对数坐标下,上转换荧光的强度与激发光的强度的曲线为一直线,其斜率即为上转换过程所需的光子数n,这个关系是确定上转换过程是几光子过程的有效方法。1.4 敏化机制与掺杂方式1.4.1 敏化机制通过敏化作用提高稀土离子上转换发光效率是常用的一种方法[9]。其实质是敏化离子吸收激发能并把能量传递给激活离子,实现激活离子高能级的粒子数布居,从而提高激活离子的转换效率,这个过程可以表述如下:Dexc+A→D+AexcD表示施主离子,A是受主离子,下标“exc”表示该离子处于激发态。Yb3+离子由于特有的能级结构,是最常用的也是最主要的一种敏化离子。(1)直接上转换敏化对与稀土激活中心(如Er3+,Tm3+,Ho3+)和敏化中心Yb3+共掺的发光材料,由于Yb3+的2F5/2能级在910-1000nm均有较强吸收,吸收波长与高功率红外半导体激光器的波长相匹配。若用激光直接激发敏化中心Yb3+,通过Yb3+离子对激活中心的多步能量传递,可再将稀土激活中心激发至高能级而产生上转换荧光,这类过程会导致上转换荧光明显增强,称之为直接上转换敏化。图1-4以Yb3+/Tm3+共掺杂为例给出了该激发过程的示意图。图1-4 直接上转换敏化(2)间接上转换敏化由于Yb3+离子对910-1000 nm间泵浦激光吸收很大,泵浦激光的穿透深度非常小,因此虽然在表面的直接上转换敏化能极大的提高上转换效率,但它却无法应用到上转换光纤系统中。针对这种情况,国际上与1995-1996年首次提出了“间接上转换敏化”方法[7]。间接上转换敏化的模型首先在Tm3+/Yb3+双掺杂体系中提出的:当激活中心为Tm3+时,如果激发波长与Tm3+的3H6→3H4吸收共振,激活中心Tm3+就被激发至3H4能级,随后处于3H4能级的Tm3+离子与位于2F5/2能级的Yb3+离子发生能量传递,使Yb3+离子的2F5/2能级上有一定的粒子数布居。然后处于激发态2F5/2的Yb3+离子再与Tm3+进行能量传递,实现Tm3+的1G4能级的粒子数布居,这样就通过Tm3+→Yb3+→Tm3+献的能量过程间接地把Tm3+离子激发到了更高能级1G4。从而导致了Tm3+离子的蓝色上转换荧光。图1-5给出了间接上转换敏化的示意图。考虑到稀土离子的敏化作用与前述的上转换机理,在实现上转换发光的掺杂方式通常要考虑如下几点:(1)敏化离子在激发波长处有较大的吸收截面和较高的掺杂浓度;(2)敏化离子与激活离子之间有较大的能量传递几率;(3)激活离子中间能级有较长的寿命。图1-5 间接上转换敏化1.4.2 掺杂方式表1-1给出了当前研究比较多的掺杂体系,表中同时列出了某一掺杂体系对应的激发波长、基质材料、敏化机制等。表1-1 常见的掺杂体系稀土离子组合 激发波长 基质材料 敏化机制单掺杂 Er3+ 980nm ZrO2纳米晶体 —Nd3+ 576nm ZnO–SiO2–B2O3 —Tm3+ 660nm AlF3/CaF2/BaF2/YF3 —双掺杂 Yb3+:Er3+ 980nm Ca3Al2Ge3O12玻璃 直接敏化Yb3+:Ho3+ 980nm YVO4 直接敏化Yb3+:Tm3+ 800nm 氟氧化物玻璃 间接敏化Yb3+:Tb3+ 1064nm 硅sol–gel玻璃 合作敏化Yb3+:Eu3+ 973nm 硅sol–gel玻璃 合作敏化Yb3+:Pr3+ 1064nm LnF3/ZnF2/SrF2 BaF2/GaF2/NaF 直接敏化Nd3+:Pr3+ 796nm ZrF4基玻璃 直接敏化三掺杂 Yb3+: Nd3+ :Tm3+ 800nm ZrF4基玻璃 间接敏化Yb3+: Nd3+ :Ho3+ 800nm ZrF4基玻璃 间接敏化Yb3+: Er3+ :Tm3+ 980nm PbF2:CdF2玻璃 直接敏化1.5 上转换发光材料的应用稀土掺杂的基质材料在波长较长的红外光激发下,可发出波长较短的红、绿、蓝、紫等可见光。通常情况下,上转换可见光包含多个波带,每个波带有多条光谱线,这些谱线的不同强度组合可合成不同颜色的可见光[7]。掺杂离子、基质材料、样品制备条件的改变,都会引起各荧光带的相对强度变化,不同样品具有独特的谱线强度分布与色比关系(我们定义上转换荧光光谱中各荧光波段中的峰值相对强度比称为色比,通常以某以一波段的峰值强度为标准)。因而上转换发光材料可应用到荧光防伪或安全识别上来。上转换发光材料在荧光防伪或安全识别应用上的一个研究重点是制备上转换效率高,具有特色的防伪材料,实现上转换荧光防伪材料能够以配比控制色比;也就是通过调整稀土离子种类、浓度以及基质材料的种类、结构和配比,达到控制色比关系。1.6 本论文研究目的及内容Nd:YAG激光器发出1064nm的激光,在激光打孔、激光焊接、激光核聚变等领域具有广泛的应用价值,是最常用的激光波段。然而,由于人眼对1064nm的红外光不可见,因此,需要采用对1064nm激光响应的红外激光显示材料制备的显示卡进行调准和校正。本论文采用氟化物作为基质,掺杂稀土离子,通过配方和工艺研究,制备对1064nm响应的红外激光显示材料。研究组分配比、烧结温度、气氛和时间等对粉体性能的影响。并采用XRD和荧光光谱分析等测试手段对粉体进行表征。确定最佳烧结温度、组分配比,最终获得对1064nm具有优异红外转换性能的红外激光显示材料。第二章 红外激光显示材料的合成与表征经过多年研究,红外响应发光材料取得了很大进展,现已实现了氟化物玻璃、氟氧化物玻璃、及多种晶体中不同稀土离子掺杂的蓝绿上转换荧光。然而上转换荧光的效率距离实际实用还有很大的差距,尤其是蓝光,其效率更低。因此,寻找新的红外激光显示材料仍在研究之中,本文主要研究对1064nm响应的发光材料。本章研究了双掺杂Er3+/Yb3+不同基质材料的蓝绿上转换荧光,得到了发光效果较好的稀土掺杂氟化物的红外激光显示材料,得到了一些有意义的研究结果。2.1 红外激光显示材料的合成2.1.1 实验药品(1)合成材料所用的化学试剂主要有:LaF3,BaF2,Na2SiF6,NaF,氢氟酸,浓硝酸等。稀土化合物为Er2O3、Yb2O3,纯度在4N以上。(2)ErF3、YbF3的配制制备Yb3+/Er3+共掺氟化物的红外激光显示材料使用的ErF3,YbF3是在实验室合成的。实验采用稀土氧化物,称取适量的Er2O3,Yb2O3放在烧杯1和烧杯2中,滴加稍微过量的硝酸(浓度约为8mol/L),置于恒温加热磁力搅拌器上搅拌,直至烧杯1中出现粉红色溶液、烧杯2中出现无色溶液停止。其化学反应如下:Er2O3+6HNO3→2Er(NO3)3+3H2OYb2O3+6HNO3→2Yb(NO3)3+3H2O再往烧杯1和烧杯2中分别都加入氢氟酸,烧杯1中生成粉红色ErF3沉淀,烧杯2中生成白色絮状YbF3沉淀,其化学反应如下:Er(NO3)3+3HF→ErF3↓+3HNO3Yb(NO3)3+3HF→YbF3↓+3HNO3生成的ErF3、YbF3沉淀使用循环水式多用真空泵进行分离,并多次使用蒸馏水进行洗涤,将从溶液中分离得到的沉淀倒入烧杯放入电热恒温干燥箱,在100℃条件下保温12小时,得到了实验所需的ErF3、YbF3,装入广口瓶中备用。2.1.2 实验仪器SH23-2恒温加热磁力搅拌器(上海梅颖浦仪器仪表制造有限公司)PL 203电子分析天平(梅特勒一托多利仪器上海有限公司)202-0AB型电热恒温干燥箱(天津市泰斯特仪器有限公司)SHB-111型循环水式多用真空泵(郑州长城科工贸有限公司)WGY-10型荧光分光光度计(天津市港东科技发展有限公司)DXJ-2000型晶体分析仪(丹东方圆仪器有限公司)1064nm半导体激光器(长春新产业光电技术有限公司)4-13型箱式电阻炉(沈阳市节能电炉厂)2.1.3 样品的制备(1)实验方法本实验样品制备方法是:以稀土化合物YbF3、ErF3,基质氟化物为原料,引入适量的助熔剂,采用高温固相法合成红外激光显示材料。高温固相法是将高纯度的发光基质和激活剂、辅助激活剂以及助熔剂一起,经微粉化后机械混合均匀,在较高温下进行固相反应,冷却后粉碎、筛分即得到样品[8]。这种固体原料混合物以固态形式直接参与反应的固相反应法是制备多晶粉末红外激光显示材料最为广泛使用的方法。在室温下固体一般并不相互反应,高温固相反应的过程分为产物成核和生长两部分,晶核的生成一般是比较困难的,因为在成核过程中,原料的晶格结构和原子排列必须作出很大调整,甚至重新排列。显然,这种调整和重排要消耗很多能量。因而,固相反应只能在高温下发生,而且一般情况下反应速度很慢。根据Wagner反应机理可知,影响固体反应速度的三种重要因素有:①反应固体之间的接触面积及其表面积;②产物相的成核速度;③离子通过各物相特别是通过产物相时的扩散速度。而任何固体的表面积均随其颗粒度的减小而急剧增加,因此,在固态反应中,将反应物充分研磨是非常必要的[6]。而同时由于在反应过程中在不同反应物与产物相之间的不同界面处可能形成的物相组成是不同的,因此可能导致产物组成的不均匀,所以固态反应需要进行多次研磨以使产物组成均匀。另外,如果体系存在气相和液相,往往能够帮助物质输运,在固相反应中起到重要作用,因此在固相反应法制备发光材料时往往加入适量助熔剂。在有助熔剂存在的情况下,高温固相反应的传质过程可通过蒸发-凝聚、扩散和粘滞流动等多种机制进行。(2)实验步骤根据配方中各组分的摩尔百分含量(表3-1,表3-2,表3-3中给出了实验所需主要样品的成分与掺杂稀土离子浓度),准确计算各试剂的质量,使用电子天平精确称量后,把原料置于玛瑙研钵中研磨均匀后装入陶瓷坩埚中(粉体敦实后大概占坩埚体积的1/3),再放入电阻炉中保温一段时间。冷却之后即得到了实验所述的红外激光显示材料样品。图2-1为实验流程图:图2-1 实验流程图2.2 红外激光显示材料的表征2.2.1 XRDX射线衍射分析是当今研究晶体精细结构、物相分析、晶粒集合和取向等问题的最有效的方法之一[10&9]。通常采用粉末状晶体或多晶体为试样的X射线衍射分析被称为粉末法X射线衍射分析。1967年,Hugo M.Rietveld鉴于计算机处理大量数据的能力,在粉末中子衍射结构分析中,提出了全粉末衍射图最小二乘拟合结构修正法。1977年,Malmros等人把这个方法引入X射线粉末衍射分析中,从此Rietveld分析法的研究开始迅速发展起来[16&10]。本实验采用丹东方圆仪器有限公司生产的DXJ-2000型晶体分析仪对粉末样品进行数据采集,主要测试参数为:Cu靶Kα线,管压45kV,管流35Ma,狭缝DSlmm、RS0.3mm.、SS1 mm,扫描速度10度/min(普通扫描)、0.02度/min(步进扫描),通过测试明确所制备的材料是否形成特定晶体结构的晶相,也可以简单判断随着掺杂量的增加,是否在基质中有第二相形成或者掺杂的物质同基质一起形成固溶体。

我这里有很多材料,欢迎来537寻找!

光透过有色玻璃研究论文

玻璃为什么是透明的?光穿透它的原理是什么?这样科普太生动了

可见光是一种波,一种能量,而非物体。光穿过玻璃的本质,是可见光这种波,在玻璃上同时发生反射、吸收和透射的情况下,因玻璃对可见光的透射率较高,故大部分可见光波透射过玻璃,并在人的视网膜上投影,从而被人感知。而除了玻璃外的大部分物质,如这里提到的墙壁中的各种物质,对可见光的透射率却及低,大部分能量被吸收和反射。如果改变可见光波的频率或波长,便会发生颜色的改变,若继续改变其频率或波长,便会成为紫外线、红外线、无线电、微波、X光、伽马射线等其他频率的不可见波。其中无线电对于大多少物质的透射率都很高,所以在城市中使用无线电不会被建筑物等遮挡。玻璃透射阳光,其实只是透射了其中的可见光部分,而对紫外线等光波的透射率很低,所以在室内进行日光浴是不科学的、无效的。我记得人需要一种维生素需要在阳光下合成,其实是阳光中的紫外线参与合成,所以你晒太阳一定要亲临日光。如果改变玻璃的物质构成,让它只对某一特定波长的可见光波产生透射,这便是有色玻璃

光能穿透玻璃体现的正是光具有波的特性.光能反射,则是体现力学性质.这就是很有名的光的波力二向性.

不能,不过如果玻璃的颜色不均匀还是有一定的丁达尔效应的

稀土发光陶瓷研究现状论文

稀土发光材料 自古以来,人类就喜欢光明而害怕黑暗,梦想能随意地控制光,现在我们已开发出很多实用的发光材料。在这些发光材料中,稀土元素起的作用很大,稀土的作用远远超过其它元素。 一、稀土发光材料��物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光,另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在反回到基态的过程中,以光的形式放出能量。以稀土化合物为基质和以稀土元素为激活剂的发光材料多属于后一类,即稀土荧光粉。稀土元素原子具有丰富的电子能级,因为稀土元素原子的电子构型中存在4f轨道,为多种能级跃迁创造了条件,从而获得多种发光性能。稀土是一个巨大的发光材料宝库,在人类开发的各种发光材料中,稀土元素发挥着非常重要的作用。��自1973年世界发生能源危机以来,各国纷纷致力于研制节能发光材料,于是利用稀土三基色荧光材料制作荧光灯的研究应运而生。1979年荷兰菲利浦公司首先研制成功,随后投放市场,从此,各种品种规格的稀土三基色荧光灯先后问世。随着人类生活水平的不断提高,彩电已开始向大屏幕和高清晰度方向发展。稀土荧光粉在这些方面显示自己十分优越的性能,从而为人类实现彩电的大屏幕化和高清晰度提供了理想的发光材料。��稀土荧光材料与相应的非稀土荧光材料相比,其发光效率及光色等性能都更胜一筹。因此近几年稀土荧光材料的用途越来越广泛,年用量增长较快。��根据激发源的不同,稀土发光材料可分为光致发光(以紫外光或可见光激发)、阴极射线发光(以电子束激发)、X射线发光(以X射线激发)以及电致发光(以电场激发)材料等。二、光致发光材料—灯用荧光粉��灯用发光材料自70年代末实用化以来,促使稀土节能荧光灯、金属卤化物灯向大功率、小型化、低光衰、高光效、高显色、无污染、无频闪、实用化、智能化、艺术化方向发展。主要用于各类不同用途的光源,如照明、复印机光源、光化学光源等。其中三基色荧光粉(由红、绿、蓝三种稀土的荧光粉按一定比例混合而成)制成的节能灯,由于光效高于白炽灯二倍以上,光色也好,受到世界各国的重视。稀土发光材料的质量提高和应用技术的发展,推动了新一代节能光源的科研、生产、应用,并带动了许多相关行业的发展,配套能力不断增强。��典型的热阴极荧光灯是在玻璃管内壁涂有荧光粉,在紫外线激发下发出可见光。当灯通电时,封装在灯两端的钨丝电极之间放电。主要是通过荧光粉将短波辐射转变成可见光而发光。稀土三基色荧光灯,它含有钇、铕和铽稀土荧光粉,能发出更亮的光,比标准荧光灯更接近太阳光谱。同时这种光可以节省50%的能耗,三基色荧光粉是将三种发射窄带红(611nm)、绿(545nm)和兰(450nm)色光谱的三种荧光粉混合而成。灯管先涂一薄层卤磷酸盐荧光粉,然后再涂一薄层三基色荧光粉。每支三基色荧光灯管平均含4.5克荧光粉,其中包括60%Eu3+掺杂的氧化钇(红粉)、30%Tb3+激活的铈镁铝酸盐(绿粉)和10%Eu2+激活的钡镁铝盐(蓝粉)。��三基色荧光粉常用的稀土激活荧光体有:红粉:铕(Eu3+)激活的氧化钇、有时用Bi3+共掺杂蓝粉:铕(Eu2+)激活的硅酸盐基质铕(Eu2+)激活的铝酸盐基质铕(Eu2+)激活的氯磷酸盐基质铕(Eu2+)激活的钡镁铝酸盐绿粉:铽(Tb3+)、铋(Bi3+)和铈(Ce3+)激活的镁铝酸盐铽(Tb3+)和钆(Gd3+)激活的镁钡铝酸盐1.稀土节能灯��稀土荧光粉主要应用于办公室、百货商店和工厂中的高性能荧光灯。80年代中期以来,随着含铽较少的较便宜的荧光粉开发成功,这种节能灯的应用迅速增长。90年代中期,国际上推出了TMT2直管型荧光灯,管径仅7mm,功率为6W~13W,光效为621m/W。T5直管型荧光灯管径为16mm,功率14W~35W,28W荧光灯光效可达104m/W,寿命大于16000h。我国新开发的大功率强光型55W~120W适用于室外照明的稀土紧凑型节能荧光灯管,光效801m/W以上。��新一代高频环保节能灯管T5荧光灯管,是理想的节能照明光源。灯管的特点是涂敷稀土三基色荧光粉为发光体,采用固态汞减少二次污染及高频电点灯的新技术,光效高、光色好、无频闪、提高了光的质量、缩短了工序、降低了能耗、减少了汞污染、净化了生产环境、提高了生产效率,是今后几年大力推广的产品,市场前景优于当前的紧凑型节能荧光灯。��近年国际上又推出加强型T5高频节能荧光灯管,提高了单位面积的光通量,充分发挥了细管径高光通的作用。��上海东利照明电器有限公司、江南节能灯厂、华星光电实业公司等单位近日以推出大功率、高光通、高显色、强光型紧凑型节能荧光灯。华星光电实业公司研制生产的T5管径55W~85W E40、E27灯头,体积与功率250W以下的高压汞灯、高压钠灯大致相同,显色指数Ra>80,适用于室外照明。��节能灯是绿色照明工程的重要组成部分,推广使用稀土三基色节能灯是节约能源、保护环境的有效措施之一。2.稀土荧光粉用其它类型灯(1)汞灯��稀土荧光粉用于高压汞灯中已有多年。这种灯的原理是利用氩气和汞蒸汽中的放电作用,它的光强度高于荧光灯。所用铕激活的钡酸钇荧光粉起改善光色作用。高压汞灯的主要应用是街道和工厂照明,这种场合需要强的白光。但是,近年来钠放电灯和金属卤化物HQT灯已代替了高压汞灯,它的市场已衰落。钠放电灯和金属卤化物HQT灯比汞灯的颜色再现性好,发天然白光。美国通用电报电话公司麻省实验室的研究人员已经研究出一种改良型低色温用的汞灯。将铈激活的钡酸钇荧光粉混入,制成400W的暖色汞灯,照明度25500流明,色温3350K,比普通汞灯的稳定性好、效率高。(2)碳弧灯��稀土氟化物加入到棒芯中,使弧光强度提高到10倍,同时弧光颜色由浅黄色变为接近日光色。这种碳弧灯用作探照灯以及彩色电影摄像和放映。(3)高压钠灯��高压钠灯中用半透明氧化铝作弧型管材料,氧化铝中添加少量氧化镁和氧化钇作烧结助剂来改善材料的光学性质,为了增强氧化铝的半透明度,氧化钇的粒径应在25微米左右。若粒径太大则会降低强度。目前高压钠灯中存在的问题是稀土杂质偏析导致钠浸蚀氧化铝管。

我这里有很多材料,欢迎来537寻找!

1、生料釉?釉用的全部原料都不经过预选熔制,直接加水调制而成浆。2、熔块釉?釉料制浆前,先将部分原料熔制成玻璃状物质并用水淬成小块(熔块),再与其余原料混合球磨成釉浆。3、盐釉?此釉不须事先制备,而是在产品煅烧至高温时,向窑内投入食盐,盐的挥发物使坯体表面形成薄层玻璃物质。4、土釉?此釉是天然有色粘土经淘洗后直接作为釉料使用。5、长石釉?此釉主要由石英、长石、石灰、和粘土配成,它的特点是硬度大,光泽较强,透明,有柔和感,烧成范围宽。6、石灰釉?此釉主要由氧化钙作熔剂,且氧化钙的分子数应占半数以上,石灰釉弹性好,光泽强,也可以烧成无光釉和乳浊釉,其缺点是烧成范围较狭,制品易烟薰。7、铅釉?此釉部分引用铅的氧化物作为熔剂,常和硼的氧化物一起使用,强烈地降低釉的熔融温度,铅及铅硼釉的最大优点是光泽度强,弹性好,能适用于多种坯体,并能加强色釉的呈色,但考虑到铅毒的危害,目前应尽量少用。

压电陶瓷的力学性能研究论文

特种陶瓷定义特种陶瓷又称精细陶瓷,按其应用功能分类,大体可分为高强度、耐高温和复合结构陶瓷及电工电子功能陶瓷两大 ... 在陶瓷坯料中加入特别配方的无机材料,经过1360度左右高温烧结成型,从而获得稳定可靠的防静电性能,成为一种新型特种陶瓷,通常具有一种或多种功能。如:电、磁、光、热、声、化学、生物等功能,以及耦合功能。如压电、热电、电光、声光、磁光等功能。特种陶瓷的分类特种陶瓷是二十世纪发展起来的,在现代化生产和科学技术的推动和培育下,它们"繁殖"得非常快,尤其在近二、三十年,新品种层出不穷,令人眼花缭乱。按照化学组成划分有:①氧化物陶瓷:氧化铝、氧化锆、氧化镁、氧化钙、氧化铍、氧化锌、氧化钇、二氧化钛、二氧化钍、三氧化铀等。②氮化物陶瓷:氮化硅、氮化铝、氮化硼、氮化铀等。③碳化物陶瓷:碳化硅、碳化硼、碳化铀等。④硼化物陶瓷:硼化锆、硼化镧等。⑤硅化物陶瓷:二硅化钼等。⑥氟化物陶瓷:氟化镁、氟化钙、三氟化镧等。硫化物陶瓷:硫化锌、硫化铈等。还有砷化物陶瓷,硒化物陶瓷,碲化物陶瓷等。除了主要由一种化合物构成的单相陶瓷外,还有由两种或两种以上的化合物构成的复合陶瓷。例如,由氧化铝和氧化镁结合而成的镁铝尖晶石陶瓷,由氮化硅和氧化铝结合而成的氧氮化硅铝陶瓷,由氧化铬、氧化镧和氧化钙结合而成的铬酸镧钙陶瓷,由氧化锆、氧化钛、氧化铅、氧化镧结合而成的锆钛酸铅镧(PLZT)陶瓷等等。此外,有一大类在陶瓷中添加了金属而生成的金属陶瓷,例如氧化物基金属陶瓷,碳化物基金属陶瓷,硼化物基金属陶瓷等,也是现代陶瓷中的重要品种上。近年来,为了改善陶瓷的脆性,在陶瓷基体中添加了金属纤维和无机纤维,这样构成的纤维补强陶瓷复合材料,是陶瓷家族中最年轻但却是最有发展前途的一个分支。人们为了生产、研究和学习上的方便,有时不按化学组成,而根据陶瓷的性能,把它们分为高强度陶瓷,高温陶瓷,高韧性陶瓷,铁电陶瓷,压电陶瓷,电解质陶瓷,半导体陶瓷,电介质陶瓷,光学陶瓷(即透明陶瓷),磁性瓷,耐酸陶瓷和生物陶瓷等等。随着科学技术的发展,人们可以预期现代陶瓷将会更快地发展,产生更多更新的品种。特种陶瓷的制作工艺1、成形方法与结合剂的选择特种陶瓷成形方法有很多种,生产中应根据制品的形状选择成形方法,而不同的成形方法需选用的结合剂不同。常见陶瓷成形方法、结合剂种类及用量如下所示:特种陶瓷成形方法、结合剂种类和用量成形方法 结合剂举例 <结合剂用量(质量%)千压法 聚乙烯醇缩丁醛等 1~5浇注法 丙烯基树脂类 1~3挤压法 甲基纤维素等 5~15注射法 聚丙烯等 10~25等静压法 聚羧酸铵等 0~3结合剂可分为润滑剂、增塑剂、分散剂、表面活性剂(具有分散剂和润滑功能)等,为满足成形需要,通常采用多种有机材料的组合。选择结合剂,要考虑以下因素:l)结合剂能被粉料润湿是必要条件。当粉料的临界表面张力(yoc)或表面自由能(yos)比结合剂的表面张力(yoc)大时,才能很好地润湿。2)好的结合剂易于被粉料充分润湿,且内聚力大。当结合剂被粉料润湿时,在相互分子间发生引力作用,结合剂与粉料间发生红结合(一次结合),同时,在结合剂分子内,由于取向、诱导、分散效果而产生内聚力(二次结合)。虽然水也能把杨料充分润湿,但水易挥发,分子量较小,内聚力小,不是好的结合剂。按各种有机材料内聚力大小顺序,用基表示可排列如下:一CONH一>-CONH2>一COOH>一OH>-NO2>-COOC2H5>一COOCH5>-CHO>=CO>-CH3>= CH2>-CH23)结合剂的分子量大小要适中。要想充分润湿,希望分子量小,但内聚力弱。随着分子量增大,结合能力增强。但当分子量过大时,围内聚力过大而不易被润湿,且易使坯体产生变形。为了帮助分子内的链段运动,此时要适当加入增塑剂,在其容易润湿的同时,使结合剂更加柔软,便于成形。4)为保证产品质量,还需要防止从结合剂、原材料和配制工序混人杂质,使产品产生有害的缺陷。在原料配制中,用粉碎、混合等机械方法和结合剂、分散剂配合,达到分散,尽可能不含有凝聚粒子。结合剂受到种类及其分子量,粒子表面的性质和溶剂的溶解性等影响,吸附在原料粒子表面上,通过立体稳 定化效果,起到防止粉末原料凝聚的作用。在成形工序中,结合剂给原料以可塑性,具有保水功能,提高成形体强度和施工作业性。一般来说,结合剂由于妨碍陶瓷的烧结,应在脱脂工序通过加热使其分解挥发掉。因此,要选用能够易于飞散除去以及不含有害无机盐和金属离子的有机材料,才能确保产品质量。2、陶瓷注射成形和成形用结合剂氮化硅由于具有高强度、高耐磨性、低密度(轻量化)、耐热化、耐腐蚀性等优良性能,所以适用于制造涡轮加料机叶轮、摇臂式烧嘴、辅助燃烧室等汽车用陶瓷部件。这些部件要求复杂的形状、高精度尺寸和高可靠性。不允许有内在缺陷(裂纹、气孔、异物等)和表面缺陷。满足这些质量要求的成形技术之一,有陶瓷注射成形法(高压)。其工艺流程如下:成形工艺中,不能产生由成形材料的流动性、金属模型温度等引起的沟线和由成形条件引起的穴孔等缺陷;在脱脂工艺中,不使其产生由有机材料组成和热分解速度引起的脱脂裂纹。有机材料的选定也得满足这些质量要求。一般来说,陶瓷注射成形使用的有机材料由结合剂、助剂、可塑剂构成,结合剂可使用聚丙烯(PP)、无规则聚丙烯(APP)、聚乙烯(PE)、乙烯一醋酸乙烯共聚体(EVA)、聚苯乙烯(PS)、丙烯酸系树脂等。其中PE具有优异的成形性;EVA与其他树脂的相溶性好,流动性、成形性也好;APP具有与其他树脂相溶性好、富于流动性和脱脂性的特征;PS流动性好。助剂有蜡石石蜡、微晶石蜡、变性石蜡、天然石蜡、硬脂酸、配合剂等。成形材料的流动性可以使用高式流动点测定器和熔化分度器进行评价。当脱脂具有结合剂的含量多 时,则脱脂性有降低的倾向,助剂的石蜡多者,脱脂性好。如果有机材料在特定的温度区域不能全部飞散掉,就会影响陶瓷的烧结,因此,需要考虑热分解特性,加以选择。陶瓷注射成形使用的有机材料应选择使得成形材料的流动性和成形体的脱脂性两个特性达到最佳化。3、陶瓷挤压成形和成形用结合剂堇青石由于具有耐热性、耐腐蚀性、多孔质性、低热膨胀性等优良材料特性,所以广泛用作汽车尾气净化催化剂用载体。堇青石蜂窝状物利用原料粒子的取向,产生出蜂窝状结构体的低热膨胀,可用挤压成形法来制造。根据堇青石分子组成(2MgO·2Al2O3·5SiO2),原料可选用滑石、高岭土和氧化铝。成形用坯土从口盖里面的供给孔进入口盖内,经过细分后,向薄壁扩展,再结合,由此求得延伸性和结合性好的质量。另外,作为挤压成形后的蜂窝状体,为了保持形状,坯土的屈服值高者好,也就是说,选择结合剂应使坯土的流动性和自守性两个性能达到最佳化。原料粉末、结合剂、助剂(润滑剂、界面活性剂等)及水经机械混练后,用螺杆挤压机连续式挤压或用油压柱塞式挤压机挤压成形。一般来说,挤压成形使用的结合剂只要用低浓度水溶液,便可显示出高粘性的结合性能。常用的有甲基纤维素(MC)、羧甲基纤维素(CMC)、聚氧乙烯(PEO)、聚乙烯醇(PVA)、羟乙基纤维素(HEC)等。MC能很好溶于水中,当加热时很快胶化。CMC能很好溶于水中,分散性、稳定性也高。PVA 广泛地用于各种成形。润滑剂可减少粉体间的磨擦,界面活性剂可提高原料粉末与水的润湿性。缺乏可塑性,具有膨胀特性的坯土使挤压不够光滑,表面缺陷增加。因此,对结合剂的性能应有评价指标。评价还土的可塑性方法,有施加扭曲、压缩、拉伸等应力,求出应力与变形之间的关系,用毛细管流变计的方法、粘弹性的方法等。用这种方法可以评价坯土的自守性和流动性。在用粘弹性的方法评价时,可得出结合剂配合量增加到一定程度时,自守性和流动性均会增加的结果。也就是说,结合剂配合量的增加有助于原料的可塑性增加。有机材料是特种陶瓷的主要结合剂,合理选用这些有机材料是保证产品质量的关键。在生产中,应根据粉料的特性、制品的形状、成形方法综合进行选择。特种陶瓷发展新动向1前言 特种陶瓷有热压铸、热压、静压及气相沉积等多种成型方法,这些陶瓷由于其化学组成、显微结构及性能不同于普通陶瓷,故称为特种陶瓷或高技术陶瓷,在日本称为精细陶瓷。特种陶瓷不同的化学组成和组织结构决定了它不同的特殊性质和功能,如高强度、高硬度、高韧性、耐腐蚀、导电、绝缘、磁性、透光、半导体以及压电、光电、电光、声光、磁光等。由于性能特殊,这类陶瓷可作为工程结构材料和功能材料应用于机械、电子、化工、冶炼、能源、医学、激光、核反应、宇航等方面。一些经济发达国家,特别是日本、美国和西欧国家,为了加速新技术革命,为新型产业的发展奠定物质基础,投入大量人力、物力和财力研究开发特种陶瓷,因此特种陶瓷的发展十分迅速,在技术上也有很大突破。特种陶瓷在现代工业技术,特别是在高技术、新技术领域中的地位日趋重要。本世纪初特种陶瓷的国际市场规模预计将达到500亿美元,因此许多科学家预言:特种陶瓷在二十一世纪的科学技术发展中,必定会占据十分重要的地位。2生产工艺技术方面的新进展 (1)在粉末制备方面,目前最引人注目的是超高温技术。利用超高温技术不但可廉价地研制特种陶瓷,还可廉价地研制新型玻璃,如光纤维、磁性玻璃、混合集成电路板、零膨胀结晶玻璃、高强度玻璃、人造骨头和齿棍等。此外,利用超高温技术还可以研制出象钽、钼、钨、钒铁合金和钛等能够应用于太空飞行、海洋、核聚变等尖端领域的材料。例如日本在4000—15000℃和一个大气压以下制造金钢石,其效率比现在普遍采用的低温低压等离子体技术高一百二十倍。 超高温技术具有如下优点:能生产出用以往方法所不能生产的物质;能够获得纯度极高的物质:生产率会大幅度提高;可使作业程序简化、易行。目前,在超高温技术方面居领先地位的是日本。据统计,2000年日本超高温技术的特种陶瓷市场规模也将会超过20万亿日元。此外,溶解法制备粉末、化学气相沉积法制备陶瓷粉末、溶胶K凝胶法生产莫来石超细粉末以及等离子体气相反应法等也引起了人们的关注。在这几种方法中,绝大部分是近年开发研究出来的或是在近期得以完善的。 (2)在成型及烧结方面,热等静压法最为引人注目。该法与热压法相比能使物料受到各向同性的压力,因而其瓷质均匀,此外由于热压静法可以施加几千个大气压的高压,这样就使得要烧结的材料能在极低的温度下得以烧结。目前,市场上出售的热等静压法设备的最高使用温度及最高压力通常为2000℃,2000个大气压。 (3)在特种陶瓷的精密加工方面,真空扩散焊接法是一种最有前途的方法。采用真空扩散焊接法不仅可获得高强度、高致密度、高几何尺寸精度的金属陶瓷制品(泄漏率不大于5×10ˉ11立方米·帕/秒),而且无需使用贵重的稀有焊料,可用于制作各种形状、各种尺寸,特别是大规格的金属陶瓷制品。 另外,采用刀具加工陶瓷也引起了人们的极大兴趣。目前,这方面的工作仅处于研究实验阶段,由于用超高精度的车床和金刚石单晶车刀进行加工,以微米数量级的微小吃刀深度和微小的走刀量,能获得0.1微米左右的加工精度,因而许多国家把这种加工技术作为超精密加工的一个方面而加以开发研究。3 应用方面的新发展 特种陶瓷由于拥有众多优异性能,因而用途广泛。现按材料的性能及种类简要说明。 (1)、耐热性能优良的特种陶瓷可望作为超高温材料用于原子能有关的高温结构材料、高温电极材料等。 (2)、隔热性优良的特种陶瓷可作为新的高温隔热材料,用于高温加热炉、热处理炉、高温反应容器、核反应堆等。 (3)、导热性优良的特种陶瓷极有希望用作内部装有大规模集成电路和超大规模集成电路电子器件的散热片。 (4)、耐磨性优良的硬质特种陶瓷用途广泛,目前的工作主要是集中在轴承、切削刀具方面。 (5)、高强度的陶瓷可用于燃气轮机的燃烧器、叶片、涡轮、套管等;在加工机械上可用于机床身、轴承、燃烧喷嘴等。目前,这方面的工作开展得较多,许多国家如美国、日本、德国等都投入了大量的人力和物力,试图取得领先地位。这类陶瓷有氮硅、碳化硅、塞隆、氮化铝、氧化锆等。 (6)、具有润滑性的陶瓷如六方晶型氮化硼极为引人注目,目前国外正在加紧研究。 (7)、生物陶瓷方面目前正在进行将氧化铝、磷石炭等用作人工牙齿、人工骨、人工关节等研究,这方面的应用引起人们极大关注。4今后研究与开发的重点 (1)、特种陶瓷基础技术的研究,例如烧结机理、检测技术和粉末制备技术等; (2)、超导陶瓷的研究; (3)、特种陶瓷的薄膜化或非晶化是提高陶瓷功能的有效方法,因而许多国家都把它作为一项主要内容而加以研究; (4)、陶瓷的纤维化是研制隔热材料、复合增强材料等的重要基础,目前国外,尤其是日本对陶瓷纤维及晶须增强金属复合材料的研究极为重视,其研究主要集中于碳化硅及氮化硅; (5)、多孔陶瓷由于具有特殊结构,所以引起了各界的重视; (6)、陶瓷与陶瓷或陶瓷与其它材料复合(陶瓷纤维增强陶瓷,陶瓷纤维增强金属)问题也是现阶段的研究重点。 (7)、在非氮化物陶瓷中,目前国外研究最多的是陶瓷发动机,高压热交挽器及陶瓷刀具等; (8)、随着生物化学,生物医学这些新兴学科的发展,生物陶瓷的开发研究也变得越来越重要。

PZT-4是用钙、锶或钡置换部分的铅,用锡置换锆而做出的一种材料,居里点降低,电容率增大。 PZT是锆钛酸铅压电陶瓷的简称,它是钛酸铅和锆酸铅固溶体为基的组成物,其居里点在300-400摄氏度之间,在较大的温度范围内比较稳定,作为换能器材料,其压电效应显著。 PZT是PbZrO3和PbTiO3的固溶体,具有钙钛矿型结构。PbTiO3和PbZrO3是铁电体和反铁电体的典型代表,因为Zr和Ti属于同一副族,PbTiO3和PbZrO3具有相似的空间点阵形式,但两者的宏观特性却有很大的差异,钛酸铅为铁电体,其居里温度为492℃,而锆酸铅却是反铁电体,居里温度为232℃,如此大的差异引起了人们的广泛关注。研究PbTiO3和PbZrO3的固溶体后发现PZT具有比其它铁电体更优良的压电和介电性能,PZT以及掺杂的PZT系列铁电陶瓷成为近些年研究的焦点。

一、压电陶瓷的结构

压电陶瓷是指把氧化物混合(氧化锆、氧化铅、氧化钛等)高温烧结、固相反应后而成的多晶体,并通过直流高压极化处理使其具有压电效应。压电陶瓷的结构是晶粒随机取向的多晶聚集体,每个晶相都是具有铁电性的晶粒,各个铁电晶粒的自发极化矢量也是混乱取向的。

二、压电陶瓷的特性

压电陶瓷具有较好的力学性能和稳定的压电性能,压电陶瓷作为一种重要的力、热、电、光敏感功能材料,已经在传感器、超声换能器、微位移器和其它电子元器件等方面得到了广泛的应用。

扩展资料

压电陶瓷的制造技术:

1、单层压电陶瓷的基本制造

单层压电陶瓷元件是只有一层压电陶瓷组成的产品,其中导电金属电极施加到两个相对侧。单层压电陶瓷元件是通过常规工艺将压电陶瓷粉末进行压制而成,如单轴压制、等静压和挤压。制造单层压电元件的基本技术是使用喷雾干燥的颗粒材料压制成型体。

2、多层压电陶瓷的基本制造

多层压电陶瓷由几层压电材料构成,并与内部电极层交替。内部电极依次定位为正极和负极。所有正极连接到压电陶瓷元件一侧的一个外部电极,所有负电极连接在元件的另一侧外部电极。与单层压电陶瓷促动器相比,多层压电陶瓷促动器具有的优点是位移大。

参考资料来源:百度百科-压电陶瓷

正在写相关的论文,在找它的弹性模量和泊松比。你要的3个在这,介电常数矩阵 单位:(*10^-9)F/m 11.42 0 0 0 11.42 00 0 11.42压电常数 单位:(*10^-12)C/N d31 -90 d32 -90d33 225 d16 330 d25 330柔度常数 单位:10^10N/m^2 s11 11.5 s12 -3.7 s13 -4.8 s33 13.5 s44 31.9 s66 31.4

有机玻璃热固性研究论文

有机玻璃的化学成分是聚甲基丙烯酸甲酯,是由甲基丙烯酸酯聚合成的高分子化合物。线型分子,所以是是热塑性的。有机玻璃表面光滑、色彩艳丽,比重小,强度较大,耐腐蚀,耐湿,耐晒,绝缘性能好,隔声性好。

哇,复制了一大片,看都看晕了。简单一点:热固性不可以在成形,绝缘性能好。热塑性可以在粉碎在利用,机械、耐温、耐磨。。。。各方面性能优异。热塑性的种类也很多的,各种性能当然也不一样的。

玻璃分为很多种,下面简单介绍其中几种。普通玻璃,主要成分是二氧化硅水玻璃也叫“泡化碱”,主要成分是硅酸钠。玻璃纤维其主要成分为二氧化硅、氧化铝、氧化钙、氧化硼、氧化镁、氧化钠等,根据玻璃中碱含量的多少,可分为无碱玻璃纤维(氧化钠0%~2%,属铝硼硅酸盐玻璃)、中碱玻璃纤维(氧化钠8%~12%,属含硼或不含硼的钠钙硅酸盐玻璃)和高碱玻璃纤维(氧化钠13%以上,属钠钙硅酸盐玻璃)。 有机玻璃的成分不是硅酸盐(硅酸钠、硅酸钙和二氧化硅共熔物),而是有机高分子化合物聚甲基丙烯酸甲酯

聚甲基丙烯酸甲酯通常称做有机玻璃,英文缩写PMMA,具有高透明度,低价格,易于机械加工等优点,是平常经常使用的玻璃替代材料。有机玻璃是开发较早的一种重要热塑性塑料,不具有热固性,要不然就加不了工了。

相关百科

热门百科

首页
发表服务